1 1.3 christos /* $NetBSD: strtordd.c,v 1.3 2011/03/20 23:15:35 christos Exp $ */ 2 1.1 kleink 3 1.1 kleink /**************************************************************** 4 1.1 kleink 5 1.1 kleink The author of this software is David M. Gay. 6 1.1 kleink 7 1.1 kleink Copyright (C) 1998, 2000 by Lucent Technologies 8 1.1 kleink All Rights Reserved 9 1.1 kleink 10 1.1 kleink Permission to use, copy, modify, and distribute this software and 11 1.1 kleink its documentation for any purpose and without fee is hereby 12 1.1 kleink granted, provided that the above copyright notice appear in all 13 1.1 kleink copies and that both that the copyright notice and this 14 1.1 kleink permission notice and warranty disclaimer appear in supporting 15 1.1 kleink documentation, and that the name of Lucent or any of its entities 16 1.1 kleink not be used in advertising or publicity pertaining to 17 1.1 kleink distribution of the software without specific, written prior 18 1.1 kleink permission. 19 1.1 kleink 20 1.1 kleink LUCENT DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, 21 1.1 kleink INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. 22 1.1 kleink IN NO EVENT SHALL LUCENT OR ANY OF ITS ENTITIES BE LIABLE FOR ANY 23 1.1 kleink SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 24 1.1 kleink WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER 25 1.1 kleink IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, 26 1.1 kleink ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF 27 1.1 kleink THIS SOFTWARE. 28 1.1 kleink 29 1.1 kleink ****************************************************************/ 30 1.1 kleink 31 1.1 kleink /* Please send bug reports to David M. Gay (dmg at acm dot org, 32 1.1 kleink * with " at " changed at "@" and " dot " changed to "."). */ 33 1.1 kleink 34 1.1 kleink #include "gdtoaimp.h" 35 1.1 kleink 36 1.1 kleink void 37 1.1 kleink #ifdef KR_headers 38 1.3 christos ULtodd(L, bits, expt, k) ULong *L; ULong *bits; Long expt; int k; 39 1.1 kleink #else 40 1.3 christos ULtodd(ULong *L, ULong *bits, Long expt, int k) 41 1.1 kleink #endif 42 1.1 kleink { 43 1.1 kleink int i, j; 44 1.1 kleink 45 1.1 kleink switch(k & STRTOG_Retmask) { 46 1.1 kleink case STRTOG_NoNumber: 47 1.1 kleink case STRTOG_Zero: 48 1.1 kleink L[0] = L[1] = L[2] = L[3] = 0; 49 1.1 kleink break; 50 1.1 kleink 51 1.1 kleink case STRTOG_Normal: 52 1.1 kleink L[_1] = (bits[1] >> 21 | bits[2] << 11) & (ULong)0xffffffffL; 53 1.3 christos L[_0] = (bits[2] >> 21) | (bits[3] << 11 & 0xfffff) 54 1.3 christos | ((expt + 0x3ff + 105) << 20); 55 1.3 christos expt += 0x3ff + 52; 56 1.1 kleink if (bits[1] &= 0x1fffff) { 57 1.1 kleink i = hi0bits(bits[1]) - 11; 58 1.3 christos if (i >= expt) { 59 1.3 christos i = expt - 1; 60 1.3 christos expt = 0; 61 1.1 kleink } 62 1.1 kleink else 63 1.3 christos expt -= i; 64 1.1 kleink if (i > 0) { 65 1.3 christos bits[1] = bits[1] << i | bits[0] >> (32-i); 66 1.1 kleink bits[0] = bits[0] << i & (ULong)0xffffffffL; 67 1.1 kleink } 68 1.1 kleink } 69 1.1 kleink else if (bits[0]) { 70 1.1 kleink i = hi0bits(bits[0]) + 21; 71 1.3 christos if (i >= expt) { 72 1.3 christos i = expt - 1; 73 1.3 christos expt = 0; 74 1.1 kleink } 75 1.1 kleink else 76 1.3 christos expt -= i; 77 1.1 kleink if (i < 32) { 78 1.3 christos bits[1] = bits[0] >> (32 - i); 79 1.1 kleink bits[0] = bits[0] << i & (ULong)0xffffffffL; 80 1.1 kleink } 81 1.1 kleink else { 82 1.3 christos bits[1] = bits[0] << (i - 32); 83 1.1 kleink bits[0] = 0; 84 1.1 kleink } 85 1.1 kleink } 86 1.1 kleink else { 87 1.1 kleink L[2] = L[3] = 0; 88 1.1 kleink break; 89 1.1 kleink } 90 1.1 kleink L[2+_1] = bits[0]; 91 1.3 christos L[2+_0] = (bits[1] & 0xfffff) | (expt << 20); 92 1.1 kleink break; 93 1.1 kleink 94 1.1 kleink case STRTOG_Denormal: 95 1.1 kleink if (bits[3]) 96 1.1 kleink goto nearly_normal; 97 1.1 kleink if (bits[2]) 98 1.1 kleink goto partly_normal; 99 1.1 kleink if (bits[1] & 0xffe00000) 100 1.1 kleink goto hardly_normal; 101 1.1 kleink /* completely denormal */ 102 1.1 kleink L[2] = L[3] = 0; 103 1.1 kleink L[_1] = bits[0]; 104 1.1 kleink L[_0] = bits[1]; 105 1.1 kleink break; 106 1.1 kleink 107 1.1 kleink nearly_normal: 108 1.1 kleink i = hi0bits(bits[3]) - 11; /* i >= 12 */ 109 1.1 kleink j = 32 - i; 110 1.3 christos L[_0] = ((bits[3] << i | bits[2] >> j) & 0xfffff) 111 1.3 christos | ((65 - i) << 20); 112 1.1 kleink L[_1] = (bits[2] << i | bits[1] >> j) & 0xffffffffL; 113 1.3 christos L[2+_0] = bits[1] & (((ULong)1L << j) - 1); 114 1.1 kleink L[2+_1] = bits[0]; 115 1.1 kleink break; 116 1.1 kleink 117 1.1 kleink partly_normal: 118 1.1 kleink i = hi0bits(bits[2]) - 11; 119 1.1 kleink if (i < 0) { 120 1.1 kleink j = -i; 121 1.1 kleink i += 32; 122 1.3 christos L[_0] = (bits[2] >> j & 0xfffff) | ((33 + j) << 20); 123 1.1 kleink L[_1] = (bits[2] << i | bits[1] >> j) & 0xffffffffL; 124 1.3 christos L[2+_0] = bits[1] & (((ULong)1L << j) - 1); 125 1.1 kleink L[2+_1] = bits[0]; 126 1.1 kleink break; 127 1.1 kleink } 128 1.1 kleink if (i == 0) { 129 1.3 christos L[_0] = (bits[2] & 0xfffff) | (33 << 20); 130 1.1 kleink L[_1] = bits[1]; 131 1.1 kleink L[2+_0] = 0; 132 1.1 kleink L[2+_1] = bits[0]; 133 1.1 kleink break; 134 1.1 kleink } 135 1.1 kleink j = 32 - i; 136 1.3 christos L[_0] = (((bits[2] << i) | (bits[1] >> j)) & 0xfffff) 137 1.3 christos | ((j + 1) << 20); 138 1.1 kleink L[_1] = (bits[1] << i | bits[0] >> j) & 0xffffffffL; 139 1.1 kleink L[2+_0] = 0; 140 1.3 christos L[2+_1] = bits[0] & ((1L << j) - 1); 141 1.1 kleink break; 142 1.1 kleink 143 1.1 kleink hardly_normal: 144 1.1 kleink j = 11 - hi0bits(bits[1]); 145 1.1 kleink i = 32 - j; 146 1.3 christos L[_0] = (bits[1] >> j & 0xfffff) | ((j + 1) << 20); 147 1.1 kleink L[_1] = (bits[1] << i | bits[0] >> j) & 0xffffffffL; 148 1.1 kleink L[2+_0] = 0; 149 1.3 christos L[2+_1] = bits[0] & (((ULong)1L << j) - 1); 150 1.1 kleink break; 151 1.1 kleink 152 1.1 kleink case STRTOG_Infinite: 153 1.1 kleink L[_0] = L[2+_0] = 0x7ff00000; 154 1.1 kleink L[_1] = L[2+_1] = 0; 155 1.1 kleink break; 156 1.1 kleink 157 1.1 kleink case STRTOG_NaN: 158 1.1 kleink L[0] = L[2] = d_QNAN0; 159 1.1 kleink L[1] = L[3] = d_QNAN1; 160 1.1 kleink break; 161 1.1 kleink 162 1.1 kleink case STRTOG_NaNbits: 163 1.1 kleink L[_1] = (bits[1] >> 21 | bits[2] << 11) & (ULong)0xffffffffL; 164 1.1 kleink L[_0] = bits[2] >> 21 | bits[3] << 11 165 1.1 kleink | (ULong)0x7ff00000L; 166 1.1 kleink L[2+_1] = bits[0]; 167 1.1 kleink L[2+_0] = bits[1] | (ULong)0x7ff00000L; 168 1.1 kleink } 169 1.1 kleink if (k & STRTOG_Neg) { 170 1.1 kleink L[_0] |= 0x80000000L; 171 1.1 kleink L[2+_0] |= 0x80000000L; 172 1.1 kleink } 173 1.1 kleink } 174 1.1 kleink 175 1.1 kleink int 176 1.1 kleink #ifdef KR_headers 177 1.1 kleink strtordd(s, sp, rounding, dd) CONST char *s; char **sp; int rounding; double *dd; 178 1.1 kleink #else 179 1.1 kleink strtordd(CONST char *s, char **sp, int rounding, double *dd) 180 1.1 kleink #endif 181 1.1 kleink { 182 1.1 kleink #ifdef Sudden_Underflow 183 1.3 christos static CONST FPI fpi0 = { 106, 1-1023, 2046-1023-106+1, 1, 1 }; 184 1.1 kleink #else 185 1.3 christos static CONST FPI fpi0 = { 106, 1-1023-53+1, 2046-1023-106+1, 1, 0 }; 186 1.1 kleink #endif 187 1.3 christos CONST FPI *fpi; 188 1.3 christos FPI fpi1; 189 1.1 kleink ULong bits[4]; 190 1.3 christos Long expt; 191 1.1 kleink int k; 192 1.1 kleink 193 1.1 kleink fpi = &fpi0; 194 1.1 kleink if (rounding != FPI_Round_near) { 195 1.1 kleink fpi1 = fpi0; 196 1.1 kleink fpi1.rounding = rounding; 197 1.1 kleink fpi = &fpi1; 198 1.1 kleink } 199 1.3 christos k = strtodg(s, sp, fpi, &expt, bits); 200 1.2 christos if (k == STRTOG_NoMemory) 201 1.2 christos return k; 202 1.3 christos ULtodd((ULong*)dd, bits, expt, k); 203 1.1 kleink return k; 204 1.1 kleink } 205