Home | History | Annotate | Line # | Download | only in softfloat
softfloat-specialize revision 1.2
      1  1.1  bjh21 
      2  1.1  bjh21 /*
      3  1.1  bjh21 ===============================================================================
      4  1.1  bjh21 
      5  1.1  bjh21 This C source fragment is part of the SoftFloat IEC/IEEE Floating-point
      6  1.1  bjh21 Arithmetic Package, Release 2a.
      7  1.1  bjh21 
      8  1.1  bjh21 Written by John R. Hauser.  This work was made possible in part by the
      9  1.1  bjh21 International Computer Science Institute, located at Suite 600, 1947 Center
     10  1.1  bjh21 Street, Berkeley, California 94704.  Funding was partially provided by the
     11  1.1  bjh21 National Science Foundation under grant MIP-9311980.  The original version
     12  1.1  bjh21 of this code was written as part of a project to build a fixed-point vector
     13  1.1  bjh21 processor in collaboration with the University of California at Berkeley,
     14  1.1  bjh21 overseen by Profs. Nelson Morgan and John Wawrzynek.  More information
     15  1.1  bjh21 is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
     16  1.1  bjh21 arithmetic/SoftFloat.html'.
     17  1.1  bjh21 
     18  1.1  bjh21 THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE.  Although reasonable effort
     19  1.1  bjh21 has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
     20  1.1  bjh21 TIMES RESULT IN INCORRECT BEHAVIOR.  USE OF THIS SOFTWARE IS RESTRICTED TO
     21  1.1  bjh21 PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
     22  1.1  bjh21 AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
     23  1.1  bjh21 
     24  1.1  bjh21 Derivative works are acceptable, even for commercial purposes, so long as
     25  1.1  bjh21 (1) they include prominent notice that the work is derivative, and (2) they
     26  1.1  bjh21 include prominent notice akin to these four paragraphs for those parts of
     27  1.1  bjh21 this code that are retained.
     28  1.1  bjh21 
     29  1.1  bjh21 ===============================================================================
     30  1.1  bjh21 */
     31  1.1  bjh21 
     32  1.1  bjh21 /*
     33  1.1  bjh21 -------------------------------------------------------------------------------
     34  1.1  bjh21 Underflow tininess-detection mode, statically initialized to default value.
     35  1.1  bjh21 (The declaration in `softfloat.h' must match the `int8' type here.)
     36  1.1  bjh21 -------------------------------------------------------------------------------
     37  1.1  bjh21 */
     38  1.1  bjh21 #ifdef SOFTFLOAT_FOR_GCC
     39  1.1  bjh21 static
     40  1.1  bjh21 #endif
     41  1.1  bjh21 int8 float_detect_tininess = float_tininess_after_rounding;
     42  1.1  bjh21 
     43  1.1  bjh21 /*
     44  1.1  bjh21 -------------------------------------------------------------------------------
     45  1.1  bjh21 Raises the exceptions specified by `flags'.  Floating-point traps can be
     46  1.1  bjh21 defined here if desired.  It is currently not possible for such a trap to
     47  1.1  bjh21 substitute a result value.  If traps are not implemented, this routine
     48  1.1  bjh21 should be simply `float_exception_flags |= flags;'.
     49  1.1  bjh21 -------------------------------------------------------------------------------
     50  1.1  bjh21 */
     51  1.1  bjh21 void float_raise( int8 flags )
     52  1.1  bjh21 {
     53  1.1  bjh21 
     54  1.1  bjh21     float_exception_flags |= flags;
     55  1.1  bjh21 
     56  1.1  bjh21 }
     57  1.1  bjh21 
     58  1.1  bjh21 /*
     59  1.1  bjh21 -------------------------------------------------------------------------------
     60  1.1  bjh21 Internal canonical NaN format.
     61  1.1  bjh21 -------------------------------------------------------------------------------
     62  1.1  bjh21 */
     63  1.1  bjh21 typedef struct {
     64  1.1  bjh21     flag sign;
     65  1.1  bjh21     bits64 high, low;
     66  1.1  bjh21 } commonNaNT;
     67  1.1  bjh21 
     68  1.1  bjh21 /*
     69  1.1  bjh21 -------------------------------------------------------------------------------
     70  1.1  bjh21 The pattern for a default generated single-precision NaN.
     71  1.1  bjh21 -------------------------------------------------------------------------------
     72  1.1  bjh21 */
     73  1.1  bjh21 #define float32_default_nan 0xFFFFFFFF
     74  1.1  bjh21 
     75  1.1  bjh21 /*
     76  1.1  bjh21 -------------------------------------------------------------------------------
     77  1.1  bjh21 Returns 1 if the single-precision floating-point value `a' is a NaN;
     78  1.1  bjh21 otherwise returns 0.
     79  1.1  bjh21 -------------------------------------------------------------------------------
     80  1.1  bjh21 */
     81  1.1  bjh21 #ifdef SOFTFLOAT_FOR_GCC
     82  1.1  bjh21 static
     83  1.1  bjh21 #endif
     84  1.1  bjh21 flag float32_is_nan( float32 a )
     85  1.1  bjh21 {
     86  1.1  bjh21 
     87  1.1  bjh21     return ( 0xFF000000 < (bits32) ( a<<1 ) );
     88  1.1  bjh21 
     89  1.1  bjh21 }
     90  1.1  bjh21 
     91  1.1  bjh21 /*
     92  1.1  bjh21 -------------------------------------------------------------------------------
     93  1.1  bjh21 Returns 1 if the single-precision floating-point value `a' is a signaling
     94  1.1  bjh21 NaN; otherwise returns 0.
     95  1.1  bjh21 -------------------------------------------------------------------------------
     96  1.1  bjh21 */
     97  1.2    agc #if defined(SOFTFLOAT_FOR_GCC) && !defined(SOFTFLOATSPARC64_FOR_GCC)
     98  1.1  bjh21 static
     99  1.1  bjh21 #endif
    100  1.1  bjh21 flag float32_is_signaling_nan( float32 a )
    101  1.1  bjh21 {
    102  1.1  bjh21 
    103  1.1  bjh21     return ( ( ( a>>22 ) & 0x1FF ) == 0x1FE ) && ( a & 0x003FFFFF );
    104  1.1  bjh21 
    105  1.1  bjh21 }
    106  1.1  bjh21 
    107  1.1  bjh21 /*
    108  1.1  bjh21 -------------------------------------------------------------------------------
    109  1.1  bjh21 Returns the result of converting the single-precision floating-point NaN
    110  1.1  bjh21 `a' to the canonical NaN format.  If `a' is a signaling NaN, the invalid
    111  1.1  bjh21 exception is raised.
    112  1.1  bjh21 -------------------------------------------------------------------------------
    113  1.1  bjh21 */
    114  1.1  bjh21 static commonNaNT float32ToCommonNaN( float32 a )
    115  1.1  bjh21 {
    116  1.1  bjh21     commonNaNT z;
    117  1.1  bjh21 
    118  1.1  bjh21     if ( float32_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
    119  1.1  bjh21     z.sign = a>>31;
    120  1.1  bjh21     z.low = 0;
    121  1.1  bjh21     z.high = ( (bits64) a )<<41;
    122  1.1  bjh21     return z;
    123  1.1  bjh21 
    124  1.1  bjh21 }
    125  1.1  bjh21 
    126  1.1  bjh21 /*
    127  1.1  bjh21 -------------------------------------------------------------------------------
    128  1.1  bjh21 Returns the result of converting the canonical NaN `a' to the single-
    129  1.1  bjh21 precision floating-point format.
    130  1.1  bjh21 -------------------------------------------------------------------------------
    131  1.1  bjh21 */
    132  1.1  bjh21 static float32 commonNaNToFloat32( commonNaNT a )
    133  1.1  bjh21 {
    134  1.1  bjh21 
    135  1.1  bjh21     return ( ( (bits32) a.sign )<<31 ) | 0x7FC00000 | ( a.high>>41 );
    136  1.1  bjh21 
    137  1.1  bjh21 }
    138  1.1  bjh21 
    139  1.1  bjh21 /*
    140  1.1  bjh21 -------------------------------------------------------------------------------
    141  1.1  bjh21 Takes two single-precision floating-point values `a' and `b', one of which
    142  1.1  bjh21 is a NaN, and returns the appropriate NaN result.  If either `a' or `b' is a
    143  1.1  bjh21 signaling NaN, the invalid exception is raised.
    144  1.1  bjh21 -------------------------------------------------------------------------------
    145  1.1  bjh21 */
    146  1.1  bjh21 static float32 propagateFloat32NaN( float32 a, float32 b )
    147  1.1  bjh21 {
    148  1.1  bjh21     flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
    149  1.1  bjh21 
    150  1.1  bjh21     aIsNaN = float32_is_nan( a );
    151  1.1  bjh21     aIsSignalingNaN = float32_is_signaling_nan( a );
    152  1.1  bjh21     bIsNaN = float32_is_nan( b );
    153  1.1  bjh21     bIsSignalingNaN = float32_is_signaling_nan( b );
    154  1.1  bjh21     a |= 0x00400000;
    155  1.1  bjh21     b |= 0x00400000;
    156  1.1  bjh21     if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
    157  1.1  bjh21     if ( aIsNaN ) {
    158  1.1  bjh21         return ( aIsSignalingNaN & bIsNaN ) ? b : a;
    159  1.1  bjh21     }
    160  1.1  bjh21     else {
    161  1.1  bjh21         return b;
    162  1.1  bjh21     }
    163  1.1  bjh21 
    164  1.1  bjh21 }
    165  1.1  bjh21 
    166  1.1  bjh21 /*
    167  1.1  bjh21 -------------------------------------------------------------------------------
    168  1.1  bjh21 The pattern for a default generated double-precision NaN.
    169  1.1  bjh21 -------------------------------------------------------------------------------
    170  1.1  bjh21 */
    171  1.1  bjh21 #define float64_default_nan LIT64( 0xFFFFFFFFFFFFFFFF )
    172  1.1  bjh21 
    173  1.1  bjh21 /*
    174  1.1  bjh21 -------------------------------------------------------------------------------
    175  1.1  bjh21 Returns 1 if the double-precision floating-point value `a' is a NaN;
    176  1.1  bjh21 otherwise returns 0.
    177  1.1  bjh21 -------------------------------------------------------------------------------
    178  1.1  bjh21 */
    179  1.1  bjh21 #ifdef SOFTFLOAT_FOR_GCC
    180  1.1  bjh21 static
    181  1.1  bjh21 #endif
    182  1.1  bjh21 flag float64_is_nan( float64 a )
    183  1.1  bjh21 {
    184  1.1  bjh21 
    185  1.1  bjh21     return ( LIT64( 0xFFE0000000000000 ) <
    186  1.1  bjh21 	     (bits64) ( FLOAT64_DEMANGLE(a)<<1 ) );
    187  1.1  bjh21 
    188  1.1  bjh21 }
    189  1.1  bjh21 
    190  1.1  bjh21 /*
    191  1.1  bjh21 -------------------------------------------------------------------------------
    192  1.1  bjh21 Returns 1 if the double-precision floating-point value `a' is a signaling
    193  1.1  bjh21 NaN; otherwise returns 0.
    194  1.1  bjh21 -------------------------------------------------------------------------------
    195  1.1  bjh21 */
    196  1.2    agc #if defined(SOFTFLOAT_FOR_GCC) && !defined(SOFTFLOATSPARC64_FOR_GCC)
    197  1.1  bjh21 static
    198  1.1  bjh21 #endif
    199  1.1  bjh21 flag float64_is_signaling_nan( float64 a )
    200  1.1  bjh21 {
    201  1.1  bjh21 
    202  1.1  bjh21     return
    203  1.1  bjh21            ( ( ( FLOAT64_DEMANGLE(a)>>51 ) & 0xFFF ) == 0xFFE )
    204  1.1  bjh21         && ( FLOAT64_DEMANGLE(a) & LIT64( 0x0007FFFFFFFFFFFF ) );
    205  1.1  bjh21 
    206  1.1  bjh21 }
    207  1.1  bjh21 
    208  1.1  bjh21 /*
    209  1.1  bjh21 -------------------------------------------------------------------------------
    210  1.1  bjh21 Returns the result of converting the double-precision floating-point NaN
    211  1.1  bjh21 `a' to the canonical NaN format.  If `a' is a signaling NaN, the invalid
    212  1.1  bjh21 exception is raised.
    213  1.1  bjh21 -------------------------------------------------------------------------------
    214  1.1  bjh21 */
    215  1.1  bjh21 static commonNaNT float64ToCommonNaN( float64 a )
    216  1.1  bjh21 {
    217  1.1  bjh21     commonNaNT z;
    218  1.1  bjh21 
    219  1.1  bjh21     if ( float64_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
    220  1.1  bjh21     z.sign = FLOAT64_DEMANGLE(a)>>63;
    221  1.1  bjh21     z.low = 0;
    222  1.1  bjh21     z.high = FLOAT64_DEMANGLE(a)<<12;
    223  1.1  bjh21     return z;
    224  1.1  bjh21 
    225  1.1  bjh21 }
    226  1.1  bjh21 
    227  1.1  bjh21 /*
    228  1.1  bjh21 -------------------------------------------------------------------------------
    229  1.1  bjh21 Returns the result of converting the canonical NaN `a' to the double-
    230  1.1  bjh21 precision floating-point format.
    231  1.1  bjh21 -------------------------------------------------------------------------------
    232  1.1  bjh21 */
    233  1.1  bjh21 static float64 commonNaNToFloat64( commonNaNT a )
    234  1.1  bjh21 {
    235  1.1  bjh21 
    236  1.1  bjh21     return FLOAT64_MANGLE(
    237  1.1  bjh21 	( ( (bits64) a.sign )<<63 )
    238  1.1  bjh21         | LIT64( 0x7FF8000000000000 )
    239  1.1  bjh21         | ( a.high>>12 ) );
    240  1.1  bjh21 
    241  1.1  bjh21 }
    242  1.1  bjh21 
    243  1.1  bjh21 /*
    244  1.1  bjh21 -------------------------------------------------------------------------------
    245  1.1  bjh21 Takes two double-precision floating-point values `a' and `b', one of which
    246  1.1  bjh21 is a NaN, and returns the appropriate NaN result.  If either `a' or `b' is a
    247  1.1  bjh21 signaling NaN, the invalid exception is raised.
    248  1.1  bjh21 -------------------------------------------------------------------------------
    249  1.1  bjh21 */
    250  1.1  bjh21 static float64 propagateFloat64NaN( float64 a, float64 b )
    251  1.1  bjh21 {
    252  1.1  bjh21     flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
    253  1.1  bjh21 
    254  1.1  bjh21     aIsNaN = float64_is_nan( a );
    255  1.1  bjh21     aIsSignalingNaN = float64_is_signaling_nan( a );
    256  1.1  bjh21     bIsNaN = float64_is_nan( b );
    257  1.1  bjh21     bIsSignalingNaN = float64_is_signaling_nan( b );
    258  1.1  bjh21     a |= FLOAT64_MANGLE(LIT64( 0x0008000000000000 ));
    259  1.1  bjh21     b |= FLOAT64_MANGLE(LIT64( 0x0008000000000000 ));
    260  1.1  bjh21     if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
    261  1.1  bjh21     if ( aIsNaN ) {
    262  1.1  bjh21         return ( aIsSignalingNaN & bIsNaN ) ? b : a;
    263  1.1  bjh21     }
    264  1.1  bjh21     else {
    265  1.1  bjh21         return b;
    266  1.1  bjh21     }
    267  1.1  bjh21 
    268  1.1  bjh21 }
    269  1.1  bjh21 
    270  1.1  bjh21 #ifdef FLOATX80
    271  1.1  bjh21 
    272  1.1  bjh21 /*
    273  1.1  bjh21 -------------------------------------------------------------------------------
    274  1.1  bjh21 The pattern for a default generated extended double-precision NaN.  The
    275  1.1  bjh21 `high' and `low' values hold the most- and least-significant bits,
    276  1.1  bjh21 respectively.
    277  1.1  bjh21 -------------------------------------------------------------------------------
    278  1.1  bjh21 */
    279  1.1  bjh21 #define floatx80_default_nan_high 0xFFFF
    280  1.1  bjh21 #define floatx80_default_nan_low  LIT64( 0xFFFFFFFFFFFFFFFF )
    281  1.1  bjh21 
    282  1.1  bjh21 /*
    283  1.1  bjh21 -------------------------------------------------------------------------------
    284  1.1  bjh21 Returns 1 if the extended double-precision floating-point value `a' is a
    285  1.1  bjh21 NaN; otherwise returns 0.
    286  1.1  bjh21 -------------------------------------------------------------------------------
    287  1.1  bjh21 */
    288  1.1  bjh21 flag floatx80_is_nan( floatx80 a )
    289  1.1  bjh21 {
    290  1.1  bjh21 
    291  1.1  bjh21     return ( ( a.high & 0x7FFF ) == 0x7FFF ) && (bits64) ( a.low<<1 );
    292  1.1  bjh21 
    293  1.1  bjh21 }
    294  1.1  bjh21 
    295  1.1  bjh21 /*
    296  1.1  bjh21 -------------------------------------------------------------------------------
    297  1.1  bjh21 Returns 1 if the extended double-precision floating-point value `a' is a
    298  1.1  bjh21 signaling NaN; otherwise returns 0.
    299  1.1  bjh21 -------------------------------------------------------------------------------
    300  1.1  bjh21 */
    301  1.1  bjh21 flag floatx80_is_signaling_nan( floatx80 a )
    302  1.1  bjh21 {
    303  1.1  bjh21     bits64 aLow;
    304  1.1  bjh21 
    305  1.1  bjh21     aLow = a.low & ~ LIT64( 0x4000000000000000 );
    306  1.1  bjh21     return
    307  1.1  bjh21            ( ( a.high & 0x7FFF ) == 0x7FFF )
    308  1.1  bjh21         && (bits64) ( aLow<<1 )
    309  1.1  bjh21         && ( a.low == aLow );
    310  1.1  bjh21 
    311  1.1  bjh21 }
    312  1.1  bjh21 
    313  1.1  bjh21 /*
    314  1.1  bjh21 -------------------------------------------------------------------------------
    315  1.1  bjh21 Returns the result of converting the extended double-precision floating-
    316  1.1  bjh21 point NaN `a' to the canonical NaN format.  If `a' is a signaling NaN, the
    317  1.1  bjh21 invalid exception is raised.
    318  1.1  bjh21 -------------------------------------------------------------------------------
    319  1.1  bjh21 */
    320  1.1  bjh21 static commonNaNT floatx80ToCommonNaN( floatx80 a )
    321  1.1  bjh21 {
    322  1.1  bjh21     commonNaNT z;
    323  1.1  bjh21 
    324  1.1  bjh21     if ( floatx80_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
    325  1.1  bjh21     z.sign = a.high>>15;
    326  1.1  bjh21     z.low = 0;
    327  1.1  bjh21     z.high = a.low<<1;
    328  1.1  bjh21     return z;
    329  1.1  bjh21 
    330  1.1  bjh21 }
    331  1.1  bjh21 
    332  1.1  bjh21 /*
    333  1.1  bjh21 -------------------------------------------------------------------------------
    334  1.1  bjh21 Returns the result of converting the canonical NaN `a' to the extended
    335  1.1  bjh21 double-precision floating-point format.
    336  1.1  bjh21 -------------------------------------------------------------------------------
    337  1.1  bjh21 */
    338  1.1  bjh21 static floatx80 commonNaNToFloatx80( commonNaNT a )
    339  1.1  bjh21 {
    340  1.1  bjh21     floatx80 z;
    341  1.1  bjh21 
    342  1.1  bjh21     z.low = LIT64( 0xC000000000000000 ) | ( a.high>>1 );
    343  1.1  bjh21     z.high = ( ( (bits16) a.sign )<<15 ) | 0x7FFF;
    344  1.1  bjh21     return z;
    345  1.1  bjh21 
    346  1.1  bjh21 }
    347  1.1  bjh21 
    348  1.1  bjh21 /*
    349  1.1  bjh21 -------------------------------------------------------------------------------
    350  1.1  bjh21 Takes two extended double-precision floating-point values `a' and `b', one
    351  1.1  bjh21 of which is a NaN, and returns the appropriate NaN result.  If either `a' or
    352  1.1  bjh21 `b' is a signaling NaN, the invalid exception is raised.
    353  1.1  bjh21 -------------------------------------------------------------------------------
    354  1.1  bjh21 */
    355  1.1  bjh21 static floatx80 propagateFloatx80NaN( floatx80 a, floatx80 b )
    356  1.1  bjh21 {
    357  1.1  bjh21     flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
    358  1.1  bjh21 
    359  1.1  bjh21     aIsNaN = floatx80_is_nan( a );
    360  1.1  bjh21     aIsSignalingNaN = floatx80_is_signaling_nan( a );
    361  1.1  bjh21     bIsNaN = floatx80_is_nan( b );
    362  1.1  bjh21     bIsSignalingNaN = floatx80_is_signaling_nan( b );
    363  1.1  bjh21     a.low |= LIT64( 0xC000000000000000 );
    364  1.1  bjh21     b.low |= LIT64( 0xC000000000000000 );
    365  1.1  bjh21     if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
    366  1.1  bjh21     if ( aIsNaN ) {
    367  1.1  bjh21         return ( aIsSignalingNaN & bIsNaN ) ? b : a;
    368  1.1  bjh21     }
    369  1.1  bjh21     else {
    370  1.1  bjh21         return b;
    371  1.1  bjh21     }
    372  1.1  bjh21 
    373  1.1  bjh21 }
    374  1.1  bjh21 
    375  1.1  bjh21 #endif
    376  1.1  bjh21 
    377  1.1  bjh21 #ifdef FLOAT128
    378  1.1  bjh21 
    379  1.1  bjh21 /*
    380  1.1  bjh21 -------------------------------------------------------------------------------
    381  1.1  bjh21 The pattern for a default generated quadruple-precision NaN.  The `high' and
    382  1.1  bjh21 `low' values hold the most- and least-significant bits, respectively.
    383  1.1  bjh21 -------------------------------------------------------------------------------
    384  1.1  bjh21 */
    385  1.1  bjh21 #define float128_default_nan_high LIT64( 0xFFFFFFFFFFFFFFFF )
    386  1.1  bjh21 #define float128_default_nan_low  LIT64( 0xFFFFFFFFFFFFFFFF )
    387  1.1  bjh21 
    388  1.1  bjh21 /*
    389  1.1  bjh21 -------------------------------------------------------------------------------
    390  1.1  bjh21 Returns 1 if the quadruple-precision floating-point value `a' is a NaN;
    391  1.1  bjh21 otherwise returns 0.
    392  1.1  bjh21 -------------------------------------------------------------------------------
    393  1.1  bjh21 */
    394  1.1  bjh21 flag float128_is_nan( float128 a )
    395  1.1  bjh21 {
    396  1.1  bjh21 
    397  1.1  bjh21     return
    398  1.1  bjh21            ( LIT64( 0xFFFE000000000000 ) <= (bits64) ( a.high<<1 ) )
    399  1.1  bjh21         && ( a.low || ( a.high & LIT64( 0x0000FFFFFFFFFFFF ) ) );
    400  1.1  bjh21 
    401  1.1  bjh21 }
    402  1.1  bjh21 
    403  1.1  bjh21 /*
    404  1.1  bjh21 -------------------------------------------------------------------------------
    405  1.1  bjh21 Returns 1 if the quadruple-precision floating-point value `a' is a
    406  1.1  bjh21 signaling NaN; otherwise returns 0.
    407  1.1  bjh21 -------------------------------------------------------------------------------
    408  1.1  bjh21 */
    409  1.1  bjh21 flag float128_is_signaling_nan( float128 a )
    410  1.1  bjh21 {
    411  1.1  bjh21 
    412  1.1  bjh21     return
    413  1.1  bjh21            ( ( ( a.high>>47 ) & 0xFFFF ) == 0xFFFE )
    414  1.1  bjh21         && ( a.low || ( a.high & LIT64( 0x00007FFFFFFFFFFF ) ) );
    415  1.1  bjh21 
    416  1.1  bjh21 }
    417  1.1  bjh21 
    418  1.1  bjh21 /*
    419  1.1  bjh21 -------------------------------------------------------------------------------
    420  1.1  bjh21 Returns the result of converting the quadruple-precision floating-point NaN
    421  1.1  bjh21 `a' to the canonical NaN format.  If `a' is a signaling NaN, the invalid
    422  1.1  bjh21 exception is raised.
    423  1.1  bjh21 -------------------------------------------------------------------------------
    424  1.1  bjh21 */
    425  1.1  bjh21 static commonNaNT float128ToCommonNaN( float128 a )
    426  1.1  bjh21 {
    427  1.1  bjh21     commonNaNT z;
    428  1.1  bjh21 
    429  1.1  bjh21     if ( float128_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
    430  1.1  bjh21     z.sign = a.high>>63;
    431  1.1  bjh21     shortShift128Left( a.high, a.low, 16, &z.high, &z.low );
    432  1.1  bjh21     return z;
    433  1.1  bjh21 
    434  1.1  bjh21 }
    435  1.1  bjh21 
    436  1.1  bjh21 /*
    437  1.1  bjh21 -------------------------------------------------------------------------------
    438  1.1  bjh21 Returns the result of converting the canonical NaN `a' to the quadruple-
    439  1.1  bjh21 precision floating-point format.
    440  1.1  bjh21 -------------------------------------------------------------------------------
    441  1.1  bjh21 */
    442  1.1  bjh21 static float128 commonNaNToFloat128( commonNaNT a )
    443  1.1  bjh21 {
    444  1.1  bjh21     float128 z;
    445  1.1  bjh21 
    446  1.1  bjh21     shift128Right( a.high, a.low, 16, &z.high, &z.low );
    447  1.1  bjh21     z.high |= ( ( (bits64) a.sign )<<63 ) | LIT64( 0x7FFF800000000000 );
    448  1.1  bjh21     return z;
    449  1.1  bjh21 
    450  1.1  bjh21 }
    451  1.1  bjh21 
    452  1.1  bjh21 /*
    453  1.1  bjh21 -------------------------------------------------------------------------------
    454  1.1  bjh21 Takes two quadruple-precision floating-point values `a' and `b', one of
    455  1.1  bjh21 which is a NaN, and returns the appropriate NaN result.  If either `a' or
    456  1.1  bjh21 `b' is a signaling NaN, the invalid exception is raised.
    457  1.1  bjh21 -------------------------------------------------------------------------------
    458  1.1  bjh21 */
    459  1.1  bjh21 static float128 propagateFloat128NaN( float128 a, float128 b )
    460  1.1  bjh21 {
    461  1.1  bjh21     flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
    462  1.1  bjh21 
    463  1.1  bjh21     aIsNaN = float128_is_nan( a );
    464  1.1  bjh21     aIsSignalingNaN = float128_is_signaling_nan( a );
    465  1.1  bjh21     bIsNaN = float128_is_nan( b );
    466  1.1  bjh21     bIsSignalingNaN = float128_is_signaling_nan( b );
    467  1.1  bjh21     a.high |= LIT64( 0x0000800000000000 );
    468  1.1  bjh21     b.high |= LIT64( 0x0000800000000000 );
    469  1.1  bjh21     if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
    470  1.1  bjh21     if ( aIsNaN ) {
    471  1.1  bjh21         return ( aIsSignalingNaN & bIsNaN ) ? b : a;
    472  1.1  bjh21     }
    473  1.1  bjh21     else {
    474  1.1  bjh21         return b;
    475  1.1  bjh21     }
    476  1.1  bjh21 
    477  1.1  bjh21 }
    478  1.1  bjh21 
    479  1.1  bjh21 #endif
    480  1.1  bjh21 
    481