Home | History | Annotate | Line # | Download | only in gdtoa
hdtoa.c revision 1.1
      1  1.1  christos /*	$NetBSD: hdtoa.c,v 1.1 2007/02/02 23:03:35 christos Exp $	*/
      2  1.1  christos 
      3  1.1  christos /*-
      4  1.1  christos  * Copyright (c) 2004, 2005 David Schultz <das (at) FreeBSD.ORG>
      5  1.1  christos  * All rights reserved.
      6  1.1  christos  *
      7  1.1  christos  * Redistribution and use in source and binary forms, with or without
      8  1.1  christos  * modification, are permitted provided that the following conditions
      9  1.1  christos  * are met:
     10  1.1  christos  * 1. Redistributions of source code must retain the above copyright
     11  1.1  christos  *    notice, this list of conditions and the following disclaimer.
     12  1.1  christos  * 2. Redistributions in binary form must reproduce the above copyright
     13  1.1  christos  *    notice, this list of conditions and the following disclaimer in the
     14  1.1  christos  *    documentation and/or other materials provided with the distribution.
     15  1.1  christos  *
     16  1.1  christos  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     17  1.1  christos  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     18  1.1  christos  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     19  1.1  christos  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     20  1.1  christos  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     21  1.1  christos  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     22  1.1  christos  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     23  1.1  christos  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     24  1.1  christos  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     25  1.1  christos  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     26  1.1  christos  * SUCH DAMAGE.
     27  1.1  christos  */
     28  1.1  christos 
     29  1.1  christos #include <sys/cdefs.h>
     30  1.1  christos #if 0
     31  1.1  christos __FBSDID("$FreeBSD: src/lib/libc/gdtoa/_hdtoa.c,v 1.4 2007/01/03 04:57:58 das Exp $");
     32  1.1  christos #else
     33  1.1  christos __RCSID("$NetBSD: hdtoa.c,v 1.1 2007/02/02 23:03:35 christos Exp $");
     34  1.1  christos #endif
     35  1.1  christos 
     36  1.1  christos #include <float.h>
     37  1.1  christos #include <limits.h>
     38  1.1  christos #include <math.h>
     39  1.1  christos #include <machine/ieee.h>
     40  1.1  christos #include "gdtoaimp.h"
     41  1.1  christos 
     42  1.1  christos /* Strings values used by dtoa() */
     43  1.1  christos #define	INFSTR	"Infinity"
     44  1.1  christos #define	NANSTR	"NaN"
     45  1.1  christos 
     46  1.1  christos #define	DBL_ADJ		(DBL_MAX_EXP - 2 + ((DBL_MANT_DIG - 1) % 4))
     47  1.1  christos #define	LDBL_ADJ	(LDBL_MAX_EXP - 2 + ((LDBL_MANT_DIG - 1) % 4))
     48  1.1  christos 
     49  1.1  christos /*
     50  1.1  christos  * Round up the given digit string.  If the digit string is fff...f,
     51  1.1  christos  * this procedure sets it to 100...0 and returns 1 to indicate that
     52  1.1  christos  * the exponent needs to be bumped.  Otherwise, 0 is returned.
     53  1.1  christos  */
     54  1.1  christos static int
     55  1.1  christos roundup(char *s0, int ndigits)
     56  1.1  christos {
     57  1.1  christos 	char *s;
     58  1.1  christos 
     59  1.1  christos 	for (s = s0 + ndigits - 1; *s == 0xf; s--) {
     60  1.1  christos 		if (s == s0) {
     61  1.1  christos 			*s = 1;
     62  1.1  christos 			return (1);
     63  1.1  christos 		}
     64  1.1  christos 		*s = 0;
     65  1.1  christos 	}
     66  1.1  christos 	++*s;
     67  1.1  christos 	return (0);
     68  1.1  christos }
     69  1.1  christos 
     70  1.1  christos /*
     71  1.1  christos  * Round the given digit string to ndigits digits according to the
     72  1.1  christos  * current rounding mode.  Note that this could produce a string whose
     73  1.1  christos  * value is not representable in the corresponding floating-point
     74  1.1  christos  * type.  The exponent pointed to by decpt is adjusted if necessary.
     75  1.1  christos  */
     76  1.1  christos static void
     77  1.1  christos dorounding(char *s0, int ndigits, int sign, int *decpt)
     78  1.1  christos {
     79  1.1  christos 	int adjust = 0;	/* do we need to adjust the exponent? */
     80  1.1  christos 
     81  1.1  christos 	switch (FLT_ROUNDS) {
     82  1.1  christos 	case 0:		/* toward zero */
     83  1.1  christos 	default:	/* implementation-defined */
     84  1.1  christos 		break;
     85  1.1  christos 	case 1:		/* to nearest, halfway rounds to even */
     86  1.1  christos 		if ((s0[ndigits] > 8) ||
     87  1.1  christos 		    (s0[ndigits] == 8 && s0[ndigits - 1] & 1))
     88  1.1  christos 			adjust = roundup(s0, ndigits);
     89  1.1  christos 		break;
     90  1.1  christos 	case 2:		/* toward +inf */
     91  1.1  christos 		if (sign == 0)
     92  1.1  christos 			adjust = roundup(s0, ndigits);
     93  1.1  christos 		break;
     94  1.1  christos 	case 3:		/* toward -inf */
     95  1.1  christos 		if (sign != 0)
     96  1.1  christos 			adjust = roundup(s0, ndigits);
     97  1.1  christos 		break;
     98  1.1  christos 	}
     99  1.1  christos 
    100  1.1  christos 	if (adjust)
    101  1.1  christos 		*decpt += 4;
    102  1.1  christos }
    103  1.1  christos 
    104  1.1  christos /*
    105  1.1  christos  * This procedure converts a double-precision number in IEEE format
    106  1.1  christos  * into a string of hexadecimal digits and an exponent of 2.  Its
    107  1.1  christos  * behavior is bug-for-bug compatible with dtoa() in mode 2, with the
    108  1.1  christos  * following exceptions:
    109  1.1  christos  *
    110  1.1  christos  * - An ndigits < 0 causes it to use as many digits as necessary to
    111  1.1  christos  *   represent the number exactly.
    112  1.1  christos  * - The additional xdigs argument should point to either the string
    113  1.1  christos  *   "0123456789ABCDEF" or the string "0123456789abcdef", depending on
    114  1.1  christos  *   which case is desired.
    115  1.1  christos  * - This routine does not repeat dtoa's mistake of setting decpt
    116  1.1  christos  *   to 9999 in the case of an infinity or NaN.  INT_MAX is used
    117  1.1  christos  *   for this purpose instead.
    118  1.1  christos  *
    119  1.1  christos  * Note that the C99 standard does not specify what the leading digit
    120  1.1  christos  * should be for non-zero numbers.  For instance, 0x1.3p3 is the same
    121  1.1  christos  * as 0x2.6p2 is the same as 0x4.cp3.  This implementation chooses the
    122  1.1  christos  * first digit so that subsequent digits are aligned on nibble
    123  1.1  christos  * boundaries (before rounding).
    124  1.1  christos  *
    125  1.1  christos  * Inputs:	d, xdigs, ndigits
    126  1.1  christos  * Outputs:	decpt, sign, rve
    127  1.1  christos  */
    128  1.1  christos char *
    129  1.1  christos hdtoa(double d, const char *xdigs, int ndigits, int *decpt, int *sign,
    130  1.1  christos     char **rve)
    131  1.1  christos {
    132  1.1  christos 	static const int sigfigs = (DBL_MANT_DIG + 3) / 4;
    133  1.1  christos 	union ieee_double_u u;
    134  1.1  christos 	char *s, *s0;
    135  1.1  christos 	int bufsize;
    136  1.1  christos 
    137  1.1  christos 	u.dblu_d = d;
    138  1.1  christos 	*sign = u.dblu_dbl.dbl_sign;
    139  1.1  christos 
    140  1.1  christos 	switch (fpclassify(d)) {
    141  1.1  christos 	case FP_NORMAL:
    142  1.1  christos 		*decpt = u.dblu_dbl.dbl_exp - DBL_ADJ;
    143  1.1  christos 		break;
    144  1.1  christos 	case FP_ZERO:
    145  1.1  christos 		*decpt = 1;
    146  1.1  christos 		return (nrv_alloc("0", rve, 1));
    147  1.1  christos 	case FP_SUBNORMAL:
    148  1.1  christos 		u.dblu_d *= 0x1p514;
    149  1.1  christos 		*decpt = u.dblu_dbl.dbl_exp - (514 + DBL_ADJ);
    150  1.1  christos 		break;
    151  1.1  christos 	case FP_INFINITE:
    152  1.1  christos 		*decpt = INT_MAX;
    153  1.1  christos 		return (nrv_alloc(INFSTR, rve, sizeof(INFSTR) - 1));
    154  1.1  christos 	case FP_NAN:
    155  1.1  christos 		*decpt = INT_MAX;
    156  1.1  christos 		return (nrv_alloc(NANSTR, rve, sizeof(NANSTR) - 1));
    157  1.1  christos 	default:
    158  1.1  christos 		abort();
    159  1.1  christos 	}
    160  1.1  christos 
    161  1.1  christos 	/* FP_NORMAL or FP_SUBNORMAL */
    162  1.1  christos 
    163  1.1  christos 	if (ndigits == 0)		/* dtoa() compatibility */
    164  1.1  christos 		ndigits = 1;
    165  1.1  christos 
    166  1.1  christos 	/*
    167  1.1  christos 	 * For simplicity, we generate all the digits even if the
    168  1.1  christos 	 * caller has requested fewer.
    169  1.1  christos 	 */
    170  1.1  christos 	bufsize = (sigfigs > ndigits) ? sigfigs : ndigits;
    171  1.1  christos 	s0 = rv_alloc(bufsize);
    172  1.1  christos 
    173  1.1  christos 	/*
    174  1.1  christos 	 * We work from right to left, first adding any requested zero
    175  1.1  christos 	 * padding, then the least significant portion of the
    176  1.1  christos 	 * mantissa, followed by the most significant.  The buffer is
    177  1.1  christos 	 * filled with the byte values 0x0 through 0xf, which are
    178  1.1  christos 	 * converted to xdigs[0x0] through xdigs[0xf] after the
    179  1.1  christos 	 * rounding phase.
    180  1.1  christos 	 */
    181  1.1  christos 	for (s = s0 + bufsize - 1; s > s0 + sigfigs - 1; s--)
    182  1.1  christos 		*s = 0;
    183  1.1  christos 	for (; s > s0 + sigfigs - (DBL_FRACLBITS / 4) - 1 && s > s0; s--) {
    184  1.1  christos 		*s = u.dblu_dbl.dbl_fracl & 0xf;
    185  1.1  christos 		u.dblu_dbl.dbl_fracl >>= 4;
    186  1.1  christos 	}
    187  1.1  christos 	for (; s > s0; s--) {
    188  1.1  christos 		*s = u.dblu_dbl.dbl_frach & 0xf;
    189  1.1  christos 		u.dblu_dbl.dbl_frach >>= 4;
    190  1.1  christos 	}
    191  1.1  christos 
    192  1.1  christos 	/*
    193  1.1  christos 	 * At this point, we have snarfed all the bits in the
    194  1.1  christos 	 * mantissa, with the possible exception of the highest-order
    195  1.1  christos 	 * (partial) nibble, which is dealt with by the next
    196  1.1  christos 	 * statement.  We also tack on the implicit normalization bit.
    197  1.1  christos 	 */
    198  1.1  christos 	*s = u.dblu_dbl.dbl_frach | (1U << ((DBL_MANT_DIG - 1) % 4));
    199  1.1  christos 
    200  1.1  christos 	/* If ndigits < 0, we are expected to auto-size the precision. */
    201  1.1  christos 	if (ndigits < 0) {
    202  1.1  christos 		for (ndigits = sigfigs; s0[ndigits - 1] == 0; ndigits--)
    203  1.1  christos 			;
    204  1.1  christos 	}
    205  1.1  christos 
    206  1.1  christos 	if (sigfigs > ndigits && s0[ndigits] != 0)
    207  1.1  christos 		dorounding(s0, ndigits, u.dblu_dbl.dbl_sign, decpt);
    208  1.1  christos 
    209  1.1  christos 	s = s0 + ndigits;
    210  1.1  christos 	if (rve != NULL)
    211  1.1  christos 		*rve = s;
    212  1.1  christos 	*s-- = '\0';
    213  1.1  christos 	for (; s >= s0; s--)
    214  1.1  christos 		*s = xdigs[(unsigned int)*s];
    215  1.1  christos 
    216  1.1  christos 	return (s0);
    217  1.1  christos }
    218  1.1  christos 
    219  1.1  christos #if (LDBL_MANT_DIG > DBL_MANT_DIG)
    220  1.1  christos 
    221  1.1  christos /*
    222  1.1  christos  * This is the long double version of hdtoa().
    223  1.1  christos  */
    224  1.1  christos char *
    225  1.1  christos hldtoa(long double e, const char *xdigs, int ndigits, int *decpt, int *sign,
    226  1.1  christos     char **rve)
    227  1.1  christos {
    228  1.1  christos 	static const int sigfigs = (LDBL_MANT_DIG + 3) / 4;
    229  1.1  christos 	union ieee_ext_u u;
    230  1.1  christos 	char *s, *s0;
    231  1.1  christos 	int bufsize;
    232  1.1  christos 
    233  1.1  christos 	u.extu_ld = e;
    234  1.1  christos 	*sign = u.extu_ext.ext_sign;
    235  1.1  christos 
    236  1.1  christos 	switch (fpclassify(e)) {
    237  1.1  christos 	case FP_NORMAL:
    238  1.1  christos 		*decpt = u.extu_ext.ext_exp - LDBL_ADJ;
    239  1.1  christos 		break;
    240  1.1  christos 	case FP_ZERO:
    241  1.1  christos 		*decpt = 1;
    242  1.1  christos 		return (nrv_alloc("0", rve, 1));
    243  1.1  christos 	case FP_SUBNORMAL:
    244  1.1  christos 		u.extu_ld *= 0x1p514L;
    245  1.1  christos 		*decpt = u.extu_ext.ext_exp - (514 + LDBL_ADJ);
    246  1.1  christos 		break;
    247  1.1  christos 	case FP_INFINITE:
    248  1.1  christos 		*decpt = INT_MAX;
    249  1.1  christos 		return (nrv_alloc(INFSTR, rve, sizeof(INFSTR) - 1));
    250  1.1  christos 	case FP_NAN:
    251  1.1  christos 		*decpt = INT_MAX;
    252  1.1  christos 		return (nrv_alloc(NANSTR, rve, sizeof(NANSTR) - 1));
    253  1.1  christos 	default:
    254  1.1  christos 		abort();
    255  1.1  christos 	}
    256  1.1  christos 
    257  1.1  christos 	/* FP_NORMAL or FP_SUBNORMAL */
    258  1.1  christos 
    259  1.1  christos 	if (ndigits == 0)		/* dtoa() compatibility */
    260  1.1  christos 		ndigits = 1;
    261  1.1  christos 
    262  1.1  christos 	/*
    263  1.1  christos 	 * For simplicity, we generate all the digits even if the
    264  1.1  christos 	 * caller has requested fewer.
    265  1.1  christos 	 */
    266  1.1  christos 	bufsize = (sigfigs > ndigits) ? sigfigs : ndigits;
    267  1.1  christos 	s0 = rv_alloc(bufsize);
    268  1.1  christos 
    269  1.1  christos 	/*
    270  1.1  christos 	 * We work from right to left, first adding any requested zero
    271  1.1  christos 	 * padding, then the least significant portion of the
    272  1.1  christos 	 * mantissa, followed by the most significant.  The buffer is
    273  1.1  christos 	 * filled with the byte values 0x0 through 0xf, which are
    274  1.1  christos 	 * converted to xdigs[0x0] through xdigs[0xf] after the
    275  1.1  christos 	 * rounding phase.
    276  1.1  christos 	 */
    277  1.1  christos 	for (s = s0 + bufsize - 1; s > s0 + sigfigs - 1; s--)
    278  1.1  christos 		*s = 0;
    279  1.1  christos 	for (; s > s0 + sigfigs - (EXT_FRACLBITS / 4) - 1 && s > s0; s--) {
    280  1.1  christos 		*s = u.extu_ext.ext_fracl & 0xf;
    281  1.1  christos 		u.extu_ext.ext_fracl >>= 4;
    282  1.1  christos 	}
    283  1.1  christos 	for (; s > s0; s--) {
    284  1.1  christos 		*s = u.extu_ext.ext_frach & 0xf;
    285  1.1  christos 		u.extu_ext.ext_frach >>= 4;
    286  1.1  christos 	}
    287  1.1  christos 
    288  1.1  christos 	/*
    289  1.1  christos 	 * At this point, we have snarfed all the bits in the
    290  1.1  christos 	 * mantissa, with the possible exception of the highest-order
    291  1.1  christos 	 * (partial) nibble, which is dealt with by the next
    292  1.1  christos 	 * statement.  We also tack on the implicit normalization bit.
    293  1.1  christos 	 */
    294  1.1  christos 	*s = u.extu_ext.ext_frach | (1U << ((LDBL_MANT_DIG - 1) % 4));
    295  1.1  christos 
    296  1.1  christos 	/* If ndigits < 0, we are expected to auto-size the precision. */
    297  1.1  christos 	if (ndigits < 0) {
    298  1.1  christos 		for (ndigits = sigfigs; s0[ndigits - 1] == 0; ndigits--)
    299  1.1  christos 			continue;
    300  1.1  christos 	}
    301  1.1  christos 
    302  1.1  christos 	if (sigfigs > ndigits && s0[ndigits] != 0)
    303  1.1  christos 		dorounding(s0, ndigits, u.extu_ext.ext_sign, decpt);
    304  1.1  christos 
    305  1.1  christos 	s = s0 + ndigits;
    306  1.1  christos 	if (rve != NULL)
    307  1.1  christos 		*rve = s;
    308  1.1  christos 	*s-- = '\0';
    309  1.1  christos 	for (; s >= s0; s--)
    310  1.1  christos 		*s = xdigs[(unsigned int)*s];
    311  1.1  christos 
    312  1.1  christos 	return (s0);
    313  1.1  christos }
    314  1.1  christos 
    315  1.1  christos #else	/* (LDBL_MANT_DIG == DBL_MANT_DIG) */
    316  1.1  christos 
    317  1.1  christos char *
    318  1.1  christos hldtoa(long double e, const char *xdigs, int ndigits, int *decpt, int *sign,
    319  1.1  christos     char **rve)
    320  1.1  christos {
    321  1.1  christos 
    322  1.1  christos 	return (hdtoa((double)e, xdigs, ndigits, decpt, sign, rve));
    323  1.1  christos }
    324  1.1  christos 
    325  1.1  christos #endif	/* (LDBL_MANT_DIG == DBL_MANT_DIG) */
    326