hdtoa.c revision 1.14 1 1.14 jakllsch /* $NetBSD: hdtoa.c,v 1.14 2024/06/09 15:06:07 jakllsch Exp $ */
2 1.1 christos
3 1.1 christos /*-
4 1.1 christos * Copyright (c) 2004, 2005 David Schultz <das (at) FreeBSD.ORG>
5 1.1 christos * All rights reserved.
6 1.1 christos *
7 1.1 christos * Redistribution and use in source and binary forms, with or without
8 1.1 christos * modification, are permitted provided that the following conditions
9 1.1 christos * are met:
10 1.1 christos * 1. Redistributions of source code must retain the above copyright
11 1.1 christos * notice, this list of conditions and the following disclaimer.
12 1.1 christos * 2. Redistributions in binary form must reproduce the above copyright
13 1.1 christos * notice, this list of conditions and the following disclaimer in the
14 1.1 christos * documentation and/or other materials provided with the distribution.
15 1.1 christos *
16 1.1 christos * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 1.1 christos * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 1.1 christos * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 1.1 christos * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 1.1 christos * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 1.1 christos * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 1.1 christos * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 1.1 christos * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 1.1 christos * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 1.1 christos * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 1.1 christos * SUCH DAMAGE.
27 1.1 christos */
28 1.1 christos
29 1.1 christos #include <sys/cdefs.h>
30 1.1 christos #if 0
31 1.1 christos __FBSDID("$FreeBSD: src/lib/libc/gdtoa/_hdtoa.c,v 1.4 2007/01/03 04:57:58 das Exp $");
32 1.1 christos #else
33 1.14 jakllsch __RCSID("$NetBSD: hdtoa.c,v 1.14 2024/06/09 15:06:07 jakllsch Exp $");
34 1.1 christos #endif
35 1.1 christos
36 1.1 christos #include <float.h>
37 1.1 christos #include <limits.h>
38 1.1 christos #include <math.h>
39 1.4 christos #ifndef __vax__
40 1.1 christos #include <machine/ieee.h>
41 1.5 christos #else
42 1.5 christos #include <machine/vaxfp.h>
43 1.5 christos #define ieee_double_u vax_dfloating_u
44 1.5 christos #define dblu_d dfltu_d
45 1.5 christos #define dblu_dbl dfltu_dflt
46 1.5 christos #define dbl_sign dflt_sign
47 1.5 christos #define dbl_exp dflt_exp
48 1.5 christos #define dbl_frach dflt_frach
49 1.5 christos #define dbl_fracm dflt_fracm
50 1.5 christos #define dbl_fracl dflt_fracl
51 1.5 christos #define DBL_FRACHBITS DFLT_FRACHBITS
52 1.5 christos #define DBL_FRACMBITS DFLT_FRACMBITS
53 1.5 christos #define DBL_FRACLBITS DFLT_FRACLBITS
54 1.5 christos #define DBL_EXPBITS DFLT_EXPBITS
55 1.4 christos #endif
56 1.1 christos #include "gdtoaimp.h"
57 1.1 christos
58 1.1 christos /* Strings values used by dtoa() */
59 1.1 christos #define INFSTR "Infinity"
60 1.1 christos #define NANSTR "NaN"
61 1.1 christos
62 1.14 jakllsch #ifndef __vax__
63 1.1 christos #define DBL_ADJ (DBL_MAX_EXP - 2 + ((DBL_MANT_DIG - 1) % 4))
64 1.1 christos #define LDBL_ADJ (LDBL_MAX_EXP - 2 + ((LDBL_MANT_DIG - 1) % 4))
65 1.14 jakllsch #else /* __vax__ */
66 1.14 jakllsch #define DBL_ADJ (DBL_MAX_EXP + 4 + ((DBL_MANT_DIG) % 4))
67 1.14 jakllsch #endif
68 1.1 christos
69 1.1 christos /*
70 1.1 christos * Round up the given digit string. If the digit string is fff...f,
71 1.1 christos * this procedure sets it to 100...0 and returns 1 to indicate that
72 1.1 christos * the exponent needs to be bumped. Otherwise, 0 is returned.
73 1.1 christos */
74 1.1 christos static int
75 1.1 christos roundup(char *s0, int ndigits)
76 1.1 christos {
77 1.1 christos char *s;
78 1.1 christos
79 1.1 christos for (s = s0 + ndigits - 1; *s == 0xf; s--) {
80 1.1 christos if (s == s0) {
81 1.1 christos *s = 1;
82 1.1 christos return (1);
83 1.1 christos }
84 1.1 christos *s = 0;
85 1.1 christos }
86 1.1 christos ++*s;
87 1.1 christos return (0);
88 1.1 christos }
89 1.1 christos
90 1.1 christos /*
91 1.1 christos * Round the given digit string to ndigits digits according to the
92 1.1 christos * current rounding mode. Note that this could produce a string whose
93 1.1 christos * value is not representable in the corresponding floating-point
94 1.1 christos * type. The exponent pointed to by decpt is adjusted if necessary.
95 1.1 christos */
96 1.1 christos static void
97 1.1 christos dorounding(char *s0, int ndigits, int sign, int *decpt)
98 1.1 christos {
99 1.1 christos int adjust = 0; /* do we need to adjust the exponent? */
100 1.1 christos
101 1.1 christos switch (FLT_ROUNDS) {
102 1.1 christos case 0: /* toward zero */
103 1.1 christos default: /* implementation-defined */
104 1.1 christos break;
105 1.1 christos case 1: /* to nearest, halfway rounds to even */
106 1.1 christos if ((s0[ndigits] > 8) ||
107 1.1 christos (s0[ndigits] == 8 && s0[ndigits - 1] & 1))
108 1.1 christos adjust = roundup(s0, ndigits);
109 1.1 christos break;
110 1.1 christos case 2: /* toward +inf */
111 1.1 christos if (sign == 0)
112 1.1 christos adjust = roundup(s0, ndigits);
113 1.1 christos break;
114 1.1 christos case 3: /* toward -inf */
115 1.1 christos if (sign != 0)
116 1.1 christos adjust = roundup(s0, ndigits);
117 1.1 christos break;
118 1.1 christos }
119 1.1 christos
120 1.1 christos if (adjust)
121 1.1 christos *decpt += 4;
122 1.1 christos }
123 1.1 christos
124 1.1 christos /*
125 1.1 christos * This procedure converts a double-precision number in IEEE format
126 1.1 christos * into a string of hexadecimal digits and an exponent of 2. Its
127 1.1 christos * behavior is bug-for-bug compatible with dtoa() in mode 2, with the
128 1.1 christos * following exceptions:
129 1.1 christos *
130 1.1 christos * - An ndigits < 0 causes it to use as many digits as necessary to
131 1.1 christos * represent the number exactly.
132 1.1 christos * - The additional xdigs argument should point to either the string
133 1.1 christos * "0123456789ABCDEF" or the string "0123456789abcdef", depending on
134 1.1 christos * which case is desired.
135 1.1 christos * - This routine does not repeat dtoa's mistake of setting decpt
136 1.1 christos * to 9999 in the case of an infinity or NaN. INT_MAX is used
137 1.1 christos * for this purpose instead.
138 1.1 christos *
139 1.1 christos * Note that the C99 standard does not specify what the leading digit
140 1.1 christos * should be for non-zero numbers. For instance, 0x1.3p3 is the same
141 1.1 christos * as 0x2.6p2 is the same as 0x4.cp3. This implementation chooses the
142 1.1 christos * first digit so that subsequent digits are aligned on nibble
143 1.1 christos * boundaries (before rounding).
144 1.1 christos *
145 1.1 christos * Inputs: d, xdigs, ndigits
146 1.1 christos * Outputs: decpt, sign, rve
147 1.1 christos */
148 1.1 christos char *
149 1.1 christos hdtoa(double d, const char *xdigs, int ndigits, int *decpt, int *sign,
150 1.1 christos char **rve)
151 1.1 christos {
152 1.1 christos static const int sigfigs = (DBL_MANT_DIG + 3) / 4;
153 1.1 christos union ieee_double_u u;
154 1.1 christos char *s, *s0;
155 1.3 christos size_t bufsize;
156 1.1 christos
157 1.1 christos u.dblu_d = d;
158 1.1 christos *sign = u.dblu_dbl.dbl_sign;
159 1.14 jakllsch #ifdef __vax__
160 1.14 jakllsch u.dfltu_dflt.dflt_fracl =
161 1.14 jakllsch ((u.dfltu_dflt.dflt_fracl >> 16) & 0xFFFF) |
162 1.14 jakllsch ((u.dfltu_dflt.dflt_fracl & 0xffff) << 16);
163 1.14 jakllsch #endif
164 1.1 christos
165 1.1 christos switch (fpclassify(d)) {
166 1.1 christos case FP_NORMAL:
167 1.1 christos *decpt = u.dblu_dbl.dbl_exp - DBL_ADJ;
168 1.1 christos break;
169 1.1 christos case FP_ZERO:
170 1.1 christos *decpt = 1;
171 1.1 christos return (nrv_alloc("0", rve, 1));
172 1.14 jakllsch #ifndef __vax__
173 1.1 christos case FP_SUBNORMAL:
174 1.7 christos /* (DBL_MAX_EXP=1024 / 2) + 2 = 514? */
175 1.1 christos u.dblu_d *= 0x1p514;
176 1.1 christos *decpt = u.dblu_dbl.dbl_exp - (514 + DBL_ADJ);
177 1.1 christos break;
178 1.1 christos case FP_INFINITE:
179 1.1 christos *decpt = INT_MAX;
180 1.1 christos return (nrv_alloc(INFSTR, rve, sizeof(INFSTR) - 1));
181 1.1 christos case FP_NAN:
182 1.1 christos *decpt = INT_MAX;
183 1.1 christos return (nrv_alloc(NANSTR, rve, sizeof(NANSTR) - 1));
184 1.14 jakllsch #endif
185 1.1 christos default:
186 1.1 christos abort();
187 1.1 christos }
188 1.1 christos
189 1.1 christos /* FP_NORMAL or FP_SUBNORMAL */
190 1.1 christos
191 1.1 christos if (ndigits == 0) /* dtoa() compatibility */
192 1.1 christos ndigits = 1;
193 1.1 christos
194 1.1 christos /*
195 1.1 christos * For simplicity, we generate all the digits even if the
196 1.1 christos * caller has requested fewer.
197 1.1 christos */
198 1.1 christos bufsize = (sigfigs > ndigits) ? sigfigs : ndigits;
199 1.1 christos s0 = rv_alloc(bufsize);
200 1.6 christos if (s0 == NULL)
201 1.6 christos return NULL;
202 1.1 christos
203 1.1 christos /*
204 1.1 christos * We work from right to left, first adding any requested zero
205 1.1 christos * padding, then the least significant portion of the
206 1.1 christos * mantissa, followed by the most significant. The buffer is
207 1.1 christos * filled with the byte values 0x0 through 0xf, which are
208 1.1 christos * converted to xdigs[0x0] through xdigs[0xf] after the
209 1.1 christos * rounding phase.
210 1.1 christos */
211 1.1 christos for (s = s0 + bufsize - 1; s > s0 + sigfigs - 1; s--)
212 1.1 christos *s = 0;
213 1.1 christos for (; s > s0 + sigfigs - (DBL_FRACLBITS / 4) - 1 && s > s0; s--) {
214 1.1 christos *s = u.dblu_dbl.dbl_fracl & 0xf;
215 1.1 christos u.dblu_dbl.dbl_fracl >>= 4;
216 1.1 christos }
217 1.5 christos #ifdef DBL_FRACMBITS
218 1.14 jakllsch for (; s > s0 + sigfigs - ((DBL_FRACLBITS + DBL_FRACMBITS) / 4) - 1
219 1.14 jakllsch && s > s0; s--) {
220 1.5 christos *s = u.dblu_dbl.dbl_fracm & 0xf;
221 1.5 christos u.dblu_dbl.dbl_fracm >>= 4;
222 1.5 christos }
223 1.5 christos #endif
224 1.1 christos for (; s > s0; s--) {
225 1.1 christos *s = u.dblu_dbl.dbl_frach & 0xf;
226 1.1 christos u.dblu_dbl.dbl_frach >>= 4;
227 1.1 christos }
228 1.1 christos
229 1.1 christos /*
230 1.1 christos * At this point, we have snarfed all the bits in the
231 1.1 christos * mantissa, with the possible exception of the highest-order
232 1.1 christos * (partial) nibble, which is dealt with by the next
233 1.1 christos * statement. We also tack on the implicit normalization bit.
234 1.1 christos */
235 1.1 christos *s = u.dblu_dbl.dbl_frach | (1U << ((DBL_MANT_DIG - 1) % 4));
236 1.1 christos
237 1.1 christos /* If ndigits < 0, we are expected to auto-size the precision. */
238 1.1 christos if (ndigits < 0) {
239 1.1 christos for (ndigits = sigfigs; s0[ndigits - 1] == 0; ndigits--)
240 1.2 christos continue;
241 1.1 christos }
242 1.1 christos
243 1.1 christos if (sigfigs > ndigits && s0[ndigits] != 0)
244 1.1 christos dorounding(s0, ndigits, u.dblu_dbl.dbl_sign, decpt);
245 1.1 christos
246 1.1 christos s = s0 + ndigits;
247 1.1 christos if (rve != NULL)
248 1.1 christos *rve = s;
249 1.1 christos *s-- = '\0';
250 1.1 christos for (; s >= s0; s--)
251 1.1 christos *s = xdigs[(unsigned int)*s];
252 1.1 christos
253 1.1 christos return (s0);
254 1.1 christos }
255 1.1 christos
256 1.1 christos #if (LDBL_MANT_DIG > DBL_MANT_DIG)
257 1.1 christos
258 1.1 christos /*
259 1.1 christos * This is the long double version of hdtoa().
260 1.1 christos */
261 1.1 christos char *
262 1.1 christos hldtoa(long double e, const char *xdigs, int ndigits, int *decpt, int *sign,
263 1.1 christos char **rve)
264 1.1 christos {
265 1.13 riastrad static const int sigfigs = (LDBL_MANT_DIG + 3) / 4;
266 1.1 christos union ieee_ext_u u;
267 1.1 christos char *s, *s0;
268 1.3 christos size_t bufsize;
269 1.1 christos
270 1.9 mrg memset(&u, 0, sizeof u);
271 1.1 christos u.extu_ld = e;
272 1.1 christos *sign = u.extu_ext.ext_sign;
273 1.1 christos
274 1.1 christos switch (fpclassify(e)) {
275 1.1 christos case FP_NORMAL:
276 1.1 christos *decpt = u.extu_ext.ext_exp - LDBL_ADJ;
277 1.1 christos break;
278 1.1 christos case FP_ZERO:
279 1.1 christos *decpt = 1;
280 1.1 christos return (nrv_alloc("0", rve, 1));
281 1.1 christos case FP_SUBNORMAL:
282 1.1 christos u.extu_ld *= 0x1p514L;
283 1.1 christos *decpt = u.extu_ext.ext_exp - (514 + LDBL_ADJ);
284 1.1 christos break;
285 1.1 christos case FP_INFINITE:
286 1.1 christos *decpt = INT_MAX;
287 1.1 christos return (nrv_alloc(INFSTR, rve, sizeof(INFSTR) - 1));
288 1.1 christos case FP_NAN:
289 1.1 christos *decpt = INT_MAX;
290 1.1 christos return (nrv_alloc(NANSTR, rve, sizeof(NANSTR) - 1));
291 1.1 christos default:
292 1.1 christos abort();
293 1.1 christos }
294 1.1 christos
295 1.1 christos /* FP_NORMAL or FP_SUBNORMAL */
296 1.1 christos
297 1.1 christos if (ndigits == 0) /* dtoa() compatibility */
298 1.1 christos ndigits = 1;
299 1.1 christos
300 1.1 christos /*
301 1.1 christos * For simplicity, we generate all the digits even if the
302 1.1 christos * caller has requested fewer.
303 1.1 christos */
304 1.1 christos bufsize = (sigfigs > ndigits) ? sigfigs : ndigits;
305 1.1 christos s0 = rv_alloc(bufsize);
306 1.6 christos if (s0 == NULL)
307 1.6 christos return NULL;
308 1.1 christos
309 1.1 christos /*
310 1.1 christos * We work from right to left, first adding any requested zero
311 1.1 christos * padding, then the least significant portion of the
312 1.1 christos * mantissa, followed by the most significant. The buffer is
313 1.1 christos * filled with the byte values 0x0 through 0xf, which are
314 1.1 christos * converted to xdigs[0x0] through xdigs[0xf] after the
315 1.1 christos * rounding phase.
316 1.1 christos */
317 1.1 christos for (s = s0 + bufsize - 1; s > s0 + sigfigs - 1; s--)
318 1.1 christos *s = 0;
319 1.13 riastrad for (; s > s0 + sigfigs - (EXT_FRACLBITS / 4) - 1 && s > s0; s--) {
320 1.1 christos *s = u.extu_ext.ext_fracl & 0xf;
321 1.1 christos u.extu_ext.ext_fracl >>= 4;
322 1.1 christos }
323 1.2 christos #ifdef EXT_FRACHMBITS
324 1.13 riastrad for (; s > s0; s--) {
325 1.2 christos *s = u.extu_ext.ext_frachm & 0xf;
326 1.2 christos u.extu_ext.ext_frachm >>= 4;
327 1.2 christos }
328 1.2 christos #endif
329 1.2 christos #ifdef EXT_FRACLMBITS
330 1.13 riastrad for (; s > s0; s--) {
331 1.2 christos *s = u.extu_ext.ext_fraclm & 0xf;
332 1.2 christos u.extu_ext.ext_fraclm >>= 4;
333 1.2 christos }
334 1.2 christos #endif
335 1.13 riastrad for (; s > s0; s--) {
336 1.1 christos *s = u.extu_ext.ext_frach & 0xf;
337 1.1 christos u.extu_ext.ext_frach >>= 4;
338 1.1 christos }
339 1.1 christos
340 1.1 christos /*
341 1.1 christos * At this point, we have snarfed all the bits in the
342 1.1 christos * mantissa, with the possible exception of the highest-order
343 1.1 christos * (partial) nibble, which is dealt with by the next
344 1.1 christos * statement. We also tack on the implicit normalization bit.
345 1.1 christos */
346 1.13 riastrad *s = u.extu_ext.ext_frach | (1U << ((LDBL_MANT_DIG - 1) % 4));
347 1.1 christos
348 1.1 christos /* If ndigits < 0, we are expected to auto-size the precision. */
349 1.1 christos if (ndigits < 0) {
350 1.1 christos for (ndigits = sigfigs; s0[ndigits - 1] == 0; ndigits--)
351 1.1 christos continue;
352 1.1 christos }
353 1.1 christos
354 1.1 christos if (sigfigs > ndigits && s0[ndigits] != 0)
355 1.1 christos dorounding(s0, ndigits, u.extu_ext.ext_sign, decpt);
356 1.1 christos
357 1.1 christos s = s0 + ndigits;
358 1.1 christos if (rve != NULL)
359 1.1 christos *rve = s;
360 1.1 christos *s-- = '\0';
361 1.1 christos for (; s >= s0; s--)
362 1.1 christos *s = xdigs[(unsigned int)*s];
363 1.1 christos
364 1.1 christos return (s0);
365 1.1 christos }
366 1.1 christos
367 1.1 christos #else /* (LDBL_MANT_DIG == DBL_MANT_DIG) */
368 1.1 christos
369 1.1 christos char *
370 1.1 christos hldtoa(long double e, const char *xdigs, int ndigits, int *decpt, int *sign,
371 1.1 christos char **rve)
372 1.1 christos {
373 1.1 christos
374 1.1 christos return (hdtoa((double)e, xdigs, ndigits, decpt, sign, rve));
375 1.1 christos }
376 1.1 christos
377 1.1 christos #endif /* (LDBL_MANT_DIG == DBL_MANT_DIG) */
378