1 1.1 bjh21 2 1.1 bjh21 /* 3 1.1 bjh21 =============================================================================== 4 1.1 bjh21 5 1.1 bjh21 This C source fragment is part of the SoftFloat IEC/IEEE Floating-point 6 1.1 bjh21 Arithmetic Package, Release 2a. 7 1.1 bjh21 8 1.1 bjh21 Written by John R. Hauser. This work was made possible in part by the 9 1.1 bjh21 International Computer Science Institute, located at Suite 600, 1947 Center 10 1.1 bjh21 Street, Berkeley, California 94704. Funding was partially provided by the 11 1.1 bjh21 National Science Foundation under grant MIP-9311980. The original version 12 1.1 bjh21 of this code was written as part of a project to build a fixed-point vector 13 1.1 bjh21 processor in collaboration with the University of California at Berkeley, 14 1.1 bjh21 overseen by Profs. Nelson Morgan and John Wawrzynek. More information 15 1.1 bjh21 is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/ 16 1.1 bjh21 arithmetic/SoftFloat.html'. 17 1.1 bjh21 18 1.1 bjh21 THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort 19 1.1 bjh21 has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT 20 1.1 bjh21 TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO 21 1.1 bjh21 PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY 22 1.1 bjh21 AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE. 23 1.1 bjh21 24 1.1 bjh21 Derivative works are acceptable, even for commercial purposes, so long as 25 1.1 bjh21 (1) they include prominent notice that the work is derivative, and (2) they 26 1.1 bjh21 include prominent notice akin to these four paragraphs for those parts of 27 1.1 bjh21 this code that are retained. 28 1.1 bjh21 29 1.1 bjh21 =============================================================================== 30 1.1 bjh21 */ 31 1.1 bjh21 32 1.1 bjh21 /* 33 1.1 bjh21 ------------------------------------------------------------------------------- 34 1.1 bjh21 Shifts `a' right by the number of bits given in `count'. If any nonzero 35 1.1 bjh21 bits are shifted off, they are ``jammed'' into the least significant bit of 36 1.1 bjh21 the result by setting the least significant bit to 1. The value of `count' 37 1.1 bjh21 can be arbitrarily large; in particular, if `count' is greater than 32, the 38 1.1 bjh21 result will be either 0 or 1, depending on whether `a' is zero or nonzero. 39 1.1 bjh21 The result is stored in the location pointed to by `zPtr'. 40 1.1 bjh21 ------------------------------------------------------------------------------- 41 1.1 bjh21 */ 42 1.1 bjh21 INLINE void shift32RightJamming( bits32 a, int16 count, bits32 *zPtr ) 43 1.1 bjh21 { 44 1.1 bjh21 bits32 z; 45 1.1 bjh21 46 1.1 bjh21 if ( count == 0 ) { 47 1.1 bjh21 z = a; 48 1.1 bjh21 } 49 1.1 bjh21 else if ( count < 32 ) { 50 1.1 bjh21 z = ( a>>count ) | ( ( a<<( ( - count ) & 31 ) ) != 0 ); 51 1.1 bjh21 } 52 1.1 bjh21 else { 53 1.1 bjh21 z = ( a != 0 ); 54 1.1 bjh21 } 55 1.1 bjh21 *zPtr = z; 56 1.1 bjh21 57 1.1 bjh21 } 58 1.1 bjh21 59 1.1 bjh21 /* 60 1.1 bjh21 ------------------------------------------------------------------------------- 61 1.1 bjh21 Shifts the 64-bit value formed by concatenating `a0' and `a1' right by the 62 1.1 bjh21 number of bits given in `count'. Any bits shifted off are lost. The value 63 1.1 bjh21 of `count' can be arbitrarily large; in particular, if `count' is greater 64 1.1 bjh21 than 64, the result will be 0. The result is broken into two 32-bit pieces 65 1.1 bjh21 which are stored at the locations pointed to by `z0Ptr' and `z1Ptr'. 66 1.1 bjh21 ------------------------------------------------------------------------------- 67 1.1 bjh21 */ 68 1.1 bjh21 INLINE void 69 1.1 bjh21 shift64Right( 70 1.1 bjh21 bits32 a0, bits32 a1, int16 count, bits32 *z0Ptr, bits32 *z1Ptr ) 71 1.1 bjh21 { 72 1.1 bjh21 bits32 z0, z1; 73 1.1 bjh21 int8 negCount = ( - count ) & 31; 74 1.1 bjh21 75 1.1 bjh21 if ( count == 0 ) { 76 1.1 bjh21 z1 = a1; 77 1.1 bjh21 z0 = a0; 78 1.1 bjh21 } 79 1.1 bjh21 else if ( count < 32 ) { 80 1.1 bjh21 z1 = ( a0<<negCount ) | ( a1>>count ); 81 1.1 bjh21 z0 = a0>>count; 82 1.1 bjh21 } 83 1.1 bjh21 else { 84 1.1 bjh21 z1 = ( count < 64 ) ? ( a0>>( count & 31 ) ) : 0; 85 1.1 bjh21 z0 = 0; 86 1.1 bjh21 } 87 1.1 bjh21 *z1Ptr = z1; 88 1.1 bjh21 *z0Ptr = z0; 89 1.1 bjh21 90 1.1 bjh21 } 91 1.1 bjh21 92 1.1 bjh21 /* 93 1.1 bjh21 ------------------------------------------------------------------------------- 94 1.1 bjh21 Shifts the 64-bit value formed by concatenating `a0' and `a1' right by the 95 1.1 bjh21 number of bits given in `count'. If any nonzero bits are shifted off, they 96 1.1 bjh21 are ``jammed'' into the least significant bit of the result by setting the 97 1.1 bjh21 least significant bit to 1. The value of `count' can be arbitrarily large; 98 1.1 bjh21 in particular, if `count' is greater than 64, the result will be either 0 99 1.1 bjh21 or 1, depending on whether the concatenation of `a0' and `a1' is zero or 100 1.1 bjh21 nonzero. The result is broken into two 32-bit pieces which are stored at 101 1.1 bjh21 the locations pointed to by `z0Ptr' and `z1Ptr'. 102 1.1 bjh21 ------------------------------------------------------------------------------- 103 1.1 bjh21 */ 104 1.1 bjh21 INLINE void 105 1.1 bjh21 shift64RightJamming( 106 1.1 bjh21 bits32 a0, bits32 a1, int16 count, bits32 *z0Ptr, bits32 *z1Ptr ) 107 1.1 bjh21 { 108 1.1 bjh21 bits32 z0, z1; 109 1.1 bjh21 int8 negCount = ( - count ) & 31; 110 1.1 bjh21 111 1.1 bjh21 if ( count == 0 ) { 112 1.1 bjh21 z1 = a1; 113 1.1 bjh21 z0 = a0; 114 1.1 bjh21 } 115 1.1 bjh21 else if ( count < 32 ) { 116 1.1 bjh21 z1 = ( a0<<negCount ) | ( a1>>count ) | ( ( a1<<negCount ) != 0 ); 117 1.1 bjh21 z0 = a0>>count; 118 1.1 bjh21 } 119 1.1 bjh21 else { 120 1.1 bjh21 if ( count == 32 ) { 121 1.1 bjh21 z1 = a0 | ( a1 != 0 ); 122 1.1 bjh21 } 123 1.1 bjh21 else if ( count < 64 ) { 124 1.1 bjh21 z1 = ( a0>>( count & 31 ) ) | ( ( ( a0<<negCount ) | a1 ) != 0 ); 125 1.1 bjh21 } 126 1.1 bjh21 else { 127 1.1 bjh21 z1 = ( ( a0 | a1 ) != 0 ); 128 1.1 bjh21 } 129 1.1 bjh21 z0 = 0; 130 1.1 bjh21 } 131 1.1 bjh21 *z1Ptr = z1; 132 1.1 bjh21 *z0Ptr = z0; 133 1.1 bjh21 134 1.1 bjh21 } 135 1.1 bjh21 136 1.1 bjh21 /* 137 1.1 bjh21 ------------------------------------------------------------------------------- 138 1.1 bjh21 Shifts the 96-bit value formed by concatenating `a0', `a1', and `a2' right 139 1.1 bjh21 by 32 _plus_ the number of bits given in `count'. The shifted result is 140 1.1 bjh21 at most 64 nonzero bits; these are broken into two 32-bit pieces which are 141 1.1 bjh21 stored at the locations pointed to by `z0Ptr' and `z1Ptr'. The bits shifted 142 1.1 bjh21 off form a third 32-bit result as follows: The _last_ bit shifted off is 143 1.1 bjh21 the most-significant bit of the extra result, and the other 31 bits of the 144 1.1 bjh21 extra result are all zero if and only if _all_but_the_last_ bits shifted off 145 1.1 bjh21 were all zero. This extra result is stored in the location pointed to by 146 1.1 bjh21 `z2Ptr'. The value of `count' can be arbitrarily large. 147 1.1 bjh21 (This routine makes more sense if `a0', `a1', and `a2' are considered 148 1.1 bjh21 to form a fixed-point value with binary point between `a1' and `a2'. This 149 1.1 bjh21 fixed-point value is shifted right by the number of bits given in `count', 150 1.1 bjh21 and the integer part of the result is returned at the locations pointed to 151 1.1 bjh21 by `z0Ptr' and `z1Ptr'. The fractional part of the result may be slightly 152 1.1 bjh21 corrupted as described above, and is returned at the location pointed to by 153 1.1 bjh21 `z2Ptr'.) 154 1.1 bjh21 ------------------------------------------------------------------------------- 155 1.1 bjh21 */ 156 1.1 bjh21 INLINE void 157 1.1 bjh21 shift64ExtraRightJamming( 158 1.1 bjh21 bits32 a0, 159 1.1 bjh21 bits32 a1, 160 1.1 bjh21 bits32 a2, 161 1.1 bjh21 int16 count, 162 1.1 bjh21 bits32 *z0Ptr, 163 1.1 bjh21 bits32 *z1Ptr, 164 1.1 bjh21 bits32 *z2Ptr 165 1.1 bjh21 ) 166 1.1 bjh21 { 167 1.1 bjh21 bits32 z0, z1, z2; 168 1.1 bjh21 int8 negCount = ( - count ) & 31; 169 1.1 bjh21 170 1.1 bjh21 if ( count == 0 ) { 171 1.1 bjh21 z2 = a2; 172 1.1 bjh21 z1 = a1; 173 1.1 bjh21 z0 = a0; 174 1.1 bjh21 } 175 1.1 bjh21 else { 176 1.1 bjh21 if ( count < 32 ) { 177 1.1 bjh21 z2 = a1<<negCount; 178 1.1 bjh21 z1 = ( a0<<negCount ) | ( a1>>count ); 179 1.1 bjh21 z0 = a0>>count; 180 1.1 bjh21 } 181 1.1 bjh21 else { 182 1.1 bjh21 if ( count == 32 ) { 183 1.1 bjh21 z2 = a1; 184 1.1 bjh21 z1 = a0; 185 1.1 bjh21 } 186 1.1 bjh21 else { 187 1.1 bjh21 a2 |= a1; 188 1.1 bjh21 if ( count < 64 ) { 189 1.1 bjh21 z2 = a0<<negCount; 190 1.1 bjh21 z1 = a0>>( count & 31 ); 191 1.1 bjh21 } 192 1.1 bjh21 else { 193 1.1 bjh21 z2 = ( count == 64 ) ? a0 : ( a0 != 0 ); 194 1.1 bjh21 z1 = 0; 195 1.1 bjh21 } 196 1.1 bjh21 } 197 1.1 bjh21 z0 = 0; 198 1.1 bjh21 } 199 1.1 bjh21 z2 |= ( a2 != 0 ); 200 1.1 bjh21 } 201 1.1 bjh21 *z2Ptr = z2; 202 1.1 bjh21 *z1Ptr = z1; 203 1.1 bjh21 *z0Ptr = z0; 204 1.1 bjh21 205 1.1 bjh21 } 206 1.1 bjh21 207 1.1 bjh21 /* 208 1.1 bjh21 ------------------------------------------------------------------------------- 209 1.1 bjh21 Shifts the 64-bit value formed by concatenating `a0' and `a1' left by the 210 1.1 bjh21 number of bits given in `count'. Any bits shifted off are lost. The value 211 1.1 bjh21 of `count' must be less than 32. The result is broken into two 32-bit 212 1.1 bjh21 pieces which are stored at the locations pointed to by `z0Ptr' and `z1Ptr'. 213 1.1 bjh21 ------------------------------------------------------------------------------- 214 1.1 bjh21 */ 215 1.1 bjh21 INLINE void 216 1.1 bjh21 shortShift64Left( 217 1.1 bjh21 bits32 a0, bits32 a1, int16 count, bits32 *z0Ptr, bits32 *z1Ptr ) 218 1.1 bjh21 { 219 1.1 bjh21 220 1.1 bjh21 *z1Ptr = a1<<count; 221 1.1 bjh21 *z0Ptr = 222 1.1 bjh21 ( count == 0 ) ? a0 : ( a0<<count ) | ( a1>>( ( - count ) & 31 ) ); 223 1.1 bjh21 224 1.1 bjh21 } 225 1.1 bjh21 226 1.1 bjh21 /* 227 1.1 bjh21 ------------------------------------------------------------------------------- 228 1.1 bjh21 Shifts the 96-bit value formed by concatenating `a0', `a1', and `a2' left 229 1.1 bjh21 by the number of bits given in `count'. Any bits shifted off are lost. 230 1.1 bjh21 The value of `count' must be less than 32. The result is broken into three 231 1.1 bjh21 32-bit pieces which are stored at the locations pointed to by `z0Ptr', 232 1.1 bjh21 `z1Ptr', and `z2Ptr'. 233 1.1 bjh21 ------------------------------------------------------------------------------- 234 1.1 bjh21 */ 235 1.1 bjh21 INLINE void 236 1.1 bjh21 shortShift96Left( 237 1.1 bjh21 bits32 a0, 238 1.1 bjh21 bits32 a1, 239 1.1 bjh21 bits32 a2, 240 1.1 bjh21 int16 count, 241 1.1 bjh21 bits32 *z0Ptr, 242 1.1 bjh21 bits32 *z1Ptr, 243 1.1 bjh21 bits32 *z2Ptr 244 1.1 bjh21 ) 245 1.1 bjh21 { 246 1.1 bjh21 bits32 z0, z1, z2; 247 1.1 bjh21 int8 negCount; 248 1.1 bjh21 249 1.1 bjh21 z2 = a2<<count; 250 1.1 bjh21 z1 = a1<<count; 251 1.1 bjh21 z0 = a0<<count; 252 1.1 bjh21 if ( 0 < count ) { 253 1.1 bjh21 negCount = ( ( - count ) & 31 ); 254 1.1 bjh21 z1 |= a2>>negCount; 255 1.1 bjh21 z0 |= a1>>negCount; 256 1.1 bjh21 } 257 1.1 bjh21 *z2Ptr = z2; 258 1.1 bjh21 *z1Ptr = z1; 259 1.1 bjh21 *z0Ptr = z0; 260 1.1 bjh21 261 1.1 bjh21 } 262 1.1 bjh21 263 1.1 bjh21 /* 264 1.1 bjh21 ------------------------------------------------------------------------------- 265 1.1 bjh21 Adds the 64-bit value formed by concatenating `a0' and `a1' to the 64-bit 266 1.1 bjh21 value formed by concatenating `b0' and `b1'. Addition is modulo 2^64, so 267 1.1 bjh21 any carry out is lost. The result is broken into two 32-bit pieces which 268 1.1 bjh21 are stored at the locations pointed to by `z0Ptr' and `z1Ptr'. 269 1.1 bjh21 ------------------------------------------------------------------------------- 270 1.1 bjh21 */ 271 1.1 bjh21 INLINE void 272 1.1 bjh21 add64( 273 1.1 bjh21 bits32 a0, bits32 a1, bits32 b0, bits32 b1, bits32 *z0Ptr, bits32 *z1Ptr ) 274 1.1 bjh21 { 275 1.1 bjh21 bits32 z1; 276 1.1 bjh21 277 1.1 bjh21 z1 = a1 + b1; 278 1.1 bjh21 *z1Ptr = z1; 279 1.1 bjh21 *z0Ptr = a0 + b0 + ( z1 < a1 ); 280 1.1 bjh21 281 1.1 bjh21 } 282 1.1 bjh21 283 1.1 bjh21 /* 284 1.1 bjh21 ------------------------------------------------------------------------------- 285 1.1 bjh21 Adds the 96-bit value formed by concatenating `a0', `a1', and `a2' to the 286 1.1 bjh21 96-bit value formed by concatenating `b0', `b1', and `b2'. Addition is 287 1.1 bjh21 modulo 2^96, so any carry out is lost. The result is broken into three 288 1.1 bjh21 32-bit pieces which are stored at the locations pointed to by `z0Ptr', 289 1.1 bjh21 `z1Ptr', and `z2Ptr'. 290 1.1 bjh21 ------------------------------------------------------------------------------- 291 1.1 bjh21 */ 292 1.1 bjh21 INLINE void 293 1.1 bjh21 add96( 294 1.1 bjh21 bits32 a0, 295 1.1 bjh21 bits32 a1, 296 1.1 bjh21 bits32 a2, 297 1.1 bjh21 bits32 b0, 298 1.1 bjh21 bits32 b1, 299 1.1 bjh21 bits32 b2, 300 1.1 bjh21 bits32 *z0Ptr, 301 1.1 bjh21 bits32 *z1Ptr, 302 1.1 bjh21 bits32 *z2Ptr 303 1.1 bjh21 ) 304 1.1 bjh21 { 305 1.1 bjh21 bits32 z0, z1, z2; 306 1.1 bjh21 int8 carry0, carry1; 307 1.1 bjh21 308 1.1 bjh21 z2 = a2 + b2; 309 1.1 bjh21 carry1 = ( z2 < a2 ); 310 1.1 bjh21 z1 = a1 + b1; 311 1.1 bjh21 carry0 = ( z1 < a1 ); 312 1.1 bjh21 z0 = a0 + b0; 313 1.1 bjh21 z1 += carry1; 314 1.2 lukem z0 += ( z1 < (bits32)carry1 ); 315 1.1 bjh21 z0 += carry0; 316 1.1 bjh21 *z2Ptr = z2; 317 1.1 bjh21 *z1Ptr = z1; 318 1.1 bjh21 *z0Ptr = z0; 319 1.1 bjh21 320 1.1 bjh21 } 321 1.1 bjh21 322 1.1 bjh21 /* 323 1.1 bjh21 ------------------------------------------------------------------------------- 324 1.1 bjh21 Subtracts the 64-bit value formed by concatenating `b0' and `b1' from the 325 1.1 bjh21 64-bit value formed by concatenating `a0' and `a1'. Subtraction is modulo 326 1.1 bjh21 2^64, so any borrow out (carry out) is lost. The result is broken into two 327 1.1 bjh21 32-bit pieces which are stored at the locations pointed to by `z0Ptr' and 328 1.1 bjh21 `z1Ptr'. 329 1.1 bjh21 ------------------------------------------------------------------------------- 330 1.1 bjh21 */ 331 1.1 bjh21 INLINE void 332 1.1 bjh21 sub64( 333 1.1 bjh21 bits32 a0, bits32 a1, bits32 b0, bits32 b1, bits32 *z0Ptr, bits32 *z1Ptr ) 334 1.1 bjh21 { 335 1.1 bjh21 336 1.1 bjh21 *z1Ptr = a1 - b1; 337 1.1 bjh21 *z0Ptr = a0 - b0 - ( a1 < b1 ); 338 1.1 bjh21 339 1.1 bjh21 } 340 1.1 bjh21 341 1.1 bjh21 /* 342 1.1 bjh21 ------------------------------------------------------------------------------- 343 1.1 bjh21 Subtracts the 96-bit value formed by concatenating `b0', `b1', and `b2' from 344 1.1 bjh21 the 96-bit value formed by concatenating `a0', `a1', and `a2'. Subtraction 345 1.1 bjh21 is modulo 2^96, so any borrow out (carry out) is lost. The result is broken 346 1.1 bjh21 into three 32-bit pieces which are stored at the locations pointed to by 347 1.1 bjh21 `z0Ptr', `z1Ptr', and `z2Ptr'. 348 1.1 bjh21 ------------------------------------------------------------------------------- 349 1.1 bjh21 */ 350 1.1 bjh21 INLINE void 351 1.1 bjh21 sub96( 352 1.1 bjh21 bits32 a0, 353 1.1 bjh21 bits32 a1, 354 1.1 bjh21 bits32 a2, 355 1.1 bjh21 bits32 b0, 356 1.1 bjh21 bits32 b1, 357 1.1 bjh21 bits32 b2, 358 1.1 bjh21 bits32 *z0Ptr, 359 1.1 bjh21 bits32 *z1Ptr, 360 1.1 bjh21 bits32 *z2Ptr 361 1.1 bjh21 ) 362 1.1 bjh21 { 363 1.1 bjh21 bits32 z0, z1, z2; 364 1.1 bjh21 int8 borrow0, borrow1; 365 1.1 bjh21 366 1.1 bjh21 z2 = a2 - b2; 367 1.1 bjh21 borrow1 = ( a2 < b2 ); 368 1.1 bjh21 z1 = a1 - b1; 369 1.1 bjh21 borrow0 = ( a1 < b1 ); 370 1.1 bjh21 z0 = a0 - b0; 371 1.2 lukem z0 -= ( z1 < (bits32)borrow1 ); 372 1.1 bjh21 z1 -= borrow1; 373 1.1 bjh21 z0 -= borrow0; 374 1.1 bjh21 *z2Ptr = z2; 375 1.1 bjh21 *z1Ptr = z1; 376 1.1 bjh21 *z0Ptr = z0; 377 1.1 bjh21 378 1.1 bjh21 } 379 1.1 bjh21 380 1.1 bjh21 /* 381 1.1 bjh21 ------------------------------------------------------------------------------- 382 1.1 bjh21 Multiplies `a' by `b' to obtain a 64-bit product. The product is broken 383 1.1 bjh21 into two 32-bit pieces which are stored at the locations pointed to by 384 1.1 bjh21 `z0Ptr' and `z1Ptr'. 385 1.1 bjh21 ------------------------------------------------------------------------------- 386 1.1 bjh21 */ 387 1.1 bjh21 INLINE void mul32To64( bits32 a, bits32 b, bits32 *z0Ptr, bits32 *z1Ptr ) 388 1.1 bjh21 { 389 1.1 bjh21 bits16 aHigh, aLow, bHigh, bLow; 390 1.1 bjh21 bits32 z0, zMiddleA, zMiddleB, z1; 391 1.1 bjh21 392 1.1 bjh21 aLow = a; 393 1.1 bjh21 aHigh = a>>16; 394 1.1 bjh21 bLow = b; 395 1.1 bjh21 bHigh = b>>16; 396 1.1 bjh21 z1 = ( (bits32) aLow ) * bLow; 397 1.1 bjh21 zMiddleA = ( (bits32) aLow ) * bHigh; 398 1.1 bjh21 zMiddleB = ( (bits32) aHigh ) * bLow; 399 1.1 bjh21 z0 = ( (bits32) aHigh ) * bHigh; 400 1.1 bjh21 zMiddleA += zMiddleB; 401 1.1 bjh21 z0 += ( ( (bits32) ( zMiddleA < zMiddleB ) )<<16 ) + ( zMiddleA>>16 ); 402 1.1 bjh21 zMiddleA <<= 16; 403 1.1 bjh21 z1 += zMiddleA; 404 1.1 bjh21 z0 += ( z1 < zMiddleA ); 405 1.1 bjh21 *z1Ptr = z1; 406 1.1 bjh21 *z0Ptr = z0; 407 1.1 bjh21 408 1.1 bjh21 } 409 1.1 bjh21 410 1.1 bjh21 /* 411 1.1 bjh21 ------------------------------------------------------------------------------- 412 1.1 bjh21 Multiplies the 64-bit value formed by concatenating `a0' and `a1' by `b' 413 1.1 bjh21 to obtain a 96-bit product. The product is broken into three 32-bit pieces 414 1.1 bjh21 which are stored at the locations pointed to by `z0Ptr', `z1Ptr', and 415 1.1 bjh21 `z2Ptr'. 416 1.1 bjh21 ------------------------------------------------------------------------------- 417 1.1 bjh21 */ 418 1.1 bjh21 INLINE void 419 1.1 bjh21 mul64By32To96( 420 1.1 bjh21 bits32 a0, 421 1.1 bjh21 bits32 a1, 422 1.1 bjh21 bits32 b, 423 1.1 bjh21 bits32 *z0Ptr, 424 1.1 bjh21 bits32 *z1Ptr, 425 1.1 bjh21 bits32 *z2Ptr 426 1.1 bjh21 ) 427 1.1 bjh21 { 428 1.1 bjh21 bits32 z0, z1, z2, more1; 429 1.1 bjh21 430 1.1 bjh21 mul32To64( a1, b, &z1, &z2 ); 431 1.1 bjh21 mul32To64( a0, b, &z0, &more1 ); 432 1.1 bjh21 add64( z0, more1, 0, z1, &z0, &z1 ); 433 1.1 bjh21 *z2Ptr = z2; 434 1.1 bjh21 *z1Ptr = z1; 435 1.1 bjh21 *z0Ptr = z0; 436 1.1 bjh21 437 1.1 bjh21 } 438 1.1 bjh21 439 1.1 bjh21 /* 440 1.1 bjh21 ------------------------------------------------------------------------------- 441 1.1 bjh21 Multiplies the 64-bit value formed by concatenating `a0' and `a1' to the 442 1.1 bjh21 64-bit value formed by concatenating `b0' and `b1' to obtain a 128-bit 443 1.1 bjh21 product. The product is broken into four 32-bit pieces which are stored at 444 1.1 bjh21 the locations pointed to by `z0Ptr', `z1Ptr', `z2Ptr', and `z3Ptr'. 445 1.1 bjh21 ------------------------------------------------------------------------------- 446 1.1 bjh21 */ 447 1.1 bjh21 INLINE void 448 1.1 bjh21 mul64To128( 449 1.1 bjh21 bits32 a0, 450 1.1 bjh21 bits32 a1, 451 1.1 bjh21 bits32 b0, 452 1.1 bjh21 bits32 b1, 453 1.1 bjh21 bits32 *z0Ptr, 454 1.1 bjh21 bits32 *z1Ptr, 455 1.1 bjh21 bits32 *z2Ptr, 456 1.1 bjh21 bits32 *z3Ptr 457 1.1 bjh21 ) 458 1.1 bjh21 { 459 1.1 bjh21 bits32 z0, z1, z2, z3; 460 1.1 bjh21 bits32 more1, more2; 461 1.1 bjh21 462 1.1 bjh21 mul32To64( a1, b1, &z2, &z3 ); 463 1.1 bjh21 mul32To64( a1, b0, &z1, &more2 ); 464 1.1 bjh21 add64( z1, more2, 0, z2, &z1, &z2 ); 465 1.1 bjh21 mul32To64( a0, b0, &z0, &more1 ); 466 1.1 bjh21 add64( z0, more1, 0, z1, &z0, &z1 ); 467 1.1 bjh21 mul32To64( a0, b1, &more1, &more2 ); 468 1.1 bjh21 add64( more1, more2, 0, z2, &more1, &z2 ); 469 1.1 bjh21 add64( z0, z1, 0, more1, &z0, &z1 ); 470 1.1 bjh21 *z3Ptr = z3; 471 1.1 bjh21 *z2Ptr = z2; 472 1.1 bjh21 *z1Ptr = z1; 473 1.1 bjh21 *z0Ptr = z0; 474 1.1 bjh21 475 1.1 bjh21 } 476 1.1 bjh21 477 1.1 bjh21 /* 478 1.1 bjh21 ------------------------------------------------------------------------------- 479 1.1 bjh21 Returns an approximation to the 32-bit integer quotient obtained by dividing 480 1.1 bjh21 `b' into the 64-bit value formed by concatenating `a0' and `a1'. The 481 1.1 bjh21 divisor `b' must be at least 2^31. If q is the exact quotient truncated 482 1.1 bjh21 toward zero, the approximation returned lies between q and q + 2 inclusive. 483 1.1 bjh21 If the exact quotient q is larger than 32 bits, the maximum positive 32-bit 484 1.1 bjh21 unsigned integer is returned. 485 1.1 bjh21 ------------------------------------------------------------------------------- 486 1.1 bjh21 */ 487 1.1 bjh21 static bits32 estimateDiv64To32( bits32 a0, bits32 a1, bits32 b ) 488 1.1 bjh21 { 489 1.1 bjh21 bits32 b0, b1; 490 1.1 bjh21 bits32 rem0, rem1, term0, term1; 491 1.1 bjh21 bits32 z; 492 1.1 bjh21 493 1.1 bjh21 if ( b <= a0 ) return 0xFFFFFFFF; 494 1.1 bjh21 b0 = b>>16; 495 1.1 bjh21 z = ( b0<<16 <= a0 ) ? 0xFFFF0000 : ( a0 / b0 )<<16; 496 1.1 bjh21 mul32To64( b, z, &term0, &term1 ); 497 1.1 bjh21 sub64( a0, a1, term0, term1, &rem0, &rem1 ); 498 1.1 bjh21 while ( ( (sbits32) rem0 ) < 0 ) { 499 1.1 bjh21 z -= 0x10000; 500 1.1 bjh21 b1 = b<<16; 501 1.1 bjh21 add64( rem0, rem1, b0, b1, &rem0, &rem1 ); 502 1.1 bjh21 } 503 1.1 bjh21 rem0 = ( rem0<<16 ) | ( rem1>>16 ); 504 1.1 bjh21 z |= ( b0<<16 <= rem0 ) ? 0xFFFF : rem0 / b0; 505 1.1 bjh21 return z; 506 1.1 bjh21 507 1.1 bjh21 } 508 1.1 bjh21 509 1.1 bjh21 #ifndef SOFTFLOAT_FOR_GCC 510 1.1 bjh21 /* 511 1.1 bjh21 ------------------------------------------------------------------------------- 512 1.1 bjh21 Returns an approximation to the square root of the 32-bit significand given 513 1.1 bjh21 by `a'. Considered as an integer, `a' must be at least 2^31. If bit 0 of 514 1.1 bjh21 `aExp' (the least significant bit) is 1, the integer returned approximates 515 1.1 bjh21 2^31*sqrt(`a'/2^31), where `a' is considered an integer. If bit 0 of `aExp' 516 1.1 bjh21 is 0, the integer returned approximates 2^31*sqrt(`a'/2^30). In either 517 1.1 bjh21 case, the approximation returned lies strictly within +/-2 of the exact 518 1.1 bjh21 value. 519 1.1 bjh21 ------------------------------------------------------------------------------- 520 1.1 bjh21 */ 521 1.1 bjh21 static bits32 estimateSqrt32( int16 aExp, bits32 a ) 522 1.1 bjh21 { 523 1.1 bjh21 static const bits16 sqrtOddAdjustments[] = { 524 1.1 bjh21 0x0004, 0x0022, 0x005D, 0x00B1, 0x011D, 0x019F, 0x0236, 0x02E0, 525 1.1 bjh21 0x039C, 0x0468, 0x0545, 0x0631, 0x072B, 0x0832, 0x0946, 0x0A67 526 1.1 bjh21 }; 527 1.1 bjh21 static const bits16 sqrtEvenAdjustments[] = { 528 1.1 bjh21 0x0A2D, 0x08AF, 0x075A, 0x0629, 0x051A, 0x0429, 0x0356, 0x029E, 529 1.1 bjh21 0x0200, 0x0179, 0x0109, 0x00AF, 0x0068, 0x0034, 0x0012, 0x0002 530 1.1 bjh21 }; 531 1.1 bjh21 int8 index; 532 1.1 bjh21 bits32 z; 533 1.1 bjh21 534 1.1 bjh21 index = ( a>>27 ) & 15; 535 1.1 bjh21 if ( aExp & 1 ) { 536 1.1 bjh21 z = 0x4000 + ( a>>17 ) - sqrtOddAdjustments[ index ]; 537 1.1 bjh21 z = ( ( a / z )<<14 ) + ( z<<15 ); 538 1.1 bjh21 a >>= 1; 539 1.1 bjh21 } 540 1.1 bjh21 else { 541 1.1 bjh21 z = 0x8000 + ( a>>17 ) - sqrtEvenAdjustments[ index ]; 542 1.1 bjh21 z = a / z + z; 543 1.1 bjh21 z = ( 0x20000 <= z ) ? 0xFFFF8000 : ( z<<15 ); 544 1.1 bjh21 if ( z <= a ) return (bits32) ( ( (sbits32) a )>>1 ); 545 1.1 bjh21 } 546 1.1 bjh21 return ( ( estimateDiv64To32( a, 0, z ) )>>1 ) + ( z>>1 ); 547 1.1 bjh21 548 1.1 bjh21 } 549 1.1 bjh21 #endif 550 1.1 bjh21 551 1.1 bjh21 /* 552 1.1 bjh21 ------------------------------------------------------------------------------- 553 1.1 bjh21 Returns the number of leading 0 bits before the most-significant 1 bit of 554 1.1 bjh21 `a'. If `a' is zero, 32 is returned. 555 1.1 bjh21 ------------------------------------------------------------------------------- 556 1.1 bjh21 */ 557 1.1 bjh21 static int8 countLeadingZeros32( bits32 a ) 558 1.1 bjh21 { 559 1.1 bjh21 static const int8 countLeadingZerosHigh[] = { 560 1.1 bjh21 8, 7, 6, 6, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 561 1.1 bjh21 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 562 1.1 bjh21 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 563 1.1 bjh21 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 564 1.1 bjh21 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 565 1.1 bjh21 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 566 1.1 bjh21 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 567 1.1 bjh21 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 568 1.1 bjh21 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 569 1.1 bjh21 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 570 1.1 bjh21 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 571 1.1 bjh21 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 572 1.1 bjh21 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 573 1.1 bjh21 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 574 1.1 bjh21 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 575 1.1 bjh21 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 576 1.1 bjh21 }; 577 1.1 bjh21 int8 shiftCount; 578 1.1 bjh21 579 1.1 bjh21 shiftCount = 0; 580 1.1 bjh21 if ( a < 0x10000 ) { 581 1.1 bjh21 shiftCount += 16; 582 1.1 bjh21 a <<= 16; 583 1.1 bjh21 } 584 1.1 bjh21 if ( a < 0x1000000 ) { 585 1.1 bjh21 shiftCount += 8; 586 1.1 bjh21 a <<= 8; 587 1.1 bjh21 } 588 1.1 bjh21 shiftCount += countLeadingZerosHigh[ a>>24 ]; 589 1.1 bjh21 return shiftCount; 590 1.1 bjh21 591 1.1 bjh21 } 592 1.1 bjh21 593 1.1 bjh21 /* 594 1.1 bjh21 ------------------------------------------------------------------------------- 595 1.1 bjh21 Returns 1 if the 64-bit value formed by concatenating `a0' and `a1' is 596 1.1 bjh21 equal to the 64-bit value formed by concatenating `b0' and `b1'. Otherwise, 597 1.1 bjh21 returns 0. 598 1.1 bjh21 ------------------------------------------------------------------------------- 599 1.1 bjh21 */ 600 1.1 bjh21 INLINE flag eq64( bits32 a0, bits32 a1, bits32 b0, bits32 b1 ) 601 1.1 bjh21 { 602 1.1 bjh21 603 1.1 bjh21 return ( a0 == b0 ) && ( a1 == b1 ); 604 1.1 bjh21 605 1.1 bjh21 } 606 1.1 bjh21 607 1.1 bjh21 /* 608 1.1 bjh21 ------------------------------------------------------------------------------- 609 1.1 bjh21 Returns 1 if the 64-bit value formed by concatenating `a0' and `a1' is less 610 1.1 bjh21 than or equal to the 64-bit value formed by concatenating `b0' and `b1'. 611 1.1 bjh21 Otherwise, returns 0. 612 1.1 bjh21 ------------------------------------------------------------------------------- 613 1.1 bjh21 */ 614 1.1 bjh21 INLINE flag le64( bits32 a0, bits32 a1, bits32 b0, bits32 b1 ) 615 1.1 bjh21 { 616 1.1 bjh21 617 1.1 bjh21 return ( a0 < b0 ) || ( ( a0 == b0 ) && ( a1 <= b1 ) ); 618 1.1 bjh21 619 1.1 bjh21 } 620 1.1 bjh21 621 1.1 bjh21 /* 622 1.1 bjh21 ------------------------------------------------------------------------------- 623 1.1 bjh21 Returns 1 if the 64-bit value formed by concatenating `a0' and `a1' is less 624 1.1 bjh21 than the 64-bit value formed by concatenating `b0' and `b1'. Otherwise, 625 1.1 bjh21 returns 0. 626 1.1 bjh21 ------------------------------------------------------------------------------- 627 1.1 bjh21 */ 628 1.1 bjh21 INLINE flag lt64( bits32 a0, bits32 a1, bits32 b0, bits32 b1 ) 629 1.1 bjh21 { 630 1.1 bjh21 631 1.1 bjh21 return ( a0 < b0 ) || ( ( a0 == b0 ) && ( a1 < b1 ) ); 632 1.1 bjh21 633 1.1 bjh21 } 634 1.1 bjh21 635 1.1 bjh21 /* 636 1.1 bjh21 ------------------------------------------------------------------------------- 637 1.1 bjh21 Returns 1 if the 64-bit value formed by concatenating `a0' and `a1' is not 638 1.1 bjh21 equal to the 64-bit value formed by concatenating `b0' and `b1'. Otherwise, 639 1.1 bjh21 returns 0. 640 1.1 bjh21 ------------------------------------------------------------------------------- 641 1.1 bjh21 */ 642 1.1 bjh21 INLINE flag ne64( bits32 a0, bits32 a1, bits32 b0, bits32 b1 ) 643 1.1 bjh21 { 644 1.1 bjh21 645 1.1 bjh21 return ( a0 != b0 ) || ( a1 != b1 ); 646 1.1 bjh21 647 1.1 bjh21 } 648 1.1 bjh21 649