1 1.18 christos /* $NetBSD: svc_dg.c,v 1.18 2024/01/23 17:24:38 christos Exp $ */ 2 1.1 fvdl 3 1.1 fvdl /* 4 1.17 tron * Copyright (c) 2010, Oracle America, Inc. 5 1.17 tron * 6 1.17 tron * Redistribution and use in source and binary forms, with or without 7 1.17 tron * modification, are permitted provided that the following conditions are 8 1.17 tron * met: 9 1.17 tron * 10 1.17 tron * * Redistributions of source code must retain the above copyright 11 1.17 tron * notice, this list of conditions and the following disclaimer. 12 1.17 tron * * Redistributions in binary form must reproduce the above 13 1.17 tron * copyright notice, this list of conditions and the following 14 1.17 tron * disclaimer in the documentation and/or other materials 15 1.17 tron * provided with the distribution. 16 1.17 tron * * Neither the name of the "Oracle America, Inc." nor the names of its 17 1.17 tron * contributors may be used to endorse or promote products derived 18 1.17 tron * from this software without specific prior written permission. 19 1.17 tron * 20 1.17 tron * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 21 1.17 tron * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 22 1.17 tron * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 23 1.17 tron * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 24 1.17 tron * COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, 25 1.17 tron * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 1.17 tron * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE 27 1.17 tron * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 28 1.17 tron * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, 29 1.17 tron * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 30 1.17 tron * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 31 1.17 tron * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 32 1.1 fvdl */ 33 1.1 fvdl 34 1.1 fvdl /* 35 1.1 fvdl * Copyright (c) 1986-1991 by Sun Microsystems Inc. 36 1.1 fvdl */ 37 1.1 fvdl 38 1.1 fvdl /* #ident "@(#)svc_dg.c 1.17 94/04/24 SMI" */ 39 1.1 fvdl 40 1.1 fvdl 41 1.1 fvdl /* 42 1.1 fvdl * svc_dg.c, Server side for connectionless RPC. 43 1.1 fvdl * 44 1.1 fvdl * Does some caching in the hopes of achieving execute-at-most-once semantics. 45 1.1 fvdl */ 46 1.10 itojun 47 1.10 itojun #include <sys/cdefs.h> 48 1.10 itojun #if defined(LIBC_SCCS) && !defined(lint) 49 1.18 christos __RCSID("$NetBSD: svc_dg.c,v 1.18 2024/01/23 17:24:38 christos Exp $"); 50 1.10 itojun #endif 51 1.1 fvdl 52 1.1 fvdl #include "namespace.h" 53 1.1 fvdl #include "reentrant.h" 54 1.1 fvdl #include <sys/types.h> 55 1.1 fvdl #include <sys/socket.h> 56 1.1 fvdl #include <rpc/rpc.h> 57 1.6 lukem #include <assert.h> 58 1.1 fvdl #include <errno.h> 59 1.1 fvdl #include <unistd.h> 60 1.1 fvdl #include <stdio.h> 61 1.1 fvdl #include <stdlib.h> 62 1.2 thorpej #include <string.h> 63 1.1 fvdl #ifdef RPC_CACHE_DEBUG 64 1.1 fvdl #include <netconfig.h> 65 1.1 fvdl #include <netdir.h> 66 1.1 fvdl #endif 67 1.1 fvdl #include <err.h> 68 1.1 fvdl 69 1.16 christos #include "svc_fdset.h" 70 1.7 fvdl #include "rpc_internal.h" 71 1.1 fvdl #include "svc_dg.h" 72 1.1 fvdl 73 1.1 fvdl #define su_data(xprt) ((struct svc_dg_data *)(xprt->xp_p2)) 74 1.1 fvdl #define rpc_buffer(xprt) ((xprt)->xp_p1) 75 1.1 fvdl 76 1.1 fvdl #ifdef __weak_alias 77 1.1 fvdl __weak_alias(svc_dg_create,_svc_dg_create) 78 1.1 fvdl #endif 79 1.1 fvdl 80 1.1 fvdl #ifndef MAX 81 1.1 fvdl #define MAX(a, b) (((a) > (b)) ? (a) : (b)) 82 1.1 fvdl #endif 83 1.1 fvdl 84 1.14 matt static void svc_dg_ops(SVCXPRT *); 85 1.14 matt static enum xprt_stat svc_dg_stat(SVCXPRT *); 86 1.14 matt static bool_t svc_dg_recv(SVCXPRT *, struct rpc_msg *); 87 1.14 matt static bool_t svc_dg_reply(SVCXPRT *, struct rpc_msg *); 88 1.14 matt static bool_t svc_dg_getargs(SVCXPRT *, xdrproc_t, caddr_t); 89 1.14 matt static bool_t svc_dg_freeargs(SVCXPRT *, xdrproc_t, caddr_t); 90 1.14 matt static void svc_dg_destroy(SVCXPRT *); 91 1.14 matt static bool_t svc_dg_control(SVCXPRT *, const u_int, void *); 92 1.14 matt static int cache_get(SVCXPRT *, struct rpc_msg *, char **, size_t *); 93 1.14 matt static void cache_set(SVCXPRT *, size_t); 94 1.1 fvdl 95 1.1 fvdl /* 96 1.1 fvdl * Usage: 97 1.1 fvdl * xprt = svc_dg_create(sock, sendsize, recvsize); 98 1.1 fvdl * Does other connectionless specific initializations. 99 1.1 fvdl * Once *xprt is initialized, it is registered. 100 1.1 fvdl * see (svc.h, xprt_register). If recvsize or sendsize are 0 suitable 101 1.1 fvdl * system defaults are chosen. 102 1.1 fvdl * The routines returns NULL if a problem occurred. 103 1.1 fvdl */ 104 1.1 fvdl static const char svc_dg_str[] = "svc_dg_create: %s"; 105 1.1 fvdl static const char svc_dg_err1[] = "could not get transport information"; 106 1.1 fvdl static const char svc_dg_err2[] = " transport does not support data transfer"; 107 1.1 fvdl static const char __no_mem_str[] = "out of memory"; 108 1.1 fvdl 109 1.1 fvdl SVCXPRT * 110 1.14 matt svc_dg_create(int fd, u_int sendsize, u_int recvsize) 111 1.1 fvdl { 112 1.1 fvdl SVCXPRT *xprt; 113 1.1 fvdl struct svc_dg_data *su = NULL; 114 1.1 fvdl struct __rpc_sockinfo si; 115 1.1 fvdl struct sockaddr_storage ss; 116 1.1 fvdl socklen_t slen; 117 1.1 fvdl 118 1.1 fvdl if (!__rpc_fd2sockinfo(fd, &si)) { 119 1.1 fvdl warnx(svc_dg_str, svc_dg_err1); 120 1.4 christos return (NULL); 121 1.1 fvdl } 122 1.1 fvdl /* 123 1.1 fvdl * Find the receive and the send size 124 1.1 fvdl */ 125 1.1 fvdl sendsize = __rpc_get_t_size(si.si_af, si.si_proto, (int)sendsize); 126 1.1 fvdl recvsize = __rpc_get_t_size(si.si_af, si.si_proto, (int)recvsize); 127 1.1 fvdl if ((sendsize == 0) || (recvsize == 0)) { 128 1.1 fvdl warnx(svc_dg_str, svc_dg_err2); 129 1.4 christos return (NULL); 130 1.1 fvdl } 131 1.1 fvdl 132 1.4 christos xprt = mem_alloc(sizeof (SVCXPRT)); 133 1.1 fvdl if (xprt == NULL) 134 1.15 christos goto outofmem; 135 1.4 christos memset(xprt, 0, sizeof (SVCXPRT)); 136 1.1 fvdl 137 1.4 christos su = mem_alloc(sizeof (*su)); 138 1.1 fvdl if (su == NULL) 139 1.15 christos goto outofmem; 140 1.1 fvdl su->su_iosz = ((MAX(sendsize, recvsize) + 3) / 4) * 4; 141 1.11 yamt if ((rpc_buffer(xprt) = malloc(su->su_iosz)) == NULL) 142 1.15 christos goto outofmem; 143 1.13 christos _DIAGASSERT(__type_fit(u_int, su->su_iosz)); 144 1.13 christos xdrmem_create(&(su->su_xdrs), rpc_buffer(xprt), (u_int)su->su_iosz, 145 1.1 fvdl XDR_DECODE); 146 1.1 fvdl su->su_cache = NULL; 147 1.1 fvdl xprt->xp_fd = fd; 148 1.4 christos xprt->xp_p2 = (caddr_t)(void *)su; 149 1.1 fvdl xprt->xp_verf.oa_base = su->su_verfbody; 150 1.1 fvdl svc_dg_ops(xprt); 151 1.1 fvdl xprt->xp_rtaddr.maxlen = sizeof (struct sockaddr_storage); 152 1.1 fvdl 153 1.1 fvdl slen = sizeof ss; 154 1.4 christos if (getsockname(fd, (struct sockaddr *)(void *)&ss, &slen) < 0) 155 1.16 christos goto freedata; 156 1.1 fvdl xprt->xp_ltaddr.buf = mem_alloc(sizeof (struct sockaddr_storage)); 157 1.1 fvdl xprt->xp_ltaddr.maxlen = sizeof (struct sockaddr_storage); 158 1.1 fvdl xprt->xp_ltaddr.len = slen; 159 1.1 fvdl memcpy(xprt->xp_ltaddr.buf, &ss, slen); 160 1.1 fvdl 161 1.15 christos if (!xprt_register(xprt)) 162 1.15 christos goto freedata; 163 1.1 fvdl return (xprt); 164 1.15 christos 165 1.15 christos outofmem: 166 1.15 christos (void) warnx(svc_dg_str, __no_mem_str); 167 1.1 fvdl freedata: 168 1.1 fvdl if (xprt) { 169 1.1 fvdl if (su) 170 1.4 christos (void) mem_free(su, sizeof (*su)); 171 1.4 christos (void) mem_free(xprt, sizeof (SVCXPRT)); 172 1.1 fvdl } 173 1.4 christos return (NULL); 174 1.1 fvdl } 175 1.1 fvdl 176 1.4 christos /*ARGSUSED*/ 177 1.1 fvdl static enum xprt_stat 178 1.14 matt svc_dg_stat(SVCXPRT *xprt) 179 1.1 fvdl { 180 1.1 fvdl return (XPRT_IDLE); 181 1.1 fvdl } 182 1.1 fvdl 183 1.1 fvdl static bool_t 184 1.14 matt svc_dg_recv(SVCXPRT *xprt, struct rpc_msg *msg) 185 1.1 fvdl { 186 1.6 lukem struct svc_dg_data *su; 187 1.6 lukem XDR *xdrs; 188 1.1 fvdl char *reply; 189 1.1 fvdl struct sockaddr_storage ss; 190 1.1 fvdl socklen_t alen; 191 1.1 fvdl size_t replylen; 192 1.8 thorpej ssize_t rlen; 193 1.1 fvdl 194 1.6 lukem _DIAGASSERT(xprt != NULL); 195 1.6 lukem _DIAGASSERT(msg != NULL); 196 1.6 lukem 197 1.6 lukem su = su_data(xprt); 198 1.6 lukem xdrs = &(su->su_xdrs); 199 1.6 lukem 200 1.1 fvdl again: 201 1.1 fvdl alen = sizeof (struct sockaddr_storage); 202 1.1 fvdl rlen = recvfrom(xprt->xp_fd, rpc_buffer(xprt), su->su_iosz, 0, 203 1.4 christos (struct sockaddr *)(void *)&ss, &alen); 204 1.1 fvdl if (rlen == -1 && errno == EINTR) 205 1.1 fvdl goto again; 206 1.8 thorpej if (rlen == -1 || (rlen < (ssize_t)(4 * sizeof (u_int32_t)))) 207 1.1 fvdl return (FALSE); 208 1.3 fvdl if (xprt->xp_rtaddr.len < alen) { 209 1.3 fvdl if (xprt->xp_rtaddr.len != 0) 210 1.3 fvdl mem_free(xprt->xp_rtaddr.buf, xprt->xp_rtaddr.len); 211 1.3 fvdl xprt->xp_rtaddr.buf = mem_alloc(alen); 212 1.3 fvdl xprt->xp_rtaddr.len = alen; 213 1.3 fvdl } 214 1.1 fvdl memcpy(xprt->xp_rtaddr.buf, &ss, alen); 215 1.1 fvdl #ifdef PORTMAP 216 1.1 fvdl if (ss.ss_family == AF_INET) { 217 1.1 fvdl xprt->xp_raddr = *(struct sockaddr_in *)xprt->xp_rtaddr.buf; 218 1.1 fvdl xprt->xp_addrlen = sizeof (struct sockaddr_in); 219 1.1 fvdl } 220 1.1 fvdl #endif 221 1.1 fvdl xdrs->x_op = XDR_DECODE; 222 1.1 fvdl XDR_SETPOS(xdrs, 0); 223 1.1 fvdl if (! xdr_callmsg(xdrs, msg)) { 224 1.1 fvdl return (FALSE); 225 1.1 fvdl } 226 1.1 fvdl su->su_xid = msg->rm_xid; 227 1.1 fvdl if (su->su_cache != NULL) { 228 1.1 fvdl if (cache_get(xprt, msg, &reply, &replylen)) { 229 1.1 fvdl (void)sendto(xprt->xp_fd, reply, replylen, 0, 230 1.4 christos (struct sockaddr *)(void *)&ss, alen); 231 1.1 fvdl return (FALSE); 232 1.1 fvdl } 233 1.1 fvdl } 234 1.1 fvdl return (TRUE); 235 1.1 fvdl } 236 1.1 fvdl 237 1.1 fvdl static bool_t 238 1.14 matt svc_dg_reply(SVCXPRT *xprt, struct rpc_msg *msg) 239 1.1 fvdl { 240 1.6 lukem struct svc_dg_data *su; 241 1.6 lukem XDR *xdrs; 242 1.1 fvdl bool_t stat = FALSE; 243 1.1 fvdl size_t slen; 244 1.1 fvdl 245 1.6 lukem _DIAGASSERT(xprt != NULL); 246 1.6 lukem _DIAGASSERT(msg != NULL); 247 1.6 lukem 248 1.6 lukem su = su_data(xprt); 249 1.6 lukem xdrs = &(su->su_xdrs); 250 1.6 lukem 251 1.1 fvdl xdrs->x_op = XDR_ENCODE; 252 1.1 fvdl XDR_SETPOS(xdrs, 0); 253 1.1 fvdl msg->rm_xid = su->su_xid; 254 1.1 fvdl if (xdr_replymsg(xdrs, msg)) { 255 1.1 fvdl slen = XDR_GETPOS(xdrs); 256 1.1 fvdl if (sendto(xprt->xp_fd, rpc_buffer(xprt), slen, 0, 257 1.1 fvdl (struct sockaddr *)xprt->xp_rtaddr.buf, 258 1.8 thorpej (socklen_t)xprt->xp_rtaddr.len) == (ssize_t) slen) { 259 1.1 fvdl stat = TRUE; 260 1.4 christos if (su->su_cache) 261 1.1 fvdl cache_set(xprt, slen); 262 1.1 fvdl } 263 1.1 fvdl } 264 1.1 fvdl return (stat); 265 1.1 fvdl } 266 1.1 fvdl 267 1.1 fvdl static bool_t 268 1.14 matt svc_dg_getargs(SVCXPRT *xprt, xdrproc_t xdr_args, caddr_t args_ptr) 269 1.1 fvdl { 270 1.1 fvdl return (*xdr_args)(&(su_data(xprt)->su_xdrs), args_ptr); 271 1.1 fvdl } 272 1.1 fvdl 273 1.1 fvdl static bool_t 274 1.14 matt svc_dg_freeargs(SVCXPRT *xprt, xdrproc_t xdr_args, caddr_t args_ptr) 275 1.1 fvdl { 276 1.6 lukem XDR *xdrs; 277 1.1 fvdl 278 1.6 lukem _DIAGASSERT(xprt != NULL); 279 1.6 lukem 280 1.6 lukem xdrs = &(su_data(xprt)->su_xdrs); 281 1.1 fvdl xdrs->x_op = XDR_FREE; 282 1.1 fvdl return (*xdr_args)(xdrs, args_ptr); 283 1.1 fvdl } 284 1.1 fvdl 285 1.1 fvdl static void 286 1.14 matt svc_dg_destroy(SVCXPRT *xprt) 287 1.1 fvdl { 288 1.6 lukem struct svc_dg_data *su; 289 1.6 lukem 290 1.6 lukem _DIAGASSERT(xprt != NULL); 291 1.6 lukem 292 1.6 lukem su = su_data(xprt); 293 1.1 fvdl 294 1.1 fvdl xprt_unregister(xprt); 295 1.1 fvdl if (xprt->xp_fd != -1) 296 1.1 fvdl (void)close(xprt->xp_fd); 297 1.1 fvdl XDR_DESTROY(&(su->su_xdrs)); 298 1.1 fvdl (void) mem_free(rpc_buffer(xprt), su->su_iosz); 299 1.4 christos (void) mem_free(su, sizeof (*su)); 300 1.1 fvdl if (xprt->xp_rtaddr.buf) 301 1.1 fvdl (void) mem_free(xprt->xp_rtaddr.buf, xprt->xp_rtaddr.maxlen); 302 1.1 fvdl if (xprt->xp_ltaddr.buf) 303 1.1 fvdl (void) mem_free(xprt->xp_ltaddr.buf, xprt->xp_ltaddr.maxlen); 304 1.1 fvdl if (xprt->xp_tp) 305 1.1 fvdl (void) free(xprt->xp_tp); 306 1.4 christos (void) mem_free(xprt, sizeof (SVCXPRT)); 307 1.1 fvdl } 308 1.1 fvdl 309 1.1 fvdl static bool_t 310 1.4 christos /*ARGSUSED*/ 311 1.14 matt svc_dg_control(SVCXPRT *xprt, const u_int rq, void *in) 312 1.1 fvdl { 313 1.1 fvdl return (FALSE); 314 1.1 fvdl } 315 1.1 fvdl 316 1.1 fvdl static void 317 1.14 matt svc_dg_ops(SVCXPRT *xprt) 318 1.1 fvdl { 319 1.1 fvdl static struct xp_ops ops; 320 1.1 fvdl static struct xp_ops2 ops2; 321 1.1 fvdl 322 1.6 lukem _DIAGASSERT(xprt != NULL); 323 1.6 lukem 324 1.1 fvdl /* VARIABLES PROTECTED BY ops_lock: ops */ 325 1.1 fvdl 326 1.1 fvdl mutex_lock(&ops_lock); 327 1.1 fvdl if (ops.xp_recv == NULL) { 328 1.1 fvdl ops.xp_recv = svc_dg_recv; 329 1.1 fvdl ops.xp_stat = svc_dg_stat; 330 1.1 fvdl ops.xp_getargs = svc_dg_getargs; 331 1.1 fvdl ops.xp_reply = svc_dg_reply; 332 1.1 fvdl ops.xp_freeargs = svc_dg_freeargs; 333 1.1 fvdl ops.xp_destroy = svc_dg_destroy; 334 1.1 fvdl ops2.xp_control = svc_dg_control; 335 1.1 fvdl } 336 1.1 fvdl xprt->xp_ops = &ops; 337 1.1 fvdl xprt->xp_ops2 = &ops2; 338 1.1 fvdl mutex_unlock(&ops_lock); 339 1.1 fvdl } 340 1.1 fvdl 341 1.1 fvdl /* The CACHING COMPONENT */ 342 1.1 fvdl 343 1.1 fvdl /* 344 1.1 fvdl * Could have been a separate file, but some part of it depends upon the 345 1.1 fvdl * private structure of the client handle. 346 1.1 fvdl * 347 1.1 fvdl * Fifo cache for cl server 348 1.1 fvdl * Copies pointers to reply buffers into fifo cache 349 1.1 fvdl * Buffers are sent again if retransmissions are detected. 350 1.1 fvdl */ 351 1.1 fvdl 352 1.1 fvdl #define SPARSENESS 4 /* 75% sparse */ 353 1.1 fvdl 354 1.1 fvdl #define ALLOC(type, size) \ 355 1.12 christos mem_alloc((sizeof (type) * (size))) 356 1.1 fvdl 357 1.1 fvdl #define MEMZERO(addr, type, size) \ 358 1.4 christos (void) memset((void *) (addr), 0, sizeof (type) * (int) (size)) 359 1.1 fvdl 360 1.1 fvdl #define FREE(addr, type, size) \ 361 1.4 christos mem_free((addr), (sizeof (type) * (size))) 362 1.1 fvdl 363 1.1 fvdl /* 364 1.1 fvdl * An entry in the cache 365 1.1 fvdl */ 366 1.1 fvdl typedef struct cache_node *cache_ptr; 367 1.1 fvdl struct cache_node { 368 1.1 fvdl /* 369 1.1 fvdl * Index into cache is xid, proc, vers, prog and address 370 1.1 fvdl */ 371 1.1 fvdl u_int32_t cache_xid; 372 1.1 fvdl rpcproc_t cache_proc; 373 1.1 fvdl rpcvers_t cache_vers; 374 1.1 fvdl rpcprog_t cache_prog; 375 1.1 fvdl struct netbuf cache_addr; 376 1.1 fvdl /* 377 1.1 fvdl * The cached reply and length 378 1.1 fvdl */ 379 1.1 fvdl char *cache_reply; 380 1.1 fvdl size_t cache_replylen; 381 1.1 fvdl /* 382 1.1 fvdl * Next node on the list, if there is a collision 383 1.1 fvdl */ 384 1.1 fvdl cache_ptr cache_next; 385 1.1 fvdl }; 386 1.1 fvdl 387 1.1 fvdl /* 388 1.1 fvdl * The entire cache 389 1.1 fvdl */ 390 1.1 fvdl struct cl_cache { 391 1.1 fvdl u_int uc_size; /* size of cache */ 392 1.1 fvdl cache_ptr *uc_entries; /* hash table of entries in cache */ 393 1.1 fvdl cache_ptr *uc_fifo; /* fifo list of entries in cache */ 394 1.1 fvdl u_int uc_nextvictim; /* points to next victim in fifo list */ 395 1.1 fvdl rpcprog_t uc_prog; /* saved program number */ 396 1.1 fvdl rpcvers_t uc_vers; /* saved version number */ 397 1.1 fvdl rpcproc_t uc_proc; /* saved procedure number */ 398 1.1 fvdl }; 399 1.1 fvdl 400 1.1 fvdl 401 1.1 fvdl /* 402 1.1 fvdl * the hashing function 403 1.1 fvdl */ 404 1.1 fvdl #define CACHE_LOC(transp, xid) \ 405 1.1 fvdl (xid % (SPARSENESS * ((struct cl_cache *) \ 406 1.1 fvdl su_data(transp)->su_cache)->uc_size)) 407 1.1 fvdl 408 1.1 fvdl /* 409 1.1 fvdl * Enable use of the cache. Returns 1 on success, 0 on failure. 410 1.1 fvdl * Note: there is no disable. 411 1.1 fvdl */ 412 1.1 fvdl static const char cache_enable_str[] = "svc_enablecache: %s %s"; 413 1.1 fvdl static const char alloc_err[] = "could not allocate cache "; 414 1.1 fvdl static const char enable_err[] = "cache already enabled"; 415 1.1 fvdl 416 1.1 fvdl int 417 1.14 matt svc_dg_enablecache(SVCXPRT *transp, u_int size) 418 1.1 fvdl { 419 1.6 lukem struct svc_dg_data *su; 420 1.1 fvdl struct cl_cache *uc; 421 1.1 fvdl 422 1.6 lukem _DIAGASSERT(transp != NULL); 423 1.6 lukem 424 1.6 lukem su = su_data(transp); 425 1.6 lukem 426 1.1 fvdl mutex_lock(&dupreq_lock); 427 1.1 fvdl if (su->su_cache != NULL) { 428 1.1 fvdl (void) warnx(cache_enable_str, enable_err, " "); 429 1.1 fvdl mutex_unlock(&dupreq_lock); 430 1.1 fvdl return (0); 431 1.1 fvdl } 432 1.1 fvdl uc = ALLOC(struct cl_cache, 1); 433 1.1 fvdl if (uc == NULL) { 434 1.1 fvdl warnx(cache_enable_str, alloc_err, " "); 435 1.1 fvdl mutex_unlock(&dupreq_lock); 436 1.1 fvdl return (0); 437 1.1 fvdl } 438 1.1 fvdl uc->uc_size = size; 439 1.1 fvdl uc->uc_nextvictim = 0; 440 1.1 fvdl uc->uc_entries = ALLOC(cache_ptr, size * SPARSENESS); 441 1.1 fvdl if (uc->uc_entries == NULL) { 442 1.1 fvdl warnx(cache_enable_str, alloc_err, "data"); 443 1.1 fvdl FREE(uc, struct cl_cache, 1); 444 1.1 fvdl mutex_unlock(&dupreq_lock); 445 1.1 fvdl return (0); 446 1.1 fvdl } 447 1.1 fvdl MEMZERO(uc->uc_entries, cache_ptr, size * SPARSENESS); 448 1.1 fvdl uc->uc_fifo = ALLOC(cache_ptr, size); 449 1.1 fvdl if (uc->uc_fifo == NULL) { 450 1.1 fvdl warnx(cache_enable_str, alloc_err, "fifo"); 451 1.1 fvdl FREE(uc->uc_entries, cache_ptr, size * SPARSENESS); 452 1.1 fvdl FREE(uc, struct cl_cache, 1); 453 1.1 fvdl mutex_unlock(&dupreq_lock); 454 1.1 fvdl return (0); 455 1.1 fvdl } 456 1.1 fvdl MEMZERO(uc->uc_fifo, cache_ptr, size); 457 1.4 christos su->su_cache = (char *)(void *)uc; 458 1.1 fvdl mutex_unlock(&dupreq_lock); 459 1.1 fvdl return (1); 460 1.1 fvdl } 461 1.1 fvdl 462 1.1 fvdl /* 463 1.1 fvdl * Set an entry in the cache. It assumes that the uc entry is set from 464 1.1 fvdl * the earlier call to cache_get() for the same procedure. This will always 465 1.1 fvdl * happen because cache_get() is calle by svc_dg_recv and cache_set() is called 466 1.1 fvdl * by svc_dg_reply(). All this hoopla because the right RPC parameters are 467 1.1 fvdl * not available at svc_dg_reply time. 468 1.1 fvdl */ 469 1.1 fvdl 470 1.1 fvdl static const char cache_set_str[] = "cache_set: %s"; 471 1.1 fvdl static const char cache_set_err1[] = "victim not found"; 472 1.1 fvdl static const char cache_set_err2[] = "victim alloc failed"; 473 1.1 fvdl static const char cache_set_err3[] = "could not allocate new rpc buffer"; 474 1.1 fvdl 475 1.1 fvdl static void 476 1.14 matt cache_set(SVCXPRT *xprt, size_t replylen) 477 1.1 fvdl { 478 1.4 christos cache_ptr victim; 479 1.4 christos cache_ptr *vicp; 480 1.6 lukem struct svc_dg_data *su; 481 1.6 lukem struct cl_cache *uc; 482 1.1 fvdl u_int loc; 483 1.1 fvdl char *newbuf; 484 1.1 fvdl #ifdef RPC_CACHE_DEBUG 485 1.1 fvdl struct netconfig *nconf; 486 1.1 fvdl char *uaddr; 487 1.1 fvdl #endif 488 1.1 fvdl 489 1.6 lukem _DIAGASSERT(xprt != NULL); 490 1.6 lukem 491 1.6 lukem su = su_data(xprt); 492 1.6 lukem uc = (struct cl_cache *) su->su_cache; 493 1.6 lukem 494 1.1 fvdl mutex_lock(&dupreq_lock); 495 1.1 fvdl /* 496 1.1 fvdl * Find space for the new entry, either by 497 1.1 fvdl * reusing an old entry, or by mallocing a new one 498 1.1 fvdl */ 499 1.1 fvdl victim = uc->uc_fifo[uc->uc_nextvictim]; 500 1.1 fvdl if (victim != NULL) { 501 1.1 fvdl loc = CACHE_LOC(xprt, victim->cache_xid); 502 1.1 fvdl for (vicp = &uc->uc_entries[loc]; 503 1.1 fvdl *vicp != NULL && *vicp != victim; 504 1.1 fvdl vicp = &(*vicp)->cache_next) 505 1.1 fvdl ; 506 1.1 fvdl if (*vicp == NULL) { 507 1.1 fvdl warnx(cache_set_str, cache_set_err1); 508 1.1 fvdl mutex_unlock(&dupreq_lock); 509 1.1 fvdl return; 510 1.1 fvdl } 511 1.1 fvdl *vicp = victim->cache_next; /* remove from cache */ 512 1.1 fvdl newbuf = victim->cache_reply; 513 1.1 fvdl } else { 514 1.1 fvdl victim = ALLOC(struct cache_node, 1); 515 1.1 fvdl if (victim == NULL) { 516 1.1 fvdl warnx(cache_set_str, cache_set_err2); 517 1.1 fvdl mutex_unlock(&dupreq_lock); 518 1.1 fvdl return; 519 1.1 fvdl } 520 1.4 christos newbuf = mem_alloc(su->su_iosz); 521 1.1 fvdl if (newbuf == NULL) { 522 1.1 fvdl warnx(cache_set_str, cache_set_err3); 523 1.1 fvdl FREE(victim, struct cache_node, 1); 524 1.1 fvdl mutex_unlock(&dupreq_lock); 525 1.1 fvdl return; 526 1.1 fvdl } 527 1.1 fvdl } 528 1.1 fvdl 529 1.1 fvdl /* 530 1.1 fvdl * Store it away 531 1.1 fvdl */ 532 1.1 fvdl #ifdef RPC_CACHE_DEBUG 533 1.1 fvdl if (nconf = getnetconfigent(xprt->xp_netid)) { 534 1.1 fvdl uaddr = taddr2uaddr(nconf, &xprt->xp_rtaddr); 535 1.1 fvdl freenetconfigent(nconf); 536 1.1 fvdl printf( 537 1.1 fvdl "cache set for xid= %x prog=%d vers=%d proc=%d for rmtaddr=%s\n", 538 1.1 fvdl su->su_xid, uc->uc_prog, uc->uc_vers, 539 1.1 fvdl uc->uc_proc, uaddr); 540 1.1 fvdl free(uaddr); 541 1.1 fvdl } 542 1.1 fvdl #endif 543 1.1 fvdl victim->cache_replylen = replylen; 544 1.1 fvdl victim->cache_reply = rpc_buffer(xprt); 545 1.1 fvdl rpc_buffer(xprt) = newbuf; 546 1.13 christos _DIAGASSERT(__type_fit(u_int, su->su_iosz)); 547 1.13 christos xdrmem_create(&(su->su_xdrs), rpc_buffer(xprt), (u_int)su->su_iosz, 548 1.13 christos XDR_ENCODE); 549 1.1 fvdl victim->cache_xid = su->su_xid; 550 1.1 fvdl victim->cache_proc = uc->uc_proc; 551 1.1 fvdl victim->cache_vers = uc->uc_vers; 552 1.1 fvdl victim->cache_prog = uc->uc_prog; 553 1.1 fvdl victim->cache_addr = xprt->xp_rtaddr; 554 1.1 fvdl victim->cache_addr.buf = ALLOC(char, xprt->xp_rtaddr.len); 555 1.1 fvdl (void) memcpy(victim->cache_addr.buf, xprt->xp_rtaddr.buf, 556 1.4 christos (size_t)xprt->xp_rtaddr.len); 557 1.1 fvdl loc = CACHE_LOC(xprt, victim->cache_xid); 558 1.1 fvdl victim->cache_next = uc->uc_entries[loc]; 559 1.1 fvdl uc->uc_entries[loc] = victim; 560 1.1 fvdl uc->uc_fifo[uc->uc_nextvictim++] = victim; 561 1.1 fvdl uc->uc_nextvictim %= uc->uc_size; 562 1.1 fvdl mutex_unlock(&dupreq_lock); 563 1.1 fvdl } 564 1.1 fvdl 565 1.1 fvdl /* 566 1.1 fvdl * Try to get an entry from the cache 567 1.1 fvdl * return 1 if found, 0 if not found and set the stage for cache_set() 568 1.1 fvdl */ 569 1.1 fvdl static int 570 1.14 matt cache_get(SVCXPRT *xprt, struct rpc_msg *msg, char **replyp, size_t *replylenp) 571 1.1 fvdl { 572 1.1 fvdl u_int loc; 573 1.4 christos cache_ptr ent; 574 1.6 lukem struct svc_dg_data *su; 575 1.6 lukem struct cl_cache *uc; 576 1.1 fvdl #ifdef RPC_CACHE_DEBUG 577 1.1 fvdl struct netconfig *nconf; 578 1.1 fvdl char *uaddr; 579 1.1 fvdl #endif 580 1.6 lukem 581 1.6 lukem _DIAGASSERT(xprt != NULL); 582 1.6 lukem _DIAGASSERT(msg != NULL); 583 1.6 lukem _DIAGASSERT(replyp != NULL); 584 1.6 lukem _DIAGASSERT(replylenp != NULL); 585 1.6 lukem 586 1.6 lukem su = su_data(xprt); 587 1.6 lukem uc = (struct cl_cache *) su->su_cache; 588 1.1 fvdl 589 1.1 fvdl mutex_lock(&dupreq_lock); 590 1.1 fvdl loc = CACHE_LOC(xprt, su->su_xid); 591 1.1 fvdl for (ent = uc->uc_entries[loc]; ent != NULL; ent = ent->cache_next) { 592 1.1 fvdl if (ent->cache_xid == su->su_xid && 593 1.1 fvdl ent->cache_proc == msg->rm_call.cb_proc && 594 1.1 fvdl ent->cache_vers == msg->rm_call.cb_vers && 595 1.1 fvdl ent->cache_prog == msg->rm_call.cb_prog && 596 1.1 fvdl ent->cache_addr.len == xprt->xp_rtaddr.len && 597 1.1 fvdl (memcmp(ent->cache_addr.buf, xprt->xp_rtaddr.buf, 598 1.1 fvdl xprt->xp_rtaddr.len) == 0)) { 599 1.1 fvdl #ifdef RPC_CACHE_DEBUG 600 1.1 fvdl if (nconf = getnetconfigent(xprt->xp_netid)) { 601 1.1 fvdl uaddr = taddr2uaddr(nconf, &xprt->xp_rtaddr); 602 1.1 fvdl freenetconfigent(nconf); 603 1.1 fvdl printf( 604 1.1 fvdl "cache entry found for xid=%x prog=%d vers=%d proc=%d for rmtaddr=%s\n", 605 1.1 fvdl su->su_xid, msg->rm_call.cb_prog, 606 1.1 fvdl msg->rm_call.cb_vers, 607 1.1 fvdl msg->rm_call.cb_proc, uaddr); 608 1.1 fvdl free(uaddr); 609 1.1 fvdl } 610 1.1 fvdl #endif 611 1.1 fvdl *replyp = ent->cache_reply; 612 1.1 fvdl *replylenp = ent->cache_replylen; 613 1.1 fvdl mutex_unlock(&dupreq_lock); 614 1.1 fvdl return (1); 615 1.1 fvdl } 616 1.1 fvdl } 617 1.1 fvdl /* 618 1.1 fvdl * Failed to find entry 619 1.1 fvdl * Remember a few things so we can do a set later 620 1.1 fvdl */ 621 1.1 fvdl uc->uc_proc = msg->rm_call.cb_proc; 622 1.1 fvdl uc->uc_vers = msg->rm_call.cb_vers; 623 1.1 fvdl uc->uc_prog = msg->rm_call.cb_prog; 624 1.1 fvdl mutex_unlock(&dupreq_lock); 625 1.1 fvdl return (0); 626 1.1 fvdl } 627