strtordd.c revision 1.1.1.2 1 1.1 kleink /****************************************************************
2 1.1 kleink
3 1.1 kleink The author of this software is David M. Gay.
4 1.1 kleink
5 1.1 kleink Copyright (C) 1998, 2000 by Lucent Technologies
6 1.1 kleink All Rights Reserved
7 1.1 kleink
8 1.1 kleink Permission to use, copy, modify, and distribute this software and
9 1.1 kleink its documentation for any purpose and without fee is hereby
10 1.1 kleink granted, provided that the above copyright notice appear in all
11 1.1 kleink copies and that both that the copyright notice and this
12 1.1 kleink permission notice and warranty disclaimer appear in supporting
13 1.1 kleink documentation, and that the name of Lucent or any of its entities
14 1.1 kleink not be used in advertising or publicity pertaining to
15 1.1 kleink distribution of the software without specific, written prior
16 1.1 kleink permission.
17 1.1 kleink
18 1.1 kleink LUCENT DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
19 1.1 kleink INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS.
20 1.1 kleink IN NO EVENT SHALL LUCENT OR ANY OF ITS ENTITIES BE LIABLE FOR ANY
21 1.1 kleink SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
22 1.1 kleink WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER
23 1.1 kleink IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
24 1.1 kleink ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF
25 1.1 kleink THIS SOFTWARE.
26 1.1 kleink
27 1.1 kleink ****************************************************************/
28 1.1 kleink
29 1.1 kleink /* Please send bug reports to David M. Gay (dmg at acm dot org,
30 1.1 kleink * with " at " changed at "@" and " dot " changed to "."). */
31 1.1 kleink
32 1.1 kleink #include "gdtoaimp.h"
33 1.1 kleink
34 1.1 kleink void
35 1.1 kleink #ifdef KR_headers
36 1.1 kleink ULtodd(L, bits, exp, k) ULong *L; ULong *bits; Long exp; int k;
37 1.1 kleink #else
38 1.1 kleink ULtodd(ULong *L, ULong *bits, Long exp, int k)
39 1.1 kleink #endif
40 1.1 kleink {
41 1.1 kleink int i, j;
42 1.1 kleink
43 1.1 kleink switch(k & STRTOG_Retmask) {
44 1.1 kleink case STRTOG_NoNumber:
45 1.1 kleink case STRTOG_Zero:
46 1.1 kleink L[0] = L[1] = L[2] = L[3] = 0;
47 1.1 kleink break;
48 1.1 kleink
49 1.1 kleink case STRTOG_Normal:
50 1.1 kleink L[_1] = (bits[1] >> 21 | bits[2] << 11) & (ULong)0xffffffffL;
51 1.1.1.2 christos L[_0] = (bits[2] >> 21) | (bits[3] << 11 & 0xfffff)
52 1.1.1.2 christos | ((exp + 0x3ff + 105) << 20);
53 1.1 kleink exp += 0x3ff + 52;
54 1.1 kleink if (bits[1] &= 0x1fffff) {
55 1.1 kleink i = hi0bits(bits[1]) - 11;
56 1.1 kleink if (i >= exp) {
57 1.1 kleink i = exp - 1;
58 1.1 kleink exp = 0;
59 1.1 kleink }
60 1.1 kleink else
61 1.1 kleink exp -= i;
62 1.1 kleink if (i > 0) {
63 1.1.1.2 christos bits[1] = bits[1] << i | bits[0] >> (32-i);
64 1.1 kleink bits[0] = bits[0] << i & (ULong)0xffffffffL;
65 1.1 kleink }
66 1.1 kleink }
67 1.1 kleink else if (bits[0]) {
68 1.1 kleink i = hi0bits(bits[0]) + 21;
69 1.1 kleink if (i >= exp) {
70 1.1 kleink i = exp - 1;
71 1.1 kleink exp = 0;
72 1.1 kleink }
73 1.1 kleink else
74 1.1 kleink exp -= i;
75 1.1 kleink if (i < 32) {
76 1.1.1.2 christos bits[1] = bits[0] >> (32 - i);
77 1.1 kleink bits[0] = bits[0] << i & (ULong)0xffffffffL;
78 1.1 kleink }
79 1.1 kleink else {
80 1.1.1.2 christos bits[1] = bits[0] << (i - 32);
81 1.1 kleink bits[0] = 0;
82 1.1 kleink }
83 1.1 kleink }
84 1.1 kleink else {
85 1.1 kleink L[2] = L[3] = 0;
86 1.1 kleink break;
87 1.1 kleink }
88 1.1 kleink L[2+_1] = bits[0];
89 1.1.1.2 christos L[2+_0] = (bits[1] & 0xfffff) | (exp << 20);
90 1.1 kleink break;
91 1.1 kleink
92 1.1 kleink case STRTOG_Denormal:
93 1.1 kleink if (bits[3])
94 1.1 kleink goto nearly_normal;
95 1.1 kleink if (bits[2])
96 1.1 kleink goto partly_normal;
97 1.1 kleink if (bits[1] & 0xffe00000)
98 1.1 kleink goto hardly_normal;
99 1.1 kleink /* completely denormal */
100 1.1 kleink L[2] = L[3] = 0;
101 1.1 kleink L[_1] = bits[0];
102 1.1 kleink L[_0] = bits[1];
103 1.1 kleink break;
104 1.1 kleink
105 1.1 kleink nearly_normal:
106 1.1 kleink i = hi0bits(bits[3]) - 11; /* i >= 12 */
107 1.1 kleink j = 32 - i;
108 1.1.1.2 christos L[_0] = ((bits[3] << i | bits[2] >> j) & 0xfffff)
109 1.1.1.2 christos | ((65 - i) << 20);
110 1.1 kleink L[_1] = (bits[2] << i | bits[1] >> j) & 0xffffffffL;
111 1.1.1.2 christos L[2+_0] = bits[1] & (((ULong)1L << j) - 1);
112 1.1 kleink L[2+_1] = bits[0];
113 1.1 kleink break;
114 1.1 kleink
115 1.1 kleink partly_normal:
116 1.1 kleink i = hi0bits(bits[2]) - 11;
117 1.1 kleink if (i < 0) {
118 1.1 kleink j = -i;
119 1.1 kleink i += 32;
120 1.1.1.2 christos L[_0] = (bits[2] >> j & 0xfffff) | ((33 + j) << 20);
121 1.1 kleink L[_1] = (bits[2] << i | bits[1] >> j) & 0xffffffffL;
122 1.1.1.2 christos L[2+_0] = bits[1] & (((ULong)1L << j) - 1);
123 1.1 kleink L[2+_1] = bits[0];
124 1.1 kleink break;
125 1.1 kleink }
126 1.1 kleink if (i == 0) {
127 1.1.1.2 christos L[_0] = (bits[2] & 0xfffff) | (33 << 20);
128 1.1 kleink L[_1] = bits[1];
129 1.1 kleink L[2+_0] = 0;
130 1.1 kleink L[2+_1] = bits[0];
131 1.1 kleink break;
132 1.1 kleink }
133 1.1 kleink j = 32 - i;
134 1.1.1.2 christos L[_0] = (((bits[2] << i) | (bits[1] >> j)) & 0xfffff)
135 1.1.1.2 christos | ((j + 1) << 20);
136 1.1 kleink L[_1] = (bits[1] << i | bits[0] >> j) & 0xffffffffL;
137 1.1 kleink L[2+_0] = 0;
138 1.1.1.2 christos L[2+_1] = bits[0] & ((1L << j) - 1);
139 1.1 kleink break;
140 1.1 kleink
141 1.1 kleink hardly_normal:
142 1.1 kleink j = 11 - hi0bits(bits[1]);
143 1.1 kleink i = 32 - j;
144 1.1.1.2 christos L[_0] = (bits[1] >> j & 0xfffff) | ((j + 1) << 20);
145 1.1 kleink L[_1] = (bits[1] << i | bits[0] >> j) & 0xffffffffL;
146 1.1 kleink L[2+_0] = 0;
147 1.1.1.2 christos L[2+_1] = bits[0] & (((ULong)1L << j) - 1);
148 1.1 kleink break;
149 1.1 kleink
150 1.1 kleink case STRTOG_Infinite:
151 1.1 kleink L[_0] = L[2+_0] = 0x7ff00000;
152 1.1 kleink L[_1] = L[2+_1] = 0;
153 1.1 kleink break;
154 1.1 kleink
155 1.1 kleink case STRTOG_NaN:
156 1.1 kleink L[0] = L[2] = d_QNAN0;
157 1.1 kleink L[1] = L[3] = d_QNAN1;
158 1.1 kleink break;
159 1.1 kleink
160 1.1 kleink case STRTOG_NaNbits:
161 1.1 kleink L[_1] = (bits[1] >> 21 | bits[2] << 11) & (ULong)0xffffffffL;
162 1.1 kleink L[_0] = bits[2] >> 21 | bits[3] << 11
163 1.1 kleink | (ULong)0x7ff00000L;
164 1.1 kleink L[2+_1] = bits[0];
165 1.1 kleink L[2+_0] = bits[1] | (ULong)0x7ff00000L;
166 1.1 kleink }
167 1.1 kleink if (k & STRTOG_Neg) {
168 1.1 kleink L[_0] |= 0x80000000L;
169 1.1 kleink L[2+_0] |= 0x80000000L;
170 1.1 kleink }
171 1.1 kleink }
172 1.1 kleink
173 1.1 kleink int
174 1.1 kleink #ifdef KR_headers
175 1.1 kleink strtordd(s, sp, rounding, dd) CONST char *s; char **sp; int rounding; double *dd;
176 1.1 kleink #else
177 1.1 kleink strtordd(CONST char *s, char **sp, int rounding, double *dd)
178 1.1 kleink #endif
179 1.1 kleink {
180 1.1 kleink #ifdef Sudden_Underflow
181 1.1 kleink static FPI fpi0 = { 106, 1-1023, 2046-1023-106+1, 1, 1 };
182 1.1 kleink #else
183 1.1 kleink static FPI fpi0 = { 106, 1-1023-53+1, 2046-1023-106+1, 1, 0 };
184 1.1 kleink #endif
185 1.1 kleink FPI *fpi, fpi1;
186 1.1 kleink ULong bits[4];
187 1.1 kleink Long exp;
188 1.1 kleink int k;
189 1.1 kleink
190 1.1 kleink fpi = &fpi0;
191 1.1 kleink if (rounding != FPI_Round_near) {
192 1.1 kleink fpi1 = fpi0;
193 1.1 kleink fpi1.rounding = rounding;
194 1.1 kleink fpi = &fpi1;
195 1.1 kleink }
196 1.1 kleink k = strtodg(s, sp, fpi, &exp, bits);
197 1.1 kleink ULtodd((ULong*)dd, bits, exp, k);
198 1.1 kleink return k;
199 1.1 kleink }
200