Home | History | Annotate | Line # | Download | only in gdtoa
hdtoa.c revision 1.5.2.3.2.1
      1  1.5.2.3.2.1  skrll /*	$NetBSD: hdtoa.c,v 1.5.2.3.2.1 2008/06/03 20:47:07 skrll Exp $	*/
      2      1.5.2.2  pavel 
      3      1.5.2.2  pavel /*-
      4      1.5.2.2  pavel  * Copyright (c) 2004, 2005 David Schultz <das (at) FreeBSD.ORG>
      5      1.5.2.2  pavel  * All rights reserved.
      6      1.5.2.2  pavel  *
      7      1.5.2.2  pavel  * Redistribution and use in source and binary forms, with or without
      8      1.5.2.2  pavel  * modification, are permitted provided that the following conditions
      9      1.5.2.2  pavel  * are met:
     10      1.5.2.2  pavel  * 1. Redistributions of source code must retain the above copyright
     11      1.5.2.2  pavel  *    notice, this list of conditions and the following disclaimer.
     12      1.5.2.2  pavel  * 2. Redistributions in binary form must reproduce the above copyright
     13      1.5.2.2  pavel  *    notice, this list of conditions and the following disclaimer in the
     14      1.5.2.2  pavel  *    documentation and/or other materials provided with the distribution.
     15      1.5.2.2  pavel  *
     16      1.5.2.2  pavel  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     17      1.5.2.2  pavel  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     18      1.5.2.2  pavel  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     19      1.5.2.2  pavel  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     20      1.5.2.2  pavel  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     21      1.5.2.2  pavel  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     22      1.5.2.2  pavel  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     23      1.5.2.2  pavel  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     24      1.5.2.2  pavel  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     25      1.5.2.2  pavel  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     26      1.5.2.2  pavel  * SUCH DAMAGE.
     27      1.5.2.2  pavel  */
     28      1.5.2.2  pavel 
     29      1.5.2.2  pavel #include <sys/cdefs.h>
     30      1.5.2.2  pavel #if 0
     31      1.5.2.2  pavel __FBSDID("$FreeBSD: src/lib/libc/gdtoa/_hdtoa.c,v 1.4 2007/01/03 04:57:58 das Exp $");
     32      1.5.2.2  pavel #else
     33  1.5.2.3.2.1  skrll __RCSID("$NetBSD: hdtoa.c,v 1.5.2.3.2.1 2008/06/03 20:47:07 skrll Exp $");
     34      1.5.2.2  pavel #endif
     35      1.5.2.2  pavel 
     36      1.5.2.2  pavel #include <float.h>
     37      1.5.2.2  pavel #include <limits.h>
     38      1.5.2.2  pavel #include <math.h>
     39      1.5.2.2  pavel #ifndef __vax__
     40      1.5.2.2  pavel #include <machine/ieee.h>
     41      1.5.2.3    snj #else
     42      1.5.2.3    snj #include <machine/vaxfp.h>
     43      1.5.2.3    snj #define ieee_double_u vax_dfloating_u
     44      1.5.2.3    snj #define dblu_d dfltu_d
     45      1.5.2.3    snj #define dblu_dbl dfltu_dflt
     46      1.5.2.3    snj #define dbl_sign dflt_sign
     47      1.5.2.3    snj #define dbl_exp dflt_exp
     48      1.5.2.3    snj #define dbl_frach dflt_frach
     49      1.5.2.3    snj #define dbl_fracm dflt_fracm
     50      1.5.2.3    snj #define dbl_fracl dflt_fracl
     51      1.5.2.3    snj #define DBL_FRACHBITS	DFLT_FRACHBITS
     52      1.5.2.3    snj #define DBL_FRACMBITS	DFLT_FRACMBITS
     53      1.5.2.3    snj #define DBL_FRACLBITS	DFLT_FRACLBITS
     54      1.5.2.3    snj #define DBL_EXPBITS	DFLT_EXPBITS
     55      1.5.2.2  pavel #endif
     56      1.5.2.2  pavel #include "gdtoaimp.h"
     57      1.5.2.2  pavel 
     58      1.5.2.2  pavel /* Strings values used by dtoa() */
     59      1.5.2.2  pavel #define	INFSTR	"Infinity"
     60      1.5.2.2  pavel #define	NANSTR	"NaN"
     61      1.5.2.2  pavel 
     62      1.5.2.2  pavel #define	DBL_ADJ		(DBL_MAX_EXP - 2 + ((DBL_MANT_DIG - 1) % 4))
     63      1.5.2.2  pavel #define	LDBL_ADJ	(LDBL_MAX_EXP - 2 + ((LDBL_MANT_DIG - 1) % 4))
     64      1.5.2.2  pavel 
     65      1.5.2.2  pavel /*
     66      1.5.2.2  pavel  * Round up the given digit string.  If the digit string is fff...f,
     67      1.5.2.2  pavel  * this procedure sets it to 100...0 and returns 1 to indicate that
     68      1.5.2.2  pavel  * the exponent needs to be bumped.  Otherwise, 0 is returned.
     69      1.5.2.2  pavel  */
     70      1.5.2.2  pavel static int
     71      1.5.2.2  pavel roundup(char *s0, int ndigits)
     72      1.5.2.2  pavel {
     73      1.5.2.2  pavel 	char *s;
     74      1.5.2.2  pavel 
     75      1.5.2.2  pavel 	for (s = s0 + ndigits - 1; *s == 0xf; s--) {
     76      1.5.2.2  pavel 		if (s == s0) {
     77      1.5.2.2  pavel 			*s = 1;
     78      1.5.2.2  pavel 			return (1);
     79      1.5.2.2  pavel 		}
     80      1.5.2.2  pavel 		*s = 0;
     81      1.5.2.2  pavel 	}
     82      1.5.2.2  pavel 	++*s;
     83      1.5.2.2  pavel 	return (0);
     84      1.5.2.2  pavel }
     85      1.5.2.2  pavel 
     86      1.5.2.2  pavel /*
     87      1.5.2.2  pavel  * Round the given digit string to ndigits digits according to the
     88      1.5.2.2  pavel  * current rounding mode.  Note that this could produce a string whose
     89      1.5.2.2  pavel  * value is not representable in the corresponding floating-point
     90      1.5.2.2  pavel  * type.  The exponent pointed to by decpt is adjusted if necessary.
     91      1.5.2.2  pavel  */
     92      1.5.2.2  pavel static void
     93      1.5.2.2  pavel dorounding(char *s0, int ndigits, int sign, int *decpt)
     94      1.5.2.2  pavel {
     95      1.5.2.2  pavel 	int adjust = 0;	/* do we need to adjust the exponent? */
     96      1.5.2.2  pavel 
     97      1.5.2.2  pavel 	switch (FLT_ROUNDS) {
     98      1.5.2.2  pavel 	case 0:		/* toward zero */
     99      1.5.2.2  pavel 	default:	/* implementation-defined */
    100      1.5.2.2  pavel 		break;
    101      1.5.2.2  pavel 	case 1:		/* to nearest, halfway rounds to even */
    102      1.5.2.2  pavel 		if ((s0[ndigits] > 8) ||
    103      1.5.2.2  pavel 		    (s0[ndigits] == 8 && s0[ndigits - 1] & 1))
    104      1.5.2.2  pavel 			adjust = roundup(s0, ndigits);
    105      1.5.2.2  pavel 		break;
    106      1.5.2.2  pavel 	case 2:		/* toward +inf */
    107      1.5.2.2  pavel 		if (sign == 0)
    108      1.5.2.2  pavel 			adjust = roundup(s0, ndigits);
    109      1.5.2.2  pavel 		break;
    110      1.5.2.2  pavel 	case 3:		/* toward -inf */
    111      1.5.2.2  pavel 		if (sign != 0)
    112      1.5.2.2  pavel 			adjust = roundup(s0, ndigits);
    113      1.5.2.2  pavel 		break;
    114      1.5.2.2  pavel 	}
    115      1.5.2.2  pavel 
    116      1.5.2.2  pavel 	if (adjust)
    117      1.5.2.2  pavel 		*decpt += 4;
    118      1.5.2.2  pavel }
    119      1.5.2.2  pavel 
    120      1.5.2.2  pavel /*
    121      1.5.2.2  pavel  * This procedure converts a double-precision number in IEEE format
    122      1.5.2.2  pavel  * into a string of hexadecimal digits and an exponent of 2.  Its
    123      1.5.2.2  pavel  * behavior is bug-for-bug compatible with dtoa() in mode 2, with the
    124      1.5.2.2  pavel  * following exceptions:
    125      1.5.2.2  pavel  *
    126      1.5.2.2  pavel  * - An ndigits < 0 causes it to use as many digits as necessary to
    127      1.5.2.2  pavel  *   represent the number exactly.
    128      1.5.2.2  pavel  * - The additional xdigs argument should point to either the string
    129      1.5.2.2  pavel  *   "0123456789ABCDEF" or the string "0123456789abcdef", depending on
    130      1.5.2.2  pavel  *   which case is desired.
    131      1.5.2.2  pavel  * - This routine does not repeat dtoa's mistake of setting decpt
    132      1.5.2.2  pavel  *   to 9999 in the case of an infinity or NaN.  INT_MAX is used
    133      1.5.2.2  pavel  *   for this purpose instead.
    134      1.5.2.2  pavel  *
    135      1.5.2.2  pavel  * Note that the C99 standard does not specify what the leading digit
    136      1.5.2.2  pavel  * should be for non-zero numbers.  For instance, 0x1.3p3 is the same
    137      1.5.2.2  pavel  * as 0x2.6p2 is the same as 0x4.cp3.  This implementation chooses the
    138      1.5.2.2  pavel  * first digit so that subsequent digits are aligned on nibble
    139      1.5.2.2  pavel  * boundaries (before rounding).
    140      1.5.2.2  pavel  *
    141      1.5.2.2  pavel  * Inputs:	d, xdigs, ndigits
    142      1.5.2.2  pavel  * Outputs:	decpt, sign, rve
    143      1.5.2.2  pavel  */
    144      1.5.2.2  pavel char *
    145      1.5.2.2  pavel hdtoa(double d, const char *xdigs, int ndigits, int *decpt, int *sign,
    146      1.5.2.2  pavel     char **rve)
    147      1.5.2.2  pavel {
    148      1.5.2.2  pavel 	static const int sigfigs = (DBL_MANT_DIG + 3) / 4;
    149      1.5.2.2  pavel 	union ieee_double_u u;
    150      1.5.2.2  pavel 	char *s, *s0;
    151      1.5.2.2  pavel 	size_t bufsize;
    152      1.5.2.2  pavel 
    153      1.5.2.2  pavel 	u.dblu_d = d;
    154      1.5.2.2  pavel 	*sign = u.dblu_dbl.dbl_sign;
    155      1.5.2.2  pavel 
    156      1.5.2.2  pavel 	switch (fpclassify(d)) {
    157      1.5.2.2  pavel 	case FP_NORMAL:
    158      1.5.2.2  pavel 		*decpt = u.dblu_dbl.dbl_exp - DBL_ADJ;
    159      1.5.2.2  pavel 		break;
    160      1.5.2.2  pavel 	case FP_ZERO:
    161      1.5.2.2  pavel 		*decpt = 1;
    162      1.5.2.2  pavel 		return (nrv_alloc("0", rve, 1));
    163      1.5.2.2  pavel 	case FP_SUBNORMAL:
    164      1.5.2.2  pavel 		u.dblu_d *= 0x1p514;
    165      1.5.2.2  pavel 		*decpt = u.dblu_dbl.dbl_exp - (514 + DBL_ADJ);
    166      1.5.2.2  pavel 		break;
    167      1.5.2.2  pavel 	case FP_INFINITE:
    168      1.5.2.2  pavel 		*decpt = INT_MAX;
    169      1.5.2.2  pavel 		return (nrv_alloc(INFSTR, rve, sizeof(INFSTR) - 1));
    170      1.5.2.2  pavel 	case FP_NAN:
    171      1.5.2.2  pavel 		*decpt = INT_MAX;
    172      1.5.2.2  pavel 		return (nrv_alloc(NANSTR, rve, sizeof(NANSTR) - 1));
    173      1.5.2.2  pavel 	default:
    174      1.5.2.2  pavel 		abort();
    175      1.5.2.2  pavel 	}
    176      1.5.2.2  pavel 
    177      1.5.2.2  pavel 	/* FP_NORMAL or FP_SUBNORMAL */
    178      1.5.2.2  pavel 
    179      1.5.2.2  pavel 	if (ndigits == 0)		/* dtoa() compatibility */
    180      1.5.2.2  pavel 		ndigits = 1;
    181      1.5.2.2  pavel 
    182      1.5.2.2  pavel 	/*
    183      1.5.2.2  pavel 	 * For simplicity, we generate all the digits even if the
    184      1.5.2.2  pavel 	 * caller has requested fewer.
    185      1.5.2.2  pavel 	 */
    186      1.5.2.2  pavel 	bufsize = (sigfigs > ndigits) ? sigfigs : ndigits;
    187      1.5.2.2  pavel 	s0 = rv_alloc(bufsize);
    188  1.5.2.3.2.1  skrll 	if (s0 == NULL)
    189  1.5.2.3.2.1  skrll 		return NULL;
    190      1.5.2.2  pavel 
    191      1.5.2.2  pavel 	/*
    192      1.5.2.2  pavel 	 * We work from right to left, first adding any requested zero
    193      1.5.2.2  pavel 	 * padding, then the least significant portion of the
    194      1.5.2.2  pavel 	 * mantissa, followed by the most significant.  The buffer is
    195      1.5.2.2  pavel 	 * filled with the byte values 0x0 through 0xf, which are
    196      1.5.2.2  pavel 	 * converted to xdigs[0x0] through xdigs[0xf] after the
    197      1.5.2.2  pavel 	 * rounding phase.
    198      1.5.2.2  pavel 	 */
    199      1.5.2.2  pavel 	for (s = s0 + bufsize - 1; s > s0 + sigfigs - 1; s--)
    200      1.5.2.2  pavel 		*s = 0;
    201      1.5.2.2  pavel 	for (; s > s0 + sigfigs - (DBL_FRACLBITS / 4) - 1 && s > s0; s--) {
    202      1.5.2.2  pavel 		*s = u.dblu_dbl.dbl_fracl & 0xf;
    203      1.5.2.2  pavel 		u.dblu_dbl.dbl_fracl >>= 4;
    204      1.5.2.2  pavel 	}
    205      1.5.2.3    snj #ifdef DBL_FRACMBITS
    206      1.5.2.3    snj 	for (; s > s0; s--) {
    207      1.5.2.3    snj 		*s = u.dblu_dbl.dbl_fracm & 0xf;
    208      1.5.2.3    snj 		u.dblu_dbl.dbl_fracm >>= 4;
    209      1.5.2.3    snj 	}
    210      1.5.2.3    snj #endif
    211      1.5.2.2  pavel 	for (; s > s0; s--) {
    212      1.5.2.2  pavel 		*s = u.dblu_dbl.dbl_frach & 0xf;
    213      1.5.2.2  pavel 		u.dblu_dbl.dbl_frach >>= 4;
    214      1.5.2.2  pavel 	}
    215      1.5.2.2  pavel 
    216      1.5.2.2  pavel 	/*
    217      1.5.2.2  pavel 	 * At this point, we have snarfed all the bits in the
    218      1.5.2.2  pavel 	 * mantissa, with the possible exception of the highest-order
    219      1.5.2.2  pavel 	 * (partial) nibble, which is dealt with by the next
    220      1.5.2.2  pavel 	 * statement.  We also tack on the implicit normalization bit.
    221      1.5.2.2  pavel 	 */
    222      1.5.2.2  pavel 	*s = u.dblu_dbl.dbl_frach | (1U << ((DBL_MANT_DIG - 1) % 4));
    223      1.5.2.2  pavel 
    224      1.5.2.2  pavel 	/* If ndigits < 0, we are expected to auto-size the precision. */
    225      1.5.2.2  pavel 	if (ndigits < 0) {
    226      1.5.2.2  pavel 		for (ndigits = sigfigs; s0[ndigits - 1] == 0; ndigits--)
    227      1.5.2.2  pavel 			continue;
    228      1.5.2.2  pavel 	}
    229      1.5.2.2  pavel 
    230      1.5.2.2  pavel 	if (sigfigs > ndigits && s0[ndigits] != 0)
    231      1.5.2.2  pavel 		dorounding(s0, ndigits, u.dblu_dbl.dbl_sign, decpt);
    232      1.5.2.2  pavel 
    233      1.5.2.2  pavel 	s = s0 + ndigits;
    234      1.5.2.2  pavel 	if (rve != NULL)
    235      1.5.2.2  pavel 		*rve = s;
    236      1.5.2.2  pavel 	*s-- = '\0';
    237      1.5.2.2  pavel 	for (; s >= s0; s--)
    238      1.5.2.2  pavel 		*s = xdigs[(unsigned int)*s];
    239      1.5.2.2  pavel 
    240      1.5.2.2  pavel 	return (s0);
    241      1.5.2.2  pavel }
    242      1.5.2.2  pavel 
    243      1.5.2.2  pavel #if (LDBL_MANT_DIG > DBL_MANT_DIG)
    244      1.5.2.2  pavel 
    245      1.5.2.2  pavel /*
    246      1.5.2.2  pavel  * This is the long double version of hdtoa().
    247      1.5.2.2  pavel  */
    248      1.5.2.2  pavel char *
    249      1.5.2.2  pavel hldtoa(long double e, const char *xdigs, int ndigits, int *decpt, int *sign,
    250      1.5.2.2  pavel     char **rve)
    251      1.5.2.2  pavel {
    252      1.5.2.2  pavel 	static const int sigfigs = (LDBL_MANT_DIG + 3) / 4;
    253      1.5.2.2  pavel 	union ieee_ext_u u;
    254      1.5.2.2  pavel 	char *s, *s0;
    255      1.5.2.2  pavel 	size_t bufsize;
    256      1.5.2.2  pavel 
    257      1.5.2.2  pavel 	u.extu_ld = e;
    258      1.5.2.2  pavel 	*sign = u.extu_ext.ext_sign;
    259      1.5.2.2  pavel 
    260      1.5.2.2  pavel 	switch (fpclassify(e)) {
    261      1.5.2.2  pavel 	case FP_NORMAL:
    262      1.5.2.2  pavel 		*decpt = u.extu_ext.ext_exp - LDBL_ADJ;
    263      1.5.2.2  pavel 		break;
    264      1.5.2.2  pavel 	case FP_ZERO:
    265      1.5.2.2  pavel 		*decpt = 1;
    266      1.5.2.2  pavel 		return (nrv_alloc("0", rve, 1));
    267      1.5.2.2  pavel 	case FP_SUBNORMAL:
    268      1.5.2.2  pavel 		u.extu_ld *= 0x1p514L;
    269      1.5.2.2  pavel 		*decpt = u.extu_ext.ext_exp - (514 + LDBL_ADJ);
    270      1.5.2.2  pavel 		break;
    271      1.5.2.2  pavel 	case FP_INFINITE:
    272      1.5.2.2  pavel 		*decpt = INT_MAX;
    273      1.5.2.2  pavel 		return (nrv_alloc(INFSTR, rve, sizeof(INFSTR) - 1));
    274      1.5.2.2  pavel 	case FP_NAN:
    275      1.5.2.2  pavel 		*decpt = INT_MAX;
    276      1.5.2.2  pavel 		return (nrv_alloc(NANSTR, rve, sizeof(NANSTR) - 1));
    277      1.5.2.2  pavel 	default:
    278      1.5.2.2  pavel 		abort();
    279      1.5.2.2  pavel 	}
    280      1.5.2.2  pavel 
    281      1.5.2.2  pavel 	/* FP_NORMAL or FP_SUBNORMAL */
    282      1.5.2.2  pavel 
    283      1.5.2.2  pavel 	if (ndigits == 0)		/* dtoa() compatibility */
    284      1.5.2.2  pavel 		ndigits = 1;
    285      1.5.2.2  pavel 
    286      1.5.2.2  pavel 	/*
    287      1.5.2.2  pavel 	 * For simplicity, we generate all the digits even if the
    288      1.5.2.2  pavel 	 * caller has requested fewer.
    289      1.5.2.2  pavel 	 */
    290      1.5.2.2  pavel 	bufsize = (sigfigs > ndigits) ? sigfigs : ndigits;
    291      1.5.2.2  pavel 	s0 = rv_alloc(bufsize);
    292  1.5.2.3.2.1  skrll 	if (s0 == NULL)
    293  1.5.2.3.2.1  skrll 		return NULL;
    294      1.5.2.2  pavel 
    295      1.5.2.2  pavel 	/*
    296      1.5.2.2  pavel 	 * We work from right to left, first adding any requested zero
    297      1.5.2.2  pavel 	 * padding, then the least significant portion of the
    298      1.5.2.2  pavel 	 * mantissa, followed by the most significant.  The buffer is
    299      1.5.2.2  pavel 	 * filled with the byte values 0x0 through 0xf, which are
    300      1.5.2.2  pavel 	 * converted to xdigs[0x0] through xdigs[0xf] after the
    301      1.5.2.2  pavel 	 * rounding phase.
    302      1.5.2.2  pavel 	 */
    303      1.5.2.2  pavel 	for (s = s0 + bufsize - 1; s > s0 + sigfigs - 1; s--)
    304      1.5.2.2  pavel 		*s = 0;
    305      1.5.2.2  pavel 	for (; s > s0 + sigfigs - (EXT_FRACLBITS / 4) - 1 && s > s0; s--) {
    306      1.5.2.2  pavel 		*s = u.extu_ext.ext_fracl & 0xf;
    307      1.5.2.2  pavel 		u.extu_ext.ext_fracl >>= 4;
    308      1.5.2.2  pavel 	}
    309      1.5.2.2  pavel #ifdef EXT_FRACHMBITS
    310      1.5.2.2  pavel 	for (; s > s0; s--) {
    311      1.5.2.2  pavel 		*s = u.extu_ext.ext_frachm & 0xf;
    312      1.5.2.2  pavel 		u.extu_ext.ext_frachm >>= 4;
    313      1.5.2.2  pavel 	}
    314      1.5.2.2  pavel #endif
    315      1.5.2.2  pavel #ifdef EXT_FRACLMBITS
    316      1.5.2.2  pavel 	for (; s > s0; s--) {
    317      1.5.2.2  pavel 		*s = u.extu_ext.ext_fraclm & 0xf;
    318      1.5.2.2  pavel 		u.extu_ext.ext_fraclm >>= 4;
    319      1.5.2.2  pavel 	}
    320      1.5.2.2  pavel #endif
    321      1.5.2.2  pavel 	for (; s > s0; s--) {
    322      1.5.2.2  pavel 		*s = u.extu_ext.ext_frach & 0xf;
    323      1.5.2.2  pavel 		u.extu_ext.ext_frach >>= 4;
    324      1.5.2.2  pavel 	}
    325      1.5.2.2  pavel 
    326      1.5.2.2  pavel 	/*
    327      1.5.2.2  pavel 	 * At this point, we have snarfed all the bits in the
    328      1.5.2.2  pavel 	 * mantissa, with the possible exception of the highest-order
    329      1.5.2.2  pavel 	 * (partial) nibble, which is dealt with by the next
    330      1.5.2.2  pavel 	 * statement.  We also tack on the implicit normalization bit.
    331      1.5.2.2  pavel 	 */
    332      1.5.2.2  pavel 	*s = u.extu_ext.ext_frach | (1U << ((LDBL_MANT_DIG - 1) % 4));
    333      1.5.2.2  pavel 
    334      1.5.2.2  pavel 	/* If ndigits < 0, we are expected to auto-size the precision. */
    335      1.5.2.2  pavel 	if (ndigits < 0) {
    336      1.5.2.2  pavel 		for (ndigits = sigfigs; s0[ndigits - 1] == 0; ndigits--)
    337      1.5.2.2  pavel 			continue;
    338      1.5.2.2  pavel 	}
    339      1.5.2.2  pavel 
    340      1.5.2.2  pavel 	if (sigfigs > ndigits && s0[ndigits] != 0)
    341      1.5.2.2  pavel 		dorounding(s0, ndigits, u.extu_ext.ext_sign, decpt);
    342      1.5.2.2  pavel 
    343      1.5.2.2  pavel 	s = s0 + ndigits;
    344      1.5.2.2  pavel 	if (rve != NULL)
    345      1.5.2.2  pavel 		*rve = s;
    346      1.5.2.2  pavel 	*s-- = '\0';
    347      1.5.2.2  pavel 	for (; s >= s0; s--)
    348      1.5.2.2  pavel 		*s = xdigs[(unsigned int)*s];
    349      1.5.2.2  pavel 
    350      1.5.2.2  pavel 	return (s0);
    351      1.5.2.2  pavel }
    352      1.5.2.2  pavel 
    353      1.5.2.2  pavel #else	/* (LDBL_MANT_DIG == DBL_MANT_DIG) */
    354      1.5.2.2  pavel 
    355      1.5.2.2  pavel char *
    356      1.5.2.2  pavel hldtoa(long double e, const char *xdigs, int ndigits, int *decpt, int *sign,
    357      1.5.2.2  pavel     char **rve)
    358      1.5.2.2  pavel {
    359      1.5.2.2  pavel 
    360      1.5.2.2  pavel 	return (hdtoa((double)e, xdigs, ndigits, decpt, sign, rve));
    361      1.5.2.2  pavel }
    362      1.5.2.2  pavel 
    363      1.5.2.2  pavel #endif	/* (LDBL_MANT_DIG == DBL_MANT_DIG) */
    364