base64.c revision 1.9 1 1.9 christos /* $NetBSD: base64.c,v 1.9 2007/01/27 22:26:44 christos Exp $ */
2 1.2 mrg
3 1.1 mrg /*
4 1.9 christos * Copyright (c) 2004 by Internet Systems Consortium, Inc. ("ISC")
5 1.9 christos * Copyright (c) 1996-1999 by Internet Software Consortium.
6 1.1 mrg *
7 1.1 mrg * Permission to use, copy, modify, and distribute this software for any
8 1.1 mrg * purpose with or without fee is hereby granted, provided that the above
9 1.1 mrg * copyright notice and this permission notice appear in all copies.
10 1.1 mrg *
11 1.9 christos * THE SOFTWARE IS PROVIDED "AS IS" AND ISC DISCLAIMS ALL WARRANTIES
12 1.9 christos * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 1.9 christos * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL ISC BE LIABLE FOR
14 1.9 christos * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 1.9 christos * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 1.9 christos * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT
17 1.9 christos * OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 1.1 mrg */
19 1.1 mrg
20 1.1 mrg /*
21 1.1 mrg * Portions Copyright (c) 1995 by International Business Machines, Inc.
22 1.1 mrg *
23 1.1 mrg * International Business Machines, Inc. (hereinafter called IBM) grants
24 1.1 mrg * permission under its copyrights to use, copy, modify, and distribute this
25 1.1 mrg * Software with or without fee, provided that the above copyright notice and
26 1.1 mrg * all paragraphs of this notice appear in all copies, and that the name of IBM
27 1.1 mrg * not be used in connection with the marketing of any product incorporating
28 1.1 mrg * the Software or modifications thereof, without specific, written prior
29 1.1 mrg * permission.
30 1.1 mrg *
31 1.1 mrg * To the extent it has a right to do so, IBM grants an immunity from suit
32 1.1 mrg * under its patents, if any, for the use, sale or manufacture of products to
33 1.1 mrg * the extent that such products are used for performing Domain Name System
34 1.1 mrg * dynamic updates in TCP/IP networks by means of the Software. No immunity is
35 1.1 mrg * granted for any product per se or for any other function of any product.
36 1.1 mrg *
37 1.1 mrg * THE SOFTWARE IS PROVIDED "AS IS", AND IBM DISCLAIMS ALL WARRANTIES,
38 1.1 mrg * INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
39 1.1 mrg * PARTICULAR PURPOSE. IN NO EVENT SHALL IBM BE LIABLE FOR ANY SPECIAL,
40 1.1 mrg * DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER ARISING
41 1.1 mrg * OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE, EVEN
42 1.1 mrg * IF IBM IS APPRISED OF THE POSSIBILITY OF SUCH DAMAGES.
43 1.1 mrg */
44 1.2 mrg
45 1.3 christos #include <sys/cdefs.h>
46 1.2 mrg #if defined(LIBC_SCCS) && !defined(lint)
47 1.9 christos #if 0
48 1.9 christos static const char rcsid[] = "Id: base64.c,v 1.3.18.1 2005/04/27 05:01:05 sra Exp";
49 1.9 christos #else
50 1.9 christos __RCSID("$NetBSD: base64.c,v 1.9 2007/01/27 22:26:44 christos Exp $");
51 1.9 christos #endif
52 1.2 mrg #endif /* LIBC_SCCS and not lint */
53 1.2 mrg
54 1.9 christos #include "port_before.h"
55 1.9 christos
56 1.1 mrg #include <sys/types.h>
57 1.1 mrg #include <sys/param.h>
58 1.1 mrg #include <sys/socket.h>
59 1.9 christos
60 1.1 mrg #include <netinet/in.h>
61 1.1 mrg #include <arpa/inet.h>
62 1.1 mrg #include <arpa/nameser.h>
63 1.1 mrg
64 1.5 lukem #include <assert.h>
65 1.1 mrg #include <ctype.h>
66 1.1 mrg #include <resolv.h>
67 1.1 mrg #include <stdio.h>
68 1.9 christos #include <stdlib.h>
69 1.9 christos #include <string.h>
70 1.1 mrg
71 1.9 christos #include "port_after.h"
72 1.1 mrg
73 1.1 mrg #define Assert(Cond) if (!(Cond)) abort()
74 1.1 mrg
75 1.1 mrg static const char Base64[] =
76 1.1 mrg "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
77 1.1 mrg static const char Pad64 = '=';
78 1.1 mrg
79 1.1 mrg /* (From RFC1521 and draft-ietf-dnssec-secext-03.txt)
80 1.9 christos The following encoding technique is taken from RFC1521 by Borenstein
81 1.1 mrg and Freed. It is reproduced here in a slightly edited form for
82 1.1 mrg convenience.
83 1.1 mrg
84 1.1 mrg A 65-character subset of US-ASCII is used, enabling 6 bits to be
85 1.1 mrg represented per printable character. (The extra 65th character, "=",
86 1.1 mrg is used to signify a special processing function.)
87 1.1 mrg
88 1.1 mrg The encoding process represents 24-bit groups of input bits as output
89 1.1 mrg strings of 4 encoded characters. Proceeding from left to right, a
90 1.1 mrg 24-bit input group is formed by concatenating 3 8-bit input groups.
91 1.1 mrg These 24 bits are then treated as 4 concatenated 6-bit groups, each
92 1.1 mrg of which is translated into a single digit in the base64 alphabet.
93 1.1 mrg
94 1.1 mrg Each 6-bit group is used as an index into an array of 64 printable
95 1.1 mrg characters. The character referenced by the index is placed in the
96 1.1 mrg output string.
97 1.1 mrg
98 1.1 mrg Table 1: The Base64 Alphabet
99 1.1 mrg
100 1.1 mrg Value Encoding Value Encoding Value Encoding Value Encoding
101 1.1 mrg 0 A 17 R 34 i 51 z
102 1.1 mrg 1 B 18 S 35 j 52 0
103 1.1 mrg 2 C 19 T 36 k 53 1
104 1.1 mrg 3 D 20 U 37 l 54 2
105 1.1 mrg 4 E 21 V 38 m 55 3
106 1.1 mrg 5 F 22 W 39 n 56 4
107 1.1 mrg 6 G 23 X 40 o 57 5
108 1.1 mrg 7 H 24 Y 41 p 58 6
109 1.1 mrg 8 I 25 Z 42 q 59 7
110 1.1 mrg 9 J 26 a 43 r 60 8
111 1.1 mrg 10 K 27 b 44 s 61 9
112 1.1 mrg 11 L 28 c 45 t 62 +
113 1.1 mrg 12 M 29 d 46 u 63 /
114 1.1 mrg 13 N 30 e 47 v
115 1.1 mrg 14 O 31 f 48 w (pad) =
116 1.1 mrg 15 P 32 g 49 x
117 1.1 mrg 16 Q 33 h 50 y
118 1.1 mrg
119 1.1 mrg Special processing is performed if fewer than 24 bits are available
120 1.1 mrg at the end of the data being encoded. A full encoding quantum is
121 1.1 mrg always completed at the end of a quantity. When fewer than 24 input
122 1.1 mrg bits are available in an input group, zero bits are added (on the
123 1.1 mrg right) to form an integral number of 6-bit groups. Padding at the
124 1.1 mrg end of the data is performed using the '=' character.
125 1.1 mrg
126 1.1 mrg Since all base64 input is an integral number of octets, only the
127 1.1 mrg -------------------------------------------------
128 1.1 mrg following cases can arise:
129 1.1 mrg
130 1.1 mrg (1) the final quantum of encoding input is an integral
131 1.1 mrg multiple of 24 bits; here, the final unit of encoded
132 1.1 mrg output will be an integral multiple of 4 characters
133 1.1 mrg with no "=" padding,
134 1.1 mrg (2) the final quantum of encoding input is exactly 8 bits;
135 1.1 mrg here, the final unit of encoded output will be two
136 1.1 mrg characters followed by two "=" padding characters, or
137 1.1 mrg (3) the final quantum of encoding input is exactly 16 bits;
138 1.1 mrg here, the final unit of encoded output will be three
139 1.1 mrg characters followed by one "=" padding character.
140 1.1 mrg */
141 1.1 mrg
142 1.1 mrg int
143 1.9 christos b64_ntop(u_char const *src, size_t srclength, char *target, size_t targsize) {
144 1.1 mrg size_t datalength = 0;
145 1.1 mrg u_char input[3];
146 1.1 mrg u_char output[4];
147 1.8 thorpej size_t i;
148 1.1 mrg
149 1.5 lukem _DIAGASSERT(src != NULL);
150 1.5 lukem _DIAGASSERT(target != NULL);
151 1.5 lukem
152 1.9 christos while (2U < srclength) {
153 1.1 mrg input[0] = *src++;
154 1.1 mrg input[1] = *src++;
155 1.1 mrg input[2] = *src++;
156 1.1 mrg srclength -= 3;
157 1.1 mrg
158 1.4 christos output[0] = (u_int32_t)input[0] >> 2;
159 1.4 christos output[1] = ((u_int32_t)(input[0] & 0x03) << 4) +
160 1.4 christos ((u_int32_t)input[1] >> 4);
161 1.4 christos output[2] = ((u_int32_t)(input[1] & 0x0f) << 2) +
162 1.4 christos ((u_int32_t)input[2] >> 6);
163 1.1 mrg output[3] = input[2] & 0x3f;
164 1.1 mrg Assert(output[0] < 64);
165 1.1 mrg Assert(output[1] < 64);
166 1.1 mrg Assert(output[2] < 64);
167 1.1 mrg Assert(output[3] < 64);
168 1.1 mrg
169 1.1 mrg if (datalength + 4 > targsize)
170 1.1 mrg return (-1);
171 1.1 mrg target[datalength++] = Base64[output[0]];
172 1.1 mrg target[datalength++] = Base64[output[1]];
173 1.1 mrg target[datalength++] = Base64[output[2]];
174 1.1 mrg target[datalength++] = Base64[output[3]];
175 1.1 mrg }
176 1.1 mrg
177 1.1 mrg /* Now we worry about padding. */
178 1.9 christos if (0U != srclength) {
179 1.1 mrg /* Get what's left. */
180 1.1 mrg input[0] = input[1] = input[2] = '\0';
181 1.1 mrg for (i = 0; i < srclength; i++)
182 1.1 mrg input[i] = *src++;
183 1.1 mrg
184 1.4 christos output[0] = (u_int32_t)input[0] >> 2;
185 1.4 christos output[1] = ((u_int32_t)(input[0] & 0x03) << 4) +
186 1.4 christos ((u_int32_t)input[1] >> 4);
187 1.4 christos output[2] = ((u_int32_t)(input[1] & 0x0f) << 2) +
188 1.4 christos ((u_int32_t)input[2] >> 6);
189 1.1 mrg Assert(output[0] < 64);
190 1.1 mrg Assert(output[1] < 64);
191 1.1 mrg Assert(output[2] < 64);
192 1.1 mrg
193 1.1 mrg if (datalength + 4 > targsize)
194 1.1 mrg return (-1);
195 1.1 mrg target[datalength++] = Base64[output[0]];
196 1.1 mrg target[datalength++] = Base64[output[1]];
197 1.9 christos if (srclength == 1U)
198 1.1 mrg target[datalength++] = Pad64;
199 1.1 mrg else
200 1.1 mrg target[datalength++] = Base64[output[2]];
201 1.1 mrg target[datalength++] = Pad64;
202 1.1 mrg }
203 1.1 mrg if (datalength >= targsize)
204 1.1 mrg return (-1);
205 1.9 christos target[datalength] = '\0'; /*%< Returned value doesn't count \\0. */
206 1.1 mrg return (datalength);
207 1.1 mrg }
208 1.1 mrg
209 1.1 mrg /* skips all whitespace anywhere.
210 1.1 mrg converts characters, four at a time, starting at (or after)
211 1.1 mrg src from base - 64 numbers into three 8 bit bytes in the target area.
212 1.1 mrg it returns the number of data bytes stored at the target, or -1 on error.
213 1.1 mrg */
214 1.1 mrg
215 1.1 mrg int
216 1.1 mrg b64_pton(src, target, targsize)
217 1.1 mrg char const *src;
218 1.1 mrg u_char *target;
219 1.1 mrg size_t targsize;
220 1.1 mrg {
221 1.8 thorpej size_t tarindex;
222 1.8 thorpej int state, ch;
223 1.1 mrg char *pos;
224 1.5 lukem
225 1.5 lukem _DIAGASSERT(src != NULL);
226 1.5 lukem _DIAGASSERT(target != NULL);
227 1.1 mrg
228 1.1 mrg state = 0;
229 1.1 mrg tarindex = 0;
230 1.1 mrg
231 1.7 itohy while ((ch = (u_char) *src++) != '\0') {
232 1.9 christos if (isspace(ch)) /*%< Skip whitespace anywhere. */
233 1.1 mrg continue;
234 1.1 mrg
235 1.1 mrg if (ch == Pad64)
236 1.1 mrg break;
237 1.1 mrg
238 1.1 mrg pos = strchr(Base64, ch);
239 1.9 christos if (pos == 0) /*%< A non-base64 character. */
240 1.1 mrg return (-1);
241 1.1 mrg
242 1.1 mrg switch (state) {
243 1.1 mrg case 0:
244 1.1 mrg if (target) {
245 1.9 christos if ((size_t)tarindex >= targsize)
246 1.1 mrg return (-1);
247 1.1 mrg target[tarindex] = (pos - Base64) << 2;
248 1.1 mrg }
249 1.1 mrg state = 1;
250 1.1 mrg break;
251 1.1 mrg case 1:
252 1.1 mrg if (target) {
253 1.9 christos if ((size_t)tarindex + 1 >= targsize)
254 1.1 mrg return (-1);
255 1.4 christos target[tarindex] |=
256 1.4 christos (u_int32_t)(pos - Base64) >> 4;
257 1.1 mrg target[tarindex+1] = ((pos - Base64) & 0x0f)
258 1.1 mrg << 4 ;
259 1.1 mrg }
260 1.1 mrg tarindex++;
261 1.1 mrg state = 2;
262 1.1 mrg break;
263 1.1 mrg case 2:
264 1.1 mrg if (target) {
265 1.9 christos if ((size_t)tarindex + 1 >= targsize)
266 1.1 mrg return (-1);
267 1.4 christos target[tarindex] |=
268 1.4 christos (u_int32_t)(pos - Base64) >> 2;
269 1.4 christos target[tarindex+1] = ((pos - Base64) & 0x03)
270 1.1 mrg << 6;
271 1.1 mrg }
272 1.1 mrg tarindex++;
273 1.1 mrg state = 3;
274 1.1 mrg break;
275 1.1 mrg case 3:
276 1.1 mrg if (target) {
277 1.9 christos if ((size_t)tarindex >= targsize)
278 1.1 mrg return (-1);
279 1.1 mrg target[tarindex] |= (pos - Base64);
280 1.1 mrg }
281 1.1 mrg tarindex++;
282 1.1 mrg state = 0;
283 1.1 mrg break;
284 1.1 mrg default:
285 1.1 mrg abort();
286 1.1 mrg }
287 1.1 mrg }
288 1.1 mrg
289 1.1 mrg /*
290 1.1 mrg * We are done decoding Base-64 chars. Let's see if we ended
291 1.1 mrg * on a byte boundary, and/or with erroneous trailing characters.
292 1.1 mrg */
293 1.1 mrg
294 1.9 christos if (ch == Pad64) { /*%< We got a pad char. */
295 1.9 christos ch = *src++; /*%< Skip it, get next. */
296 1.1 mrg switch (state) {
297 1.9 christos case 0: /*%< Invalid = in first position */
298 1.9 christos case 1: /*%< Invalid = in second position */
299 1.1 mrg return (-1);
300 1.1 mrg
301 1.9 christos case 2: /*%< Valid, means one byte of info */
302 1.1 mrg /* Skip any number of spaces. */
303 1.7 itohy for (; ch != '\0'; ch = (u_char) *src++)
304 1.1 mrg if (!isspace(ch))
305 1.1 mrg break;
306 1.1 mrg /* Make sure there is another trailing = sign. */
307 1.1 mrg if (ch != Pad64)
308 1.1 mrg return (-1);
309 1.9 christos ch = *src++; /*%< Skip the = */
310 1.1 mrg /* Fall through to "single trailing =" case. */
311 1.1 mrg /* FALLTHROUGH */
312 1.1 mrg
313 1.9 christos case 3: /*%< Valid, means two bytes of info */
314 1.1 mrg /*
315 1.1 mrg * We know this char is an =. Is there anything but
316 1.1 mrg * whitespace after it?
317 1.1 mrg */
318 1.7 itohy for (; ch != '\0'; ch = (u_char) *src++)
319 1.1 mrg if (!isspace(ch))
320 1.1 mrg return (-1);
321 1.1 mrg
322 1.1 mrg /*
323 1.1 mrg * Now make sure for cases 2 and 3 that the "extra"
324 1.1 mrg * bits that slopped past the last full byte were
325 1.1 mrg * zeros. If we don't check them, they become a
326 1.1 mrg * subliminal channel.
327 1.1 mrg */
328 1.1 mrg if (target && target[tarindex] != 0)
329 1.1 mrg return (-1);
330 1.1 mrg }
331 1.1 mrg } else {
332 1.1 mrg /*
333 1.1 mrg * We ended by seeing the end of the string. Make sure we
334 1.1 mrg * have no partial bytes lying around.
335 1.1 mrg */
336 1.1 mrg if (state != 0)
337 1.1 mrg return (-1);
338 1.1 mrg }
339 1.1 mrg
340 1.1 mrg return (tarindex);
341 1.1 mrg }
342 1.9 christos
343 1.9 christos /*! \file */
344