rpc_generic.c revision 1.4 1 /* $NetBSD: rpc_generic.c,v 1.4 2000/09/28 09:07:04 kleink Exp $ */
2
3 /*
4 * Sun RPC is a product of Sun Microsystems, Inc. and is provided for
5 * unrestricted use provided that this legend is included on all tape
6 * media and as a part of the software program in whole or part. Users
7 * may copy or modify Sun RPC without charge, but are not authorized
8 * to license or distribute it to anyone else except as part of a product or
9 * program developed by the user.
10 *
11 * SUN RPC IS PROVIDED AS IS WITH NO WARRANTIES OF ANY KIND INCLUDING THE
12 * WARRANTIES OF DESIGN, MERCHANTIBILITY AND FITNESS FOR A PARTICULAR
13 * PURPOSE, OR ARISING FROM A COURSE OF DEALING, USAGE OR TRADE PRACTICE.
14 *
15 * Sun RPC is provided with no support and without any obligation on the
16 * part of Sun Microsystems, Inc. to assist in its use, correction,
17 * modification or enhancement.
18 *
19 * SUN MICROSYSTEMS, INC. SHALL HAVE NO LIABILITY WITH RESPECT TO THE
20 * INFRINGEMENT OF COPYRIGHTS, TRADE SECRETS OR ANY PATENTS BY SUN RPC
21 * OR ANY PART THEREOF.
22 *
23 * In no event will Sun Microsystems, Inc. be liable for any lost revenue
24 * or profits or other special, indirect and consequential damages, even if
25 * Sun has been advised of the possibility of such damages.
26 *
27 * Sun Microsystems, Inc.
28 * 2550 Garcia Avenue
29 * Mountain View, California 94043
30 */
31 /*
32 * Copyright (c) 1986-1991 by Sun Microsystems Inc.
33 */
34
35 /* #pragma ident "@(#)rpc_generic.c 1.17 94/04/24 SMI" */
36
37 /*
38 * rpc_generic.c, Miscl routines for RPC.
39 *
40 */
41
42 #include "namespace.h"
43 #include <sys/types.h>
44 #include <sys/param.h>
45 #include <sys/socket.h>
46 #include <sys/un.h>
47 #include <sys/resource.h>
48 #include <netinet/in.h>
49 #include <arpa/inet.h>
50 #include <rpc/rpc.h>
51 #include <ctype.h>
52 #include <stdio.h>
53 #include <netdb.h>
54 #include <netconfig.h>
55 #include <malloc.h>
56 #include <string.h>
57 #include <syslog.h>
58 #include <rpc/nettype.h>
59 #include "rpc_com.h"
60
61 struct handle {
62 NCONF_HANDLE *nhandle;
63 int nflag; /* Whether NETPATH or NETCONFIG */
64 int nettype;
65 };
66
67 struct _rpcnettype {
68 const char *name;
69 const int type;
70 } _rpctypelist[] = {
71 { "netpath", _RPC_NETPATH },
72 { "visible", _RPC_VISIBLE },
73 { "circuit_v", _RPC_CIRCUIT_V },
74 { "datagram_v", _RPC_DATAGRAM_V },
75 { "circuit_n", _RPC_CIRCUIT_N },
76 { "datagram_n", _RPC_DATAGRAM_N },
77 { "tcp", _RPC_TCP },
78 { "udp", _RPC_UDP },
79 { 0, _RPC_NONE }
80 };
81
82 struct netid_af {
83 const char *netid;
84 int af;
85 int protocol;
86 };
87
88 static struct netid_af na_cvt[] = {
89 { "udp", AF_INET, IPPROTO_UDP },
90 { "tcp", AF_INET, IPPROTO_TCP },
91 #ifdef INET6
92 { "udp6", AF_INET6, IPPROTO_UDP },
93 { "tcp6", AF_INET6, IPPROTO_TCP },
94 #endif
95 { "local", AF_LOCAL, 0 }
96 };
97
98 #if 0
99 static char *strlocase __P((char *));
100 #endif
101 static int getnettype __P((const char *));
102
103 /*
104 * Cache the result of getrlimit(), so we don't have to do an
105 * expensive call every time.
106 */
107 int
108 __rpc_dtbsize()
109 {
110 static int tbsize;
111 struct rlimit rl;
112
113 if (tbsize) {
114 return (tbsize);
115 }
116 if (getrlimit(RLIMIT_NOFILE, &rl) == 0) {
117 return (tbsize = (int)rl.rlim_max);
118 }
119 /*
120 * Something wrong. I'll try to save face by returning a
121 * pessimistic number.
122 */
123 return (32);
124 }
125
126
127 /*
128 * Find the appropriate buffer size
129 */
130 u_int
131 /*ARGSUSED*/
132 __rpc_get_t_size(af, proto, size)
133 int af, proto;
134 int size; /* Size requested */
135 {
136 int maxsize;
137
138 switch (proto) {
139 case IPPROTO_TCP:
140 maxsize = 65536; /* XXX */
141 break;
142 case IPPROTO_UDP:
143 maxsize = 8192; /* XXX */
144 break;
145 default:
146 maxsize = RPC_MAXDATASIZE;
147 break;
148 }
149 if (size == 0)
150 return maxsize;
151
152 /* Check whether the value is within the upper max limit */
153 return (size > maxsize ? (u_int)maxsize : (u_int)size);
154 }
155
156 /*
157 * Find the appropriate address buffer size
158 */
159 u_int
160 __rpc_get_a_size(af)
161 int af;
162 {
163 switch (af) {
164 case AF_INET:
165 return sizeof (struct sockaddr_in);
166 #ifdef INET6
167 case AF_INET6:
168 return sizeof (struct sockaddr_in6);
169 #endif
170 case AF_LOCAL:
171 return sizeof (struct sockaddr_un);
172 default:
173 break;
174 }
175 return ((u_int)RPC_MAXADDRSIZE);
176 }
177
178 #if 0
179 static char *
180 strlocase(p)
181 char *p;
182 {
183 char *t = p;
184
185 for (; *p; p++)
186 if (isupper(*p))
187 *p = tolower(*p);
188 return (t);
189 }
190 #endif
191
192 /*
193 * Returns the type of the network as defined in <rpc/nettype.h>
194 * If nettype is NULL, it defaults to NETPATH.
195 */
196 static int
197 getnettype(nettype)
198 const char *nettype;
199 {
200 int i;
201
202 if ((nettype == NULL) || (nettype[0] == NULL)) {
203 return (_RPC_NETPATH); /* Default */
204 }
205
206 #if 0
207 nettype = strlocase(nettype);
208 #endif
209 for (i = 0; _rpctypelist[i].name; i++)
210 if (strcasecmp(nettype, _rpctypelist[i].name) == 0) {
211 return (_rpctypelist[i].type);
212 }
213 return (_rpctypelist[i].type);
214 }
215
216 /*
217 * For the given nettype (tcp or udp only), return the first structure found.
218 * This should be freed by calling freenetconfigent()
219 */
220 struct netconfig *
221 __rpc_getconfip(nettype)
222 const char *nettype;
223 {
224 char *netid;
225 char *netid_tcp = (char *) NULL;
226 char *netid_udp = (char *) NULL;
227 static char *netid_tcp_main;
228 static char *netid_udp_main;
229 struct netconfig *dummy;
230 #ifdef __REENT
231 int main_thread;
232 static thread_key_t tcp_key, udp_key;
233 extern mutex_t tsd_lock;
234
235 if ((main_thread = _thr_main())) {
236 netid_udp = netid_udp_main;
237 netid_tcp = netid_tcp_main;
238 } else {
239 if (tcp_key == 0) {
240 mutex_lock(&tsd_lock);
241 if (tcp_key == 0)
242 thr_keycreate(&tcp_key, free);
243 mutex_unlock(&tsd_lock);
244 }
245 thr_getspecific(tcp_key, (void **) &netid_tcp);
246 if (udp_key == 0) {
247 mutex_lock(&tsd_lock);
248 if (udp_key == 0)
249 thr_keycreate(&udp_key, free);
250 mutex_unlock(&tsd_lock);
251 }
252 thr_getspecific(udp_key, (void **) &netid_udp);
253 }
254 #else
255 netid_udp = netid_udp_main;
256 netid_tcp = netid_tcp_main;
257 #endif
258 if (!netid_udp && !netid_tcp) {
259 struct netconfig *nconf;
260 void *confighandle;
261
262 if (!(confighandle = setnetconfig())) {
263 syslog (LOG_ERR, "rpc: failed to open " NETCONFIG);
264 return (NULL);
265 }
266 while ((nconf = getnetconfig(confighandle)) != NULL) {
267 if (strcmp(nconf->nc_protofmly, NC_INET) == 0) {
268 if (strcmp(nconf->nc_proto, NC_TCP) == 0) {
269 netid_tcp = strdup(nconf->nc_netid);
270 #ifdef __REENT
271 if (main_thread)
272 netid_tcp_main = netid_tcp;
273 else
274 thr_setspecific(tcp_key,
275 (void *) netid_tcp);
276 #else
277 netid_tcp_main = netid_tcp;
278 #endif
279 } else
280 if (strcmp(nconf->nc_proto, NC_UDP) == 0) {
281 netid_udp = strdup(nconf->nc_netid);
282 #ifdef __REENT
283 if (main_thread)
284 netid_udp_main = netid_udp;
285 else
286 thr_setspecific(udp_key,
287 (void *) netid_udp);
288 #else
289 netid_udp_main = netid_udp;
290 #endif
291 }
292 }
293 }
294 endnetconfig(confighandle);
295 }
296 if (strcmp(nettype, "udp") == 0)
297 netid = netid_udp;
298 else if (strcmp(nettype, "tcp") == 0)
299 netid = netid_tcp;
300 else {
301 return (NULL);
302 }
303 if ((netid == NULL) || (netid[0] == NULL)) {
304 return (NULL);
305 }
306 dummy = getnetconfigent(netid);
307 return (dummy);
308 }
309
310 /*
311 * Returns the type of the nettype, which should then be used with
312 * __rpc_getconf().
313 */
314 void *
315 __rpc_setconf(nettype)
316 const char *nettype;
317 {
318 struct handle *handle;
319
320 handle = (struct handle *) malloc(sizeof (struct handle));
321 if (handle == NULL) {
322 return (NULL);
323 }
324 switch (handle->nettype = getnettype(nettype)) {
325 case _RPC_NETPATH:
326 case _RPC_CIRCUIT_N:
327 case _RPC_DATAGRAM_N:
328 if (!(handle->nhandle = setnetpath())) {
329 free(handle);
330 return (NULL);
331 }
332 handle->nflag = TRUE;
333 break;
334 case _RPC_VISIBLE:
335 case _RPC_CIRCUIT_V:
336 case _RPC_DATAGRAM_V:
337 case _RPC_TCP:
338 case _RPC_UDP:
339 if (!(handle->nhandle = setnetconfig())) {
340 syslog (LOG_ERR, "rpc: failed to open " NETCONFIG);
341 free(handle);
342 return (NULL);
343 }
344 handle->nflag = FALSE;
345 break;
346 default:
347 return (NULL);
348 }
349
350 return (handle);
351 }
352
353 /*
354 * Returns the next netconfig struct for the given "net" type.
355 * __rpc_setconf() should have been called previously.
356 */
357 struct netconfig *
358 __rpc_getconf(vhandle)
359 void *vhandle;
360 {
361 struct handle *handle;
362 struct netconfig *nconf;
363
364 handle = (struct handle *)vhandle;
365 if (handle == NULL) {
366 return (NULL);
367 }
368 for (;;) {
369 if (handle->nflag)
370 nconf = getnetpath(handle->nhandle);
371 else
372 nconf = getnetconfig(handle->nhandle);
373 if (nconf == NULL)
374 break;
375 if ((nconf->nc_semantics != NC_TPI_CLTS) &&
376 (nconf->nc_semantics != NC_TPI_COTS) &&
377 (nconf->nc_semantics != NC_TPI_COTS_ORD))
378 continue;
379 switch (handle->nettype) {
380 case _RPC_VISIBLE:
381 if (!(nconf->nc_flag & NC_VISIBLE))
382 continue;
383 /* FALLTHROUGH */
384 case _RPC_NETPATH: /* Be happy */
385 break;
386 case _RPC_CIRCUIT_V:
387 if (!(nconf->nc_flag & NC_VISIBLE))
388 continue;
389 /* FALLTHROUGH */
390 case _RPC_CIRCUIT_N:
391 if ((nconf->nc_semantics != NC_TPI_COTS) &&
392 (nconf->nc_semantics != NC_TPI_COTS_ORD))
393 continue;
394 break;
395 case _RPC_DATAGRAM_V:
396 if (!(nconf->nc_flag & NC_VISIBLE))
397 continue;
398 /* FALLTHROUGH */
399 case _RPC_DATAGRAM_N:
400 if (nconf->nc_semantics != NC_TPI_CLTS)
401 continue;
402 break;
403 case _RPC_TCP:
404 if (((nconf->nc_semantics != NC_TPI_COTS) &&
405 (nconf->nc_semantics != NC_TPI_COTS_ORD)) ||
406 (strcmp(nconf->nc_protofmly, NC_INET)
407 #ifdef INET6
408 && strcmp(nconf->nc_protofmly, NC_INET6))
409 #else
410 )
411 #endif
412 ||
413 strcmp(nconf->nc_proto, NC_TCP))
414 continue;
415 break;
416 case _RPC_UDP:
417 if ((nconf->nc_semantics != NC_TPI_CLTS) ||
418 (strcmp(nconf->nc_protofmly, NC_INET)
419 #ifdef INET6
420 && strcmp(nconf->nc_protofmly, NC_INET6))
421 #else
422 )
423 #endif
424 ||
425 strcmp(nconf->nc_proto, NC_UDP))
426 continue;
427 break;
428 }
429 break;
430 }
431 return (nconf);
432 }
433
434 void
435 __rpc_endconf(vhandle)
436 void * vhandle;
437 {
438 struct handle *handle;
439
440 handle = (struct handle *) vhandle;
441 if (handle == NULL) {
442 return;
443 }
444 if (handle->nflag) {
445 endnetpath(handle->nhandle);
446 } else {
447 endnetconfig(handle->nhandle);
448 }
449 free(handle);
450 }
451
452 /*
453 * Used to ping the NULL procedure for clnt handle.
454 * Returns NULL if fails, else a non-NULL pointer.
455 */
456 void *
457 rpc_nullproc(clnt)
458 CLIENT *clnt;
459 {
460 struct timeval TIMEOUT = {25, 0};
461
462 if (clnt_call(clnt, NULLPROC, (xdrproc_t) xdr_void, NULL,
463 (xdrproc_t) xdr_void, NULL, TIMEOUT) != RPC_SUCCESS) {
464 return (NULL);
465 }
466 return ((void *) clnt);
467 }
468
469 /*
470 * Try all possible transports until
471 * one succeeds in finding the netconf for the given fd.
472 */
473 struct netconfig *
474 __rpcgettp(fd)
475 int fd;
476 {
477 const char *netid;
478 struct __rpc_sockinfo si;
479
480 if (!__rpc_fd2sockinfo(fd, &si))
481 return NULL;
482
483 if (!__rpc_sockinfo2netid(&si, &netid))
484 return NULL;
485
486 /*LINTED const castaway*/
487 return getnetconfigent((char *)netid);
488 }
489
490 int
491 __rpc_fd2sockinfo(int fd, struct __rpc_sockinfo *sip)
492 {
493 socklen_t len;
494 int type, proto;
495 struct sockaddr_storage ss;
496
497 len = sizeof ss;
498 if (getsockname(fd, (struct sockaddr *)(void *)&ss, &len) < 0)
499 return 0;
500 sip->si_alen = len;
501
502 len = sizeof type;
503 if (getsockopt(fd, SOL_SOCKET, SO_TYPE, &type, &len) < 0)
504 return 0;
505
506 /* XXX */
507 if (ss.ss_family != AF_LOCAL) {
508 if (type == SOCK_STREAM)
509 proto = IPPROTO_TCP;
510 else if (type == SOCK_DGRAM)
511 proto = IPPROTO_UDP;
512 else
513 return 0;
514 } else
515 proto = 0;
516
517 sip->si_af = ss.ss_family;
518 sip->si_proto = proto;
519 sip->si_socktype = type;
520
521 return 1;
522 }
523
524 /*
525 * Linear search, but the number of entries is small.
526 */
527 int
528 __rpc_nconf2sockinfo(const struct netconfig *nconf, struct __rpc_sockinfo *sip)
529 {
530 int i;
531
532 for (i = 0; i < (sizeof na_cvt) / (sizeof (struct netid_af)); i++)
533 if (!strcmp(na_cvt[i].netid, nconf->nc_netid)) {
534 sip->si_af = na_cvt[i].af;
535 sip->si_proto = na_cvt[i].protocol;
536 sip->si_socktype =
537 __rpc_seman2socktype((int)nconf->nc_semantics);
538 if (sip->si_socktype == -1)
539 return 0;
540 sip->si_alen = __rpc_get_a_size(sip->si_af);
541 return 1;
542 }
543
544 return 0;
545 }
546
547 int
548 __rpc_nconf2fd(const struct netconfig *nconf)
549 {
550 struct __rpc_sockinfo si;
551
552 if (!__rpc_nconf2sockinfo(nconf, &si))
553 return 0;
554
555 return socket(si.si_af, si.si_socktype, si.si_proto);
556 }
557
558 int
559 __rpc_sockinfo2netid(struct __rpc_sockinfo *sip, const char **netid)
560 {
561 int i;
562
563 for (i = 0; i < (sizeof na_cvt) / (sizeof (struct netid_af)); i++)
564 if (na_cvt[i].af == sip->si_af &&
565 na_cvt[i].protocol == sip->si_proto) {
566 if (netid)
567 *netid = na_cvt[i].netid;
568 return 1;
569 }
570
571 return 0;
572 }
573
574 char *
575 taddr2uaddr(const struct netconfig *nconf, const struct netbuf *nbuf)
576 {
577 struct __rpc_sockinfo si;
578
579 if (!__rpc_nconf2sockinfo(nconf, &si))
580 return NULL;
581 return __rpc_taddr2uaddr_af(si.si_af, nbuf);
582 }
583
584 struct netbuf *
585 uaddr2taddr(const struct netconfig *nconf, const char *uaddr)
586 {
587 struct __rpc_sockinfo si;
588
589 if (!__rpc_nconf2sockinfo(nconf, &si))
590 return NULL;
591 return __rpc_uaddr2taddr_af(si.si_af, uaddr);
592 }
593
594 char *
595 __rpc_taddr2uaddr_af(int af, const struct netbuf *nbuf)
596 {
597 char *ret;
598 struct sockaddr_in *sin;
599 struct sockaddr_un *sun;
600 char namebuf[INET_ADDRSTRLEN];
601 #ifdef INET6
602 struct sockaddr_in6 *sin6;
603 char namebuf6[INET6_ADDRSTRLEN];
604 #endif
605 u_int16_t port;
606
607 switch (af) {
608 case AF_INET:
609 sin = nbuf->buf;
610 if (inet_ntop(af, &sin->sin_addr, namebuf, sizeof namebuf)
611 == NULL)
612 return NULL;
613 port = ntohs(sin->sin_port);
614 if (asprintf(&ret, "%s.%u.%u", namebuf, ((u_int32_t)port) >> 8,
615 port & 0xff) < 0)
616 return NULL;
617 break;
618 #ifdef INET6
619 case AF_INET6:
620 sin6 = nbuf->buf;
621 if (inet_ntop(af, &sin6->sin6_addr, namebuf6, sizeof namebuf6)
622 == NULL)
623 return NULL;
624 port = ntohs(sin6->sin6_port);
625 if (asprintf(&ret, "%s.%u.%u", namebuf6, ((u_int32_t)port) >> 8,
626 port & 0xff) < 0)
627 return NULL;
628 break;
629 #endif
630 case AF_LOCAL:
631 sun = nbuf->buf;
632 sun->sun_path[sizeof(sun->sun_path) - 1] = '\0'; /* safety */
633 ret = strdup(sun->sun_path);
634 break;
635 default:
636 return NULL;
637 }
638
639 return ret;
640 }
641
642 struct netbuf *
643 __rpc_uaddr2taddr_af(int af, const char *uaddr)
644 {
645 struct netbuf *ret = NULL;
646 char *addrstr, *p;
647 unsigned port, portlo, porthi;
648 struct sockaddr_in *sin;
649 #ifdef INET6
650 struct sockaddr_in6 *sin6;
651 #endif
652 struct sockaddr_un *sun;
653
654 addrstr = strdup(uaddr);
655 if (addrstr == NULL)
656 return NULL;
657
658 /*
659 * AF_LOCAL addresses are expected to be absolute
660 * pathnames, anything else will be AF_INET or AF_INET6.
661 */
662 if (*addrstr != '/') {
663 p = strrchr(addrstr, '.');
664 if (p == NULL)
665 goto out;
666 portlo = (unsigned)atoi(p + 1);
667 *p = '\0';
668
669 p = strrchr(addrstr, '.');
670 if (p == NULL)
671 goto out;
672 porthi = (unsigned)atoi(p + 1);
673 *p = '\0';
674 port = (porthi << 8) | portlo;
675 }
676
677 ret = (struct netbuf *)malloc(sizeof *ret);
678
679 switch (af) {
680 case AF_INET:
681 sin = (struct sockaddr_in *)malloc(sizeof *sin);
682 if (sin == NULL)
683 goto out;
684 memset(sin, 0, sizeof *sin);
685 sin->sin_family = AF_INET;
686 sin->sin_port = htons(port);
687 if (inet_pton(AF_INET, addrstr, &sin->sin_addr) <= 0) {
688 free(sin);
689 free(ret);
690 ret = NULL;
691 goto out;
692 }
693 sin->sin_len = ret->maxlen = ret->len = sizeof *sin;
694 ret->buf = sin;
695 break;
696 #ifdef INET6
697 case AF_INET6:
698 sin6 = (struct sockaddr_in6 *)malloc(sizeof *sin6);
699 if (sin6 == NULL)
700 goto out;
701 memset(sin6, 0, sizeof *sin6);
702 sin6->sin6_family = AF_INET6;
703 sin6->sin6_port = htons(port);
704 if (inet_pton(AF_INET6, addrstr, &sin6->sin6_addr) <= 0) {
705 free(sin);
706 free(ret);
707 ret = NULL;
708 goto out;
709 }
710 sin6->sin6_len = ret->maxlen = ret->len = sizeof *sin6;
711 ret->buf = sin6;
712 break;
713 #endif
714 case AF_LOCAL:
715 sun = (struct sockaddr_un *)malloc(sizeof *sun);
716 if (sun == NULL)
717 goto out;
718 memset(sun, 0, sizeof *sun);
719 sun->sun_family = AF_LOCAL;
720 strncpy(sun->sun_path, addrstr, sizeof(sun->sun_path) - 1);
721 break;
722 default:
723 break;
724 }
725 out:
726 free(addrstr);
727 return ret;
728 }
729
730 int
731 __rpc_seman2socktype(int semantics)
732 {
733 switch (semantics) {
734 case NC_TPI_CLTS:
735 return SOCK_DGRAM;
736 case NC_TPI_COTS_ORD:
737 return SOCK_STREAM;
738 case NC_TPI_RAW:
739 return SOCK_RAW;
740 default:
741 break;
742 }
743
744 return -1;
745 }
746
747 int
748 __rpc_socktype2seman(int socktype)
749 {
750 switch (socktype) {
751 case SOCK_DGRAM:
752 return NC_TPI_CLTS;
753 case SOCK_STREAM:
754 return NC_TPI_COTS_ORD;
755 case SOCK_RAW:
756 return NC_TPI_RAW;
757 default:
758 break;
759 }
760
761 return -1;
762 }
763
764 /*
765 * XXXX - IPv6 scope IDs can't be handled in universal addresses.
766 * Here, we compare the original server address to that of the RPC
767 * service we just received back from a call to rpcbind on the remote
768 * machine. If they are both "link local" or "site local", copy
769 * the scope id of the server address over to the service address.
770 */
771 int
772 __rpc_fixup_addr(struct netbuf *new, const struct netbuf *svc)
773 {
774 #ifdef INET6
775 struct sockaddr *sa_new, *sa_svc;
776 struct sockaddr_in6 *sin6_new, *sin6_svc;
777
778 sa_svc = (struct sockaddr *)svc->buf;
779 sa_new = (struct sockaddr *)new->buf;
780
781 if (sa_new->sa_family == sa_svc->sa_family &&
782 sa_new->sa_family == AF_INET6) {
783 sin6_new = (struct sockaddr_in6 *)new->buf;
784 sin6_svc = (struct sockaddr_in6 *)svc->buf;
785
786 if ((IN6_IS_ADDR_LINKLOCAL(&sin6_new->sin6_addr) &&
787 IN6_IS_ADDR_LINKLOCAL(&sin6_svc->sin6_addr)) ||
788 (IN6_IS_ADDR_SITELOCAL(&sin6_new->sin6_addr) &&
789 IN6_IS_ADDR_SITELOCAL(&sin6_svc->sin6_addr))) {
790 sin6_new->sin6_scope_id = sin6_svc->sin6_scope_id;
791 }
792 }
793 #endif
794 return 1;
795 }
796
797 int
798 __rpc_sockisbound(int fd)
799 {
800 struct sockaddr_storage ss;
801 socklen_t slen;
802
803 slen = sizeof (struct sockaddr_storage);
804 if (getsockname(fd, (struct sockaddr *)(void *)&ss, &slen) < 0)
805 return 0;
806
807 switch (ss.ss_family) {
808 case AF_INET:
809 return (((struct sockaddr_in *)
810 (void *)&ss)->sin_port != 0);
811 #ifdef INET6
812 case AF_INET6:
813 return (((struct sockaddr_in6 *)
814 (void *)&ss)->sin6_port != 0);
815 #endif
816 case AF_LOCAL:
817 /* XXX check this */
818 return (((struct sockaddr_un *)
819 (void *)&ss)->sun_path[0] != '\0');
820 default:
821 break;
822 }
823
824 return 0;
825 }
826