Home | History | Annotate | Line # | Download | only in gdtoa
hdtoa.c revision 1.12
      1 /*	$NetBSD: hdtoa.c,v 1.12 2021/06/15 10:56:52 christos Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2004, 2005 David Schultz <das (at) FreeBSD.ORG>
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  *
     16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     26  * SUCH DAMAGE.
     27  */
     28 
     29 #include <sys/cdefs.h>
     30 #if 0
     31 __FBSDID("$FreeBSD: src/lib/libc/gdtoa/_hdtoa.c,v 1.4 2007/01/03 04:57:58 das Exp $");
     32 #else
     33 __RCSID("$NetBSD: hdtoa.c,v 1.12 2021/06/15 10:56:52 christos Exp $");
     34 #endif
     35 
     36 #include <float.h>
     37 #include <limits.h>
     38 #include <math.h>
     39 #ifndef __vax__
     40 #include <machine/ieee.h>
     41 #else
     42 #include <machine/vaxfp.h>
     43 #define ieee_double_u vax_dfloating_u
     44 #define dblu_d dfltu_d
     45 #define dblu_dbl dfltu_dflt
     46 #define dbl_sign dflt_sign
     47 #define dbl_exp dflt_exp
     48 #define dbl_frach dflt_frach
     49 #define dbl_fracm dflt_fracm
     50 #define dbl_fracl dflt_fracl
     51 #define DBL_FRACHBITS	DFLT_FRACHBITS
     52 #define DBL_FRACMBITS	DFLT_FRACMBITS
     53 #define DBL_FRACLBITS	DFLT_FRACLBITS
     54 #define DBL_EXPBITS	DFLT_EXPBITS
     55 #endif
     56 #include "gdtoaimp.h"
     57 
     58 /* Strings values used by dtoa() */
     59 #define	INFSTR	"Infinity"
     60 #define	NANSTR	"NaN"
     61 
     62 #define	DBL_ADJ		(DBL_MAX_EXP - 2 + ((DBL_MANT_DIG - 1) % 4))
     63 #define	LDBL_ADJ	(LDBL_MAX_EXP - 2 + ((LDBL_MANT_DIG - 1) % 4))
     64 
     65 /*
     66  * Round up the given digit string.  If the digit string is fff...f,
     67  * this procedure sets it to 100...0 and returns 1 to indicate that
     68  * the exponent needs to be bumped.  Otherwise, 0 is returned.
     69  */
     70 static int
     71 roundup(char *s0, int ndigits)
     72 {
     73 	char *s;
     74 
     75 	for (s = s0 + ndigits - 1; *s == 0xf; s--) {
     76 		if (s == s0) {
     77 			*s = 1;
     78 			return (1);
     79 		}
     80 		*s = 0;
     81 	}
     82 	++*s;
     83 	return (0);
     84 }
     85 
     86 /*
     87  * Round the given digit string to ndigits digits according to the
     88  * current rounding mode.  Note that this could produce a string whose
     89  * value is not representable in the corresponding floating-point
     90  * type.  The exponent pointed to by decpt is adjusted if necessary.
     91  */
     92 static void
     93 dorounding(char *s0, int ndigits, int sign, int *decpt)
     94 {
     95 	int adjust = 0;	/* do we need to adjust the exponent? */
     96 
     97 	switch (FLT_ROUNDS) {
     98 	case 0:		/* toward zero */
     99 	default:	/* implementation-defined */
    100 		break;
    101 	case 1:		/* to nearest, halfway rounds to even */
    102 		if ((s0[ndigits] > 8) ||
    103 		    (s0[ndigits] == 8 && s0[ndigits - 1] & 1))
    104 			adjust = roundup(s0, ndigits);
    105 		break;
    106 	case 2:		/* toward +inf */
    107 		if (sign == 0)
    108 			adjust = roundup(s0, ndigits);
    109 		break;
    110 	case 3:		/* toward -inf */
    111 		if (sign != 0)
    112 			adjust = roundup(s0, ndigits);
    113 		break;
    114 	}
    115 
    116 	if (adjust)
    117 		*decpt += 4;
    118 }
    119 
    120 /*
    121  * This procedure converts a double-precision number in IEEE format
    122  * into a string of hexadecimal digits and an exponent of 2.  Its
    123  * behavior is bug-for-bug compatible with dtoa() in mode 2, with the
    124  * following exceptions:
    125  *
    126  * - An ndigits < 0 causes it to use as many digits as necessary to
    127  *   represent the number exactly.
    128  * - The additional xdigs argument should point to either the string
    129  *   "0123456789ABCDEF" or the string "0123456789abcdef", depending on
    130  *   which case is desired.
    131  * - This routine does not repeat dtoa's mistake of setting decpt
    132  *   to 9999 in the case of an infinity or NaN.  INT_MAX is used
    133  *   for this purpose instead.
    134  *
    135  * Note that the C99 standard does not specify what the leading digit
    136  * should be for non-zero numbers.  For instance, 0x1.3p3 is the same
    137  * as 0x2.6p2 is the same as 0x4.cp3.  This implementation chooses the
    138  * first digit so that subsequent digits are aligned on nibble
    139  * boundaries (before rounding).
    140  *
    141  * Inputs:	d, xdigs, ndigits
    142  * Outputs:	decpt, sign, rve
    143  */
    144 char *
    145 hdtoa(double d, const char *xdigs, int ndigits, int *decpt, int *sign,
    146     char **rve)
    147 {
    148 	static const int sigfigs = (DBL_MANT_DIG + 3) / 4;
    149 	union ieee_double_u u;
    150 	char *s, *s0;
    151 	size_t bufsize;
    152 
    153 	u.dblu_d = d;
    154 	*sign = u.dblu_dbl.dbl_sign;
    155 
    156 	switch (fpclassify(d)) {
    157 	case FP_NORMAL:
    158 		*decpt = u.dblu_dbl.dbl_exp - DBL_ADJ;
    159 		break;
    160 	case FP_ZERO:
    161 		*decpt = 1;
    162 		return (nrv_alloc("0", rve, 1));
    163 	case FP_SUBNORMAL:
    164 #ifdef __vax__
    165 		/* (DBL_MAX_EXP=127 / 2) + 2 = 65? */
    166 		u.dblu_d *= 0x1p65;
    167 		*decpt = u.dblu_dbl.dbl_exp - (65 + DBL_ADJ);
    168 #else
    169 		/* (DBL_MAX_EXP=1024 / 2) + 2 = 514? */
    170 		u.dblu_d *= 0x1p514;
    171 		*decpt = u.dblu_dbl.dbl_exp - (514 + DBL_ADJ);
    172 #endif
    173 		break;
    174 	case FP_INFINITE:
    175 		*decpt = INT_MAX;
    176 		return (nrv_alloc(INFSTR, rve, sizeof(INFSTR) - 1));
    177 	case FP_NAN:
    178 		*decpt = INT_MAX;
    179 		return (nrv_alloc(NANSTR, rve, sizeof(NANSTR) - 1));
    180 	default:
    181 		abort();
    182 	}
    183 
    184 	/* FP_NORMAL or FP_SUBNORMAL */
    185 
    186 	if (ndigits == 0)		/* dtoa() compatibility */
    187 		ndigits = 1;
    188 
    189 	/*
    190 	 * For simplicity, we generate all the digits even if the
    191 	 * caller has requested fewer.
    192 	 */
    193 	bufsize = (sigfigs > ndigits) ? sigfigs : ndigits;
    194 	s0 = rv_alloc(bufsize);
    195 	if (s0 == NULL)
    196 		return NULL;
    197 
    198 	/*
    199 	 * We work from right to left, first adding any requested zero
    200 	 * padding, then the least significant portion of the
    201 	 * mantissa, followed by the most significant.  The buffer is
    202 	 * filled with the byte values 0x0 through 0xf, which are
    203 	 * converted to xdigs[0x0] through xdigs[0xf] after the
    204 	 * rounding phase.
    205 	 */
    206 	for (s = s0 + bufsize - 1; s > s0 + sigfigs - 1; s--)
    207 		*s = 0;
    208 	for (; s > s0 + sigfigs - (DBL_FRACLBITS / 4) - 1 && s > s0; s--) {
    209 		*s = u.dblu_dbl.dbl_fracl & 0xf;
    210 		u.dblu_dbl.dbl_fracl >>= 4;
    211 	}
    212 #ifdef DBL_FRACMBITS
    213 	for (; s > s0; s--) {
    214 		*s = u.dblu_dbl.dbl_fracm & 0xf;
    215 		u.dblu_dbl.dbl_fracm >>= 4;
    216 	}
    217 #endif
    218 	for (; s > s0; s--) {
    219 		*s = u.dblu_dbl.dbl_frach & 0xf;
    220 		u.dblu_dbl.dbl_frach >>= 4;
    221 	}
    222 
    223 	/*
    224 	 * At this point, we have snarfed all the bits in the
    225 	 * mantissa, with the possible exception of the highest-order
    226 	 * (partial) nibble, which is dealt with by the next
    227 	 * statement.  We also tack on the implicit normalization bit.
    228 	 */
    229 	*s = u.dblu_dbl.dbl_frach | (1U << ((DBL_MANT_DIG - 1) % 4));
    230 
    231 	/* If ndigits < 0, we are expected to auto-size the precision. */
    232 	if (ndigits < 0) {
    233 		for (ndigits = sigfigs; s0[ndigits - 1] == 0; ndigits--)
    234 			continue;
    235 	}
    236 
    237 	if (sigfigs > ndigits && s0[ndigits] != 0)
    238 		dorounding(s0, ndigits, u.dblu_dbl.dbl_sign, decpt);
    239 
    240 	s = s0 + ndigits;
    241 	if (rve != NULL)
    242 		*rve = s;
    243 	*s-- = '\0';
    244 	for (; s >= s0; s--)
    245 		*s = xdigs[(unsigned int)*s];
    246 
    247 	return (s0);
    248 }
    249 
    250 #if (LDBL_MANT_DIG > DBL_MANT_DIG)
    251 
    252 /*
    253  * This is the long double version of hdtoa().
    254  */
    255 char *
    256 hldtoa(long double e, const char *xdigs, int ndigits, int *decpt, int *sign,
    257     char **rve)
    258 {
    259 	static const int sigfigs = (LDBL_MANT_DIG + 3) / 4 + 1;
    260 	union ieee_ext_u u;
    261 	char *s, *s0;
    262 	size_t bufsize;
    263 
    264 	memset(&u, 0, sizeof u);
    265 	u.extu_ld = e;
    266 	*sign = u.extu_ext.ext_sign;
    267 
    268 	switch (fpclassify(e)) {
    269 	case FP_NORMAL:
    270 		*decpt = u.extu_ext.ext_exp - LDBL_ADJ;
    271 		break;
    272 	case FP_ZERO:
    273 		*decpt = 1;
    274 		return (nrv_alloc("0", rve, 1));
    275 	case FP_SUBNORMAL:
    276 		u.extu_ld *= 0x1p514L;
    277 		*decpt = u.extu_ext.ext_exp - (514 + LDBL_ADJ);
    278 		break;
    279 	case FP_INFINITE:
    280 		*decpt = INT_MAX;
    281 		return (nrv_alloc(INFSTR, rve, sizeof(INFSTR) - 1));
    282 	case FP_NAN:
    283 		*decpt = INT_MAX;
    284 		return (nrv_alloc(NANSTR, rve, sizeof(NANSTR) - 1));
    285 	default:
    286 		abort();
    287 	}
    288 
    289 	/* FP_NORMAL or FP_SUBNORMAL */
    290 
    291 	if (ndigits == 0)		/* dtoa() compatibility */
    292 		ndigits = 1;
    293 
    294 	/*
    295 	 * For simplicity, we generate all the digits even if the
    296 	 * caller has requested fewer.
    297 	 */
    298 	bufsize = (sigfigs > ndigits) ? sigfigs : ndigits;
    299 	s0 = rv_alloc(bufsize);
    300 	if (s0 == NULL)
    301 		return NULL;
    302 
    303 	/*
    304 	 * We work from right to left, first adding any requested zero
    305 	 * padding, then the least significant portion of the
    306 	 * mantissa, followed by the most significant.  The buffer is
    307 	 * filled with the byte values 0x0 through 0xf, which are
    308 	 * converted to xdigs[0x0] through xdigs[0xf] after the
    309 	 * rounding phase.
    310 	 */
    311 	for (s = s0 + bufsize - 1; s > s0 + sigfigs - 1; s--)
    312 		*s = 0;
    313 	for (; s > s0 + sigfigs -
    314 	    (EXT_FRACLBITS / 4) - 1 && s > s0; s--) {
    315 		*s = u.extu_ext.ext_fracl & 0xf;
    316 		u.extu_ext.ext_fracl >>= 4;
    317 	}
    318 #ifdef EXT_FRACHMBITS
    319 	for (; s > s0 + sigfigs -
    320 	    ((EXT_FRACLBITS + EXT_FRACHMBITS) / 4) - 1; s--) {
    321 		*s = u.extu_ext.ext_frachm & 0xf;
    322 		u.extu_ext.ext_frachm >>= 4;
    323 	}
    324 #else
    325 #define EXT_FRACHMBITS 0
    326 #endif
    327 
    328 #ifdef EXT_FRACLMBITS
    329 	for (; s > s0 + sigfigs -
    330 	    ((EXT_FRACLBITS + EXT_FRACHMBITS + EXT_FRACLMBITS) / 4) - 1; s--) {
    331 
    332 		*s = u.extu_ext.ext_fraclm & 0xf;
    333 		u.extu_ext.ext_fraclm >>= 4;
    334 	}
    335 #else
    336 #define EXT_FRACLMBITS 0
    337 #endif
    338 
    339 	for (; s > s0 + sigfigs -
    340 	    ((EXT_FRACLBITS + EXT_FRACHMBITS + EXT_FRACLMBITS + EXT_FRACHBITS) / 4) - 1; s--) {
    341 		*s = u.extu_ext.ext_frach & 0xf;
    342 		u.extu_ext.ext_frach >>= 4;
    343 	}
    344 
    345 	/*
    346 	 * At this point, we have snarfed all the bits in the
    347 	 * mantissa, with the possible exception of the highest-order
    348 	 * (partial) nibble, which is dealt with by the next
    349 	 * statement.  We also tack on the implicit normalization bit.
    350 	 */
    351 	*s = (u.extu_ext.ext_frach | (1U << ((LDBL_MANT_DIG - 1) % 4))) & 0xf;
    352 
    353 	/* If ndigits < 0, we are expected to auto-size the precision. */
    354 	if (ndigits < 0) {
    355 		for (ndigits = sigfigs; s0[ndigits - 1] == 0; ndigits--)
    356 			continue;
    357 	}
    358 
    359 	if (sigfigs > ndigits && s0[ndigits] != 0)
    360 		dorounding(s0, ndigits, u.extu_ext.ext_sign, decpt);
    361 
    362 	s = s0 + ndigits;
    363 	if (rve != NULL)
    364 		*rve = s;
    365 	*s-- = '\0';
    366 	for (; s >= s0; s--)
    367 		*s = xdigs[(unsigned int)*s];
    368 
    369 	return (s0);
    370 }
    371 
    372 #else	/* (LDBL_MANT_DIG == DBL_MANT_DIG) */
    373 
    374 char *
    375 hldtoa(long double e, const char *xdigs, int ndigits, int *decpt, int *sign,
    376     char **rve)
    377 {
    378 
    379 	return (hdtoa((double)e, xdigs, ndigits, decpt, sign, rve));
    380 }
    381 
    382 #endif	/* (LDBL_MANT_DIG == DBL_MANT_DIG) */
    383