svc_dg.c revision 1.18 1 1.18 christos /* $NetBSD: svc_dg.c,v 1.18 2024/01/23 17:24:38 christos Exp $ */
2 1.1 fvdl
3 1.1 fvdl /*
4 1.17 tron * Copyright (c) 2010, Oracle America, Inc.
5 1.17 tron *
6 1.17 tron * Redistribution and use in source and binary forms, with or without
7 1.17 tron * modification, are permitted provided that the following conditions are
8 1.17 tron * met:
9 1.17 tron *
10 1.17 tron * * Redistributions of source code must retain the above copyright
11 1.17 tron * notice, this list of conditions and the following disclaimer.
12 1.17 tron * * Redistributions in binary form must reproduce the above
13 1.17 tron * copyright notice, this list of conditions and the following
14 1.17 tron * disclaimer in the documentation and/or other materials
15 1.17 tron * provided with the distribution.
16 1.17 tron * * Neither the name of the "Oracle America, Inc." nor the names of its
17 1.17 tron * contributors may be used to endorse or promote products derived
18 1.17 tron * from this software without specific prior written permission.
19 1.17 tron *
20 1.17 tron * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21 1.17 tron * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22 1.17 tron * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23 1.17 tron * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
24 1.17 tron * COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
25 1.17 tron * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 1.17 tron * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
27 1.17 tron * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 1.17 tron * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
29 1.17 tron * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
30 1.17 tron * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31 1.17 tron * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32 1.1 fvdl */
33 1.1 fvdl
34 1.1 fvdl /*
35 1.1 fvdl * Copyright (c) 1986-1991 by Sun Microsystems Inc.
36 1.1 fvdl */
37 1.1 fvdl
38 1.1 fvdl /* #ident "@(#)svc_dg.c 1.17 94/04/24 SMI" */
39 1.1 fvdl
40 1.1 fvdl
41 1.1 fvdl /*
42 1.1 fvdl * svc_dg.c, Server side for connectionless RPC.
43 1.1 fvdl *
44 1.1 fvdl * Does some caching in the hopes of achieving execute-at-most-once semantics.
45 1.1 fvdl */
46 1.10 itojun
47 1.10 itojun #include <sys/cdefs.h>
48 1.10 itojun #if defined(LIBC_SCCS) && !defined(lint)
49 1.18 christos __RCSID("$NetBSD: svc_dg.c,v 1.18 2024/01/23 17:24:38 christos Exp $");
50 1.10 itojun #endif
51 1.1 fvdl
52 1.1 fvdl #include "namespace.h"
53 1.1 fvdl #include "reentrant.h"
54 1.1 fvdl #include <sys/types.h>
55 1.1 fvdl #include <sys/socket.h>
56 1.1 fvdl #include <rpc/rpc.h>
57 1.6 lukem #include <assert.h>
58 1.1 fvdl #include <errno.h>
59 1.1 fvdl #include <unistd.h>
60 1.1 fvdl #include <stdio.h>
61 1.1 fvdl #include <stdlib.h>
62 1.2 thorpej #include <string.h>
63 1.1 fvdl #ifdef RPC_CACHE_DEBUG
64 1.1 fvdl #include <netconfig.h>
65 1.1 fvdl #include <netdir.h>
66 1.1 fvdl #endif
67 1.1 fvdl #include <err.h>
68 1.1 fvdl
69 1.16 christos #include "svc_fdset.h"
70 1.7 fvdl #include "rpc_internal.h"
71 1.1 fvdl #include "svc_dg.h"
72 1.1 fvdl
73 1.1 fvdl #define su_data(xprt) ((struct svc_dg_data *)(xprt->xp_p2))
74 1.1 fvdl #define rpc_buffer(xprt) ((xprt)->xp_p1)
75 1.1 fvdl
76 1.1 fvdl #ifdef __weak_alias
77 1.1 fvdl __weak_alias(svc_dg_create,_svc_dg_create)
78 1.1 fvdl #endif
79 1.1 fvdl
80 1.1 fvdl #ifndef MAX
81 1.1 fvdl #define MAX(a, b) (((a) > (b)) ? (a) : (b))
82 1.1 fvdl #endif
83 1.1 fvdl
84 1.14 matt static void svc_dg_ops(SVCXPRT *);
85 1.14 matt static enum xprt_stat svc_dg_stat(SVCXPRT *);
86 1.14 matt static bool_t svc_dg_recv(SVCXPRT *, struct rpc_msg *);
87 1.14 matt static bool_t svc_dg_reply(SVCXPRT *, struct rpc_msg *);
88 1.14 matt static bool_t svc_dg_getargs(SVCXPRT *, xdrproc_t, caddr_t);
89 1.14 matt static bool_t svc_dg_freeargs(SVCXPRT *, xdrproc_t, caddr_t);
90 1.14 matt static void svc_dg_destroy(SVCXPRT *);
91 1.14 matt static bool_t svc_dg_control(SVCXPRT *, const u_int, void *);
92 1.14 matt static int cache_get(SVCXPRT *, struct rpc_msg *, char **, size_t *);
93 1.14 matt static void cache_set(SVCXPRT *, size_t);
94 1.1 fvdl
95 1.1 fvdl /*
96 1.1 fvdl * Usage:
97 1.1 fvdl * xprt = svc_dg_create(sock, sendsize, recvsize);
98 1.1 fvdl * Does other connectionless specific initializations.
99 1.1 fvdl * Once *xprt is initialized, it is registered.
100 1.1 fvdl * see (svc.h, xprt_register). If recvsize or sendsize are 0 suitable
101 1.1 fvdl * system defaults are chosen.
102 1.1 fvdl * The routines returns NULL if a problem occurred.
103 1.1 fvdl */
104 1.1 fvdl static const char svc_dg_str[] = "svc_dg_create: %s";
105 1.1 fvdl static const char svc_dg_err1[] = "could not get transport information";
106 1.1 fvdl static const char svc_dg_err2[] = " transport does not support data transfer";
107 1.1 fvdl static const char __no_mem_str[] = "out of memory";
108 1.1 fvdl
109 1.1 fvdl SVCXPRT *
110 1.14 matt svc_dg_create(int fd, u_int sendsize, u_int recvsize)
111 1.1 fvdl {
112 1.1 fvdl SVCXPRT *xprt;
113 1.1 fvdl struct svc_dg_data *su = NULL;
114 1.1 fvdl struct __rpc_sockinfo si;
115 1.1 fvdl struct sockaddr_storage ss;
116 1.1 fvdl socklen_t slen;
117 1.1 fvdl
118 1.1 fvdl if (!__rpc_fd2sockinfo(fd, &si)) {
119 1.1 fvdl warnx(svc_dg_str, svc_dg_err1);
120 1.4 christos return (NULL);
121 1.1 fvdl }
122 1.1 fvdl /*
123 1.1 fvdl * Find the receive and the send size
124 1.1 fvdl */
125 1.1 fvdl sendsize = __rpc_get_t_size(si.si_af, si.si_proto, (int)sendsize);
126 1.1 fvdl recvsize = __rpc_get_t_size(si.si_af, si.si_proto, (int)recvsize);
127 1.1 fvdl if ((sendsize == 0) || (recvsize == 0)) {
128 1.1 fvdl warnx(svc_dg_str, svc_dg_err2);
129 1.4 christos return (NULL);
130 1.1 fvdl }
131 1.1 fvdl
132 1.4 christos xprt = mem_alloc(sizeof (SVCXPRT));
133 1.1 fvdl if (xprt == NULL)
134 1.15 christos goto outofmem;
135 1.4 christos memset(xprt, 0, sizeof (SVCXPRT));
136 1.1 fvdl
137 1.4 christos su = mem_alloc(sizeof (*su));
138 1.1 fvdl if (su == NULL)
139 1.15 christos goto outofmem;
140 1.1 fvdl su->su_iosz = ((MAX(sendsize, recvsize) + 3) / 4) * 4;
141 1.11 yamt if ((rpc_buffer(xprt) = malloc(su->su_iosz)) == NULL)
142 1.15 christos goto outofmem;
143 1.13 christos _DIAGASSERT(__type_fit(u_int, su->su_iosz));
144 1.13 christos xdrmem_create(&(su->su_xdrs), rpc_buffer(xprt), (u_int)su->su_iosz,
145 1.1 fvdl XDR_DECODE);
146 1.1 fvdl su->su_cache = NULL;
147 1.1 fvdl xprt->xp_fd = fd;
148 1.4 christos xprt->xp_p2 = (caddr_t)(void *)su;
149 1.1 fvdl xprt->xp_verf.oa_base = su->su_verfbody;
150 1.1 fvdl svc_dg_ops(xprt);
151 1.1 fvdl xprt->xp_rtaddr.maxlen = sizeof (struct sockaddr_storage);
152 1.1 fvdl
153 1.1 fvdl slen = sizeof ss;
154 1.4 christos if (getsockname(fd, (struct sockaddr *)(void *)&ss, &slen) < 0)
155 1.16 christos goto freedata;
156 1.1 fvdl xprt->xp_ltaddr.buf = mem_alloc(sizeof (struct sockaddr_storage));
157 1.1 fvdl xprt->xp_ltaddr.maxlen = sizeof (struct sockaddr_storage);
158 1.1 fvdl xprt->xp_ltaddr.len = slen;
159 1.1 fvdl memcpy(xprt->xp_ltaddr.buf, &ss, slen);
160 1.1 fvdl
161 1.15 christos if (!xprt_register(xprt))
162 1.15 christos goto freedata;
163 1.1 fvdl return (xprt);
164 1.15 christos
165 1.15 christos outofmem:
166 1.15 christos (void) warnx(svc_dg_str, __no_mem_str);
167 1.1 fvdl freedata:
168 1.1 fvdl if (xprt) {
169 1.1 fvdl if (su)
170 1.4 christos (void) mem_free(su, sizeof (*su));
171 1.4 christos (void) mem_free(xprt, sizeof (SVCXPRT));
172 1.1 fvdl }
173 1.4 christos return (NULL);
174 1.1 fvdl }
175 1.1 fvdl
176 1.4 christos /*ARGSUSED*/
177 1.1 fvdl static enum xprt_stat
178 1.14 matt svc_dg_stat(SVCXPRT *xprt)
179 1.1 fvdl {
180 1.1 fvdl return (XPRT_IDLE);
181 1.1 fvdl }
182 1.1 fvdl
183 1.1 fvdl static bool_t
184 1.14 matt svc_dg_recv(SVCXPRT *xprt, struct rpc_msg *msg)
185 1.1 fvdl {
186 1.6 lukem struct svc_dg_data *su;
187 1.6 lukem XDR *xdrs;
188 1.1 fvdl char *reply;
189 1.1 fvdl struct sockaddr_storage ss;
190 1.1 fvdl socklen_t alen;
191 1.1 fvdl size_t replylen;
192 1.8 thorpej ssize_t rlen;
193 1.1 fvdl
194 1.6 lukem _DIAGASSERT(xprt != NULL);
195 1.6 lukem _DIAGASSERT(msg != NULL);
196 1.6 lukem
197 1.6 lukem su = su_data(xprt);
198 1.6 lukem xdrs = &(su->su_xdrs);
199 1.6 lukem
200 1.1 fvdl again:
201 1.1 fvdl alen = sizeof (struct sockaddr_storage);
202 1.1 fvdl rlen = recvfrom(xprt->xp_fd, rpc_buffer(xprt), su->su_iosz, 0,
203 1.4 christos (struct sockaddr *)(void *)&ss, &alen);
204 1.1 fvdl if (rlen == -1 && errno == EINTR)
205 1.1 fvdl goto again;
206 1.8 thorpej if (rlen == -1 || (rlen < (ssize_t)(4 * sizeof (u_int32_t))))
207 1.1 fvdl return (FALSE);
208 1.3 fvdl if (xprt->xp_rtaddr.len < alen) {
209 1.3 fvdl if (xprt->xp_rtaddr.len != 0)
210 1.3 fvdl mem_free(xprt->xp_rtaddr.buf, xprt->xp_rtaddr.len);
211 1.3 fvdl xprt->xp_rtaddr.buf = mem_alloc(alen);
212 1.3 fvdl xprt->xp_rtaddr.len = alen;
213 1.3 fvdl }
214 1.1 fvdl memcpy(xprt->xp_rtaddr.buf, &ss, alen);
215 1.1 fvdl #ifdef PORTMAP
216 1.1 fvdl if (ss.ss_family == AF_INET) {
217 1.1 fvdl xprt->xp_raddr = *(struct sockaddr_in *)xprt->xp_rtaddr.buf;
218 1.1 fvdl xprt->xp_addrlen = sizeof (struct sockaddr_in);
219 1.1 fvdl }
220 1.1 fvdl #endif
221 1.1 fvdl xdrs->x_op = XDR_DECODE;
222 1.1 fvdl XDR_SETPOS(xdrs, 0);
223 1.1 fvdl if (! xdr_callmsg(xdrs, msg)) {
224 1.1 fvdl return (FALSE);
225 1.1 fvdl }
226 1.1 fvdl su->su_xid = msg->rm_xid;
227 1.1 fvdl if (su->su_cache != NULL) {
228 1.1 fvdl if (cache_get(xprt, msg, &reply, &replylen)) {
229 1.1 fvdl (void)sendto(xprt->xp_fd, reply, replylen, 0,
230 1.4 christos (struct sockaddr *)(void *)&ss, alen);
231 1.1 fvdl return (FALSE);
232 1.1 fvdl }
233 1.1 fvdl }
234 1.1 fvdl return (TRUE);
235 1.1 fvdl }
236 1.1 fvdl
237 1.1 fvdl static bool_t
238 1.14 matt svc_dg_reply(SVCXPRT *xprt, struct rpc_msg *msg)
239 1.1 fvdl {
240 1.6 lukem struct svc_dg_data *su;
241 1.6 lukem XDR *xdrs;
242 1.1 fvdl bool_t stat = FALSE;
243 1.1 fvdl size_t slen;
244 1.1 fvdl
245 1.6 lukem _DIAGASSERT(xprt != NULL);
246 1.6 lukem _DIAGASSERT(msg != NULL);
247 1.6 lukem
248 1.6 lukem su = su_data(xprt);
249 1.6 lukem xdrs = &(su->su_xdrs);
250 1.6 lukem
251 1.1 fvdl xdrs->x_op = XDR_ENCODE;
252 1.1 fvdl XDR_SETPOS(xdrs, 0);
253 1.1 fvdl msg->rm_xid = su->su_xid;
254 1.1 fvdl if (xdr_replymsg(xdrs, msg)) {
255 1.1 fvdl slen = XDR_GETPOS(xdrs);
256 1.1 fvdl if (sendto(xprt->xp_fd, rpc_buffer(xprt), slen, 0,
257 1.1 fvdl (struct sockaddr *)xprt->xp_rtaddr.buf,
258 1.8 thorpej (socklen_t)xprt->xp_rtaddr.len) == (ssize_t) slen) {
259 1.1 fvdl stat = TRUE;
260 1.4 christos if (su->su_cache)
261 1.1 fvdl cache_set(xprt, slen);
262 1.1 fvdl }
263 1.1 fvdl }
264 1.1 fvdl return (stat);
265 1.1 fvdl }
266 1.1 fvdl
267 1.1 fvdl static bool_t
268 1.14 matt svc_dg_getargs(SVCXPRT *xprt, xdrproc_t xdr_args, caddr_t args_ptr)
269 1.1 fvdl {
270 1.1 fvdl return (*xdr_args)(&(su_data(xprt)->su_xdrs), args_ptr);
271 1.1 fvdl }
272 1.1 fvdl
273 1.1 fvdl static bool_t
274 1.14 matt svc_dg_freeargs(SVCXPRT *xprt, xdrproc_t xdr_args, caddr_t args_ptr)
275 1.1 fvdl {
276 1.6 lukem XDR *xdrs;
277 1.1 fvdl
278 1.6 lukem _DIAGASSERT(xprt != NULL);
279 1.6 lukem
280 1.6 lukem xdrs = &(su_data(xprt)->su_xdrs);
281 1.1 fvdl xdrs->x_op = XDR_FREE;
282 1.1 fvdl return (*xdr_args)(xdrs, args_ptr);
283 1.1 fvdl }
284 1.1 fvdl
285 1.1 fvdl static void
286 1.14 matt svc_dg_destroy(SVCXPRT *xprt)
287 1.1 fvdl {
288 1.6 lukem struct svc_dg_data *su;
289 1.6 lukem
290 1.6 lukem _DIAGASSERT(xprt != NULL);
291 1.6 lukem
292 1.6 lukem su = su_data(xprt);
293 1.1 fvdl
294 1.1 fvdl xprt_unregister(xprt);
295 1.1 fvdl if (xprt->xp_fd != -1)
296 1.1 fvdl (void)close(xprt->xp_fd);
297 1.1 fvdl XDR_DESTROY(&(su->su_xdrs));
298 1.1 fvdl (void) mem_free(rpc_buffer(xprt), su->su_iosz);
299 1.4 christos (void) mem_free(su, sizeof (*su));
300 1.1 fvdl if (xprt->xp_rtaddr.buf)
301 1.1 fvdl (void) mem_free(xprt->xp_rtaddr.buf, xprt->xp_rtaddr.maxlen);
302 1.1 fvdl if (xprt->xp_ltaddr.buf)
303 1.1 fvdl (void) mem_free(xprt->xp_ltaddr.buf, xprt->xp_ltaddr.maxlen);
304 1.1 fvdl if (xprt->xp_tp)
305 1.1 fvdl (void) free(xprt->xp_tp);
306 1.4 christos (void) mem_free(xprt, sizeof (SVCXPRT));
307 1.1 fvdl }
308 1.1 fvdl
309 1.1 fvdl static bool_t
310 1.4 christos /*ARGSUSED*/
311 1.14 matt svc_dg_control(SVCXPRT *xprt, const u_int rq, void *in)
312 1.1 fvdl {
313 1.1 fvdl return (FALSE);
314 1.1 fvdl }
315 1.1 fvdl
316 1.1 fvdl static void
317 1.14 matt svc_dg_ops(SVCXPRT *xprt)
318 1.1 fvdl {
319 1.1 fvdl static struct xp_ops ops;
320 1.1 fvdl static struct xp_ops2 ops2;
321 1.1 fvdl
322 1.6 lukem _DIAGASSERT(xprt != NULL);
323 1.6 lukem
324 1.1 fvdl /* VARIABLES PROTECTED BY ops_lock: ops */
325 1.1 fvdl
326 1.1 fvdl mutex_lock(&ops_lock);
327 1.1 fvdl if (ops.xp_recv == NULL) {
328 1.1 fvdl ops.xp_recv = svc_dg_recv;
329 1.1 fvdl ops.xp_stat = svc_dg_stat;
330 1.1 fvdl ops.xp_getargs = svc_dg_getargs;
331 1.1 fvdl ops.xp_reply = svc_dg_reply;
332 1.1 fvdl ops.xp_freeargs = svc_dg_freeargs;
333 1.1 fvdl ops.xp_destroy = svc_dg_destroy;
334 1.1 fvdl ops2.xp_control = svc_dg_control;
335 1.1 fvdl }
336 1.1 fvdl xprt->xp_ops = &ops;
337 1.1 fvdl xprt->xp_ops2 = &ops2;
338 1.1 fvdl mutex_unlock(&ops_lock);
339 1.1 fvdl }
340 1.1 fvdl
341 1.1 fvdl /* The CACHING COMPONENT */
342 1.1 fvdl
343 1.1 fvdl /*
344 1.1 fvdl * Could have been a separate file, but some part of it depends upon the
345 1.1 fvdl * private structure of the client handle.
346 1.1 fvdl *
347 1.1 fvdl * Fifo cache for cl server
348 1.1 fvdl * Copies pointers to reply buffers into fifo cache
349 1.1 fvdl * Buffers are sent again if retransmissions are detected.
350 1.1 fvdl */
351 1.1 fvdl
352 1.1 fvdl #define SPARSENESS 4 /* 75% sparse */
353 1.1 fvdl
354 1.1 fvdl #define ALLOC(type, size) \
355 1.12 christos mem_alloc((sizeof (type) * (size)))
356 1.1 fvdl
357 1.1 fvdl #define MEMZERO(addr, type, size) \
358 1.4 christos (void) memset((void *) (addr), 0, sizeof (type) * (int) (size))
359 1.1 fvdl
360 1.1 fvdl #define FREE(addr, type, size) \
361 1.4 christos mem_free((addr), (sizeof (type) * (size)))
362 1.1 fvdl
363 1.1 fvdl /*
364 1.1 fvdl * An entry in the cache
365 1.1 fvdl */
366 1.1 fvdl typedef struct cache_node *cache_ptr;
367 1.1 fvdl struct cache_node {
368 1.1 fvdl /*
369 1.1 fvdl * Index into cache is xid, proc, vers, prog and address
370 1.1 fvdl */
371 1.1 fvdl u_int32_t cache_xid;
372 1.1 fvdl rpcproc_t cache_proc;
373 1.1 fvdl rpcvers_t cache_vers;
374 1.1 fvdl rpcprog_t cache_prog;
375 1.1 fvdl struct netbuf cache_addr;
376 1.1 fvdl /*
377 1.1 fvdl * The cached reply and length
378 1.1 fvdl */
379 1.1 fvdl char *cache_reply;
380 1.1 fvdl size_t cache_replylen;
381 1.1 fvdl /*
382 1.1 fvdl * Next node on the list, if there is a collision
383 1.1 fvdl */
384 1.1 fvdl cache_ptr cache_next;
385 1.1 fvdl };
386 1.1 fvdl
387 1.1 fvdl /*
388 1.1 fvdl * The entire cache
389 1.1 fvdl */
390 1.1 fvdl struct cl_cache {
391 1.1 fvdl u_int uc_size; /* size of cache */
392 1.1 fvdl cache_ptr *uc_entries; /* hash table of entries in cache */
393 1.1 fvdl cache_ptr *uc_fifo; /* fifo list of entries in cache */
394 1.1 fvdl u_int uc_nextvictim; /* points to next victim in fifo list */
395 1.1 fvdl rpcprog_t uc_prog; /* saved program number */
396 1.1 fvdl rpcvers_t uc_vers; /* saved version number */
397 1.1 fvdl rpcproc_t uc_proc; /* saved procedure number */
398 1.1 fvdl };
399 1.1 fvdl
400 1.1 fvdl
401 1.1 fvdl /*
402 1.1 fvdl * the hashing function
403 1.1 fvdl */
404 1.1 fvdl #define CACHE_LOC(transp, xid) \
405 1.1 fvdl (xid % (SPARSENESS * ((struct cl_cache *) \
406 1.1 fvdl su_data(transp)->su_cache)->uc_size))
407 1.1 fvdl
408 1.1 fvdl /*
409 1.1 fvdl * Enable use of the cache. Returns 1 on success, 0 on failure.
410 1.1 fvdl * Note: there is no disable.
411 1.1 fvdl */
412 1.1 fvdl static const char cache_enable_str[] = "svc_enablecache: %s %s";
413 1.1 fvdl static const char alloc_err[] = "could not allocate cache ";
414 1.1 fvdl static const char enable_err[] = "cache already enabled";
415 1.1 fvdl
416 1.1 fvdl int
417 1.14 matt svc_dg_enablecache(SVCXPRT *transp, u_int size)
418 1.1 fvdl {
419 1.6 lukem struct svc_dg_data *su;
420 1.1 fvdl struct cl_cache *uc;
421 1.1 fvdl
422 1.6 lukem _DIAGASSERT(transp != NULL);
423 1.6 lukem
424 1.6 lukem su = su_data(transp);
425 1.6 lukem
426 1.1 fvdl mutex_lock(&dupreq_lock);
427 1.1 fvdl if (su->su_cache != NULL) {
428 1.1 fvdl (void) warnx(cache_enable_str, enable_err, " ");
429 1.1 fvdl mutex_unlock(&dupreq_lock);
430 1.1 fvdl return (0);
431 1.1 fvdl }
432 1.1 fvdl uc = ALLOC(struct cl_cache, 1);
433 1.1 fvdl if (uc == NULL) {
434 1.1 fvdl warnx(cache_enable_str, alloc_err, " ");
435 1.1 fvdl mutex_unlock(&dupreq_lock);
436 1.1 fvdl return (0);
437 1.1 fvdl }
438 1.1 fvdl uc->uc_size = size;
439 1.1 fvdl uc->uc_nextvictim = 0;
440 1.1 fvdl uc->uc_entries = ALLOC(cache_ptr, size * SPARSENESS);
441 1.1 fvdl if (uc->uc_entries == NULL) {
442 1.1 fvdl warnx(cache_enable_str, alloc_err, "data");
443 1.1 fvdl FREE(uc, struct cl_cache, 1);
444 1.1 fvdl mutex_unlock(&dupreq_lock);
445 1.1 fvdl return (0);
446 1.1 fvdl }
447 1.1 fvdl MEMZERO(uc->uc_entries, cache_ptr, size * SPARSENESS);
448 1.1 fvdl uc->uc_fifo = ALLOC(cache_ptr, size);
449 1.1 fvdl if (uc->uc_fifo == NULL) {
450 1.1 fvdl warnx(cache_enable_str, alloc_err, "fifo");
451 1.1 fvdl FREE(uc->uc_entries, cache_ptr, size * SPARSENESS);
452 1.1 fvdl FREE(uc, struct cl_cache, 1);
453 1.1 fvdl mutex_unlock(&dupreq_lock);
454 1.1 fvdl return (0);
455 1.1 fvdl }
456 1.1 fvdl MEMZERO(uc->uc_fifo, cache_ptr, size);
457 1.4 christos su->su_cache = (char *)(void *)uc;
458 1.1 fvdl mutex_unlock(&dupreq_lock);
459 1.1 fvdl return (1);
460 1.1 fvdl }
461 1.1 fvdl
462 1.1 fvdl /*
463 1.1 fvdl * Set an entry in the cache. It assumes that the uc entry is set from
464 1.1 fvdl * the earlier call to cache_get() for the same procedure. This will always
465 1.1 fvdl * happen because cache_get() is calle by svc_dg_recv and cache_set() is called
466 1.1 fvdl * by svc_dg_reply(). All this hoopla because the right RPC parameters are
467 1.1 fvdl * not available at svc_dg_reply time.
468 1.1 fvdl */
469 1.1 fvdl
470 1.1 fvdl static const char cache_set_str[] = "cache_set: %s";
471 1.1 fvdl static const char cache_set_err1[] = "victim not found";
472 1.1 fvdl static const char cache_set_err2[] = "victim alloc failed";
473 1.1 fvdl static const char cache_set_err3[] = "could not allocate new rpc buffer";
474 1.1 fvdl
475 1.1 fvdl static void
476 1.14 matt cache_set(SVCXPRT *xprt, size_t replylen)
477 1.1 fvdl {
478 1.4 christos cache_ptr victim;
479 1.4 christos cache_ptr *vicp;
480 1.6 lukem struct svc_dg_data *su;
481 1.6 lukem struct cl_cache *uc;
482 1.1 fvdl u_int loc;
483 1.1 fvdl char *newbuf;
484 1.1 fvdl #ifdef RPC_CACHE_DEBUG
485 1.1 fvdl struct netconfig *nconf;
486 1.1 fvdl char *uaddr;
487 1.1 fvdl #endif
488 1.1 fvdl
489 1.6 lukem _DIAGASSERT(xprt != NULL);
490 1.6 lukem
491 1.6 lukem su = su_data(xprt);
492 1.6 lukem uc = (struct cl_cache *) su->su_cache;
493 1.6 lukem
494 1.1 fvdl mutex_lock(&dupreq_lock);
495 1.1 fvdl /*
496 1.1 fvdl * Find space for the new entry, either by
497 1.1 fvdl * reusing an old entry, or by mallocing a new one
498 1.1 fvdl */
499 1.1 fvdl victim = uc->uc_fifo[uc->uc_nextvictim];
500 1.1 fvdl if (victim != NULL) {
501 1.1 fvdl loc = CACHE_LOC(xprt, victim->cache_xid);
502 1.1 fvdl for (vicp = &uc->uc_entries[loc];
503 1.1 fvdl *vicp != NULL && *vicp != victim;
504 1.1 fvdl vicp = &(*vicp)->cache_next)
505 1.1 fvdl ;
506 1.1 fvdl if (*vicp == NULL) {
507 1.1 fvdl warnx(cache_set_str, cache_set_err1);
508 1.1 fvdl mutex_unlock(&dupreq_lock);
509 1.1 fvdl return;
510 1.1 fvdl }
511 1.1 fvdl *vicp = victim->cache_next; /* remove from cache */
512 1.1 fvdl newbuf = victim->cache_reply;
513 1.1 fvdl } else {
514 1.1 fvdl victim = ALLOC(struct cache_node, 1);
515 1.1 fvdl if (victim == NULL) {
516 1.1 fvdl warnx(cache_set_str, cache_set_err2);
517 1.1 fvdl mutex_unlock(&dupreq_lock);
518 1.1 fvdl return;
519 1.1 fvdl }
520 1.4 christos newbuf = mem_alloc(su->su_iosz);
521 1.1 fvdl if (newbuf == NULL) {
522 1.1 fvdl warnx(cache_set_str, cache_set_err3);
523 1.1 fvdl FREE(victim, struct cache_node, 1);
524 1.1 fvdl mutex_unlock(&dupreq_lock);
525 1.1 fvdl return;
526 1.1 fvdl }
527 1.1 fvdl }
528 1.1 fvdl
529 1.1 fvdl /*
530 1.1 fvdl * Store it away
531 1.1 fvdl */
532 1.1 fvdl #ifdef RPC_CACHE_DEBUG
533 1.1 fvdl if (nconf = getnetconfigent(xprt->xp_netid)) {
534 1.1 fvdl uaddr = taddr2uaddr(nconf, &xprt->xp_rtaddr);
535 1.1 fvdl freenetconfigent(nconf);
536 1.1 fvdl printf(
537 1.1 fvdl "cache set for xid= %x prog=%d vers=%d proc=%d for rmtaddr=%s\n",
538 1.1 fvdl su->su_xid, uc->uc_prog, uc->uc_vers,
539 1.1 fvdl uc->uc_proc, uaddr);
540 1.1 fvdl free(uaddr);
541 1.1 fvdl }
542 1.1 fvdl #endif
543 1.1 fvdl victim->cache_replylen = replylen;
544 1.1 fvdl victim->cache_reply = rpc_buffer(xprt);
545 1.1 fvdl rpc_buffer(xprt) = newbuf;
546 1.13 christos _DIAGASSERT(__type_fit(u_int, su->su_iosz));
547 1.13 christos xdrmem_create(&(su->su_xdrs), rpc_buffer(xprt), (u_int)su->su_iosz,
548 1.13 christos XDR_ENCODE);
549 1.1 fvdl victim->cache_xid = su->su_xid;
550 1.1 fvdl victim->cache_proc = uc->uc_proc;
551 1.1 fvdl victim->cache_vers = uc->uc_vers;
552 1.1 fvdl victim->cache_prog = uc->uc_prog;
553 1.1 fvdl victim->cache_addr = xprt->xp_rtaddr;
554 1.1 fvdl victim->cache_addr.buf = ALLOC(char, xprt->xp_rtaddr.len);
555 1.1 fvdl (void) memcpy(victim->cache_addr.buf, xprt->xp_rtaddr.buf,
556 1.4 christos (size_t)xprt->xp_rtaddr.len);
557 1.1 fvdl loc = CACHE_LOC(xprt, victim->cache_xid);
558 1.1 fvdl victim->cache_next = uc->uc_entries[loc];
559 1.1 fvdl uc->uc_entries[loc] = victim;
560 1.1 fvdl uc->uc_fifo[uc->uc_nextvictim++] = victim;
561 1.1 fvdl uc->uc_nextvictim %= uc->uc_size;
562 1.1 fvdl mutex_unlock(&dupreq_lock);
563 1.1 fvdl }
564 1.1 fvdl
565 1.1 fvdl /*
566 1.1 fvdl * Try to get an entry from the cache
567 1.1 fvdl * return 1 if found, 0 if not found and set the stage for cache_set()
568 1.1 fvdl */
569 1.1 fvdl static int
570 1.14 matt cache_get(SVCXPRT *xprt, struct rpc_msg *msg, char **replyp, size_t *replylenp)
571 1.1 fvdl {
572 1.1 fvdl u_int loc;
573 1.4 christos cache_ptr ent;
574 1.6 lukem struct svc_dg_data *su;
575 1.6 lukem struct cl_cache *uc;
576 1.1 fvdl #ifdef RPC_CACHE_DEBUG
577 1.1 fvdl struct netconfig *nconf;
578 1.1 fvdl char *uaddr;
579 1.1 fvdl #endif
580 1.6 lukem
581 1.6 lukem _DIAGASSERT(xprt != NULL);
582 1.6 lukem _DIAGASSERT(msg != NULL);
583 1.6 lukem _DIAGASSERT(replyp != NULL);
584 1.6 lukem _DIAGASSERT(replylenp != NULL);
585 1.6 lukem
586 1.6 lukem su = su_data(xprt);
587 1.6 lukem uc = (struct cl_cache *) su->su_cache;
588 1.1 fvdl
589 1.1 fvdl mutex_lock(&dupreq_lock);
590 1.1 fvdl loc = CACHE_LOC(xprt, su->su_xid);
591 1.1 fvdl for (ent = uc->uc_entries[loc]; ent != NULL; ent = ent->cache_next) {
592 1.1 fvdl if (ent->cache_xid == su->su_xid &&
593 1.1 fvdl ent->cache_proc == msg->rm_call.cb_proc &&
594 1.1 fvdl ent->cache_vers == msg->rm_call.cb_vers &&
595 1.1 fvdl ent->cache_prog == msg->rm_call.cb_prog &&
596 1.1 fvdl ent->cache_addr.len == xprt->xp_rtaddr.len &&
597 1.1 fvdl (memcmp(ent->cache_addr.buf, xprt->xp_rtaddr.buf,
598 1.1 fvdl xprt->xp_rtaddr.len) == 0)) {
599 1.1 fvdl #ifdef RPC_CACHE_DEBUG
600 1.1 fvdl if (nconf = getnetconfigent(xprt->xp_netid)) {
601 1.1 fvdl uaddr = taddr2uaddr(nconf, &xprt->xp_rtaddr);
602 1.1 fvdl freenetconfigent(nconf);
603 1.1 fvdl printf(
604 1.1 fvdl "cache entry found for xid=%x prog=%d vers=%d proc=%d for rmtaddr=%s\n",
605 1.1 fvdl su->su_xid, msg->rm_call.cb_prog,
606 1.1 fvdl msg->rm_call.cb_vers,
607 1.1 fvdl msg->rm_call.cb_proc, uaddr);
608 1.1 fvdl free(uaddr);
609 1.1 fvdl }
610 1.1 fvdl #endif
611 1.1 fvdl *replyp = ent->cache_reply;
612 1.1 fvdl *replylenp = ent->cache_replylen;
613 1.1 fvdl mutex_unlock(&dupreq_lock);
614 1.1 fvdl return (1);
615 1.1 fvdl }
616 1.1 fvdl }
617 1.1 fvdl /*
618 1.1 fvdl * Failed to find entry
619 1.1 fvdl * Remember a few things so we can do a set later
620 1.1 fvdl */
621 1.1 fvdl uc->uc_proc = msg->rm_call.cb_proc;
622 1.1 fvdl uc->uc_vers = msg->rm_call.cb_vers;
623 1.1 fvdl uc->uc_prog = msg->rm_call.cb_prog;
624 1.1 fvdl mutex_unlock(&dupreq_lock);
625 1.1 fvdl return (0);
626 1.1 fvdl }
627