rpc_generic.c revision 1.24.8.1 1 /* $NetBSD: rpc_generic.c,v 1.24.8.1 2013/03/14 22:03:15 riz Exp $ */
2
3 /*
4 * Copyright (c) 2010, Oracle America, Inc.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions are
8 * met:
9 *
10 * * Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * * Redistributions in binary form must reproduce the above
13 * copyright notice, this list of conditions and the following
14 * disclaimer in the documentation and/or other materials
15 * provided with the distribution.
16 * * Neither the name of the "Oracle America, Inc." nor the names of its
17 * contributors may be used to endorse or promote products derived
18 * from this software without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
24 * COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
25 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
27 * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
29 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
30 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32 */
33 /*
34 * Copyright (c) 1986-1991 by Sun Microsystems Inc.
35 */
36
37 /* #pragma ident "@(#)rpc_generic.c 1.17 94/04/24 SMI" */
38
39 /*
40 * rpc_generic.c, Miscl routines for RPC.
41 *
42 */
43
44 #include <sys/cdefs.h>
45 #if defined(LIBC_SCCS) && !defined(lint)
46 __RCSID("$NetBSD: rpc_generic.c,v 1.24.8.1 2013/03/14 22:03:15 riz Exp $");
47 #endif
48
49 #include "namespace.h"
50 #include "reentrant.h"
51 #include <sys/types.h>
52 #include <sys/param.h>
53 #include <sys/socket.h>
54 #include <sys/un.h>
55 #include <sys/resource.h>
56 #include <netinet/in.h>
57 #include <netinet/tcp.h>
58 #include <arpa/inet.h>
59 #include <rpc/rpc.h>
60 #include <assert.h>
61 #include <ctype.h>
62 #include <stdio.h>
63 #include <netdb.h>
64 #include <netconfig.h>
65 #include <malloc.h>
66 #include <string.h>
67 #include <syslog.h>
68 #include <rpc/nettype.h>
69 #include "rpc_internal.h"
70
71 #ifdef __weak_alias
72 __weak_alias(taddr2uaddr,_taddr2uaddr)
73 __weak_alias(uaddr2taddr,_uaddr2taddr)
74 #endif
75
76 struct handle {
77 NCONF_HANDLE *nhandle;
78 int nflag; /* Whether NETPATH or NETCONFIG */
79 int nettype;
80 };
81
82 static const struct _rpcnettype {
83 const char *name;
84 const int type;
85 } _rpctypelist[] = {
86 { "netpath", _RPC_NETPATH },
87 { "visible", _RPC_VISIBLE },
88 { "circuit_v", _RPC_CIRCUIT_V },
89 { "datagram_v", _RPC_DATAGRAM_V },
90 { "circuit_n", _RPC_CIRCUIT_N },
91 { "datagram_n", _RPC_DATAGRAM_N },
92 { "tcp", _RPC_TCP },
93 { "udp", _RPC_UDP },
94 { 0, _RPC_NONE }
95 };
96
97 struct netid_af {
98 const char *netid;
99 int af;
100 int protocol;
101 };
102
103 static const struct netid_af na_cvt[] = {
104 { "udp", AF_INET, IPPROTO_UDP },
105 { "tcp", AF_INET, IPPROTO_TCP },
106 #ifdef INET6
107 { "udp6", AF_INET6, IPPROTO_UDP },
108 { "tcp6", AF_INET6, IPPROTO_TCP },
109 #endif
110 { "local", AF_LOCAL, 0 }
111 };
112
113 #if 0
114 static char *strlocase __P((char *));
115 #endif
116 static int getnettype __P((const char *));
117
118 /*
119 * Cache the result of getrlimit(), so we don't have to do an
120 * expensive call every time.
121 */
122 int
123 __rpc_dtbsize()
124 {
125 static int tbsize;
126 struct rlimit rl;
127
128 if (tbsize) {
129 return (tbsize);
130 }
131 if (getrlimit(RLIMIT_NOFILE, &rl) == 0) {
132 return (tbsize = (int)rl.rlim_max);
133 }
134 /*
135 * Something wrong. I'll try to save face by returning a
136 * pessimistic number.
137 */
138 return (32);
139 }
140
141
142 /*
143 * Find the appropriate buffer size
144 */
145 u_int
146 /*ARGSUSED*/
147 __rpc_get_t_size(af, proto, size)
148 int af, proto;
149 int size; /* Size requested */
150 {
151 int maxsize, defsize;
152
153 maxsize = 256 * 1024; /* XXX */
154 switch (proto) {
155 case IPPROTO_TCP:
156 defsize = 64 * 1024; /* XXX */
157 break;
158 case IPPROTO_UDP:
159 defsize = UDPMSGSIZE;
160 break;
161 default:
162 defsize = RPC_MAXDATASIZE;
163 break;
164 }
165 if (size == 0)
166 return defsize;
167
168 /* Check whether the value is within the upper max limit */
169 return (size > maxsize ? (u_int)maxsize : (u_int)size);
170 }
171
172 /*
173 * Find the appropriate address buffer size
174 */
175 u_int
176 __rpc_get_a_size(af)
177 int af;
178 {
179 switch (af) {
180 case AF_INET:
181 return sizeof (struct sockaddr_in);
182 #ifdef INET6
183 case AF_INET6:
184 return sizeof (struct sockaddr_in6);
185 #endif
186 case AF_LOCAL:
187 return sizeof (struct sockaddr_un);
188 default:
189 break;
190 }
191 return ((u_int)RPC_MAXADDRSIZE);
192 }
193
194 #if 0
195 static char *
196 strlocase(p)
197 char *p;
198 {
199 char *t = p;
200
201 _DIAGASSERT(p != NULL);
202
203 for (; *p; p++)
204 if (isupper(*p))
205 *p = tolower(*p);
206 return (t);
207 }
208 #endif
209
210 /*
211 * Returns the type of the network as defined in <rpc/nettype.h>
212 * If nettype is NULL, it defaults to NETPATH.
213 */
214 static int
215 getnettype(nettype)
216 const char *nettype;
217 {
218 int i;
219
220 if ((nettype == NULL) || (nettype[0] == 0)) {
221 return (_RPC_NETPATH); /* Default */
222 }
223
224 #if 0
225 nettype = strlocase(nettype);
226 #endif
227 for (i = 0; _rpctypelist[i].name; i++)
228 if (strcasecmp(nettype, _rpctypelist[i].name) == 0) {
229 return (_rpctypelist[i].type);
230 }
231 return (_rpctypelist[i].type);
232 }
233
234 /*
235 * For the given nettype (tcp or udp only), return the first structure found.
236 * This should be freed by calling freenetconfigent()
237 */
238
239 #ifdef _REENTRANT
240 static thread_key_t tcp_key, udp_key;
241 static once_t __rpc_getconfigp_once = ONCE_INITIALIZER;
242
243 static void
244 __rpc_getconfigp_setup(void)
245 {
246
247 thr_keycreate(&tcp_key, free);
248 thr_keycreate(&udp_key, free);
249 }
250 #endif
251
252 struct netconfig *
253 __rpc_getconfip(nettype)
254 const char *nettype;
255 {
256 char *netid;
257 char *netid_tcp = NULL;
258 char *netid_udp = NULL;
259 static char *netid_tcp_main;
260 static char *netid_udp_main;
261 struct netconfig *dummy;
262 #ifdef _REENTRANT
263 if (__isthreaded == 0) {
264 netid_udp = netid_udp_main;
265 netid_tcp = netid_tcp_main;
266 } else {
267 thr_once(&__rpc_getconfigp_once, __rpc_getconfigp_setup);
268 netid_tcp = thr_getspecific(tcp_key);
269 netid_udp = thr_getspecific(udp_key);
270 }
271 #else
272 netid_udp = netid_udp_main;
273 netid_tcp = netid_tcp_main;
274 #endif
275
276 _DIAGASSERT(nettype != NULL);
277
278 if (!netid_udp && !netid_tcp) {
279 struct netconfig *nconf;
280 void *confighandle;
281
282 if (!(confighandle = setnetconfig())) {
283 syslog (LOG_ERR, "rpc: failed to open " NETCONFIG);
284 return (NULL);
285 }
286 while ((nconf = getnetconfig(confighandle)) != NULL) {
287 if (strcmp(nconf->nc_protofmly, NC_INET) == 0) {
288 if (strcmp(nconf->nc_proto, NC_TCP) == 0) {
289 netid_tcp = strdup(nconf->nc_netid);
290 if (netid_tcp == NULL)
291 return NULL;
292 #ifdef _REENTRANT
293 if (__isthreaded == 0)
294 netid_tcp_main = netid_tcp;
295 else
296 thr_setspecific(tcp_key,
297 (void *) netid_tcp);
298 #else
299 netid_tcp_main = netid_tcp;
300 #endif
301 } else
302 if (strcmp(nconf->nc_proto, NC_UDP) == 0) {
303 netid_udp = strdup(nconf->nc_netid);
304 if (netid_udp == NULL)
305 return NULL;
306 #ifdef _REENTRANT
307 if (__isthreaded == 0)
308 netid_udp_main = netid_udp;
309 else
310 thr_setspecific(udp_key,
311 (void *) netid_udp);
312 #else
313 netid_udp_main = netid_udp;
314 #endif
315 }
316 }
317 }
318 endnetconfig(confighandle);
319 }
320 if (strcmp(nettype, "udp") == 0)
321 netid = netid_udp;
322 else if (strcmp(nettype, "tcp") == 0)
323 netid = netid_tcp;
324 else {
325 return (NULL);
326 }
327 if ((netid == NULL) || (netid[0] == 0)) {
328 return (NULL);
329 }
330 dummy = getnetconfigent(netid);
331 return (dummy);
332 }
333
334 /*
335 * Returns the type of the nettype, which should then be used with
336 * __rpc_getconf().
337 */
338 void *
339 __rpc_setconf(nettype)
340 const char *nettype;
341 {
342 struct handle *handle;
343
344 /* nettype may be NULL; getnettype() supports that */
345
346 handle = malloc(sizeof(*handle));
347 if (handle == NULL) {
348 return (NULL);
349 }
350 switch (handle->nettype = getnettype(nettype)) {
351 case _RPC_NETPATH:
352 case _RPC_CIRCUIT_N:
353 case _RPC_DATAGRAM_N:
354 if (!(handle->nhandle = setnetpath())) {
355 free(handle);
356 return (NULL);
357 }
358 handle->nflag = TRUE;
359 break;
360 case _RPC_VISIBLE:
361 case _RPC_CIRCUIT_V:
362 case _RPC_DATAGRAM_V:
363 case _RPC_TCP:
364 case _RPC_UDP:
365 if (!(handle->nhandle = setnetconfig())) {
366 syslog (LOG_ERR, "rpc: failed to open " NETCONFIG);
367 free(handle);
368 return (NULL);
369 }
370 handle->nflag = FALSE;
371 break;
372 default:
373 free(handle);
374 return (NULL);
375 }
376
377 return (handle);
378 }
379
380 /*
381 * Returns the next netconfig struct for the given "net" type.
382 * __rpc_setconf() should have been called previously.
383 */
384 struct netconfig *
385 __rpc_getconf(vhandle)
386 void *vhandle;
387 {
388 struct handle *handle;
389 struct netconfig *nconf;
390
391 handle = (struct handle *)vhandle;
392 if (handle == NULL) {
393 return (NULL);
394 }
395 for (;;) {
396 if (handle->nflag)
397 nconf = getnetpath(handle->nhandle);
398 else
399 nconf = getnetconfig(handle->nhandle);
400 if (nconf == NULL)
401 break;
402 if ((nconf->nc_semantics != NC_TPI_CLTS) &&
403 (nconf->nc_semantics != NC_TPI_COTS) &&
404 (nconf->nc_semantics != NC_TPI_COTS_ORD))
405 continue;
406 switch (handle->nettype) {
407 case _RPC_VISIBLE:
408 if (!(nconf->nc_flag & NC_VISIBLE))
409 continue;
410 /* FALLTHROUGH */
411 case _RPC_NETPATH: /* Be happy */
412 break;
413 case _RPC_CIRCUIT_V:
414 if (!(nconf->nc_flag & NC_VISIBLE))
415 continue;
416 /* FALLTHROUGH */
417 case _RPC_CIRCUIT_N:
418 if ((nconf->nc_semantics != NC_TPI_COTS) &&
419 (nconf->nc_semantics != NC_TPI_COTS_ORD))
420 continue;
421 break;
422 case _RPC_DATAGRAM_V:
423 if (!(nconf->nc_flag & NC_VISIBLE))
424 continue;
425 /* FALLTHROUGH */
426 case _RPC_DATAGRAM_N:
427 if (nconf->nc_semantics != NC_TPI_CLTS)
428 continue;
429 break;
430 case _RPC_TCP:
431 if (((nconf->nc_semantics != NC_TPI_COTS) &&
432 (nconf->nc_semantics != NC_TPI_COTS_ORD)) ||
433 (strcmp(nconf->nc_protofmly, NC_INET)
434 #ifdef INET6
435 && strcmp(nconf->nc_protofmly, NC_INET6))
436 #else
437 )
438 #endif
439 ||
440 strcmp(nconf->nc_proto, NC_TCP))
441 continue;
442 break;
443 case _RPC_UDP:
444 if ((nconf->nc_semantics != NC_TPI_CLTS) ||
445 (strcmp(nconf->nc_protofmly, NC_INET)
446 #ifdef INET6
447 && strcmp(nconf->nc_protofmly, NC_INET6))
448 #else
449 )
450 #endif
451 ||
452 strcmp(nconf->nc_proto, NC_UDP))
453 continue;
454 break;
455 }
456 break;
457 }
458 return (nconf);
459 }
460
461 void
462 __rpc_endconf(vhandle)
463 void * vhandle;
464 {
465 struct handle *handle;
466
467 handle = (struct handle *) vhandle;
468 if (handle == NULL) {
469 return;
470 }
471 if (handle->nflag) {
472 endnetpath(handle->nhandle);
473 } else {
474 endnetconfig(handle->nhandle);
475 }
476 free(handle);
477 }
478
479 /*
480 * Used to ping the NULL procedure for clnt handle.
481 * Returns NULL if fails, else a non-NULL pointer.
482 */
483 void *
484 rpc_nullproc(clnt)
485 CLIENT *clnt;
486 {
487 struct timeval TIMEOUT = {25, 0};
488
489 if (clnt_call(clnt, NULLPROC, (xdrproc_t) xdr_void, NULL,
490 (xdrproc_t) xdr_void, NULL, TIMEOUT) != RPC_SUCCESS) {
491 return (NULL);
492 }
493 return ((void *) clnt);
494 }
495
496 /*
497 * Try all possible transports until
498 * one succeeds in finding the netconf for the given fd.
499 */
500 struct netconfig *
501 __rpcgettp(fd)
502 int fd;
503 {
504 const char *netid;
505 struct __rpc_sockinfo si;
506
507 if (!__rpc_fd2sockinfo(fd, &si))
508 return NULL;
509
510 if (!__rpc_sockinfo2netid(&si, &netid))
511 return NULL;
512
513 return getnetconfigent(__UNCONST(netid));
514 }
515
516 int
517 __rpc_fd2sockinfo(int fd, struct __rpc_sockinfo *sip)
518 {
519 socklen_t len;
520 int type, proto;
521 struct sockaddr_storage ss;
522
523 _DIAGASSERT(sip != NULL);
524
525 len = sizeof ss;
526 if (getsockname(fd, (struct sockaddr *)(void *)&ss, &len) < 0)
527 return 0;
528 sip->si_alen = len;
529
530 len = sizeof type;
531 if (getsockopt(fd, SOL_SOCKET, SO_TYPE, &type, &len) < 0)
532 return 0;
533
534 /* XXX */
535 if (ss.ss_family != AF_LOCAL) {
536 if (type == SOCK_STREAM)
537 proto = IPPROTO_TCP;
538 else if (type == SOCK_DGRAM)
539 proto = IPPROTO_UDP;
540 else
541 return 0;
542 } else
543 proto = 0;
544
545 sip->si_af = ss.ss_family;
546 sip->si_proto = proto;
547 sip->si_socktype = type;
548
549 return 1;
550 }
551
552 /*
553 * Linear search, but the number of entries is small.
554 */
555 int
556 __rpc_nconf2sockinfo(const struct netconfig *nconf, struct __rpc_sockinfo *sip)
557 {
558 size_t i;
559
560 _DIAGASSERT(nconf != NULL);
561 _DIAGASSERT(sip != NULL);
562
563 for (i = 0; i < (sizeof na_cvt) / (sizeof (struct netid_af)); i++)
564 if (!strcmp(na_cvt[i].netid, nconf->nc_netid)) {
565 sip->si_af = na_cvt[i].af;
566 sip->si_proto = na_cvt[i].protocol;
567 sip->si_socktype =
568 __rpc_seman2socktype((int)nconf->nc_semantics);
569 if (sip->si_socktype == -1)
570 return 0;
571 sip->si_alen = __rpc_get_a_size(sip->si_af);
572 return 1;
573 }
574
575 return 0;
576 }
577
578 int
579 __rpc_nconf2fd(const struct netconfig *nconf)
580 {
581 struct __rpc_sockinfo si;
582
583 _DIAGASSERT(nconf != NULL);
584
585 if (!__rpc_nconf2sockinfo(nconf, &si))
586 return 0;
587
588 return socket(si.si_af, si.si_socktype, si.si_proto);
589 }
590
591 int
592 __rpc_sockinfo2netid(struct __rpc_sockinfo *sip, const char **netid)
593 {
594 size_t i;
595
596 _DIAGASSERT(sip != NULL);
597 /* netid may be NULL */
598
599 for (i = 0; i < (sizeof na_cvt) / (sizeof (struct netid_af)); i++)
600 if (na_cvt[i].af == sip->si_af &&
601 na_cvt[i].protocol == sip->si_proto) {
602 if (netid)
603 *netid = na_cvt[i].netid;
604 return 1;
605 }
606
607 return 0;
608 }
609
610 char *
611 taddr2uaddr(const struct netconfig *nconf, const struct netbuf *nbuf)
612 {
613 struct __rpc_sockinfo si;
614
615 _DIAGASSERT(nconf != NULL);
616 _DIAGASSERT(nbuf != NULL);
617
618 if (!__rpc_nconf2sockinfo(nconf, &si))
619 return NULL;
620 return __rpc_taddr2uaddr_af(si.si_af, nbuf);
621 }
622
623 struct netbuf *
624 uaddr2taddr(const struct netconfig *nconf, const char *uaddr)
625 {
626 struct __rpc_sockinfo si;
627
628 _DIAGASSERT(nconf != NULL);
629 _DIAGASSERT(uaddr != NULL);
630
631 if (!__rpc_nconf2sockinfo(nconf, &si))
632 return NULL;
633 return __rpc_uaddr2taddr_af(si.si_af, uaddr);
634 }
635
636 char *
637 __rpc_taddr2uaddr_af(int af, const struct netbuf *nbuf)
638 {
639 char *ret;
640 struct sockaddr_in *sinp;
641 struct sockaddr_un *sun;
642 char namebuf[INET_ADDRSTRLEN];
643 #ifdef INET6
644 struct sockaddr_in6 *sin6;
645 char namebuf6[INET6_ADDRSTRLEN];
646 #endif
647 u_int16_t port;
648
649 _DIAGASSERT(nbuf != NULL);
650
651 switch (af) {
652 case AF_INET:
653 sinp = nbuf->buf;
654 if (inet_ntop(af, &sinp->sin_addr, namebuf, sizeof namebuf)
655 == NULL)
656 return NULL;
657 port = ntohs(sinp->sin_port);
658 if (asprintf(&ret, "%s.%u.%u", namebuf, ((u_int32_t)port) >> 8,
659 port & 0xff) < 0)
660 return NULL;
661 break;
662 #ifdef INET6
663 case AF_INET6:
664 sin6 = nbuf->buf;
665 if (inet_ntop(af, &sin6->sin6_addr, namebuf6, sizeof namebuf6)
666 == NULL)
667 return NULL;
668 port = ntohs(sin6->sin6_port);
669 if (asprintf(&ret, "%s.%u.%u", namebuf6, ((u_int32_t)port) >> 8,
670 port & 0xff) < 0)
671 return NULL;
672 break;
673 #endif
674 case AF_LOCAL:
675 sun = nbuf->buf;
676 sun->sun_path[sizeof(sun->sun_path) - 1] = '\0'; /* safety */
677 ret = strdup(sun->sun_path);
678 break;
679 default:
680 return NULL;
681 }
682
683 return ret;
684 }
685
686 struct netbuf *
687 __rpc_uaddr2taddr_af(int af, const char *uaddr)
688 {
689 struct netbuf *ret = NULL;
690 char *addrstr, *p;
691 unsigned port, portlo, porthi;
692 struct sockaddr_in *sinp;
693 #ifdef INET6
694 struct sockaddr_in6 *sin6;
695 #endif
696 struct sockaddr_un *sun;
697
698 _DIAGASSERT(uaddr != NULL);
699
700 addrstr = strdup(uaddr);
701 if (addrstr == NULL)
702 return NULL;
703
704 /*
705 * AF_LOCAL addresses are expected to be absolute
706 * pathnames, anything else will be AF_INET or AF_INET6.
707 */
708 port = 0;
709 if (*addrstr != '/') {
710 p = strrchr(addrstr, '.');
711 if (p == NULL)
712 goto out;
713 portlo = (unsigned)atoi(p + 1);
714 *p = '\0';
715
716 p = strrchr(addrstr, '.');
717 if (p == NULL)
718 goto out;
719 porthi = (unsigned)atoi(p + 1);
720 *p = '\0';
721 port = (porthi << 8) | portlo;
722 }
723
724 ret = malloc(sizeof(*ret));
725 if (ret == NULL)
726 goto out;
727
728 switch (af) {
729 case AF_INET:
730 sinp = malloc(sizeof(*sinp));
731 if (sinp == NULL)
732 goto out;
733 memset(sinp, 0, sizeof *sinp);
734 sinp->sin_family = AF_INET;
735 sinp->sin_port = htons(port);
736 if (inet_pton(AF_INET, addrstr, &sinp->sin_addr) <= 0) {
737 free(sinp);
738 free(ret);
739 ret = NULL;
740 goto out;
741 }
742 sinp->sin_len = ret->maxlen = ret->len = sizeof *sinp;
743 ret->buf = sinp;
744 break;
745 #ifdef INET6
746 case AF_INET6:
747 sin6 = malloc(sizeof(*sin6));
748 if (sin6 == NULL)
749 goto out;
750 memset(sin6, 0, sizeof *sin6);
751 sin6->sin6_family = AF_INET6;
752 sin6->sin6_port = htons(port);
753 if (inet_pton(AF_INET6, addrstr, &sin6->sin6_addr) <= 0) {
754 free(sin6);
755 free(ret);
756 ret = NULL;
757 goto out;
758 }
759 sin6->sin6_len = ret->maxlen = ret->len = sizeof *sin6;
760 ret->buf = sin6;
761 break;
762 #endif
763 case AF_LOCAL:
764 sun = malloc(sizeof(*sun));
765 if (sun == NULL)
766 goto out;
767 memset(sun, 0, sizeof *sun);
768 sun->sun_family = AF_LOCAL;
769 strncpy(sun->sun_path, addrstr, sizeof(sun->sun_path) - 1);
770 ret->len = ret->maxlen = sun->sun_len = SUN_LEN(sun);
771 ret->buf = sun;
772 break;
773 default:
774 break;
775 }
776 out:
777 free(addrstr);
778 return ret;
779 }
780
781 int
782 __rpc_seman2socktype(int semantics)
783 {
784 switch (semantics) {
785 case NC_TPI_CLTS:
786 return SOCK_DGRAM;
787 case NC_TPI_COTS_ORD:
788 return SOCK_STREAM;
789 case NC_TPI_RAW:
790 return SOCK_RAW;
791 default:
792 break;
793 }
794
795 return -1;
796 }
797
798 int
799 __rpc_socktype2seman(int socktype)
800 {
801 switch (socktype) {
802 case SOCK_DGRAM:
803 return NC_TPI_CLTS;
804 case SOCK_STREAM:
805 return NC_TPI_COTS_ORD;
806 case SOCK_RAW:
807 return NC_TPI_RAW;
808 default:
809 break;
810 }
811
812 return -1;
813 }
814
815 /*
816 * XXXX - IPv6 scope IDs can't be handled in universal addresses.
817 * Here, we compare the original server address to that of the RPC
818 * service we just received back from a call to rpcbind on the remote
819 * machine. If they are both "link local" or "site local", copy
820 * the scope id of the server address over to the service address.
821 */
822 /* ARGSUSED */
823 int
824 __rpc_fixup_addr(struct netbuf *new, const struct netbuf *svc)
825 {
826 #ifdef INET6
827 struct sockaddr *sa_new, *sa_svc;
828 struct sockaddr_in6 *sin6_new, *sin6_svc;
829
830 _DIAGASSERT(new != NULL);
831 _DIAGASSERT(svc != NULL);
832
833 sa_svc = (struct sockaddr *)svc->buf;
834 sa_new = (struct sockaddr *)new->buf;
835
836 if (sa_new->sa_family == sa_svc->sa_family &&
837 sa_new->sa_family == AF_INET6) {
838 sin6_new = (struct sockaddr_in6 *)new->buf;
839 sin6_svc = (struct sockaddr_in6 *)svc->buf;
840
841 if ((IN6_IS_ADDR_LINKLOCAL(&sin6_new->sin6_addr) &&
842 IN6_IS_ADDR_LINKLOCAL(&sin6_svc->sin6_addr)) ||
843 (IN6_IS_ADDR_SITELOCAL(&sin6_new->sin6_addr) &&
844 IN6_IS_ADDR_SITELOCAL(&sin6_svc->sin6_addr))) {
845 sin6_new->sin6_scope_id = sin6_svc->sin6_scope_id;
846 }
847 }
848 #endif
849 return 1;
850 }
851
852 int
853 __rpc_sockisbound(int fd)
854 {
855 struct sockaddr_storage ss;
856 socklen_t slen;
857
858 slen = sizeof (struct sockaddr_storage);
859 if (getsockname(fd, (struct sockaddr *)(void *)&ss, &slen) < 0)
860 return 0;
861
862 switch (ss.ss_family) {
863 case AF_INET:
864 return (((struct sockaddr_in *)
865 (void *)&ss)->sin_port != 0);
866 #ifdef INET6
867 case AF_INET6:
868 return (((struct sockaddr_in6 *)
869 (void *)&ss)->sin6_port != 0);
870 #endif
871 case AF_LOCAL:
872 /* XXX check this */
873 return (((struct sockaddr_un *)
874 (void *)&ss)->sun_path[0] != '\0');
875 default:
876 break;
877 }
878
879 return 0;
880 }
881
882 /*
883 * For TCP transport, Host Requirements RFCs mandate
884 * Nagle (RFC-896) processing. But for RPC, Nagle
885 * processing adds adds unwanted latency to the last,
886 * partial TCP segment of each RPC message. See:
887 * R. W. Scheifler and J. Gettys, The X Window System,
888 * ACM Transactions on Graphics 16:8 (Aug. 1983), pp. 57-69.
889 * So for TCP transport, disable Nagle via TCP_NODELAY.
890 * XXX: moral equivalent for non-TCP protocols?
891 */
892 int
893 __rpc_setnodelay(int fd, const struct __rpc_sockinfo *si)
894 {
895 int one = 1;
896 if (si->si_proto != IPPROTO_TCP)
897 return 0;
898 return setsockopt(fd, si->si_proto, TCP_NODELAY, &one, sizeof(one));
899 }
900