softfloat-specialize revision 1.10
11.10Sriastrad/* $NetBSD: softfloat-specialize,v 1.10 2025/04/27 15:23:27 riastradh Exp $ */ 21.3Sbjh21 31.3Sbjh21/* This is a derivative work. */ 41.1Sbjh21 51.1Sbjh21/* 61.1Sbjh21=============================================================================== 71.1Sbjh21 81.1Sbjh21This C source fragment is part of the SoftFloat IEC/IEEE Floating-point 91.1Sbjh21Arithmetic Package, Release 2a. 101.1Sbjh21 111.1Sbjh21Written by John R. Hauser. This work was made possible in part by the 121.1Sbjh21International Computer Science Institute, located at Suite 600, 1947 Center 131.1Sbjh21Street, Berkeley, California 94704. Funding was partially provided by the 141.1Sbjh21National Science Foundation under grant MIP-9311980. The original version 151.1Sbjh21of this code was written as part of a project to build a fixed-point vector 161.1Sbjh21processor in collaboration with the University of California at Berkeley, 171.1Sbjh21overseen by Profs. Nelson Morgan and John Wawrzynek. More information 181.1Sbjh21is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/ 191.1Sbjh21arithmetic/SoftFloat.html'. 201.1Sbjh21 211.1Sbjh21THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort 221.1Sbjh21has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT 231.1Sbjh21TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO 241.1Sbjh21PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY 251.1Sbjh21AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE. 261.1Sbjh21 271.1Sbjh21Derivative works are acceptable, even for commercial purposes, so long as 281.1Sbjh21(1) they include prominent notice that the work is derivative, and (2) they 291.1Sbjh21include prominent notice akin to these four paragraphs for those parts of 301.1Sbjh21this code that are retained. 311.1Sbjh21 321.1Sbjh21=============================================================================== 331.1Sbjh21*/ 341.1Sbjh21 351.3Sbjh21#include <signal.h> 361.5Smartin#include <string.h> 371.5Smartin#include <unistd.h> 381.3Sbjh21 391.10Sriastrad#include "reentrant.h" 401.10Sriastrad 411.1Sbjh21/* 421.1Sbjh21------------------------------------------------------------------------------- 431.1Sbjh21Underflow tininess-detection mode, statically initialized to default value. 441.1Sbjh21(The declaration in `softfloat.h' must match the `int8' type here.) 451.1Sbjh21------------------------------------------------------------------------------- 461.1Sbjh21*/ 471.1Sbjh21#ifdef SOFTFLOAT_FOR_GCC 481.1Sbjh21static 491.1Sbjh21#endif 501.1Sbjh21int8 float_detect_tininess = float_tininess_after_rounding; 511.1Sbjh21 521.1Sbjh21/* 531.1Sbjh21------------------------------------------------------------------------------- 541.1Sbjh21Raises the exceptions specified by `flags'. Floating-point traps can be 551.1Sbjh21defined here if desired. It is currently not possible for such a trap to 561.1Sbjh21substitute a result value. If traps are not implemented, this routine 571.1Sbjh21should be simply `float_exception_flags |= flags;'. 581.1Sbjh21------------------------------------------------------------------------------- 591.1Sbjh21*/ 601.6Smartin#ifdef SOFTFLOAT_FOR_GCC 611.8Smatt#ifndef set_float_exception_mask 621.6Smartin#define float_exception_mask _softfloat_float_exception_mask 631.6Smartin#endif 641.8Smatt#endif 651.8Smatt#ifndef set_float_exception_mask 661.3Sbjh21fp_except float_exception_mask = 0; 671.8Smatt#endif 681.8Smattvoid 691.10Sriastradfloat_raise( fp_except newflags ) 701.1Sbjh21{ 711.5Smartin siginfo_t info; 721.10Sriastrad struct sigaction sa; 731.10Sriastrad sigset_t sigmask, osigmask; 741.10Sriastrad fp_except flags; 751.1Sbjh21 761.10Sriastrad for (;;) { 771.8Smatt#ifdef set_float_exception_mask 781.10Sriastrad flags = newflags | set_float_exception_flags(newflags, 0); 791.8Smatt#else 801.10Sriastrad float_exception_flags |= newflags; 811.10Sriastrad flags = float_exception_flags; 821.8Smatt#endif 831.1Sbjh21 841.10Sriastrad /* 851.10Sriastrad * If none of the sticky flags are trapped (i.e., enabled in 861.10Sriastrad * float_exception_mask), we're done. Trapping is unusual and 871.10Sriastrad * costly anyway, so take the non-trapping path as the fast 881.10Sriastrad * path. 891.10Sriastrad */ 901.10Sriastrad flags &= float_exception_mask; 911.10Sriastrad if (__predict_true(flags == 0)) 921.10Sriastrad break; 931.10Sriastrad 941.10Sriastrad /* 951.10Sriastrad * Block all signals while we figure out how to deliver a 961.10Sriastrad * non-maskable (as a signal), non-ignorable SIGFPE, and obtain 971.10Sriastrad * the current signal mask. 981.10Sriastrad */ 991.10Sriastrad sigfillset(&sigmask); 1001.10Sriastrad thr_sigsetmask(SIG_BLOCK, &sigmask, &osigmask); 1011.10Sriastrad 1021.10Sriastrad /* 1031.10Sriastrad * Find the current signal disposition of SIGFPE. 1041.10Sriastrad */ 1051.10Sriastrad sigaction(SIGFPE, NULL, &sa); 1061.10Sriastrad 1071.10Sriastrad /* 1081.10Sriastrad * If SIGFPE is masked or ignored, unmask it and reset it to 1091.10Sriastrad * the default disposition to deliver the signal. 1101.10Sriastrad */ 1111.10Sriastrad if (sigismember(&osigmask, SIGFPE) || 1121.10Sriastrad ((sa.sa_flags & SA_SIGINFO) == 0 && 1131.10Sriastrad sa.sa_handler == SIG_IGN)) { 1141.10Sriastrad /* 1151.10Sriastrad * Prepare to unmask SIGFPE. This will take effect 1161.10Sriastrad * when we use thr_sigsetmask(SIG_SETMASK, ...) below, 1171.10Sriastrad * once the signal has been queued, so that it happens 1181.10Sriastrad * atomically with respect to other signal delivery. 1191.10Sriastrad */ 1201.10Sriastrad sigdelset(&osigmask, SIGFPE); 1211.10Sriastrad 1221.10Sriastrad /* 1231.10Sriastrad * Reset SIGFPE to the default disposition, which is to 1241.10Sriastrad * terminate the process. 1251.10Sriastrad */ 1261.10Sriastrad memset(&sa, 0, sizeof(sa)); 1271.10Sriastrad sa.sa_handler = SIG_DFL; 1281.10Sriastrad sigemptyset(&sa.sa_mask); 1291.10Sriastrad sa.sa_flags = 0; 1301.10Sriastrad sigaction(SIGFPE, &sa, NULL); 1311.10Sriastrad } 1321.10Sriastrad 1331.10Sriastrad /* 1341.10Sriastrad * Queue the signal for delivery. It won't trigger the signal 1351.10Sriastrad * handler yet, because it's still masked, but as soon as we 1361.10Sriastrad * unmask it either the process will terminate or the signal 1371.10Sriastrad * handler will be called. 1381.10Sriastrad */ 1391.5Smartin memset(&info, 0, sizeof info); 1401.5Smartin info.si_signo = SIGFPE; 1411.5Smartin info.si_pid = getpid(); 1421.5Smartin info.si_uid = geteuid(); 1431.5Smartin if (flags & float_flag_underflow) 1441.5Smartin info.si_code = FPE_FLTUND; 1451.5Smartin else if (flags & float_flag_overflow) 1461.5Smartin info.si_code = FPE_FLTOVF; 1471.5Smartin else if (flags & float_flag_divbyzero) 1481.5Smartin info.si_code = FPE_FLTDIV; 1491.5Smartin else if (flags & float_flag_invalid) 1501.5Smartin info.si_code = FPE_FLTINV; 1511.5Smartin else if (flags & float_flag_inexact) 1521.5Smartin info.si_code = FPE_FLTRES; 1531.5Smartin sigqueueinfo(getpid(), &info); 1541.10Sriastrad 1551.10Sriastrad /* 1561.10Sriastrad * Restore the old signal mask, except with SIGFPE unmasked 1571.10Sriastrad * even if it was masked before. 1581.10Sriastrad * 1591.10Sriastrad * At this point, either the process will terminate (if SIGFPE 1601.10Sriastrad * had or now has the default disposition) or the signal 1611.10Sriastrad * handler will be called (if SIGFPE had a non-default, 1621.10Sriastrad * non-ignored disposition). 1631.10Sriastrad * 1641.10Sriastrad * If the signal handler returns, it can't change the set of 1651.10Sriastrad * exceptions raised by this floating-point operation -- but it 1661.10Sriastrad * can change the sticky set from previous operations, and it 1671.10Sriastrad * can change the set of exceptions that are trapped, so loop 1681.10Sriastrad * around; next time we might make progress instead of calling 1691.10Sriastrad * the signal handler again. 1701.10Sriastrad */ 1711.10Sriastrad thr_sigsetmask(SIG_SETMASK, &osigmask, NULL); 1721.3Sbjh21 } 1731.1Sbjh21} 1741.6Smartin#undef float_exception_mask 1751.1Sbjh21 1761.1Sbjh21/* 1771.1Sbjh21------------------------------------------------------------------------------- 1781.1Sbjh21Internal canonical NaN format. 1791.1Sbjh21------------------------------------------------------------------------------- 1801.1Sbjh21*/ 1811.1Sbjh21typedef struct { 1821.1Sbjh21 flag sign; 1831.1Sbjh21 bits64 high, low; 1841.1Sbjh21} commonNaNT; 1851.1Sbjh21 1861.1Sbjh21/* 1871.1Sbjh21------------------------------------------------------------------------------- 1881.1Sbjh21The pattern for a default generated single-precision NaN. 1891.1Sbjh21------------------------------------------------------------------------------- 1901.1Sbjh21*/ 1911.1Sbjh21#define float32_default_nan 0xFFFFFFFF 1921.1Sbjh21 1931.1Sbjh21/* 1941.1Sbjh21------------------------------------------------------------------------------- 1951.1Sbjh21Returns 1 if the single-precision floating-point value `a' is a NaN; 1961.1Sbjh21otherwise returns 0. 1971.1Sbjh21------------------------------------------------------------------------------- 1981.1Sbjh21*/ 1991.1Sbjh21#ifdef SOFTFLOAT_FOR_GCC 2001.1Sbjh21static 2011.1Sbjh21#endif 2021.1Sbjh21flag float32_is_nan( float32 a ) 2031.1Sbjh21{ 2041.1Sbjh21 2051.7Schristos return ( (bits32)0xFF000000 < (bits32) ( a<<1 ) ); 2061.1Sbjh21 2071.1Sbjh21} 2081.1Sbjh21 2091.1Sbjh21/* 2101.1Sbjh21------------------------------------------------------------------------------- 2111.1Sbjh21Returns 1 if the single-precision floating-point value `a' is a signaling 2121.1Sbjh21NaN; otherwise returns 0. 2131.1Sbjh21------------------------------------------------------------------------------- 2141.1Sbjh21*/ 2151.9Smatt#if defined(SOFTFLOAT_FOR_GCC) \ 2161.9Smatt && !defined(SOFTFLOATAARCH64_FOR_GCC) \ 2171.9Smatt && !defined(SOFTFLOATSPARC64_FOR_GCC) \ 2181.9Smatt && !defined(SOFTFLOATM68K_FOR_GCC) 2191.1Sbjh21static 2201.1Sbjh21#endif 2211.1Sbjh21flag float32_is_signaling_nan( float32 a ) 2221.1Sbjh21{ 2231.1Sbjh21 2241.1Sbjh21 return ( ( ( a>>22 ) & 0x1FF ) == 0x1FE ) && ( a & 0x003FFFFF ); 2251.1Sbjh21 2261.1Sbjh21} 2271.1Sbjh21 2281.1Sbjh21/* 2291.1Sbjh21------------------------------------------------------------------------------- 2301.1Sbjh21Returns the result of converting the single-precision floating-point NaN 2311.1Sbjh21`a' to the canonical NaN format. If `a' is a signaling NaN, the invalid 2321.1Sbjh21exception is raised. 2331.1Sbjh21------------------------------------------------------------------------------- 2341.1Sbjh21*/ 2351.1Sbjh21static commonNaNT float32ToCommonNaN( float32 a ) 2361.1Sbjh21{ 2371.1Sbjh21 commonNaNT z; 2381.1Sbjh21 2391.1Sbjh21 if ( float32_is_signaling_nan( a ) ) float_raise( float_flag_invalid ); 2401.1Sbjh21 z.sign = a>>31; 2411.1Sbjh21 z.low = 0; 2421.1Sbjh21 z.high = ( (bits64) a )<<41; 2431.1Sbjh21 return z; 2441.1Sbjh21 2451.1Sbjh21} 2461.1Sbjh21 2471.1Sbjh21/* 2481.1Sbjh21------------------------------------------------------------------------------- 2491.1Sbjh21Returns the result of converting the canonical NaN `a' to the single- 2501.1Sbjh21precision floating-point format. 2511.1Sbjh21------------------------------------------------------------------------------- 2521.1Sbjh21*/ 2531.1Sbjh21static float32 commonNaNToFloat32( commonNaNT a ) 2541.1Sbjh21{ 2551.1Sbjh21 2561.7Schristos return ( ( (bits32) a.sign )<<31 ) | 0x7FC00000 | (bits32)( a.high>>41 ); 2571.1Sbjh21 2581.1Sbjh21} 2591.1Sbjh21 2601.1Sbjh21/* 2611.1Sbjh21------------------------------------------------------------------------------- 2621.1Sbjh21Takes two single-precision floating-point values `a' and `b', one of which 2631.1Sbjh21is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a 2641.1Sbjh21signaling NaN, the invalid exception is raised. 2651.1Sbjh21------------------------------------------------------------------------------- 2661.1Sbjh21*/ 2671.1Sbjh21static float32 propagateFloat32NaN( float32 a, float32 b ) 2681.1Sbjh21{ 2691.1Sbjh21 flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN; 2701.1Sbjh21 2711.1Sbjh21 aIsNaN = float32_is_nan( a ); 2721.1Sbjh21 aIsSignalingNaN = float32_is_signaling_nan( a ); 2731.1Sbjh21 bIsNaN = float32_is_nan( b ); 2741.1Sbjh21 bIsSignalingNaN = float32_is_signaling_nan( b ); 2751.1Sbjh21 a |= 0x00400000; 2761.1Sbjh21 b |= 0x00400000; 2771.1Sbjh21 if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid ); 2781.1Sbjh21 if ( aIsNaN ) { 2791.1Sbjh21 return ( aIsSignalingNaN & bIsNaN ) ? b : a; 2801.1Sbjh21 } 2811.1Sbjh21 else { 2821.1Sbjh21 return b; 2831.1Sbjh21 } 2841.1Sbjh21 2851.1Sbjh21} 2861.1Sbjh21 2871.1Sbjh21/* 2881.1Sbjh21------------------------------------------------------------------------------- 2891.1Sbjh21The pattern for a default generated double-precision NaN. 2901.1Sbjh21------------------------------------------------------------------------------- 2911.1Sbjh21*/ 2921.1Sbjh21#define float64_default_nan LIT64( 0xFFFFFFFFFFFFFFFF ) 2931.1Sbjh21 2941.1Sbjh21/* 2951.1Sbjh21------------------------------------------------------------------------------- 2961.1Sbjh21Returns 1 if the double-precision floating-point value `a' is a NaN; 2971.1Sbjh21otherwise returns 0. 2981.1Sbjh21------------------------------------------------------------------------------- 2991.1Sbjh21*/ 3001.1Sbjh21#ifdef SOFTFLOAT_FOR_GCC 3011.1Sbjh21static 3021.1Sbjh21#endif 3031.1Sbjh21flag float64_is_nan( float64 a ) 3041.1Sbjh21{ 3051.1Sbjh21 3061.7Schristos return ( (bits64)LIT64( 0xFFE0000000000000 ) < 3071.1Sbjh21 (bits64) ( FLOAT64_DEMANGLE(a)<<1 ) ); 3081.1Sbjh21 3091.1Sbjh21} 3101.1Sbjh21 3111.1Sbjh21/* 3121.1Sbjh21------------------------------------------------------------------------------- 3131.1Sbjh21Returns 1 if the double-precision floating-point value `a' is a signaling 3141.1Sbjh21NaN; otherwise returns 0. 3151.1Sbjh21------------------------------------------------------------------------------- 3161.1Sbjh21*/ 3171.9Smatt#if defined(SOFTFLOAT_FOR_GCC) \ 3181.9Smatt && !defined(SOFTFLOATAARCH64_FOR_GCC) \ 3191.9Smatt && !defined(SOFTFLOATSPARC64_FOR_GCC) \ 3201.9Smatt && !defined(SOFTFLOATM68K_FOR_GCC) 3211.1Sbjh21static 3221.1Sbjh21#endif 3231.1Sbjh21flag float64_is_signaling_nan( float64 a ) 3241.1Sbjh21{ 3251.1Sbjh21 3261.1Sbjh21 return 3271.1Sbjh21 ( ( ( FLOAT64_DEMANGLE(a)>>51 ) & 0xFFF ) == 0xFFE ) 3281.1Sbjh21 && ( FLOAT64_DEMANGLE(a) & LIT64( 0x0007FFFFFFFFFFFF ) ); 3291.1Sbjh21 3301.1Sbjh21} 3311.1Sbjh21 3321.1Sbjh21/* 3331.1Sbjh21------------------------------------------------------------------------------- 3341.1Sbjh21Returns the result of converting the double-precision floating-point NaN 3351.1Sbjh21`a' to the canonical NaN format. If `a' is a signaling NaN, the invalid 3361.1Sbjh21exception is raised. 3371.1Sbjh21------------------------------------------------------------------------------- 3381.1Sbjh21*/ 3391.1Sbjh21static commonNaNT float64ToCommonNaN( float64 a ) 3401.1Sbjh21{ 3411.1Sbjh21 commonNaNT z; 3421.1Sbjh21 3431.1Sbjh21 if ( float64_is_signaling_nan( a ) ) float_raise( float_flag_invalid ); 3441.7Schristos z.sign = (flag)(FLOAT64_DEMANGLE(a)>>63); 3451.1Sbjh21 z.low = 0; 3461.1Sbjh21 z.high = FLOAT64_DEMANGLE(a)<<12; 3471.1Sbjh21 return z; 3481.1Sbjh21 3491.1Sbjh21} 3501.1Sbjh21 3511.1Sbjh21/* 3521.1Sbjh21------------------------------------------------------------------------------- 3531.1Sbjh21Returns the result of converting the canonical NaN `a' to the double- 3541.1Sbjh21precision floating-point format. 3551.1Sbjh21------------------------------------------------------------------------------- 3561.1Sbjh21*/ 3571.1Sbjh21static float64 commonNaNToFloat64( commonNaNT a ) 3581.1Sbjh21{ 3591.1Sbjh21 3601.1Sbjh21 return FLOAT64_MANGLE( 3611.1Sbjh21 ( ( (bits64) a.sign )<<63 ) 3621.1Sbjh21 | LIT64( 0x7FF8000000000000 ) 3631.1Sbjh21 | ( a.high>>12 ) ); 3641.1Sbjh21 3651.1Sbjh21} 3661.1Sbjh21 3671.1Sbjh21/* 3681.1Sbjh21------------------------------------------------------------------------------- 3691.1Sbjh21Takes two double-precision floating-point values `a' and `b', one of which 3701.1Sbjh21is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a 3711.1Sbjh21signaling NaN, the invalid exception is raised. 3721.1Sbjh21------------------------------------------------------------------------------- 3731.1Sbjh21*/ 3741.1Sbjh21static float64 propagateFloat64NaN( float64 a, float64 b ) 3751.1Sbjh21{ 3761.1Sbjh21 flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN; 3771.1Sbjh21 3781.1Sbjh21 aIsNaN = float64_is_nan( a ); 3791.1Sbjh21 aIsSignalingNaN = float64_is_signaling_nan( a ); 3801.1Sbjh21 bIsNaN = float64_is_nan( b ); 3811.1Sbjh21 bIsSignalingNaN = float64_is_signaling_nan( b ); 3821.1Sbjh21 a |= FLOAT64_MANGLE(LIT64( 0x0008000000000000 )); 3831.1Sbjh21 b |= FLOAT64_MANGLE(LIT64( 0x0008000000000000 )); 3841.1Sbjh21 if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid ); 3851.1Sbjh21 if ( aIsNaN ) { 3861.1Sbjh21 return ( aIsSignalingNaN & bIsNaN ) ? b : a; 3871.1Sbjh21 } 3881.1Sbjh21 else { 3891.1Sbjh21 return b; 3901.1Sbjh21 } 3911.1Sbjh21 3921.1Sbjh21} 3931.1Sbjh21 3941.1Sbjh21#ifdef FLOATX80 3951.1Sbjh21 3961.1Sbjh21/* 3971.1Sbjh21------------------------------------------------------------------------------- 3981.1Sbjh21The pattern for a default generated extended double-precision NaN. The 3991.1Sbjh21`high' and `low' values hold the most- and least-significant bits, 4001.1Sbjh21respectively. 4011.1Sbjh21------------------------------------------------------------------------------- 4021.1Sbjh21*/ 4031.1Sbjh21#define floatx80_default_nan_high 0xFFFF 4041.1Sbjh21#define floatx80_default_nan_low LIT64( 0xFFFFFFFFFFFFFFFF ) 4051.1Sbjh21 4061.1Sbjh21/* 4071.1Sbjh21------------------------------------------------------------------------------- 4081.1Sbjh21Returns 1 if the extended double-precision floating-point value `a' is a 4091.1Sbjh21NaN; otherwise returns 0. 4101.1Sbjh21------------------------------------------------------------------------------- 4111.1Sbjh21*/ 4121.1Sbjh21flag floatx80_is_nan( floatx80 a ) 4131.1Sbjh21{ 4141.1Sbjh21 4151.1Sbjh21 return ( ( a.high & 0x7FFF ) == 0x7FFF ) && (bits64) ( a.low<<1 ); 4161.1Sbjh21 4171.1Sbjh21} 4181.1Sbjh21 4191.1Sbjh21/* 4201.1Sbjh21------------------------------------------------------------------------------- 4211.1Sbjh21Returns 1 if the extended double-precision floating-point value `a' is a 4221.1Sbjh21signaling NaN; otherwise returns 0. 4231.1Sbjh21------------------------------------------------------------------------------- 4241.1Sbjh21*/ 4251.1Sbjh21flag floatx80_is_signaling_nan( floatx80 a ) 4261.1Sbjh21{ 4271.1Sbjh21 bits64 aLow; 4281.1Sbjh21 4291.1Sbjh21 aLow = a.low & ~ LIT64( 0x4000000000000000 ); 4301.1Sbjh21 return 4311.1Sbjh21 ( ( a.high & 0x7FFF ) == 0x7FFF ) 4321.1Sbjh21 && (bits64) ( aLow<<1 ) 4331.1Sbjh21 && ( a.low == aLow ); 4341.1Sbjh21 4351.1Sbjh21} 4361.1Sbjh21 4371.1Sbjh21/* 4381.1Sbjh21------------------------------------------------------------------------------- 4391.1Sbjh21Returns the result of converting the extended double-precision floating- 4401.1Sbjh21point NaN `a' to the canonical NaN format. If `a' is a signaling NaN, the 4411.1Sbjh21invalid exception is raised. 4421.1Sbjh21------------------------------------------------------------------------------- 4431.1Sbjh21*/ 4441.1Sbjh21static commonNaNT floatx80ToCommonNaN( floatx80 a ) 4451.1Sbjh21{ 4461.1Sbjh21 commonNaNT z; 4471.1Sbjh21 4481.1Sbjh21 if ( floatx80_is_signaling_nan( a ) ) float_raise( float_flag_invalid ); 4491.1Sbjh21 z.sign = a.high>>15; 4501.1Sbjh21 z.low = 0; 4511.1Sbjh21 z.high = a.low<<1; 4521.1Sbjh21 return z; 4531.1Sbjh21 4541.1Sbjh21} 4551.1Sbjh21 4561.1Sbjh21/* 4571.1Sbjh21------------------------------------------------------------------------------- 4581.1Sbjh21Returns the result of converting the canonical NaN `a' to the extended 4591.1Sbjh21double-precision floating-point format. 4601.1Sbjh21------------------------------------------------------------------------------- 4611.1Sbjh21*/ 4621.1Sbjh21static floatx80 commonNaNToFloatx80( commonNaNT a ) 4631.1Sbjh21{ 4641.1Sbjh21 floatx80 z; 4651.1Sbjh21 4661.1Sbjh21 z.low = LIT64( 0xC000000000000000 ) | ( a.high>>1 ); 4671.1Sbjh21 z.high = ( ( (bits16) a.sign )<<15 ) | 0x7FFF; 4681.1Sbjh21 return z; 4691.1Sbjh21 4701.1Sbjh21} 4711.1Sbjh21 4721.1Sbjh21/* 4731.1Sbjh21------------------------------------------------------------------------------- 4741.1Sbjh21Takes two extended double-precision floating-point values `a' and `b', one 4751.1Sbjh21of which is a NaN, and returns the appropriate NaN result. If either `a' or 4761.1Sbjh21`b' is a signaling NaN, the invalid exception is raised. 4771.1Sbjh21------------------------------------------------------------------------------- 4781.1Sbjh21*/ 4791.1Sbjh21static floatx80 propagateFloatx80NaN( floatx80 a, floatx80 b ) 4801.1Sbjh21{ 4811.1Sbjh21 flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN; 4821.1Sbjh21 4831.1Sbjh21 aIsNaN = floatx80_is_nan( a ); 4841.1Sbjh21 aIsSignalingNaN = floatx80_is_signaling_nan( a ); 4851.1Sbjh21 bIsNaN = floatx80_is_nan( b ); 4861.1Sbjh21 bIsSignalingNaN = floatx80_is_signaling_nan( b ); 4871.1Sbjh21 a.low |= LIT64( 0xC000000000000000 ); 4881.1Sbjh21 b.low |= LIT64( 0xC000000000000000 ); 4891.1Sbjh21 if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid ); 4901.1Sbjh21 if ( aIsNaN ) { 4911.1Sbjh21 return ( aIsSignalingNaN & bIsNaN ) ? b : a; 4921.1Sbjh21 } 4931.1Sbjh21 else { 4941.1Sbjh21 return b; 4951.1Sbjh21 } 4961.1Sbjh21 4971.1Sbjh21} 4981.1Sbjh21 4991.1Sbjh21#endif 5001.1Sbjh21 5011.1Sbjh21#ifdef FLOAT128 5021.1Sbjh21 5031.1Sbjh21/* 5041.1Sbjh21------------------------------------------------------------------------------- 5051.1Sbjh21The pattern for a default generated quadruple-precision NaN. The `high' and 5061.1Sbjh21`low' values hold the most- and least-significant bits, respectively. 5071.1Sbjh21------------------------------------------------------------------------------- 5081.1Sbjh21*/ 5091.1Sbjh21#define float128_default_nan_high LIT64( 0xFFFFFFFFFFFFFFFF ) 5101.1Sbjh21#define float128_default_nan_low LIT64( 0xFFFFFFFFFFFFFFFF ) 5111.1Sbjh21 5121.1Sbjh21/* 5131.1Sbjh21------------------------------------------------------------------------------- 5141.1Sbjh21Returns 1 if the quadruple-precision floating-point value `a' is a NaN; 5151.1Sbjh21otherwise returns 0. 5161.1Sbjh21------------------------------------------------------------------------------- 5171.1Sbjh21*/ 5181.1Sbjh21flag float128_is_nan( float128 a ) 5191.1Sbjh21{ 5201.1Sbjh21 5211.1Sbjh21 return 5221.7Schristos ( (bits64)LIT64( 0xFFFE000000000000 ) <= (bits64) ( a.high<<1 ) ) 5231.1Sbjh21 && ( a.low || ( a.high & LIT64( 0x0000FFFFFFFFFFFF ) ) ); 5241.1Sbjh21 5251.1Sbjh21} 5261.1Sbjh21 5271.1Sbjh21/* 5281.1Sbjh21------------------------------------------------------------------------------- 5291.1Sbjh21Returns 1 if the quadruple-precision floating-point value `a' is a 5301.1Sbjh21signaling NaN; otherwise returns 0. 5311.1Sbjh21------------------------------------------------------------------------------- 5321.1Sbjh21*/ 5331.1Sbjh21flag float128_is_signaling_nan( float128 a ) 5341.1Sbjh21{ 5351.1Sbjh21 5361.1Sbjh21 return 5371.1Sbjh21 ( ( ( a.high>>47 ) & 0xFFFF ) == 0xFFFE ) 5381.1Sbjh21 && ( a.low || ( a.high & LIT64( 0x00007FFFFFFFFFFF ) ) ); 5391.1Sbjh21 5401.1Sbjh21} 5411.1Sbjh21 5421.1Sbjh21/* 5431.1Sbjh21------------------------------------------------------------------------------- 5441.1Sbjh21Returns the result of converting the quadruple-precision floating-point NaN 5451.1Sbjh21`a' to the canonical NaN format. If `a' is a signaling NaN, the invalid 5461.1Sbjh21exception is raised. 5471.1Sbjh21------------------------------------------------------------------------------- 5481.1Sbjh21*/ 5491.1Sbjh21static commonNaNT float128ToCommonNaN( float128 a ) 5501.1Sbjh21{ 5511.1Sbjh21 commonNaNT z; 5521.1Sbjh21 5531.1Sbjh21 if ( float128_is_signaling_nan( a ) ) float_raise( float_flag_invalid ); 5541.7Schristos z.sign = (flag)(a.high>>63); 5551.1Sbjh21 shortShift128Left( a.high, a.low, 16, &z.high, &z.low ); 5561.1Sbjh21 return z; 5571.1Sbjh21 5581.1Sbjh21} 5591.1Sbjh21 5601.1Sbjh21/* 5611.1Sbjh21------------------------------------------------------------------------------- 5621.1Sbjh21Returns the result of converting the canonical NaN `a' to the quadruple- 5631.1Sbjh21precision floating-point format. 5641.1Sbjh21------------------------------------------------------------------------------- 5651.1Sbjh21*/ 5661.1Sbjh21static float128 commonNaNToFloat128( commonNaNT a ) 5671.1Sbjh21{ 5681.1Sbjh21 float128 z; 5691.1Sbjh21 5701.1Sbjh21 shift128Right( a.high, a.low, 16, &z.high, &z.low ); 5711.1Sbjh21 z.high |= ( ( (bits64) a.sign )<<63 ) | LIT64( 0x7FFF800000000000 ); 5721.1Sbjh21 return z; 5731.1Sbjh21 5741.1Sbjh21} 5751.1Sbjh21 5761.1Sbjh21/* 5771.1Sbjh21------------------------------------------------------------------------------- 5781.1Sbjh21Takes two quadruple-precision floating-point values `a' and `b', one of 5791.1Sbjh21which is a NaN, and returns the appropriate NaN result. If either `a' or 5801.1Sbjh21`b' is a signaling NaN, the invalid exception is raised. 5811.1Sbjh21------------------------------------------------------------------------------- 5821.1Sbjh21*/ 5831.1Sbjh21static float128 propagateFloat128NaN( float128 a, float128 b ) 5841.1Sbjh21{ 5851.1Sbjh21 flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN; 5861.1Sbjh21 5871.1Sbjh21 aIsNaN = float128_is_nan( a ); 5881.1Sbjh21 aIsSignalingNaN = float128_is_signaling_nan( a ); 5891.1Sbjh21 bIsNaN = float128_is_nan( b ); 5901.1Sbjh21 bIsSignalingNaN = float128_is_signaling_nan( b ); 5911.1Sbjh21 a.high |= LIT64( 0x0000800000000000 ); 5921.1Sbjh21 b.high |= LIT64( 0x0000800000000000 ); 5931.1Sbjh21 if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid ); 5941.1Sbjh21 if ( aIsNaN ) { 5951.1Sbjh21 return ( aIsSignalingNaN & bIsNaN ) ? b : a; 5961.1Sbjh21 } 5971.1Sbjh21 else { 5981.1Sbjh21 return b; 5991.1Sbjh21 } 6001.1Sbjh21 6011.1Sbjh21} 6021.1Sbjh21 6031.1Sbjh21#endif 6041.1Sbjh21 605