softfloat-specialize revision 1.13 1 1.13 nat /* $NetBSD: softfloat-specialize,v 1.13 2025/09/17 11:37:38 nat Exp $ */
2 1.3 bjh21
3 1.3 bjh21 /* This is a derivative work. */
4 1.1 bjh21
5 1.1 bjh21 /*
6 1.1 bjh21 ===============================================================================
7 1.1 bjh21
8 1.1 bjh21 This C source fragment is part of the SoftFloat IEC/IEEE Floating-point
9 1.1 bjh21 Arithmetic Package, Release 2a.
10 1.1 bjh21
11 1.1 bjh21 Written by John R. Hauser. This work was made possible in part by the
12 1.1 bjh21 International Computer Science Institute, located at Suite 600, 1947 Center
13 1.1 bjh21 Street, Berkeley, California 94704. Funding was partially provided by the
14 1.1 bjh21 National Science Foundation under grant MIP-9311980. The original version
15 1.1 bjh21 of this code was written as part of a project to build a fixed-point vector
16 1.1 bjh21 processor in collaboration with the University of California at Berkeley,
17 1.1 bjh21 overseen by Profs. Nelson Morgan and John Wawrzynek. More information
18 1.1 bjh21 is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
19 1.1 bjh21 arithmetic/SoftFloat.html'.
20 1.1 bjh21
21 1.1 bjh21 THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort
22 1.1 bjh21 has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
23 1.1 bjh21 TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO
24 1.1 bjh21 PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
25 1.1 bjh21 AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
26 1.1 bjh21
27 1.1 bjh21 Derivative works are acceptable, even for commercial purposes, so long as
28 1.1 bjh21 (1) they include prominent notice that the work is derivative, and (2) they
29 1.1 bjh21 include prominent notice akin to these four paragraphs for those parts of
30 1.1 bjh21 this code that are retained.
31 1.1 bjh21
32 1.1 bjh21 ===============================================================================
33 1.1 bjh21 */
34 1.1 bjh21
35 1.3 bjh21 #include <signal.h>
36 1.5 martin #include <string.h>
37 1.5 martin #include <unistd.h>
38 1.3 bjh21
39 1.10 riastrad #include "reentrant.h"
40 1.10 riastrad
41 1.1 bjh21 /*
42 1.1 bjh21 -------------------------------------------------------------------------------
43 1.1 bjh21 Underflow tininess-detection mode, statically initialized to default value.
44 1.1 bjh21 (The declaration in `softfloat.h' must match the `int8' type here.)
45 1.1 bjh21 -------------------------------------------------------------------------------
46 1.1 bjh21 */
47 1.1 bjh21 #ifdef SOFTFLOAT_FOR_GCC
48 1.1 bjh21 static
49 1.1 bjh21 #endif
50 1.1 bjh21 int8 float_detect_tininess = float_tininess_after_rounding;
51 1.1 bjh21
52 1.1 bjh21 /*
53 1.1 bjh21 -------------------------------------------------------------------------------
54 1.1 bjh21 Raises the exceptions specified by `flags'. Floating-point traps can be
55 1.1 bjh21 defined here if desired. It is currently not possible for such a trap to
56 1.1 bjh21 substitute a result value. If traps are not implemented, this routine
57 1.1 bjh21 should be simply `float_exception_flags |= flags;'.
58 1.1 bjh21 -------------------------------------------------------------------------------
59 1.1 bjh21 */
60 1.6 martin #ifdef SOFTFLOAT_FOR_GCC
61 1.8 matt #ifndef set_float_exception_mask
62 1.6 martin #define float_exception_mask _softfloat_float_exception_mask
63 1.6 martin #endif
64 1.8 matt #endif
65 1.8 matt #ifndef set_float_exception_mask
66 1.3 bjh21 fp_except float_exception_mask = 0;
67 1.8 matt #endif
68 1.8 matt void
69 1.10 riastrad float_raise( fp_except newflags )
70 1.1 bjh21 {
71 1.5 martin siginfo_t info;
72 1.10 riastrad struct sigaction sa;
73 1.10 riastrad sigset_t sigmask, osigmask;
74 1.10 riastrad fp_except flags;
75 1.1 bjh21
76 1.10 riastrad for (;;) {
77 1.8 matt #ifdef set_float_exception_mask
78 1.10 riastrad flags = newflags | set_float_exception_flags(newflags, 0);
79 1.8 matt #else
80 1.10 riastrad float_exception_flags |= newflags;
81 1.10 riastrad flags = float_exception_flags;
82 1.8 matt #endif
83 1.1 bjh21
84 1.10 riastrad /*
85 1.10 riastrad * If none of the sticky flags are trapped (i.e., enabled in
86 1.10 riastrad * float_exception_mask), we're done. Trapping is unusual and
87 1.10 riastrad * costly anyway, so take the non-trapping path as the fast
88 1.10 riastrad * path.
89 1.10 riastrad */
90 1.10 riastrad flags &= float_exception_mask;
91 1.10 riastrad if (__predict_true(flags == 0))
92 1.10 riastrad break;
93 1.10 riastrad
94 1.10 riastrad /*
95 1.10 riastrad * Block all signals while we figure out how to deliver a
96 1.10 riastrad * non-maskable (as a signal), non-ignorable SIGFPE, and obtain
97 1.10 riastrad * the current signal mask.
98 1.10 riastrad */
99 1.10 riastrad sigfillset(&sigmask);
100 1.11 riastrad #ifdef _REENTRANT /* XXX PR lib/59401 */
101 1.10 riastrad thr_sigsetmask(SIG_BLOCK, &sigmask, &osigmask);
102 1.11 riastrad #else
103 1.11 riastrad sigprocmask(SIG_BLOCK, &sigmask, &osigmask);
104 1.11 riastrad #endif
105 1.10 riastrad
106 1.10 riastrad /*
107 1.10 riastrad * Find the current signal disposition of SIGFPE.
108 1.10 riastrad */
109 1.10 riastrad sigaction(SIGFPE, NULL, &sa);
110 1.10 riastrad
111 1.10 riastrad /*
112 1.10 riastrad * If SIGFPE is masked or ignored, unmask it and reset it to
113 1.10 riastrad * the default disposition to deliver the signal.
114 1.10 riastrad */
115 1.10 riastrad if (sigismember(&osigmask, SIGFPE) ||
116 1.10 riastrad ((sa.sa_flags & SA_SIGINFO) == 0 &&
117 1.10 riastrad sa.sa_handler == SIG_IGN)) {
118 1.10 riastrad /*
119 1.10 riastrad * Prepare to unmask SIGFPE. This will take effect
120 1.10 riastrad * when we use thr_sigsetmask(SIG_SETMASK, ...) below,
121 1.10 riastrad * once the signal has been queued, so that it happens
122 1.10 riastrad * atomically with respect to other signal delivery.
123 1.10 riastrad */
124 1.10 riastrad sigdelset(&osigmask, SIGFPE);
125 1.10 riastrad
126 1.10 riastrad /*
127 1.10 riastrad * Reset SIGFPE to the default disposition, which is to
128 1.10 riastrad * terminate the process.
129 1.10 riastrad */
130 1.10 riastrad memset(&sa, 0, sizeof(sa));
131 1.10 riastrad sa.sa_handler = SIG_DFL;
132 1.10 riastrad sigemptyset(&sa.sa_mask);
133 1.10 riastrad sa.sa_flags = 0;
134 1.10 riastrad sigaction(SIGFPE, &sa, NULL);
135 1.10 riastrad }
136 1.10 riastrad
137 1.10 riastrad /*
138 1.10 riastrad * Queue the signal for delivery. It won't trigger the signal
139 1.10 riastrad * handler yet, because it's still masked, but as soon as we
140 1.10 riastrad * unmask it either the process will terminate or the signal
141 1.10 riastrad * handler will be called.
142 1.10 riastrad */
143 1.5 martin memset(&info, 0, sizeof info);
144 1.5 martin info.si_signo = SIGFPE;
145 1.5 martin info.si_pid = getpid();
146 1.5 martin info.si_uid = geteuid();
147 1.5 martin if (flags & float_flag_underflow)
148 1.5 martin info.si_code = FPE_FLTUND;
149 1.5 martin else if (flags & float_flag_overflow)
150 1.5 martin info.si_code = FPE_FLTOVF;
151 1.5 martin else if (flags & float_flag_divbyzero)
152 1.5 martin info.si_code = FPE_FLTDIV;
153 1.5 martin else if (flags & float_flag_invalid)
154 1.5 martin info.si_code = FPE_FLTINV;
155 1.5 martin else if (flags & float_flag_inexact)
156 1.5 martin info.si_code = FPE_FLTRES;
157 1.5 martin sigqueueinfo(getpid(), &info);
158 1.10 riastrad
159 1.10 riastrad /*
160 1.10 riastrad * Restore the old signal mask, except with SIGFPE unmasked
161 1.10 riastrad * even if it was masked before.
162 1.10 riastrad *
163 1.10 riastrad * At this point, either the process will terminate (if SIGFPE
164 1.10 riastrad * had or now has the default disposition) or the signal
165 1.10 riastrad * handler will be called (if SIGFPE had a non-default,
166 1.10 riastrad * non-ignored disposition).
167 1.10 riastrad *
168 1.10 riastrad * If the signal handler returns, it can't change the set of
169 1.10 riastrad * exceptions raised by this floating-point operation -- but it
170 1.10 riastrad * can change the sticky set from previous operations, and it
171 1.10 riastrad * can change the set of exceptions that are trapped, so loop
172 1.10 riastrad * around; next time we might make progress instead of calling
173 1.10 riastrad * the signal handler again.
174 1.10 riastrad */
175 1.11 riastrad #ifdef _REENTRANT /* XXX PR lib/59401 */
176 1.10 riastrad thr_sigsetmask(SIG_SETMASK, &osigmask, NULL);
177 1.11 riastrad #else
178 1.11 riastrad sigprocmask(SIG_SETMASK, &osigmask, NULL);
179 1.11 riastrad #endif
180 1.3 bjh21 }
181 1.1 bjh21 }
182 1.6 martin #undef float_exception_mask
183 1.1 bjh21
184 1.1 bjh21 /*
185 1.1 bjh21 -------------------------------------------------------------------------------
186 1.1 bjh21 Internal canonical NaN format.
187 1.1 bjh21 -------------------------------------------------------------------------------
188 1.1 bjh21 */
189 1.1 bjh21 typedef struct {
190 1.1 bjh21 flag sign;
191 1.1 bjh21 bits64 high, low;
192 1.1 bjh21 } commonNaNT;
193 1.1 bjh21
194 1.1 bjh21 /*
195 1.1 bjh21 -------------------------------------------------------------------------------
196 1.1 bjh21 The pattern for a default generated single-precision NaN.
197 1.1 bjh21 -------------------------------------------------------------------------------
198 1.1 bjh21 */
199 1.1 bjh21 #define float32_default_nan 0xFFFFFFFF
200 1.1 bjh21
201 1.1 bjh21 /*
202 1.1 bjh21 -------------------------------------------------------------------------------
203 1.1 bjh21 Returns 1 if the single-precision floating-point value `a' is a NaN;
204 1.1 bjh21 otherwise returns 0.
205 1.1 bjh21 -------------------------------------------------------------------------------
206 1.1 bjh21 */
207 1.1 bjh21 #ifdef SOFTFLOAT_FOR_GCC
208 1.1 bjh21 static
209 1.1 bjh21 #endif
210 1.1 bjh21 flag float32_is_nan( float32 a )
211 1.1 bjh21 {
212 1.1 bjh21
213 1.7 christos return ( (bits32)0xFF000000 < (bits32) ( a<<1 ) );
214 1.1 bjh21
215 1.1 bjh21 }
216 1.1 bjh21
217 1.1 bjh21 /*
218 1.1 bjh21 -------------------------------------------------------------------------------
219 1.1 bjh21 Returns 1 if the single-precision floating-point value `a' is a signaling
220 1.1 bjh21 NaN; otherwise returns 0.
221 1.1 bjh21 -------------------------------------------------------------------------------
222 1.1 bjh21 */
223 1.9 matt #if defined(SOFTFLOAT_FOR_GCC) \
224 1.9 matt && !defined(SOFTFLOATAARCH64_FOR_GCC) \
225 1.9 matt && !defined(SOFTFLOATSPARC64_FOR_GCC) \
226 1.9 matt && !defined(SOFTFLOATM68K_FOR_GCC)
227 1.1 bjh21 static
228 1.1 bjh21 #endif
229 1.1 bjh21 flag float32_is_signaling_nan( float32 a )
230 1.1 bjh21 {
231 1.1 bjh21
232 1.1 bjh21 return ( ( ( a>>22 ) & 0x1FF ) == 0x1FE ) && ( a & 0x003FFFFF );
233 1.1 bjh21
234 1.1 bjh21 }
235 1.1 bjh21
236 1.1 bjh21 /*
237 1.1 bjh21 -------------------------------------------------------------------------------
238 1.1 bjh21 Returns the result of converting the single-precision floating-point NaN
239 1.1 bjh21 `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
240 1.1 bjh21 exception is raised.
241 1.1 bjh21 -------------------------------------------------------------------------------
242 1.1 bjh21 */
243 1.1 bjh21 static commonNaNT float32ToCommonNaN( float32 a )
244 1.1 bjh21 {
245 1.1 bjh21 commonNaNT z;
246 1.1 bjh21
247 1.1 bjh21 if ( float32_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
248 1.1 bjh21 z.sign = a>>31;
249 1.1 bjh21 z.low = 0;
250 1.1 bjh21 z.high = ( (bits64) a )<<41;
251 1.1 bjh21 return z;
252 1.1 bjh21
253 1.1 bjh21 }
254 1.1 bjh21
255 1.1 bjh21 /*
256 1.1 bjh21 -------------------------------------------------------------------------------
257 1.1 bjh21 Returns the result of converting the canonical NaN `a' to the single-
258 1.1 bjh21 precision floating-point format.
259 1.1 bjh21 -------------------------------------------------------------------------------
260 1.1 bjh21 */
261 1.1 bjh21 static float32 commonNaNToFloat32( commonNaNT a )
262 1.1 bjh21 {
263 1.1 bjh21
264 1.7 christos return ( ( (bits32) a.sign )<<31 ) | 0x7FC00000 | (bits32)( a.high>>41 );
265 1.1 bjh21
266 1.1 bjh21 }
267 1.1 bjh21
268 1.1 bjh21 /*
269 1.1 bjh21 -------------------------------------------------------------------------------
270 1.1 bjh21 Takes two single-precision floating-point values `a' and `b', one of which
271 1.1 bjh21 is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a
272 1.1 bjh21 signaling NaN, the invalid exception is raised.
273 1.1 bjh21 -------------------------------------------------------------------------------
274 1.1 bjh21 */
275 1.1 bjh21 static float32 propagateFloat32NaN( float32 a, float32 b )
276 1.1 bjh21 {
277 1.1 bjh21 flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
278 1.1 bjh21
279 1.1 bjh21 aIsNaN = float32_is_nan( a );
280 1.1 bjh21 aIsSignalingNaN = float32_is_signaling_nan( a );
281 1.1 bjh21 bIsNaN = float32_is_nan( b );
282 1.1 bjh21 bIsSignalingNaN = float32_is_signaling_nan( b );
283 1.1 bjh21 a |= 0x00400000;
284 1.1 bjh21 b |= 0x00400000;
285 1.1 bjh21 if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
286 1.1 bjh21 if ( aIsNaN ) {
287 1.1 bjh21 return ( aIsSignalingNaN & bIsNaN ) ? b : a;
288 1.1 bjh21 }
289 1.1 bjh21 else {
290 1.1 bjh21 return b;
291 1.1 bjh21 }
292 1.1 bjh21
293 1.1 bjh21 }
294 1.1 bjh21
295 1.1 bjh21 /*
296 1.1 bjh21 -------------------------------------------------------------------------------
297 1.1 bjh21 The pattern for a default generated double-precision NaN.
298 1.1 bjh21 -------------------------------------------------------------------------------
299 1.1 bjh21 */
300 1.1 bjh21 #define float64_default_nan LIT64( 0xFFFFFFFFFFFFFFFF )
301 1.1 bjh21
302 1.1 bjh21 /*
303 1.1 bjh21 -------------------------------------------------------------------------------
304 1.1 bjh21 Returns 1 if the double-precision floating-point value `a' is a NaN;
305 1.1 bjh21 otherwise returns 0.
306 1.1 bjh21 -------------------------------------------------------------------------------
307 1.1 bjh21 */
308 1.1 bjh21 #ifdef SOFTFLOAT_FOR_GCC
309 1.1 bjh21 static
310 1.1 bjh21 #endif
311 1.1 bjh21 flag float64_is_nan( float64 a )
312 1.1 bjh21 {
313 1.1 bjh21
314 1.7 christos return ( (bits64)LIT64( 0xFFE0000000000000 ) <
315 1.1 bjh21 (bits64) ( FLOAT64_DEMANGLE(a)<<1 ) );
316 1.1 bjh21
317 1.1 bjh21 }
318 1.1 bjh21
319 1.1 bjh21 /*
320 1.1 bjh21 -------------------------------------------------------------------------------
321 1.1 bjh21 Returns 1 if the double-precision floating-point value `a' is a signaling
322 1.1 bjh21 NaN; otherwise returns 0.
323 1.1 bjh21 -------------------------------------------------------------------------------
324 1.1 bjh21 */
325 1.9 matt #if defined(SOFTFLOAT_FOR_GCC) \
326 1.9 matt && !defined(SOFTFLOATAARCH64_FOR_GCC) \
327 1.9 matt && !defined(SOFTFLOATSPARC64_FOR_GCC) \
328 1.9 matt && !defined(SOFTFLOATM68K_FOR_GCC)
329 1.1 bjh21 static
330 1.1 bjh21 #endif
331 1.1 bjh21 flag float64_is_signaling_nan( float64 a )
332 1.1 bjh21 {
333 1.1 bjh21
334 1.1 bjh21 return
335 1.1 bjh21 ( ( ( FLOAT64_DEMANGLE(a)>>51 ) & 0xFFF ) == 0xFFE )
336 1.1 bjh21 && ( FLOAT64_DEMANGLE(a) & LIT64( 0x0007FFFFFFFFFFFF ) );
337 1.1 bjh21
338 1.1 bjh21 }
339 1.1 bjh21
340 1.1 bjh21 /*
341 1.1 bjh21 -------------------------------------------------------------------------------
342 1.1 bjh21 Returns the result of converting the double-precision floating-point NaN
343 1.1 bjh21 `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
344 1.1 bjh21 exception is raised.
345 1.1 bjh21 -------------------------------------------------------------------------------
346 1.1 bjh21 */
347 1.1 bjh21 static commonNaNT float64ToCommonNaN( float64 a )
348 1.1 bjh21 {
349 1.1 bjh21 commonNaNT z;
350 1.1 bjh21
351 1.1 bjh21 if ( float64_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
352 1.7 christos z.sign = (flag)(FLOAT64_DEMANGLE(a)>>63);
353 1.1 bjh21 z.low = 0;
354 1.1 bjh21 z.high = FLOAT64_DEMANGLE(a)<<12;
355 1.1 bjh21 return z;
356 1.1 bjh21
357 1.1 bjh21 }
358 1.1 bjh21
359 1.1 bjh21 /*
360 1.1 bjh21 -------------------------------------------------------------------------------
361 1.1 bjh21 Returns the result of converting the canonical NaN `a' to the double-
362 1.1 bjh21 precision floating-point format.
363 1.1 bjh21 -------------------------------------------------------------------------------
364 1.1 bjh21 */
365 1.1 bjh21 static float64 commonNaNToFloat64( commonNaNT a )
366 1.1 bjh21 {
367 1.1 bjh21
368 1.1 bjh21 return FLOAT64_MANGLE(
369 1.1 bjh21 ( ( (bits64) a.sign )<<63 )
370 1.1 bjh21 | LIT64( 0x7FF8000000000000 )
371 1.1 bjh21 | ( a.high>>12 ) );
372 1.1 bjh21
373 1.1 bjh21 }
374 1.1 bjh21
375 1.1 bjh21 /*
376 1.1 bjh21 -------------------------------------------------------------------------------
377 1.1 bjh21 Takes two double-precision floating-point values `a' and `b', one of which
378 1.1 bjh21 is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a
379 1.1 bjh21 signaling NaN, the invalid exception is raised.
380 1.1 bjh21 -------------------------------------------------------------------------------
381 1.1 bjh21 */
382 1.1 bjh21 static float64 propagateFloat64NaN( float64 a, float64 b )
383 1.1 bjh21 {
384 1.1 bjh21 flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
385 1.1 bjh21
386 1.1 bjh21 aIsNaN = float64_is_nan( a );
387 1.1 bjh21 aIsSignalingNaN = float64_is_signaling_nan( a );
388 1.1 bjh21 bIsNaN = float64_is_nan( b );
389 1.1 bjh21 bIsSignalingNaN = float64_is_signaling_nan( b );
390 1.1 bjh21 a |= FLOAT64_MANGLE(LIT64( 0x0008000000000000 ));
391 1.1 bjh21 b |= FLOAT64_MANGLE(LIT64( 0x0008000000000000 ));
392 1.1 bjh21 if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
393 1.1 bjh21 if ( aIsNaN ) {
394 1.1 bjh21 return ( aIsSignalingNaN & bIsNaN ) ? b : a;
395 1.1 bjh21 }
396 1.1 bjh21 else {
397 1.1 bjh21 return b;
398 1.1 bjh21 }
399 1.1 bjh21
400 1.1 bjh21 }
401 1.1 bjh21
402 1.1 bjh21 #ifdef FLOATX80
403 1.1 bjh21
404 1.1 bjh21 /*
405 1.1 bjh21 -------------------------------------------------------------------------------
406 1.1 bjh21 The pattern for a default generated extended double-precision NaN. The
407 1.1 bjh21 `high' and `low' values hold the most- and least-significant bits,
408 1.1 bjh21 respectively.
409 1.1 bjh21 -------------------------------------------------------------------------------
410 1.1 bjh21 */
411 1.1 bjh21 #define floatx80_default_nan_high 0xFFFF
412 1.1 bjh21 #define floatx80_default_nan_low LIT64( 0xFFFFFFFFFFFFFFFF )
413 1.1 bjh21
414 1.1 bjh21 /*
415 1.1 bjh21 -------------------------------------------------------------------------------
416 1.1 bjh21 Returns 1 if the extended double-precision floating-point value `a' is a
417 1.1 bjh21 NaN; otherwise returns 0.
418 1.1 bjh21 -------------------------------------------------------------------------------
419 1.1 bjh21 */
420 1.1 bjh21 flag floatx80_is_nan( floatx80 a )
421 1.1 bjh21 {
422 1.1 bjh21
423 1.13 nat return (((a.high >> X80SHIFT) & 0x7FFF) == 0x7FFF) && (bits64)(a.low<<1);
424 1.1 bjh21
425 1.1 bjh21 }
426 1.1 bjh21
427 1.1 bjh21 /*
428 1.1 bjh21 -------------------------------------------------------------------------------
429 1.1 bjh21 Returns 1 if the extended double-precision floating-point value `a' is a
430 1.1 bjh21 signaling NaN; otherwise returns 0.
431 1.1 bjh21 -------------------------------------------------------------------------------
432 1.1 bjh21 */
433 1.1 bjh21 flag floatx80_is_signaling_nan( floatx80 a )
434 1.1 bjh21 {
435 1.1 bjh21 bits64 aLow;
436 1.1 bjh21
437 1.1 bjh21 aLow = a.low & ~ LIT64( 0x4000000000000000 );
438 1.1 bjh21 return
439 1.13 nat ( ( (a.high >> X80SHIFT) & 0x7FFF ) == 0x7FFF )
440 1.1 bjh21 && (bits64) ( aLow<<1 )
441 1.1 bjh21 && ( a.low == aLow );
442 1.1 bjh21
443 1.1 bjh21 }
444 1.1 bjh21
445 1.12 nat #ifndef SOFTFLOAT_BITS32
446 1.1 bjh21 /*
447 1.1 bjh21 -------------------------------------------------------------------------------
448 1.1 bjh21 Returns the result of converting the extended double-precision floating-
449 1.1 bjh21 point NaN `a' to the canonical NaN format. If `a' is a signaling NaN, the
450 1.1 bjh21 invalid exception is raised.
451 1.1 bjh21 -------------------------------------------------------------------------------
452 1.1 bjh21 */
453 1.1 bjh21 static commonNaNT floatx80ToCommonNaN( floatx80 a )
454 1.1 bjh21 {
455 1.1 bjh21 commonNaNT z;
456 1.1 bjh21
457 1.1 bjh21 if ( floatx80_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
458 1.1 bjh21 z.sign = a.high>>15;
459 1.1 bjh21 z.low = 0;
460 1.1 bjh21 z.high = a.low<<1;
461 1.1 bjh21 return z;
462 1.1 bjh21
463 1.1 bjh21 }
464 1.1 bjh21
465 1.1 bjh21 /*
466 1.1 bjh21 -------------------------------------------------------------------------------
467 1.1 bjh21 Returns the result of converting the canonical NaN `a' to the extended
468 1.1 bjh21 double-precision floating-point format.
469 1.1 bjh21 -------------------------------------------------------------------------------
470 1.1 bjh21 */
471 1.1 bjh21 static floatx80 commonNaNToFloatx80( commonNaNT a )
472 1.1 bjh21 {
473 1.1 bjh21 floatx80 z;
474 1.1 bjh21
475 1.1 bjh21 z.low = LIT64( 0xC000000000000000 ) | ( a.high>>1 );
476 1.1 bjh21 z.high = ( ( (bits16) a.sign )<<15 ) | 0x7FFF;
477 1.1 bjh21 return z;
478 1.1 bjh21
479 1.1 bjh21 }
480 1.1 bjh21
481 1.1 bjh21 /*
482 1.1 bjh21 -------------------------------------------------------------------------------
483 1.1 bjh21 Takes two extended double-precision floating-point values `a' and `b', one
484 1.1 bjh21 of which is a NaN, and returns the appropriate NaN result. If either `a' or
485 1.1 bjh21 `b' is a signaling NaN, the invalid exception is raised.
486 1.1 bjh21 -------------------------------------------------------------------------------
487 1.1 bjh21 */
488 1.1 bjh21 static floatx80 propagateFloatx80NaN( floatx80 a, floatx80 b )
489 1.1 bjh21 {
490 1.1 bjh21 flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
491 1.1 bjh21
492 1.1 bjh21 aIsNaN = floatx80_is_nan( a );
493 1.1 bjh21 aIsSignalingNaN = floatx80_is_signaling_nan( a );
494 1.1 bjh21 bIsNaN = floatx80_is_nan( b );
495 1.1 bjh21 bIsSignalingNaN = floatx80_is_signaling_nan( b );
496 1.1 bjh21 a.low |= LIT64( 0xC000000000000000 );
497 1.1 bjh21 b.low |= LIT64( 0xC000000000000000 );
498 1.1 bjh21 if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
499 1.1 bjh21 if ( aIsNaN ) {
500 1.1 bjh21 return ( aIsSignalingNaN & bIsNaN ) ? b : a;
501 1.1 bjh21 }
502 1.1 bjh21 else {
503 1.1 bjh21 return b;
504 1.1 bjh21 }
505 1.1 bjh21
506 1.1 bjh21 }
507 1.1 bjh21
508 1.1 bjh21 #endif
509 1.12 nat #endif
510 1.1 bjh21
511 1.1 bjh21 #ifdef FLOAT128
512 1.1 bjh21
513 1.1 bjh21 /*
514 1.1 bjh21 -------------------------------------------------------------------------------
515 1.1 bjh21 The pattern for a default generated quadruple-precision NaN. The `high' and
516 1.1 bjh21 `low' values hold the most- and least-significant bits, respectively.
517 1.1 bjh21 -------------------------------------------------------------------------------
518 1.1 bjh21 */
519 1.1 bjh21 #define float128_default_nan_high LIT64( 0xFFFFFFFFFFFFFFFF )
520 1.1 bjh21 #define float128_default_nan_low LIT64( 0xFFFFFFFFFFFFFFFF )
521 1.1 bjh21
522 1.1 bjh21 /*
523 1.1 bjh21 -------------------------------------------------------------------------------
524 1.1 bjh21 Returns 1 if the quadruple-precision floating-point value `a' is a NaN;
525 1.1 bjh21 otherwise returns 0.
526 1.1 bjh21 -------------------------------------------------------------------------------
527 1.1 bjh21 */
528 1.1 bjh21 flag float128_is_nan( float128 a )
529 1.1 bjh21 {
530 1.1 bjh21
531 1.1 bjh21 return
532 1.7 christos ( (bits64)LIT64( 0xFFFE000000000000 ) <= (bits64) ( a.high<<1 ) )
533 1.1 bjh21 && ( a.low || ( a.high & LIT64( 0x0000FFFFFFFFFFFF ) ) );
534 1.1 bjh21
535 1.1 bjh21 }
536 1.1 bjh21
537 1.1 bjh21 /*
538 1.1 bjh21 -------------------------------------------------------------------------------
539 1.1 bjh21 Returns 1 if the quadruple-precision floating-point value `a' is a
540 1.1 bjh21 signaling NaN; otherwise returns 0.
541 1.1 bjh21 -------------------------------------------------------------------------------
542 1.1 bjh21 */
543 1.1 bjh21 flag float128_is_signaling_nan( float128 a )
544 1.1 bjh21 {
545 1.1 bjh21
546 1.1 bjh21 return
547 1.1 bjh21 ( ( ( a.high>>47 ) & 0xFFFF ) == 0xFFFE )
548 1.1 bjh21 && ( a.low || ( a.high & LIT64( 0x00007FFFFFFFFFFF ) ) );
549 1.1 bjh21
550 1.1 bjh21 }
551 1.1 bjh21
552 1.1 bjh21 /*
553 1.1 bjh21 -------------------------------------------------------------------------------
554 1.1 bjh21 Returns the result of converting the quadruple-precision floating-point NaN
555 1.1 bjh21 `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
556 1.1 bjh21 exception is raised.
557 1.1 bjh21 -------------------------------------------------------------------------------
558 1.1 bjh21 */
559 1.1 bjh21 static commonNaNT float128ToCommonNaN( float128 a )
560 1.1 bjh21 {
561 1.1 bjh21 commonNaNT z;
562 1.1 bjh21
563 1.1 bjh21 if ( float128_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
564 1.7 christos z.sign = (flag)(a.high>>63);
565 1.1 bjh21 shortShift128Left( a.high, a.low, 16, &z.high, &z.low );
566 1.1 bjh21 return z;
567 1.1 bjh21
568 1.1 bjh21 }
569 1.1 bjh21
570 1.1 bjh21 /*
571 1.1 bjh21 -------------------------------------------------------------------------------
572 1.1 bjh21 Returns the result of converting the canonical NaN `a' to the quadruple-
573 1.1 bjh21 precision floating-point format.
574 1.1 bjh21 -------------------------------------------------------------------------------
575 1.1 bjh21 */
576 1.1 bjh21 static float128 commonNaNToFloat128( commonNaNT a )
577 1.1 bjh21 {
578 1.1 bjh21 float128 z;
579 1.1 bjh21
580 1.1 bjh21 shift128Right( a.high, a.low, 16, &z.high, &z.low );
581 1.1 bjh21 z.high |= ( ( (bits64) a.sign )<<63 ) | LIT64( 0x7FFF800000000000 );
582 1.1 bjh21 return z;
583 1.1 bjh21
584 1.1 bjh21 }
585 1.1 bjh21
586 1.1 bjh21 /*
587 1.1 bjh21 -------------------------------------------------------------------------------
588 1.1 bjh21 Takes two quadruple-precision floating-point values `a' and `b', one of
589 1.1 bjh21 which is a NaN, and returns the appropriate NaN result. If either `a' or
590 1.1 bjh21 `b' is a signaling NaN, the invalid exception is raised.
591 1.1 bjh21 -------------------------------------------------------------------------------
592 1.1 bjh21 */
593 1.1 bjh21 static float128 propagateFloat128NaN( float128 a, float128 b )
594 1.1 bjh21 {
595 1.1 bjh21 flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
596 1.1 bjh21
597 1.1 bjh21 aIsNaN = float128_is_nan( a );
598 1.1 bjh21 aIsSignalingNaN = float128_is_signaling_nan( a );
599 1.1 bjh21 bIsNaN = float128_is_nan( b );
600 1.1 bjh21 bIsSignalingNaN = float128_is_signaling_nan( b );
601 1.1 bjh21 a.high |= LIT64( 0x0000800000000000 );
602 1.1 bjh21 b.high |= LIT64( 0x0000800000000000 );
603 1.1 bjh21 if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
604 1.1 bjh21 if ( aIsNaN ) {
605 1.1 bjh21 return ( aIsSignalingNaN & bIsNaN ) ? b : a;
606 1.1 bjh21 }
607 1.1 bjh21 else {
608 1.1 bjh21 return b;
609 1.1 bjh21 }
610 1.1 bjh21
611 1.1 bjh21 }
612 1.1 bjh21
613 1.1 bjh21 #endif
614 1.1 bjh21
615