Home | History | Annotate | Line # | Download | only in gdtoa
hdtoa.c revision 1.6
      1 /*	$NetBSD: hdtoa.c,v 1.6 2008/03/21 23:13:48 christos Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2004, 2005 David Schultz <das (at) FreeBSD.ORG>
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  *
     16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     26  * SUCH DAMAGE.
     27  */
     28 
     29 #include <sys/cdefs.h>
     30 #if 0
     31 __FBSDID("$FreeBSD: src/lib/libc/gdtoa/_hdtoa.c,v 1.4 2007/01/03 04:57:58 das Exp $");
     32 #else
     33 __RCSID("$NetBSD: hdtoa.c,v 1.6 2008/03/21 23:13:48 christos Exp $");
     34 #endif
     35 
     36 #include <float.h>
     37 #include <limits.h>
     38 #include <math.h>
     39 #ifndef __vax__
     40 #include <machine/ieee.h>
     41 #else
     42 #include <machine/vaxfp.h>
     43 #define ieee_double_u vax_dfloating_u
     44 #define dblu_d dfltu_d
     45 #define dblu_dbl dfltu_dflt
     46 #define dbl_sign dflt_sign
     47 #define dbl_exp dflt_exp
     48 #define dbl_frach dflt_frach
     49 #define dbl_fracm dflt_fracm
     50 #define dbl_fracl dflt_fracl
     51 #define DBL_FRACHBITS	DFLT_FRACHBITS
     52 #define DBL_FRACMBITS	DFLT_FRACMBITS
     53 #define DBL_FRACLBITS	DFLT_FRACLBITS
     54 #define DBL_EXPBITS	DFLT_EXPBITS
     55 #endif
     56 #include "gdtoaimp.h"
     57 
     58 /* Strings values used by dtoa() */
     59 #define	INFSTR	"Infinity"
     60 #define	NANSTR	"NaN"
     61 
     62 #define	DBL_ADJ		(DBL_MAX_EXP - 2 + ((DBL_MANT_DIG - 1) % 4))
     63 #define	LDBL_ADJ	(LDBL_MAX_EXP - 2 + ((LDBL_MANT_DIG - 1) % 4))
     64 
     65 /*
     66  * Round up the given digit string.  If the digit string is fff...f,
     67  * this procedure sets it to 100...0 and returns 1 to indicate that
     68  * the exponent needs to be bumped.  Otherwise, 0 is returned.
     69  */
     70 static int
     71 roundup(char *s0, int ndigits)
     72 {
     73 	char *s;
     74 
     75 	for (s = s0 + ndigits - 1; *s == 0xf; s--) {
     76 		if (s == s0) {
     77 			*s = 1;
     78 			return (1);
     79 		}
     80 		*s = 0;
     81 	}
     82 	++*s;
     83 	return (0);
     84 }
     85 
     86 /*
     87  * Round the given digit string to ndigits digits according to the
     88  * current rounding mode.  Note that this could produce a string whose
     89  * value is not representable in the corresponding floating-point
     90  * type.  The exponent pointed to by decpt is adjusted if necessary.
     91  */
     92 static void
     93 dorounding(char *s0, int ndigits, int sign, int *decpt)
     94 {
     95 	int adjust = 0;	/* do we need to adjust the exponent? */
     96 
     97 	switch (FLT_ROUNDS) {
     98 	case 0:		/* toward zero */
     99 	default:	/* implementation-defined */
    100 		break;
    101 	case 1:		/* to nearest, halfway rounds to even */
    102 		if ((s0[ndigits] > 8) ||
    103 		    (s0[ndigits] == 8 && s0[ndigits - 1] & 1))
    104 			adjust = roundup(s0, ndigits);
    105 		break;
    106 	case 2:		/* toward +inf */
    107 		if (sign == 0)
    108 			adjust = roundup(s0, ndigits);
    109 		break;
    110 	case 3:		/* toward -inf */
    111 		if (sign != 0)
    112 			adjust = roundup(s0, ndigits);
    113 		break;
    114 	}
    115 
    116 	if (adjust)
    117 		*decpt += 4;
    118 }
    119 
    120 /*
    121  * This procedure converts a double-precision number in IEEE format
    122  * into a string of hexadecimal digits and an exponent of 2.  Its
    123  * behavior is bug-for-bug compatible with dtoa() in mode 2, with the
    124  * following exceptions:
    125  *
    126  * - An ndigits < 0 causes it to use as many digits as necessary to
    127  *   represent the number exactly.
    128  * - The additional xdigs argument should point to either the string
    129  *   "0123456789ABCDEF" or the string "0123456789abcdef", depending on
    130  *   which case is desired.
    131  * - This routine does not repeat dtoa's mistake of setting decpt
    132  *   to 9999 in the case of an infinity or NaN.  INT_MAX is used
    133  *   for this purpose instead.
    134  *
    135  * Note that the C99 standard does not specify what the leading digit
    136  * should be for non-zero numbers.  For instance, 0x1.3p3 is the same
    137  * as 0x2.6p2 is the same as 0x4.cp3.  This implementation chooses the
    138  * first digit so that subsequent digits are aligned on nibble
    139  * boundaries (before rounding).
    140  *
    141  * Inputs:	d, xdigs, ndigits
    142  * Outputs:	decpt, sign, rve
    143  */
    144 char *
    145 hdtoa(double d, const char *xdigs, int ndigits, int *decpt, int *sign,
    146     char **rve)
    147 {
    148 	static const int sigfigs = (DBL_MANT_DIG + 3) / 4;
    149 	union ieee_double_u u;
    150 	char *s, *s0;
    151 	size_t bufsize;
    152 
    153 	u.dblu_d = d;
    154 	*sign = u.dblu_dbl.dbl_sign;
    155 
    156 	switch (fpclassify(d)) {
    157 	case FP_NORMAL:
    158 		*decpt = u.dblu_dbl.dbl_exp - DBL_ADJ;
    159 		break;
    160 	case FP_ZERO:
    161 		*decpt = 1;
    162 		return (nrv_alloc("0", rve, 1));
    163 	case FP_SUBNORMAL:
    164 		u.dblu_d *= 0x1p514;
    165 		*decpt = u.dblu_dbl.dbl_exp - (514 + DBL_ADJ);
    166 		break;
    167 	case FP_INFINITE:
    168 		*decpt = INT_MAX;
    169 		return (nrv_alloc(INFSTR, rve, sizeof(INFSTR) - 1));
    170 	case FP_NAN:
    171 		*decpt = INT_MAX;
    172 		return (nrv_alloc(NANSTR, rve, sizeof(NANSTR) - 1));
    173 	default:
    174 		abort();
    175 	}
    176 
    177 	/* FP_NORMAL or FP_SUBNORMAL */
    178 
    179 	if (ndigits == 0)		/* dtoa() compatibility */
    180 		ndigits = 1;
    181 
    182 	/*
    183 	 * For simplicity, we generate all the digits even if the
    184 	 * caller has requested fewer.
    185 	 */
    186 	bufsize = (sigfigs > ndigits) ? sigfigs : ndigits;
    187 	s0 = rv_alloc(bufsize);
    188 	if (s0 == NULL)
    189 		return NULL;
    190 
    191 	/*
    192 	 * We work from right to left, first adding any requested zero
    193 	 * padding, then the least significant portion of the
    194 	 * mantissa, followed by the most significant.  The buffer is
    195 	 * filled with the byte values 0x0 through 0xf, which are
    196 	 * converted to xdigs[0x0] through xdigs[0xf] after the
    197 	 * rounding phase.
    198 	 */
    199 	for (s = s0 + bufsize - 1; s > s0 + sigfigs - 1; s--)
    200 		*s = 0;
    201 	for (; s > s0 + sigfigs - (DBL_FRACLBITS / 4) - 1 && s > s0; s--) {
    202 		*s = u.dblu_dbl.dbl_fracl & 0xf;
    203 		u.dblu_dbl.dbl_fracl >>= 4;
    204 	}
    205 #ifdef DBL_FRACMBITS
    206 	for (; s > s0; s--) {
    207 		*s = u.dblu_dbl.dbl_fracm & 0xf;
    208 		u.dblu_dbl.dbl_fracm >>= 4;
    209 	}
    210 #endif
    211 	for (; s > s0; s--) {
    212 		*s = u.dblu_dbl.dbl_frach & 0xf;
    213 		u.dblu_dbl.dbl_frach >>= 4;
    214 	}
    215 
    216 	/*
    217 	 * At this point, we have snarfed all the bits in the
    218 	 * mantissa, with the possible exception of the highest-order
    219 	 * (partial) nibble, which is dealt with by the next
    220 	 * statement.  We also tack on the implicit normalization bit.
    221 	 */
    222 	*s = u.dblu_dbl.dbl_frach | (1U << ((DBL_MANT_DIG - 1) % 4));
    223 
    224 	/* If ndigits < 0, we are expected to auto-size the precision. */
    225 	if (ndigits < 0) {
    226 		for (ndigits = sigfigs; s0[ndigits - 1] == 0; ndigits--)
    227 			continue;
    228 	}
    229 
    230 	if (sigfigs > ndigits && s0[ndigits] != 0)
    231 		dorounding(s0, ndigits, u.dblu_dbl.dbl_sign, decpt);
    232 
    233 	s = s0 + ndigits;
    234 	if (rve != NULL)
    235 		*rve = s;
    236 	*s-- = '\0';
    237 	for (; s >= s0; s--)
    238 		*s = xdigs[(unsigned int)*s];
    239 
    240 	return (s0);
    241 }
    242 
    243 #if (LDBL_MANT_DIG > DBL_MANT_DIG)
    244 
    245 /*
    246  * This is the long double version of hdtoa().
    247  */
    248 char *
    249 hldtoa(long double e, const char *xdigs, int ndigits, int *decpt, int *sign,
    250     char **rve)
    251 {
    252 	static const int sigfigs = (LDBL_MANT_DIG + 3) / 4;
    253 	union ieee_ext_u u;
    254 	char *s, *s0;
    255 	size_t bufsize;
    256 
    257 	u.extu_ld = e;
    258 	*sign = u.extu_ext.ext_sign;
    259 
    260 	switch (fpclassify(e)) {
    261 	case FP_NORMAL:
    262 		*decpt = u.extu_ext.ext_exp - LDBL_ADJ;
    263 		break;
    264 	case FP_ZERO:
    265 		*decpt = 1;
    266 		return (nrv_alloc("0", rve, 1));
    267 	case FP_SUBNORMAL:
    268 		u.extu_ld *= 0x1p514L;
    269 		*decpt = u.extu_ext.ext_exp - (514 + LDBL_ADJ);
    270 		break;
    271 	case FP_INFINITE:
    272 		*decpt = INT_MAX;
    273 		return (nrv_alloc(INFSTR, rve, sizeof(INFSTR) - 1));
    274 	case FP_NAN:
    275 		*decpt = INT_MAX;
    276 		return (nrv_alloc(NANSTR, rve, sizeof(NANSTR) - 1));
    277 	default:
    278 		abort();
    279 	}
    280 
    281 	/* FP_NORMAL or FP_SUBNORMAL */
    282 
    283 	if (ndigits == 0)		/* dtoa() compatibility */
    284 		ndigits = 1;
    285 
    286 	/*
    287 	 * For simplicity, we generate all the digits even if the
    288 	 * caller has requested fewer.
    289 	 */
    290 	bufsize = (sigfigs > ndigits) ? sigfigs : ndigits;
    291 	s0 = rv_alloc(bufsize);
    292 	if (s0 == NULL)
    293 		return NULL;
    294 
    295 	/*
    296 	 * We work from right to left, first adding any requested zero
    297 	 * padding, then the least significant portion of the
    298 	 * mantissa, followed by the most significant.  The buffer is
    299 	 * filled with the byte values 0x0 through 0xf, which are
    300 	 * converted to xdigs[0x0] through xdigs[0xf] after the
    301 	 * rounding phase.
    302 	 */
    303 	for (s = s0 + bufsize - 1; s > s0 + sigfigs - 1; s--)
    304 		*s = 0;
    305 	for (; s > s0 + sigfigs - (EXT_FRACLBITS / 4) - 1 && s > s0; s--) {
    306 		*s = u.extu_ext.ext_fracl & 0xf;
    307 		u.extu_ext.ext_fracl >>= 4;
    308 	}
    309 #ifdef EXT_FRACHMBITS
    310 	for (; s > s0; s--) {
    311 		*s = u.extu_ext.ext_frachm & 0xf;
    312 		u.extu_ext.ext_frachm >>= 4;
    313 	}
    314 #endif
    315 #ifdef EXT_FRACLMBITS
    316 	for (; s > s0; s--) {
    317 		*s = u.extu_ext.ext_fraclm & 0xf;
    318 		u.extu_ext.ext_fraclm >>= 4;
    319 	}
    320 #endif
    321 	for (; s > s0; s--) {
    322 		*s = u.extu_ext.ext_frach & 0xf;
    323 		u.extu_ext.ext_frach >>= 4;
    324 	}
    325 
    326 	/*
    327 	 * At this point, we have snarfed all the bits in the
    328 	 * mantissa, with the possible exception of the highest-order
    329 	 * (partial) nibble, which is dealt with by the next
    330 	 * statement.  We also tack on the implicit normalization bit.
    331 	 */
    332 	*s = u.extu_ext.ext_frach | (1U << ((LDBL_MANT_DIG - 1) % 4));
    333 
    334 	/* If ndigits < 0, we are expected to auto-size the precision. */
    335 	if (ndigits < 0) {
    336 		for (ndigits = sigfigs; s0[ndigits - 1] == 0; ndigits--)
    337 			continue;
    338 	}
    339 
    340 	if (sigfigs > ndigits && s0[ndigits] != 0)
    341 		dorounding(s0, ndigits, u.extu_ext.ext_sign, decpt);
    342 
    343 	s = s0 + ndigits;
    344 	if (rve != NULL)
    345 		*rve = s;
    346 	*s-- = '\0';
    347 	for (; s >= s0; s--)
    348 		*s = xdigs[(unsigned int)*s];
    349 
    350 	return (s0);
    351 }
    352 
    353 #else	/* (LDBL_MANT_DIG == DBL_MANT_DIG) */
    354 
    355 char *
    356 hldtoa(long double e, const char *xdigs, int ndigits, int *decpt, int *sign,
    357     char **rve)
    358 {
    359 
    360 	return (hdtoa((double)e, xdigs, ndigits, decpt, sign, rve));
    361 }
    362 
    363 #endif	/* (LDBL_MANT_DIG == DBL_MANT_DIG) */
    364