svc_dg.c revision 1.14 1 1.14 matt /* $NetBSD: svc_dg.c,v 1.14 2012/03/20 17:14:50 matt Exp $ */
2 1.1 fvdl
3 1.1 fvdl /*
4 1.1 fvdl * Sun RPC is a product of Sun Microsystems, Inc. and is provided for
5 1.1 fvdl * unrestricted use provided that this legend is included on all tape
6 1.1 fvdl * media and as a part of the software program in whole or part. Users
7 1.1 fvdl * may copy or modify Sun RPC without charge, but are not authorized
8 1.1 fvdl * to license or distribute it to anyone else except as part of a product or
9 1.1 fvdl * program developed by the user.
10 1.1 fvdl *
11 1.1 fvdl * SUN RPC IS PROVIDED AS IS WITH NO WARRANTIES OF ANY KIND INCLUDING THE
12 1.1 fvdl * WARRANTIES OF DESIGN, MERCHANTIBILITY AND FITNESS FOR A PARTICULAR
13 1.1 fvdl * PURPOSE, OR ARISING FROM A COURSE OF DEALING, USAGE OR TRADE PRACTICE.
14 1.1 fvdl *
15 1.1 fvdl * Sun RPC is provided with no support and without any obligation on the
16 1.1 fvdl * part of Sun Microsystems, Inc. to assist in its use, correction,
17 1.1 fvdl * modification or enhancement.
18 1.1 fvdl *
19 1.1 fvdl * SUN MICROSYSTEMS, INC. SHALL HAVE NO LIABILITY WITH RESPECT TO THE
20 1.1 fvdl * INFRINGEMENT OF COPYRIGHTS, TRADE SECRETS OR ANY PATENTS BY SUN RPC
21 1.1 fvdl * OR ANY PART THEREOF.
22 1.1 fvdl *
23 1.1 fvdl * In no event will Sun Microsystems, Inc. be liable for any lost revenue
24 1.1 fvdl * or profits or other special, indirect and consequential damages, even if
25 1.1 fvdl * Sun has been advised of the possibility of such damages.
26 1.1 fvdl *
27 1.1 fvdl * Sun Microsystems, Inc.
28 1.1 fvdl * 2550 Garcia Avenue
29 1.1 fvdl * Mountain View, California 94043
30 1.1 fvdl */
31 1.1 fvdl
32 1.1 fvdl /*
33 1.1 fvdl * Copyright (c) 1986-1991 by Sun Microsystems Inc.
34 1.1 fvdl */
35 1.1 fvdl
36 1.1 fvdl /* #ident "@(#)svc_dg.c 1.17 94/04/24 SMI" */
37 1.1 fvdl
38 1.1 fvdl
39 1.1 fvdl /*
40 1.1 fvdl * svc_dg.c, Server side for connectionless RPC.
41 1.1 fvdl *
42 1.1 fvdl * Does some caching in the hopes of achieving execute-at-most-once semantics.
43 1.1 fvdl */
44 1.10 itojun
45 1.10 itojun #include <sys/cdefs.h>
46 1.10 itojun #if defined(LIBC_SCCS) && !defined(lint)
47 1.14 matt __RCSID("$NetBSD: svc_dg.c,v 1.14 2012/03/20 17:14:50 matt Exp $");
48 1.10 itojun #endif
49 1.1 fvdl
50 1.1 fvdl #include "namespace.h"
51 1.1 fvdl #include "reentrant.h"
52 1.1 fvdl #include <sys/types.h>
53 1.1 fvdl #include <sys/socket.h>
54 1.1 fvdl #include <rpc/rpc.h>
55 1.6 lukem #include <assert.h>
56 1.1 fvdl #include <errno.h>
57 1.1 fvdl #include <unistd.h>
58 1.1 fvdl #include <stdio.h>
59 1.1 fvdl #include <stdlib.h>
60 1.2 thorpej #include <string.h>
61 1.1 fvdl #ifdef RPC_CACHE_DEBUG
62 1.1 fvdl #include <netconfig.h>
63 1.1 fvdl #include <netdir.h>
64 1.1 fvdl #endif
65 1.1 fvdl #include <err.h>
66 1.1 fvdl
67 1.7 fvdl #include "rpc_internal.h"
68 1.1 fvdl #include "svc_dg.h"
69 1.1 fvdl
70 1.1 fvdl #define su_data(xprt) ((struct svc_dg_data *)(xprt->xp_p2))
71 1.1 fvdl #define rpc_buffer(xprt) ((xprt)->xp_p1)
72 1.1 fvdl
73 1.1 fvdl #ifdef __weak_alias
74 1.1 fvdl __weak_alias(svc_dg_create,_svc_dg_create)
75 1.1 fvdl #endif
76 1.1 fvdl
77 1.1 fvdl #ifndef MAX
78 1.1 fvdl #define MAX(a, b) (((a) > (b)) ? (a) : (b))
79 1.1 fvdl #endif
80 1.1 fvdl
81 1.14 matt static void svc_dg_ops(SVCXPRT *);
82 1.14 matt static enum xprt_stat svc_dg_stat(SVCXPRT *);
83 1.14 matt static bool_t svc_dg_recv(SVCXPRT *, struct rpc_msg *);
84 1.14 matt static bool_t svc_dg_reply(SVCXPRT *, struct rpc_msg *);
85 1.14 matt static bool_t svc_dg_getargs(SVCXPRT *, xdrproc_t, caddr_t);
86 1.14 matt static bool_t svc_dg_freeargs(SVCXPRT *, xdrproc_t, caddr_t);
87 1.14 matt static void svc_dg_destroy(SVCXPRT *);
88 1.14 matt static bool_t svc_dg_control(SVCXPRT *, const u_int, void *);
89 1.14 matt static int cache_get(SVCXPRT *, struct rpc_msg *, char **, size_t *);
90 1.14 matt static void cache_set(SVCXPRT *, size_t);
91 1.1 fvdl
92 1.1 fvdl /*
93 1.1 fvdl * Usage:
94 1.1 fvdl * xprt = svc_dg_create(sock, sendsize, recvsize);
95 1.1 fvdl * Does other connectionless specific initializations.
96 1.1 fvdl * Once *xprt is initialized, it is registered.
97 1.1 fvdl * see (svc.h, xprt_register). If recvsize or sendsize are 0 suitable
98 1.1 fvdl * system defaults are chosen.
99 1.1 fvdl * The routines returns NULL if a problem occurred.
100 1.1 fvdl */
101 1.1 fvdl static const char svc_dg_str[] = "svc_dg_create: %s";
102 1.1 fvdl static const char svc_dg_err1[] = "could not get transport information";
103 1.1 fvdl static const char svc_dg_err2[] = " transport does not support data transfer";
104 1.1 fvdl static const char __no_mem_str[] = "out of memory";
105 1.1 fvdl
106 1.1 fvdl SVCXPRT *
107 1.14 matt svc_dg_create(int fd, u_int sendsize, u_int recvsize)
108 1.1 fvdl {
109 1.1 fvdl SVCXPRT *xprt;
110 1.1 fvdl struct svc_dg_data *su = NULL;
111 1.1 fvdl struct __rpc_sockinfo si;
112 1.1 fvdl struct sockaddr_storage ss;
113 1.1 fvdl socklen_t slen;
114 1.1 fvdl
115 1.1 fvdl if (!__rpc_fd2sockinfo(fd, &si)) {
116 1.1 fvdl warnx(svc_dg_str, svc_dg_err1);
117 1.4 christos return (NULL);
118 1.1 fvdl }
119 1.1 fvdl /*
120 1.1 fvdl * Find the receive and the send size
121 1.1 fvdl */
122 1.1 fvdl sendsize = __rpc_get_t_size(si.si_af, si.si_proto, (int)sendsize);
123 1.1 fvdl recvsize = __rpc_get_t_size(si.si_af, si.si_proto, (int)recvsize);
124 1.1 fvdl if ((sendsize == 0) || (recvsize == 0)) {
125 1.1 fvdl warnx(svc_dg_str, svc_dg_err2);
126 1.4 christos return (NULL);
127 1.1 fvdl }
128 1.1 fvdl
129 1.4 christos xprt = mem_alloc(sizeof (SVCXPRT));
130 1.1 fvdl if (xprt == NULL)
131 1.1 fvdl goto freedata;
132 1.4 christos memset(xprt, 0, sizeof (SVCXPRT));
133 1.1 fvdl
134 1.4 christos su = mem_alloc(sizeof (*su));
135 1.1 fvdl if (su == NULL)
136 1.1 fvdl goto freedata;
137 1.1 fvdl su->su_iosz = ((MAX(sendsize, recvsize) + 3) / 4) * 4;
138 1.11 yamt if ((rpc_buffer(xprt) = malloc(su->su_iosz)) == NULL)
139 1.1 fvdl goto freedata;
140 1.13 christos _DIAGASSERT(__type_fit(u_int, su->su_iosz));
141 1.13 christos xdrmem_create(&(su->su_xdrs), rpc_buffer(xprt), (u_int)su->su_iosz,
142 1.1 fvdl XDR_DECODE);
143 1.1 fvdl su->su_cache = NULL;
144 1.1 fvdl xprt->xp_fd = fd;
145 1.4 christos xprt->xp_p2 = (caddr_t)(void *)su;
146 1.1 fvdl xprt->xp_verf.oa_base = su->su_verfbody;
147 1.1 fvdl svc_dg_ops(xprt);
148 1.1 fvdl xprt->xp_rtaddr.maxlen = sizeof (struct sockaddr_storage);
149 1.1 fvdl
150 1.1 fvdl slen = sizeof ss;
151 1.4 christos if (getsockname(fd, (struct sockaddr *)(void *)&ss, &slen) < 0)
152 1.1 fvdl goto freedata;
153 1.1 fvdl xprt->xp_ltaddr.buf = mem_alloc(sizeof (struct sockaddr_storage));
154 1.1 fvdl xprt->xp_ltaddr.maxlen = sizeof (struct sockaddr_storage);
155 1.1 fvdl xprt->xp_ltaddr.len = slen;
156 1.1 fvdl memcpy(xprt->xp_ltaddr.buf, &ss, slen);
157 1.1 fvdl
158 1.1 fvdl xprt_register(xprt);
159 1.1 fvdl return (xprt);
160 1.1 fvdl freedata:
161 1.1 fvdl (void) warnx(svc_dg_str, __no_mem_str);
162 1.1 fvdl if (xprt) {
163 1.1 fvdl if (su)
164 1.4 christos (void) mem_free(su, sizeof (*su));
165 1.4 christos (void) mem_free(xprt, sizeof (SVCXPRT));
166 1.1 fvdl }
167 1.4 christos return (NULL);
168 1.1 fvdl }
169 1.1 fvdl
170 1.4 christos /*ARGSUSED*/
171 1.1 fvdl static enum xprt_stat
172 1.14 matt svc_dg_stat(SVCXPRT *xprt)
173 1.1 fvdl {
174 1.1 fvdl return (XPRT_IDLE);
175 1.1 fvdl }
176 1.1 fvdl
177 1.1 fvdl static bool_t
178 1.14 matt svc_dg_recv(SVCXPRT *xprt, struct rpc_msg *msg)
179 1.1 fvdl {
180 1.6 lukem struct svc_dg_data *su;
181 1.6 lukem XDR *xdrs;
182 1.1 fvdl char *reply;
183 1.1 fvdl struct sockaddr_storage ss;
184 1.1 fvdl socklen_t alen;
185 1.1 fvdl size_t replylen;
186 1.8 thorpej ssize_t rlen;
187 1.1 fvdl
188 1.6 lukem _DIAGASSERT(xprt != NULL);
189 1.6 lukem _DIAGASSERT(msg != NULL);
190 1.6 lukem
191 1.6 lukem su = su_data(xprt);
192 1.6 lukem xdrs = &(su->su_xdrs);
193 1.6 lukem
194 1.1 fvdl again:
195 1.1 fvdl alen = sizeof (struct sockaddr_storage);
196 1.1 fvdl rlen = recvfrom(xprt->xp_fd, rpc_buffer(xprt), su->su_iosz, 0,
197 1.4 christos (struct sockaddr *)(void *)&ss, &alen);
198 1.1 fvdl if (rlen == -1 && errno == EINTR)
199 1.1 fvdl goto again;
200 1.8 thorpej if (rlen == -1 || (rlen < (ssize_t)(4 * sizeof (u_int32_t))))
201 1.1 fvdl return (FALSE);
202 1.3 fvdl if (xprt->xp_rtaddr.len < alen) {
203 1.3 fvdl if (xprt->xp_rtaddr.len != 0)
204 1.3 fvdl mem_free(xprt->xp_rtaddr.buf, xprt->xp_rtaddr.len);
205 1.3 fvdl xprt->xp_rtaddr.buf = mem_alloc(alen);
206 1.3 fvdl xprt->xp_rtaddr.len = alen;
207 1.3 fvdl }
208 1.1 fvdl memcpy(xprt->xp_rtaddr.buf, &ss, alen);
209 1.1 fvdl #ifdef PORTMAP
210 1.1 fvdl if (ss.ss_family == AF_INET) {
211 1.1 fvdl xprt->xp_raddr = *(struct sockaddr_in *)xprt->xp_rtaddr.buf;
212 1.1 fvdl xprt->xp_addrlen = sizeof (struct sockaddr_in);
213 1.1 fvdl }
214 1.1 fvdl #endif
215 1.1 fvdl xdrs->x_op = XDR_DECODE;
216 1.1 fvdl XDR_SETPOS(xdrs, 0);
217 1.1 fvdl if (! xdr_callmsg(xdrs, msg)) {
218 1.1 fvdl return (FALSE);
219 1.1 fvdl }
220 1.1 fvdl su->su_xid = msg->rm_xid;
221 1.1 fvdl if (su->su_cache != NULL) {
222 1.1 fvdl if (cache_get(xprt, msg, &reply, &replylen)) {
223 1.1 fvdl (void)sendto(xprt->xp_fd, reply, replylen, 0,
224 1.4 christos (struct sockaddr *)(void *)&ss, alen);
225 1.1 fvdl return (FALSE);
226 1.1 fvdl }
227 1.1 fvdl }
228 1.1 fvdl return (TRUE);
229 1.1 fvdl }
230 1.1 fvdl
231 1.1 fvdl static bool_t
232 1.14 matt svc_dg_reply(SVCXPRT *xprt, struct rpc_msg *msg)
233 1.1 fvdl {
234 1.6 lukem struct svc_dg_data *su;
235 1.6 lukem XDR *xdrs;
236 1.1 fvdl bool_t stat = FALSE;
237 1.1 fvdl size_t slen;
238 1.1 fvdl
239 1.6 lukem _DIAGASSERT(xprt != NULL);
240 1.6 lukem _DIAGASSERT(msg != NULL);
241 1.6 lukem
242 1.6 lukem su = su_data(xprt);
243 1.6 lukem xdrs = &(su->su_xdrs);
244 1.6 lukem
245 1.1 fvdl xdrs->x_op = XDR_ENCODE;
246 1.1 fvdl XDR_SETPOS(xdrs, 0);
247 1.1 fvdl msg->rm_xid = su->su_xid;
248 1.1 fvdl if (xdr_replymsg(xdrs, msg)) {
249 1.1 fvdl slen = XDR_GETPOS(xdrs);
250 1.1 fvdl if (sendto(xprt->xp_fd, rpc_buffer(xprt), slen, 0,
251 1.1 fvdl (struct sockaddr *)xprt->xp_rtaddr.buf,
252 1.8 thorpej (socklen_t)xprt->xp_rtaddr.len) == (ssize_t) slen) {
253 1.1 fvdl stat = TRUE;
254 1.4 christos if (su->su_cache)
255 1.1 fvdl cache_set(xprt, slen);
256 1.1 fvdl }
257 1.1 fvdl }
258 1.1 fvdl return (stat);
259 1.1 fvdl }
260 1.1 fvdl
261 1.1 fvdl static bool_t
262 1.14 matt svc_dg_getargs(SVCXPRT *xprt, xdrproc_t xdr_args, caddr_t args_ptr)
263 1.1 fvdl {
264 1.1 fvdl return (*xdr_args)(&(su_data(xprt)->su_xdrs), args_ptr);
265 1.1 fvdl }
266 1.1 fvdl
267 1.1 fvdl static bool_t
268 1.14 matt svc_dg_freeargs(SVCXPRT *xprt, xdrproc_t xdr_args, caddr_t args_ptr)
269 1.1 fvdl {
270 1.6 lukem XDR *xdrs;
271 1.1 fvdl
272 1.6 lukem _DIAGASSERT(xprt != NULL);
273 1.6 lukem
274 1.6 lukem xdrs = &(su_data(xprt)->su_xdrs);
275 1.1 fvdl xdrs->x_op = XDR_FREE;
276 1.1 fvdl return (*xdr_args)(xdrs, args_ptr);
277 1.1 fvdl }
278 1.1 fvdl
279 1.1 fvdl static void
280 1.14 matt svc_dg_destroy(SVCXPRT *xprt)
281 1.1 fvdl {
282 1.6 lukem struct svc_dg_data *su;
283 1.6 lukem
284 1.6 lukem _DIAGASSERT(xprt != NULL);
285 1.6 lukem
286 1.6 lukem su = su_data(xprt);
287 1.1 fvdl
288 1.1 fvdl xprt_unregister(xprt);
289 1.1 fvdl if (xprt->xp_fd != -1)
290 1.1 fvdl (void)close(xprt->xp_fd);
291 1.1 fvdl XDR_DESTROY(&(su->su_xdrs));
292 1.1 fvdl (void) mem_free(rpc_buffer(xprt), su->su_iosz);
293 1.4 christos (void) mem_free(su, sizeof (*su));
294 1.1 fvdl if (xprt->xp_rtaddr.buf)
295 1.1 fvdl (void) mem_free(xprt->xp_rtaddr.buf, xprt->xp_rtaddr.maxlen);
296 1.1 fvdl if (xprt->xp_ltaddr.buf)
297 1.1 fvdl (void) mem_free(xprt->xp_ltaddr.buf, xprt->xp_ltaddr.maxlen);
298 1.1 fvdl if (xprt->xp_tp)
299 1.1 fvdl (void) free(xprt->xp_tp);
300 1.4 christos (void) mem_free(xprt, sizeof (SVCXPRT));
301 1.1 fvdl }
302 1.1 fvdl
303 1.1 fvdl static bool_t
304 1.4 christos /*ARGSUSED*/
305 1.14 matt svc_dg_control(SVCXPRT *xprt, const u_int rq, void *in)
306 1.1 fvdl {
307 1.1 fvdl return (FALSE);
308 1.1 fvdl }
309 1.1 fvdl
310 1.1 fvdl static void
311 1.14 matt svc_dg_ops(SVCXPRT *xprt)
312 1.1 fvdl {
313 1.1 fvdl static struct xp_ops ops;
314 1.1 fvdl static struct xp_ops2 ops2;
315 1.9 thorpej #ifdef _REENTRANT
316 1.1 fvdl extern mutex_t ops_lock;
317 1.1 fvdl #endif
318 1.1 fvdl
319 1.6 lukem _DIAGASSERT(xprt != NULL);
320 1.6 lukem
321 1.1 fvdl /* VARIABLES PROTECTED BY ops_lock: ops */
322 1.1 fvdl
323 1.1 fvdl mutex_lock(&ops_lock);
324 1.1 fvdl if (ops.xp_recv == NULL) {
325 1.1 fvdl ops.xp_recv = svc_dg_recv;
326 1.1 fvdl ops.xp_stat = svc_dg_stat;
327 1.1 fvdl ops.xp_getargs = svc_dg_getargs;
328 1.1 fvdl ops.xp_reply = svc_dg_reply;
329 1.1 fvdl ops.xp_freeargs = svc_dg_freeargs;
330 1.1 fvdl ops.xp_destroy = svc_dg_destroy;
331 1.1 fvdl ops2.xp_control = svc_dg_control;
332 1.1 fvdl }
333 1.1 fvdl xprt->xp_ops = &ops;
334 1.1 fvdl xprt->xp_ops2 = &ops2;
335 1.1 fvdl mutex_unlock(&ops_lock);
336 1.1 fvdl }
337 1.1 fvdl
338 1.1 fvdl /* The CACHING COMPONENT */
339 1.1 fvdl
340 1.1 fvdl /*
341 1.1 fvdl * Could have been a separate file, but some part of it depends upon the
342 1.1 fvdl * private structure of the client handle.
343 1.1 fvdl *
344 1.1 fvdl * Fifo cache for cl server
345 1.1 fvdl * Copies pointers to reply buffers into fifo cache
346 1.1 fvdl * Buffers are sent again if retransmissions are detected.
347 1.1 fvdl */
348 1.1 fvdl
349 1.1 fvdl #define SPARSENESS 4 /* 75% sparse */
350 1.1 fvdl
351 1.1 fvdl #define ALLOC(type, size) \
352 1.12 christos mem_alloc((sizeof (type) * (size)))
353 1.1 fvdl
354 1.1 fvdl #define MEMZERO(addr, type, size) \
355 1.4 christos (void) memset((void *) (addr), 0, sizeof (type) * (int) (size))
356 1.1 fvdl
357 1.1 fvdl #define FREE(addr, type, size) \
358 1.4 christos mem_free((addr), (sizeof (type) * (size)))
359 1.1 fvdl
360 1.1 fvdl /*
361 1.1 fvdl * An entry in the cache
362 1.1 fvdl */
363 1.1 fvdl typedef struct cache_node *cache_ptr;
364 1.1 fvdl struct cache_node {
365 1.1 fvdl /*
366 1.1 fvdl * Index into cache is xid, proc, vers, prog and address
367 1.1 fvdl */
368 1.1 fvdl u_int32_t cache_xid;
369 1.1 fvdl rpcproc_t cache_proc;
370 1.1 fvdl rpcvers_t cache_vers;
371 1.1 fvdl rpcprog_t cache_prog;
372 1.1 fvdl struct netbuf cache_addr;
373 1.1 fvdl /*
374 1.1 fvdl * The cached reply and length
375 1.1 fvdl */
376 1.1 fvdl char *cache_reply;
377 1.1 fvdl size_t cache_replylen;
378 1.1 fvdl /*
379 1.1 fvdl * Next node on the list, if there is a collision
380 1.1 fvdl */
381 1.1 fvdl cache_ptr cache_next;
382 1.1 fvdl };
383 1.1 fvdl
384 1.1 fvdl /*
385 1.1 fvdl * The entire cache
386 1.1 fvdl */
387 1.1 fvdl struct cl_cache {
388 1.1 fvdl u_int uc_size; /* size of cache */
389 1.1 fvdl cache_ptr *uc_entries; /* hash table of entries in cache */
390 1.1 fvdl cache_ptr *uc_fifo; /* fifo list of entries in cache */
391 1.1 fvdl u_int uc_nextvictim; /* points to next victim in fifo list */
392 1.1 fvdl rpcprog_t uc_prog; /* saved program number */
393 1.1 fvdl rpcvers_t uc_vers; /* saved version number */
394 1.1 fvdl rpcproc_t uc_proc; /* saved procedure number */
395 1.1 fvdl };
396 1.1 fvdl
397 1.1 fvdl
398 1.1 fvdl /*
399 1.1 fvdl * the hashing function
400 1.1 fvdl */
401 1.1 fvdl #define CACHE_LOC(transp, xid) \
402 1.1 fvdl (xid % (SPARSENESS * ((struct cl_cache *) \
403 1.1 fvdl su_data(transp)->su_cache)->uc_size))
404 1.1 fvdl
405 1.9 thorpej #ifdef _REENTRANT
406 1.1 fvdl extern mutex_t dupreq_lock;
407 1.1 fvdl #endif
408 1.1 fvdl
409 1.1 fvdl /*
410 1.1 fvdl * Enable use of the cache. Returns 1 on success, 0 on failure.
411 1.1 fvdl * Note: there is no disable.
412 1.1 fvdl */
413 1.1 fvdl static const char cache_enable_str[] = "svc_enablecache: %s %s";
414 1.1 fvdl static const char alloc_err[] = "could not allocate cache ";
415 1.1 fvdl static const char enable_err[] = "cache already enabled";
416 1.1 fvdl
417 1.1 fvdl int
418 1.14 matt svc_dg_enablecache(SVCXPRT *transp, u_int size)
419 1.1 fvdl {
420 1.6 lukem struct svc_dg_data *su;
421 1.1 fvdl struct cl_cache *uc;
422 1.1 fvdl
423 1.6 lukem _DIAGASSERT(transp != NULL);
424 1.6 lukem
425 1.6 lukem su = su_data(transp);
426 1.6 lukem
427 1.1 fvdl mutex_lock(&dupreq_lock);
428 1.1 fvdl if (su->su_cache != NULL) {
429 1.1 fvdl (void) warnx(cache_enable_str, enable_err, " ");
430 1.1 fvdl mutex_unlock(&dupreq_lock);
431 1.1 fvdl return (0);
432 1.1 fvdl }
433 1.1 fvdl uc = ALLOC(struct cl_cache, 1);
434 1.1 fvdl if (uc == NULL) {
435 1.1 fvdl warnx(cache_enable_str, alloc_err, " ");
436 1.1 fvdl mutex_unlock(&dupreq_lock);
437 1.1 fvdl return (0);
438 1.1 fvdl }
439 1.1 fvdl uc->uc_size = size;
440 1.1 fvdl uc->uc_nextvictim = 0;
441 1.1 fvdl uc->uc_entries = ALLOC(cache_ptr, size * SPARSENESS);
442 1.1 fvdl if (uc->uc_entries == NULL) {
443 1.1 fvdl warnx(cache_enable_str, alloc_err, "data");
444 1.1 fvdl FREE(uc, struct cl_cache, 1);
445 1.1 fvdl mutex_unlock(&dupreq_lock);
446 1.1 fvdl return (0);
447 1.1 fvdl }
448 1.1 fvdl MEMZERO(uc->uc_entries, cache_ptr, size * SPARSENESS);
449 1.1 fvdl uc->uc_fifo = ALLOC(cache_ptr, size);
450 1.1 fvdl if (uc->uc_fifo == NULL) {
451 1.1 fvdl warnx(cache_enable_str, alloc_err, "fifo");
452 1.1 fvdl FREE(uc->uc_entries, cache_ptr, size * SPARSENESS);
453 1.1 fvdl FREE(uc, struct cl_cache, 1);
454 1.1 fvdl mutex_unlock(&dupreq_lock);
455 1.1 fvdl return (0);
456 1.1 fvdl }
457 1.1 fvdl MEMZERO(uc->uc_fifo, cache_ptr, size);
458 1.4 christos su->su_cache = (char *)(void *)uc;
459 1.1 fvdl mutex_unlock(&dupreq_lock);
460 1.1 fvdl return (1);
461 1.1 fvdl }
462 1.1 fvdl
463 1.1 fvdl /*
464 1.1 fvdl * Set an entry in the cache. It assumes that the uc entry is set from
465 1.1 fvdl * the earlier call to cache_get() for the same procedure. This will always
466 1.1 fvdl * happen because cache_get() is calle by svc_dg_recv and cache_set() is called
467 1.1 fvdl * by svc_dg_reply(). All this hoopla because the right RPC parameters are
468 1.1 fvdl * not available at svc_dg_reply time.
469 1.1 fvdl */
470 1.1 fvdl
471 1.1 fvdl static const char cache_set_str[] = "cache_set: %s";
472 1.1 fvdl static const char cache_set_err1[] = "victim not found";
473 1.1 fvdl static const char cache_set_err2[] = "victim alloc failed";
474 1.1 fvdl static const char cache_set_err3[] = "could not allocate new rpc buffer";
475 1.1 fvdl
476 1.1 fvdl static void
477 1.14 matt cache_set(SVCXPRT *xprt, size_t replylen)
478 1.1 fvdl {
479 1.4 christos cache_ptr victim;
480 1.4 christos cache_ptr *vicp;
481 1.6 lukem struct svc_dg_data *su;
482 1.6 lukem struct cl_cache *uc;
483 1.1 fvdl u_int loc;
484 1.1 fvdl char *newbuf;
485 1.1 fvdl #ifdef RPC_CACHE_DEBUG
486 1.1 fvdl struct netconfig *nconf;
487 1.1 fvdl char *uaddr;
488 1.1 fvdl #endif
489 1.1 fvdl
490 1.6 lukem _DIAGASSERT(xprt != NULL);
491 1.6 lukem
492 1.6 lukem su = su_data(xprt);
493 1.6 lukem uc = (struct cl_cache *) su->su_cache;
494 1.6 lukem
495 1.1 fvdl mutex_lock(&dupreq_lock);
496 1.1 fvdl /*
497 1.1 fvdl * Find space for the new entry, either by
498 1.1 fvdl * reusing an old entry, or by mallocing a new one
499 1.1 fvdl */
500 1.1 fvdl victim = uc->uc_fifo[uc->uc_nextvictim];
501 1.1 fvdl if (victim != NULL) {
502 1.1 fvdl loc = CACHE_LOC(xprt, victim->cache_xid);
503 1.1 fvdl for (vicp = &uc->uc_entries[loc];
504 1.1 fvdl *vicp != NULL && *vicp != victim;
505 1.1 fvdl vicp = &(*vicp)->cache_next)
506 1.1 fvdl ;
507 1.1 fvdl if (*vicp == NULL) {
508 1.1 fvdl warnx(cache_set_str, cache_set_err1);
509 1.1 fvdl mutex_unlock(&dupreq_lock);
510 1.1 fvdl return;
511 1.1 fvdl }
512 1.1 fvdl *vicp = victim->cache_next; /* remove from cache */
513 1.1 fvdl newbuf = victim->cache_reply;
514 1.1 fvdl } else {
515 1.1 fvdl victim = ALLOC(struct cache_node, 1);
516 1.1 fvdl if (victim == NULL) {
517 1.1 fvdl warnx(cache_set_str, cache_set_err2);
518 1.1 fvdl mutex_unlock(&dupreq_lock);
519 1.1 fvdl return;
520 1.1 fvdl }
521 1.4 christos newbuf = mem_alloc(su->su_iosz);
522 1.1 fvdl if (newbuf == NULL) {
523 1.1 fvdl warnx(cache_set_str, cache_set_err3);
524 1.1 fvdl FREE(victim, struct cache_node, 1);
525 1.1 fvdl mutex_unlock(&dupreq_lock);
526 1.1 fvdl return;
527 1.1 fvdl }
528 1.1 fvdl }
529 1.1 fvdl
530 1.1 fvdl /*
531 1.1 fvdl * Store it away
532 1.1 fvdl */
533 1.1 fvdl #ifdef RPC_CACHE_DEBUG
534 1.1 fvdl if (nconf = getnetconfigent(xprt->xp_netid)) {
535 1.1 fvdl uaddr = taddr2uaddr(nconf, &xprt->xp_rtaddr);
536 1.1 fvdl freenetconfigent(nconf);
537 1.1 fvdl printf(
538 1.1 fvdl "cache set for xid= %x prog=%d vers=%d proc=%d for rmtaddr=%s\n",
539 1.1 fvdl su->su_xid, uc->uc_prog, uc->uc_vers,
540 1.1 fvdl uc->uc_proc, uaddr);
541 1.1 fvdl free(uaddr);
542 1.1 fvdl }
543 1.1 fvdl #endif
544 1.1 fvdl victim->cache_replylen = replylen;
545 1.1 fvdl victim->cache_reply = rpc_buffer(xprt);
546 1.1 fvdl rpc_buffer(xprt) = newbuf;
547 1.13 christos _DIAGASSERT(__type_fit(u_int, su->su_iosz));
548 1.13 christos xdrmem_create(&(su->su_xdrs), rpc_buffer(xprt), (u_int)su->su_iosz,
549 1.13 christos XDR_ENCODE);
550 1.1 fvdl victim->cache_xid = su->su_xid;
551 1.1 fvdl victim->cache_proc = uc->uc_proc;
552 1.1 fvdl victim->cache_vers = uc->uc_vers;
553 1.1 fvdl victim->cache_prog = uc->uc_prog;
554 1.1 fvdl victim->cache_addr = xprt->xp_rtaddr;
555 1.1 fvdl victim->cache_addr.buf = ALLOC(char, xprt->xp_rtaddr.len);
556 1.1 fvdl (void) memcpy(victim->cache_addr.buf, xprt->xp_rtaddr.buf,
557 1.4 christos (size_t)xprt->xp_rtaddr.len);
558 1.1 fvdl loc = CACHE_LOC(xprt, victim->cache_xid);
559 1.1 fvdl victim->cache_next = uc->uc_entries[loc];
560 1.1 fvdl uc->uc_entries[loc] = victim;
561 1.1 fvdl uc->uc_fifo[uc->uc_nextvictim++] = victim;
562 1.1 fvdl uc->uc_nextvictim %= uc->uc_size;
563 1.1 fvdl mutex_unlock(&dupreq_lock);
564 1.1 fvdl }
565 1.1 fvdl
566 1.1 fvdl /*
567 1.1 fvdl * Try to get an entry from the cache
568 1.1 fvdl * return 1 if found, 0 if not found and set the stage for cache_set()
569 1.1 fvdl */
570 1.1 fvdl static int
571 1.14 matt cache_get(SVCXPRT *xprt, struct rpc_msg *msg, char **replyp, size_t *replylenp)
572 1.1 fvdl {
573 1.1 fvdl u_int loc;
574 1.4 christos cache_ptr ent;
575 1.6 lukem struct svc_dg_data *su;
576 1.6 lukem struct cl_cache *uc;
577 1.1 fvdl #ifdef RPC_CACHE_DEBUG
578 1.1 fvdl struct netconfig *nconf;
579 1.1 fvdl char *uaddr;
580 1.1 fvdl #endif
581 1.6 lukem
582 1.6 lukem _DIAGASSERT(xprt != NULL);
583 1.6 lukem _DIAGASSERT(msg != NULL);
584 1.6 lukem _DIAGASSERT(replyp != NULL);
585 1.6 lukem _DIAGASSERT(replylenp != NULL);
586 1.6 lukem
587 1.6 lukem su = su_data(xprt);
588 1.6 lukem uc = (struct cl_cache *) su->su_cache;
589 1.1 fvdl
590 1.1 fvdl mutex_lock(&dupreq_lock);
591 1.1 fvdl loc = CACHE_LOC(xprt, su->su_xid);
592 1.1 fvdl for (ent = uc->uc_entries[loc]; ent != NULL; ent = ent->cache_next) {
593 1.1 fvdl if (ent->cache_xid == su->su_xid &&
594 1.1 fvdl ent->cache_proc == msg->rm_call.cb_proc &&
595 1.1 fvdl ent->cache_vers == msg->rm_call.cb_vers &&
596 1.1 fvdl ent->cache_prog == msg->rm_call.cb_prog &&
597 1.1 fvdl ent->cache_addr.len == xprt->xp_rtaddr.len &&
598 1.1 fvdl (memcmp(ent->cache_addr.buf, xprt->xp_rtaddr.buf,
599 1.1 fvdl xprt->xp_rtaddr.len) == 0)) {
600 1.1 fvdl #ifdef RPC_CACHE_DEBUG
601 1.1 fvdl if (nconf = getnetconfigent(xprt->xp_netid)) {
602 1.1 fvdl uaddr = taddr2uaddr(nconf, &xprt->xp_rtaddr);
603 1.1 fvdl freenetconfigent(nconf);
604 1.1 fvdl printf(
605 1.1 fvdl "cache entry found for xid=%x prog=%d vers=%d proc=%d for rmtaddr=%s\n",
606 1.1 fvdl su->su_xid, msg->rm_call.cb_prog,
607 1.1 fvdl msg->rm_call.cb_vers,
608 1.1 fvdl msg->rm_call.cb_proc, uaddr);
609 1.1 fvdl free(uaddr);
610 1.1 fvdl }
611 1.1 fvdl #endif
612 1.1 fvdl *replyp = ent->cache_reply;
613 1.1 fvdl *replylenp = ent->cache_replylen;
614 1.1 fvdl mutex_unlock(&dupreq_lock);
615 1.1 fvdl return (1);
616 1.1 fvdl }
617 1.1 fvdl }
618 1.1 fvdl /*
619 1.1 fvdl * Failed to find entry
620 1.1 fvdl * Remember a few things so we can do a set later
621 1.1 fvdl */
622 1.1 fvdl uc->uc_proc = msg->rm_call.cb_proc;
623 1.1 fvdl uc->uc_vers = msg->rm_call.cb_vers;
624 1.1 fvdl uc->uc_prog = msg->rm_call.cb_prog;
625 1.1 fvdl mutex_unlock(&dupreq_lock);
626 1.1 fvdl return (0);
627 1.1 fvdl }
628