Home | History | Annotate | Line # | Download | only in gdtoa
strtopdd.c revision 1.1.1.2
      1      1.1    kleink /****************************************************************
      2      1.1    kleink 
      3      1.1    kleink The author of this software is David M. Gay.
      4      1.1    kleink 
      5      1.1    kleink Copyright (C) 1998, 2000 by Lucent Technologies
      6      1.1    kleink All Rights Reserved
      7      1.1    kleink 
      8      1.1    kleink Permission to use, copy, modify, and distribute this software and
      9      1.1    kleink its documentation for any purpose and without fee is hereby
     10      1.1    kleink granted, provided that the above copyright notice appear in all
     11      1.1    kleink copies and that both that the copyright notice and this
     12      1.1    kleink permission notice and warranty disclaimer appear in supporting
     13      1.1    kleink documentation, and that the name of Lucent or any of its entities
     14      1.1    kleink not be used in advertising or publicity pertaining to
     15      1.1    kleink distribution of the software without specific, written prior
     16      1.1    kleink permission.
     17      1.1    kleink 
     18      1.1    kleink LUCENT DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
     19      1.1    kleink INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS.
     20      1.1    kleink IN NO EVENT SHALL LUCENT OR ANY OF ITS ENTITIES BE LIABLE FOR ANY
     21      1.1    kleink SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     22      1.1    kleink WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER
     23      1.1    kleink IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
     24      1.1    kleink ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF
     25      1.1    kleink THIS SOFTWARE.
     26      1.1    kleink 
     27      1.1    kleink ****************************************************************/
     28      1.1    kleink 
     29      1.1    kleink /* Please send bug reports to David M. Gay (dmg at acm dot org,
     30      1.1    kleink  * with " at " changed at "@" and " dot " changed to ".").	*/
     31      1.1    kleink 
     32      1.1    kleink #include "gdtoaimp.h"
     33      1.1    kleink 
     34      1.1    kleink  int
     35      1.1    kleink #ifdef KR_headers
     36      1.1    kleink strtopdd(s, sp, dd) CONST char *s; char **sp; double *dd;
     37      1.1    kleink #else
     38      1.1    kleink strtopdd(CONST char *s, char **sp, double *dd)
     39      1.1    kleink #endif
     40      1.1    kleink {
     41      1.1    kleink #ifdef Sudden_Underflow
     42  1.1.1.2  christos 	static FPI fpi0 = { 106, 1-1023, 2046-1023-106+1, 1, 1 };
     43      1.1    kleink #else
     44  1.1.1.2  christos 	static FPI fpi0 = { 106, 1-1023-53+1, 2046-1023-106+1, 1, 0 };
     45      1.1    kleink #endif
     46      1.1    kleink 	ULong bits[4];
     47      1.1    kleink 	Long exp;
     48      1.1    kleink 	int i, j, rv;
     49      1.1    kleink 	typedef union {
     50      1.1    kleink 		double d[2];
     51      1.1    kleink 		ULong L[4];
     52      1.1    kleink 		} U;
     53      1.1    kleink 	U *u;
     54  1.1.1.2  christos #ifdef Honor_FLT_ROUNDS
     55  1.1.1.2  christos #include "gdtoa_fltrnds.h"
     56  1.1.1.2  christos #else
     57  1.1.1.2  christos #define fpi &fpi0
     58  1.1.1.2  christos #endif
     59      1.1    kleink 
     60  1.1.1.2  christos 	rv = strtodg(s, sp, fpi, &exp, bits);
     61      1.1    kleink 	u = (U*)dd;
     62      1.1    kleink 	switch(rv & STRTOG_Retmask) {
     63      1.1    kleink 	  case STRTOG_NoNumber:
     64      1.1    kleink 	  case STRTOG_Zero:
     65      1.1    kleink 		u->d[0] = u->d[1] = 0.;
     66      1.1    kleink 		break;
     67      1.1    kleink 
     68      1.1    kleink 	  case STRTOG_Normal:
     69      1.1    kleink 		u->L[_1] = (bits[1] >> 21 | bits[2] << 11) & 0xffffffffL;
     70  1.1.1.2  christos 		u->L[_0] = (bits[2] >> 21) | ((bits[3] << 11) & 0xfffff)
     71  1.1.1.2  christos 			  | ((exp + 0x3ff + 105) << 20);
     72      1.1    kleink 		exp += 0x3ff + 52;
     73      1.1    kleink 		if (bits[1] &= 0x1fffff) {
     74      1.1    kleink 			i = hi0bits(bits[1]) - 11;
     75      1.1    kleink 			if (i >= exp) {
     76      1.1    kleink 				i = exp - 1;
     77      1.1    kleink 				exp = 0;
     78      1.1    kleink 				}
     79      1.1    kleink 			else
     80      1.1    kleink 				exp -= i;
     81      1.1    kleink 			if (i > 0) {
     82  1.1.1.2  christos 				bits[1] = bits[1] << i | bits[0] >> (32-i);
     83      1.1    kleink 				bits[0] = bits[0] << i & 0xffffffffL;
     84      1.1    kleink 				}
     85      1.1    kleink 			}
     86      1.1    kleink 		else if (bits[0]) {
     87      1.1    kleink 			i = hi0bits(bits[0]) + 21;
     88      1.1    kleink 			if (i >= exp) {
     89      1.1    kleink 				i = exp - 1;
     90      1.1    kleink 				exp = 0;
     91      1.1    kleink 				}
     92      1.1    kleink 			else
     93      1.1    kleink 				exp -= i;
     94      1.1    kleink 			if (i < 32) {
     95  1.1.1.2  christos 				bits[1] = bits[0] >> (32 - i);
     96      1.1    kleink 				bits[0] = bits[0] << i & 0xffffffffL;
     97      1.1    kleink 				}
     98      1.1    kleink 			else {
     99  1.1.1.2  christos 				bits[1] = bits[0] << (i - 32);
    100      1.1    kleink 				bits[0] = 0;
    101      1.1    kleink 				}
    102      1.1    kleink 			}
    103      1.1    kleink 		else {
    104      1.1    kleink 			u->L[2] = u->L[3] = 0;
    105      1.1    kleink 			break;
    106      1.1    kleink 			}
    107      1.1    kleink 		u->L[2+_1] = bits[0];
    108  1.1.1.2  christos 		u->L[2+_0] = (bits[1] & 0xfffff) | (exp << 20);
    109      1.1    kleink 		break;
    110      1.1    kleink 
    111      1.1    kleink 	  case STRTOG_Denormal:
    112      1.1    kleink 		if (bits[3])
    113      1.1    kleink 			goto nearly_normal;
    114      1.1    kleink 		if (bits[2])
    115      1.1    kleink 			goto partly_normal;
    116      1.1    kleink 		if (bits[1] & 0xffe00000)
    117      1.1    kleink 			goto hardly_normal;
    118      1.1    kleink 		/* completely denormal */
    119      1.1    kleink 		u->L[2] = u->L[3] = 0;
    120      1.1    kleink 		u->L[_1] = bits[0];
    121      1.1    kleink 		u->L[_0] = bits[1];
    122      1.1    kleink 		break;
    123      1.1    kleink 
    124      1.1    kleink 	  nearly_normal:
    125      1.1    kleink 		i = hi0bits(bits[3]) - 11;	/* i >= 12 */
    126      1.1    kleink 		j = 32 - i;
    127  1.1.1.2  christos 		u->L[_0] = ((bits[3] << i | bits[2] >> j) & 0xfffff)
    128  1.1.1.2  christos 			| ((65 - i) << 20);
    129      1.1    kleink 		u->L[_1] = (bits[2] << i | bits[1] >> j) & 0xffffffffL;
    130  1.1.1.2  christos 		u->L[2+_0] = bits[1] & ((1L << j) - 1);
    131      1.1    kleink 		u->L[2+_1] = bits[0];
    132      1.1    kleink 		break;
    133      1.1    kleink 
    134      1.1    kleink 	  partly_normal:
    135      1.1    kleink 		i = hi0bits(bits[2]) - 11;
    136      1.1    kleink 		if (i < 0) {
    137      1.1    kleink 			j = -i;
    138      1.1    kleink 			i += 32;
    139  1.1.1.2  christos 			u->L[_0] = (bits[2] >> j & 0xfffff) | (33 + j) << 20;
    140  1.1.1.2  christos 			u->L[_1] = ((bits[2] << i) | (bits[1] >> j)) & 0xffffffffL;
    141  1.1.1.2  christos 			u->L[2+_0] = bits[1] & ((1L << j) - 1);
    142      1.1    kleink 			u->L[2+_1] = bits[0];
    143      1.1    kleink 			break;
    144      1.1    kleink 			}
    145      1.1    kleink 		if (i == 0) {
    146  1.1.1.2  christos 			u->L[_0] = (bits[2] & 0xfffff) | (33 << 20);
    147      1.1    kleink 			u->L[_1] = bits[1];
    148      1.1    kleink 			u->L[2+_0] = 0;
    149      1.1    kleink 			u->L[2+_1] = bits[0];
    150      1.1    kleink 			break;
    151      1.1    kleink 			}
    152      1.1    kleink 		j = 32 - i;
    153  1.1.1.2  christos 		u->L[_0] = (((bits[2] << i) | (bits[1] >> j)) & 0xfffff)
    154  1.1.1.2  christos 				| ((j + 1) << 20);
    155      1.1    kleink 		u->L[_1] = (bits[1] << i | bits[0] >> j) & 0xffffffffL;
    156      1.1    kleink 		u->L[2+_0] = 0;
    157  1.1.1.2  christos 		u->L[2+_1] = bits[0] & ((1L << j) - 1);
    158      1.1    kleink 		break;
    159      1.1    kleink 
    160      1.1    kleink 	  hardly_normal:
    161      1.1    kleink 		j = 11 - hi0bits(bits[1]);
    162      1.1    kleink 		i = 32 - j;
    163  1.1.1.2  christos 		u->L[_0] = (bits[1] >> j & 0xfffff) | ((j + 1) << 20);
    164      1.1    kleink 		u->L[_1] = (bits[1] << i | bits[0] >> j) & 0xffffffffL;
    165      1.1    kleink 		u->L[2+_0] = 0;
    166  1.1.1.2  christos 		u->L[2+_1] = bits[0] & ((1L << j) - 1);
    167      1.1    kleink 		break;
    168      1.1    kleink 
    169      1.1    kleink 	  case STRTOG_Infinite:
    170      1.1    kleink 		u->L[_0] = u->L[2+_0] = 0x7ff00000;
    171      1.1    kleink 		u->L[_1] = u->L[2+_1] = 0;
    172      1.1    kleink 		break;
    173      1.1    kleink 
    174      1.1    kleink 	  case STRTOG_NaN:
    175      1.1    kleink 		u->L[0] = u->L[2] = d_QNAN0;
    176      1.1    kleink 		u->L[1] = u->L[3] = d_QNAN1;
    177      1.1    kleink 	  }
    178      1.1    kleink 	if (rv & STRTOG_Neg) {
    179      1.1    kleink 		u->L[  _0] |= 0x80000000L;
    180      1.1    kleink 		u->L[2+_0] |= 0x80000000L;
    181      1.1    kleink 		}
    182      1.1    kleink 	return rv;
    183      1.1    kleink 	}
    184