softfloat-specialize revision 1.3
11.3Sbjh21/*	$NetBSD: softfloat-specialize,v 1.3 2002/05/12 13:12:45 bjh21 Exp $	*/
21.3Sbjh21
31.3Sbjh21/* This is a derivative work. */
41.1Sbjh21
51.1Sbjh21/*
61.1Sbjh21===============================================================================
71.1Sbjh21
81.1Sbjh21This C source fragment is part of the SoftFloat IEC/IEEE Floating-point
91.1Sbjh21Arithmetic Package, Release 2a.
101.1Sbjh21
111.1Sbjh21Written by John R. Hauser.  This work was made possible in part by the
121.1Sbjh21International Computer Science Institute, located at Suite 600, 1947 Center
131.1Sbjh21Street, Berkeley, California 94704.  Funding was partially provided by the
141.1Sbjh21National Science Foundation under grant MIP-9311980.  The original version
151.1Sbjh21of this code was written as part of a project to build a fixed-point vector
161.1Sbjh21processor in collaboration with the University of California at Berkeley,
171.1Sbjh21overseen by Profs. Nelson Morgan and John Wawrzynek.  More information
181.1Sbjh21is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
191.1Sbjh21arithmetic/SoftFloat.html'.
201.1Sbjh21
211.1Sbjh21THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE.  Although reasonable effort
221.1Sbjh21has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
231.1Sbjh21TIMES RESULT IN INCORRECT BEHAVIOR.  USE OF THIS SOFTWARE IS RESTRICTED TO
241.1Sbjh21PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
251.1Sbjh21AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
261.1Sbjh21
271.1Sbjh21Derivative works are acceptable, even for commercial purposes, so long as
281.1Sbjh21(1) they include prominent notice that the work is derivative, and (2) they
291.1Sbjh21include prominent notice akin to these four paragraphs for those parts of
301.1Sbjh21this code that are retained.
311.1Sbjh21
321.1Sbjh21===============================================================================
331.1Sbjh21*/
341.1Sbjh21
351.3Sbjh21#include <signal.h>
361.3Sbjh21
371.1Sbjh21/*
381.1Sbjh21-------------------------------------------------------------------------------
391.1Sbjh21Underflow tininess-detection mode, statically initialized to default value.
401.1Sbjh21(The declaration in `softfloat.h' must match the `int8' type here.)
411.1Sbjh21-------------------------------------------------------------------------------
421.1Sbjh21*/
431.1Sbjh21#ifdef SOFTFLOAT_FOR_GCC
441.1Sbjh21static
451.1Sbjh21#endif
461.1Sbjh21int8 float_detect_tininess = float_tininess_after_rounding;
471.1Sbjh21
481.1Sbjh21/*
491.1Sbjh21-------------------------------------------------------------------------------
501.1Sbjh21Raises the exceptions specified by `flags'.  Floating-point traps can be
511.1Sbjh21defined here if desired.  It is currently not possible for such a trap to
521.1Sbjh21substitute a result value.  If traps are not implemented, this routine
531.1Sbjh21should be simply `float_exception_flags |= flags;'.
541.1Sbjh21-------------------------------------------------------------------------------
551.1Sbjh21*/
561.3Sbjh21fp_except float_exception_mask = 0;
571.3Sbjh21void float_raise( fp_except flags )
581.1Sbjh21{
591.1Sbjh21
601.1Sbjh21    float_exception_flags |= flags;
611.1Sbjh21
621.3Sbjh21    if ( flags & float_exception_mask ) {
631.3Sbjh21	raise( SIGFPE );
641.3Sbjh21    }
651.1Sbjh21}
661.1Sbjh21
671.1Sbjh21/*
681.1Sbjh21-------------------------------------------------------------------------------
691.1Sbjh21Internal canonical NaN format.
701.1Sbjh21-------------------------------------------------------------------------------
711.1Sbjh21*/
721.1Sbjh21typedef struct {
731.1Sbjh21    flag sign;
741.1Sbjh21    bits64 high, low;
751.1Sbjh21} commonNaNT;
761.1Sbjh21
771.1Sbjh21/*
781.1Sbjh21-------------------------------------------------------------------------------
791.1Sbjh21The pattern for a default generated single-precision NaN.
801.1Sbjh21-------------------------------------------------------------------------------
811.1Sbjh21*/
821.1Sbjh21#define float32_default_nan 0xFFFFFFFF
831.1Sbjh21
841.1Sbjh21/*
851.1Sbjh21-------------------------------------------------------------------------------
861.1Sbjh21Returns 1 if the single-precision floating-point value `a' is a NaN;
871.1Sbjh21otherwise returns 0.
881.1Sbjh21-------------------------------------------------------------------------------
891.1Sbjh21*/
901.1Sbjh21#ifdef SOFTFLOAT_FOR_GCC
911.1Sbjh21static
921.1Sbjh21#endif
931.1Sbjh21flag float32_is_nan( float32 a )
941.1Sbjh21{
951.1Sbjh21
961.1Sbjh21    return ( 0xFF000000 < (bits32) ( a<<1 ) );
971.1Sbjh21
981.1Sbjh21}
991.1Sbjh21
1001.1Sbjh21/*
1011.1Sbjh21-------------------------------------------------------------------------------
1021.1Sbjh21Returns 1 if the single-precision floating-point value `a' is a signaling
1031.1Sbjh21NaN; otherwise returns 0.
1041.1Sbjh21-------------------------------------------------------------------------------
1051.1Sbjh21*/
1061.2Sagc#if defined(SOFTFLOAT_FOR_GCC) && !defined(SOFTFLOATSPARC64_FOR_GCC)
1071.1Sbjh21static
1081.1Sbjh21#endif
1091.1Sbjh21flag float32_is_signaling_nan( float32 a )
1101.1Sbjh21{
1111.1Sbjh21
1121.1Sbjh21    return ( ( ( a>>22 ) & 0x1FF ) == 0x1FE ) && ( a & 0x003FFFFF );
1131.1Sbjh21
1141.1Sbjh21}
1151.1Sbjh21
1161.1Sbjh21/*
1171.1Sbjh21-------------------------------------------------------------------------------
1181.1Sbjh21Returns the result of converting the single-precision floating-point NaN
1191.1Sbjh21`a' to the canonical NaN format.  If `a' is a signaling NaN, the invalid
1201.1Sbjh21exception is raised.
1211.1Sbjh21-------------------------------------------------------------------------------
1221.1Sbjh21*/
1231.1Sbjh21static commonNaNT float32ToCommonNaN( float32 a )
1241.1Sbjh21{
1251.1Sbjh21    commonNaNT z;
1261.1Sbjh21
1271.1Sbjh21    if ( float32_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
1281.1Sbjh21    z.sign = a>>31;
1291.1Sbjh21    z.low = 0;
1301.1Sbjh21    z.high = ( (bits64) a )<<41;
1311.1Sbjh21    return z;
1321.1Sbjh21
1331.1Sbjh21}
1341.1Sbjh21
1351.1Sbjh21/*
1361.1Sbjh21-------------------------------------------------------------------------------
1371.1Sbjh21Returns the result of converting the canonical NaN `a' to the single-
1381.1Sbjh21precision floating-point format.
1391.1Sbjh21-------------------------------------------------------------------------------
1401.1Sbjh21*/
1411.1Sbjh21static float32 commonNaNToFloat32( commonNaNT a )
1421.1Sbjh21{
1431.1Sbjh21
1441.1Sbjh21    return ( ( (bits32) a.sign )<<31 ) | 0x7FC00000 | ( a.high>>41 );
1451.1Sbjh21
1461.1Sbjh21}
1471.1Sbjh21
1481.1Sbjh21/*
1491.1Sbjh21-------------------------------------------------------------------------------
1501.1Sbjh21Takes two single-precision floating-point values `a' and `b', one of which
1511.1Sbjh21is a NaN, and returns the appropriate NaN result.  If either `a' or `b' is a
1521.1Sbjh21signaling NaN, the invalid exception is raised.
1531.1Sbjh21-------------------------------------------------------------------------------
1541.1Sbjh21*/
1551.1Sbjh21static float32 propagateFloat32NaN( float32 a, float32 b )
1561.1Sbjh21{
1571.1Sbjh21    flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
1581.1Sbjh21
1591.1Sbjh21    aIsNaN = float32_is_nan( a );
1601.1Sbjh21    aIsSignalingNaN = float32_is_signaling_nan( a );
1611.1Sbjh21    bIsNaN = float32_is_nan( b );
1621.1Sbjh21    bIsSignalingNaN = float32_is_signaling_nan( b );
1631.1Sbjh21    a |= 0x00400000;
1641.1Sbjh21    b |= 0x00400000;
1651.1Sbjh21    if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
1661.1Sbjh21    if ( aIsNaN ) {
1671.1Sbjh21        return ( aIsSignalingNaN & bIsNaN ) ? b : a;
1681.1Sbjh21    }
1691.1Sbjh21    else {
1701.1Sbjh21        return b;
1711.1Sbjh21    }
1721.1Sbjh21
1731.1Sbjh21}
1741.1Sbjh21
1751.1Sbjh21/*
1761.1Sbjh21-------------------------------------------------------------------------------
1771.1Sbjh21The pattern for a default generated double-precision NaN.
1781.1Sbjh21-------------------------------------------------------------------------------
1791.1Sbjh21*/
1801.1Sbjh21#define float64_default_nan LIT64( 0xFFFFFFFFFFFFFFFF )
1811.1Sbjh21
1821.1Sbjh21/*
1831.1Sbjh21-------------------------------------------------------------------------------
1841.1Sbjh21Returns 1 if the double-precision floating-point value `a' is a NaN;
1851.1Sbjh21otherwise returns 0.
1861.1Sbjh21-------------------------------------------------------------------------------
1871.1Sbjh21*/
1881.1Sbjh21#ifdef SOFTFLOAT_FOR_GCC
1891.1Sbjh21static
1901.1Sbjh21#endif
1911.1Sbjh21flag float64_is_nan( float64 a )
1921.1Sbjh21{
1931.1Sbjh21
1941.1Sbjh21    return ( LIT64( 0xFFE0000000000000 ) <
1951.1Sbjh21	     (bits64) ( FLOAT64_DEMANGLE(a)<<1 ) );
1961.1Sbjh21
1971.1Sbjh21}
1981.1Sbjh21
1991.1Sbjh21/*
2001.1Sbjh21-------------------------------------------------------------------------------
2011.1Sbjh21Returns 1 if the double-precision floating-point value `a' is a signaling
2021.1Sbjh21NaN; otherwise returns 0.
2031.1Sbjh21-------------------------------------------------------------------------------
2041.1Sbjh21*/
2051.2Sagc#if defined(SOFTFLOAT_FOR_GCC) && !defined(SOFTFLOATSPARC64_FOR_GCC)
2061.1Sbjh21static
2071.1Sbjh21#endif
2081.1Sbjh21flag float64_is_signaling_nan( float64 a )
2091.1Sbjh21{
2101.1Sbjh21
2111.1Sbjh21    return
2121.1Sbjh21           ( ( ( FLOAT64_DEMANGLE(a)>>51 ) & 0xFFF ) == 0xFFE )
2131.1Sbjh21        && ( FLOAT64_DEMANGLE(a) & LIT64( 0x0007FFFFFFFFFFFF ) );
2141.1Sbjh21
2151.1Sbjh21}
2161.1Sbjh21
2171.1Sbjh21/*
2181.1Sbjh21-------------------------------------------------------------------------------
2191.1Sbjh21Returns the result of converting the double-precision floating-point NaN
2201.1Sbjh21`a' to the canonical NaN format.  If `a' is a signaling NaN, the invalid
2211.1Sbjh21exception is raised.
2221.1Sbjh21-------------------------------------------------------------------------------
2231.1Sbjh21*/
2241.1Sbjh21static commonNaNT float64ToCommonNaN( float64 a )
2251.1Sbjh21{
2261.1Sbjh21    commonNaNT z;
2271.1Sbjh21
2281.1Sbjh21    if ( float64_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
2291.1Sbjh21    z.sign = FLOAT64_DEMANGLE(a)>>63;
2301.1Sbjh21    z.low = 0;
2311.1Sbjh21    z.high = FLOAT64_DEMANGLE(a)<<12;
2321.1Sbjh21    return z;
2331.1Sbjh21
2341.1Sbjh21}
2351.1Sbjh21
2361.1Sbjh21/*
2371.1Sbjh21-------------------------------------------------------------------------------
2381.1Sbjh21Returns the result of converting the canonical NaN `a' to the double-
2391.1Sbjh21precision floating-point format.
2401.1Sbjh21-------------------------------------------------------------------------------
2411.1Sbjh21*/
2421.1Sbjh21static float64 commonNaNToFloat64( commonNaNT a )
2431.1Sbjh21{
2441.1Sbjh21
2451.1Sbjh21    return FLOAT64_MANGLE(
2461.1Sbjh21	( ( (bits64) a.sign )<<63 )
2471.1Sbjh21        | LIT64( 0x7FF8000000000000 )
2481.1Sbjh21        | ( a.high>>12 ) );
2491.1Sbjh21
2501.1Sbjh21}
2511.1Sbjh21
2521.1Sbjh21/*
2531.1Sbjh21-------------------------------------------------------------------------------
2541.1Sbjh21Takes two double-precision floating-point values `a' and `b', one of which
2551.1Sbjh21is a NaN, and returns the appropriate NaN result.  If either `a' or `b' is a
2561.1Sbjh21signaling NaN, the invalid exception is raised.
2571.1Sbjh21-------------------------------------------------------------------------------
2581.1Sbjh21*/
2591.1Sbjh21static float64 propagateFloat64NaN( float64 a, float64 b )
2601.1Sbjh21{
2611.1Sbjh21    flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
2621.1Sbjh21
2631.1Sbjh21    aIsNaN = float64_is_nan( a );
2641.1Sbjh21    aIsSignalingNaN = float64_is_signaling_nan( a );
2651.1Sbjh21    bIsNaN = float64_is_nan( b );
2661.1Sbjh21    bIsSignalingNaN = float64_is_signaling_nan( b );
2671.1Sbjh21    a |= FLOAT64_MANGLE(LIT64( 0x0008000000000000 ));
2681.1Sbjh21    b |= FLOAT64_MANGLE(LIT64( 0x0008000000000000 ));
2691.1Sbjh21    if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
2701.1Sbjh21    if ( aIsNaN ) {
2711.1Sbjh21        return ( aIsSignalingNaN & bIsNaN ) ? b : a;
2721.1Sbjh21    }
2731.1Sbjh21    else {
2741.1Sbjh21        return b;
2751.1Sbjh21    }
2761.1Sbjh21
2771.1Sbjh21}
2781.1Sbjh21
2791.1Sbjh21#ifdef FLOATX80
2801.1Sbjh21
2811.1Sbjh21/*
2821.1Sbjh21-------------------------------------------------------------------------------
2831.1Sbjh21The pattern for a default generated extended double-precision NaN.  The
2841.1Sbjh21`high' and `low' values hold the most- and least-significant bits,
2851.1Sbjh21respectively.
2861.1Sbjh21-------------------------------------------------------------------------------
2871.1Sbjh21*/
2881.1Sbjh21#define floatx80_default_nan_high 0xFFFF
2891.1Sbjh21#define floatx80_default_nan_low  LIT64( 0xFFFFFFFFFFFFFFFF )
2901.1Sbjh21
2911.1Sbjh21/*
2921.1Sbjh21-------------------------------------------------------------------------------
2931.1Sbjh21Returns 1 if the extended double-precision floating-point value `a' is a
2941.1Sbjh21NaN; otherwise returns 0.
2951.1Sbjh21-------------------------------------------------------------------------------
2961.1Sbjh21*/
2971.1Sbjh21flag floatx80_is_nan( floatx80 a )
2981.1Sbjh21{
2991.1Sbjh21
3001.1Sbjh21    return ( ( a.high & 0x7FFF ) == 0x7FFF ) && (bits64) ( a.low<<1 );
3011.1Sbjh21
3021.1Sbjh21}
3031.1Sbjh21
3041.1Sbjh21/*
3051.1Sbjh21-------------------------------------------------------------------------------
3061.1Sbjh21Returns 1 if the extended double-precision floating-point value `a' is a
3071.1Sbjh21signaling NaN; otherwise returns 0.
3081.1Sbjh21-------------------------------------------------------------------------------
3091.1Sbjh21*/
3101.1Sbjh21flag floatx80_is_signaling_nan( floatx80 a )
3111.1Sbjh21{
3121.1Sbjh21    bits64 aLow;
3131.1Sbjh21
3141.1Sbjh21    aLow = a.low & ~ LIT64( 0x4000000000000000 );
3151.1Sbjh21    return
3161.1Sbjh21           ( ( a.high & 0x7FFF ) == 0x7FFF )
3171.1Sbjh21        && (bits64) ( aLow<<1 )
3181.1Sbjh21        && ( a.low == aLow );
3191.1Sbjh21
3201.1Sbjh21}
3211.1Sbjh21
3221.1Sbjh21/*
3231.1Sbjh21-------------------------------------------------------------------------------
3241.1Sbjh21Returns the result of converting the extended double-precision floating-
3251.1Sbjh21point NaN `a' to the canonical NaN format.  If `a' is a signaling NaN, the
3261.1Sbjh21invalid exception is raised.
3271.1Sbjh21-------------------------------------------------------------------------------
3281.1Sbjh21*/
3291.1Sbjh21static commonNaNT floatx80ToCommonNaN( floatx80 a )
3301.1Sbjh21{
3311.1Sbjh21    commonNaNT z;
3321.1Sbjh21
3331.1Sbjh21    if ( floatx80_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
3341.1Sbjh21    z.sign = a.high>>15;
3351.1Sbjh21    z.low = 0;
3361.1Sbjh21    z.high = a.low<<1;
3371.1Sbjh21    return z;
3381.1Sbjh21
3391.1Sbjh21}
3401.1Sbjh21
3411.1Sbjh21/*
3421.1Sbjh21-------------------------------------------------------------------------------
3431.1Sbjh21Returns the result of converting the canonical NaN `a' to the extended
3441.1Sbjh21double-precision floating-point format.
3451.1Sbjh21-------------------------------------------------------------------------------
3461.1Sbjh21*/
3471.1Sbjh21static floatx80 commonNaNToFloatx80( commonNaNT a )
3481.1Sbjh21{
3491.1Sbjh21    floatx80 z;
3501.1Sbjh21
3511.1Sbjh21    z.low = LIT64( 0xC000000000000000 ) | ( a.high>>1 );
3521.1Sbjh21    z.high = ( ( (bits16) a.sign )<<15 ) | 0x7FFF;
3531.1Sbjh21    return z;
3541.1Sbjh21
3551.1Sbjh21}
3561.1Sbjh21
3571.1Sbjh21/*
3581.1Sbjh21-------------------------------------------------------------------------------
3591.1Sbjh21Takes two extended double-precision floating-point values `a' and `b', one
3601.1Sbjh21of which is a NaN, and returns the appropriate NaN result.  If either `a' or
3611.1Sbjh21`b' is a signaling NaN, the invalid exception is raised.
3621.1Sbjh21-------------------------------------------------------------------------------
3631.1Sbjh21*/
3641.1Sbjh21static floatx80 propagateFloatx80NaN( floatx80 a, floatx80 b )
3651.1Sbjh21{
3661.1Sbjh21    flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
3671.1Sbjh21
3681.1Sbjh21    aIsNaN = floatx80_is_nan( a );
3691.1Sbjh21    aIsSignalingNaN = floatx80_is_signaling_nan( a );
3701.1Sbjh21    bIsNaN = floatx80_is_nan( b );
3711.1Sbjh21    bIsSignalingNaN = floatx80_is_signaling_nan( b );
3721.1Sbjh21    a.low |= LIT64( 0xC000000000000000 );
3731.1Sbjh21    b.low |= LIT64( 0xC000000000000000 );
3741.1Sbjh21    if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
3751.1Sbjh21    if ( aIsNaN ) {
3761.1Sbjh21        return ( aIsSignalingNaN & bIsNaN ) ? b : a;
3771.1Sbjh21    }
3781.1Sbjh21    else {
3791.1Sbjh21        return b;
3801.1Sbjh21    }
3811.1Sbjh21
3821.1Sbjh21}
3831.1Sbjh21
3841.1Sbjh21#endif
3851.1Sbjh21
3861.1Sbjh21#ifdef FLOAT128
3871.1Sbjh21
3881.1Sbjh21/*
3891.1Sbjh21-------------------------------------------------------------------------------
3901.1Sbjh21The pattern for a default generated quadruple-precision NaN.  The `high' and
3911.1Sbjh21`low' values hold the most- and least-significant bits, respectively.
3921.1Sbjh21-------------------------------------------------------------------------------
3931.1Sbjh21*/
3941.1Sbjh21#define float128_default_nan_high LIT64( 0xFFFFFFFFFFFFFFFF )
3951.1Sbjh21#define float128_default_nan_low  LIT64( 0xFFFFFFFFFFFFFFFF )
3961.1Sbjh21
3971.1Sbjh21/*
3981.1Sbjh21-------------------------------------------------------------------------------
3991.1Sbjh21Returns 1 if the quadruple-precision floating-point value `a' is a NaN;
4001.1Sbjh21otherwise returns 0.
4011.1Sbjh21-------------------------------------------------------------------------------
4021.1Sbjh21*/
4031.1Sbjh21flag float128_is_nan( float128 a )
4041.1Sbjh21{
4051.1Sbjh21
4061.1Sbjh21    return
4071.1Sbjh21           ( LIT64( 0xFFFE000000000000 ) <= (bits64) ( a.high<<1 ) )
4081.1Sbjh21        && ( a.low || ( a.high & LIT64( 0x0000FFFFFFFFFFFF ) ) );
4091.1Sbjh21
4101.1Sbjh21}
4111.1Sbjh21
4121.1Sbjh21/*
4131.1Sbjh21-------------------------------------------------------------------------------
4141.1Sbjh21Returns 1 if the quadruple-precision floating-point value `a' is a
4151.1Sbjh21signaling NaN; otherwise returns 0.
4161.1Sbjh21-------------------------------------------------------------------------------
4171.1Sbjh21*/
4181.1Sbjh21flag float128_is_signaling_nan( float128 a )
4191.1Sbjh21{
4201.1Sbjh21
4211.1Sbjh21    return
4221.1Sbjh21           ( ( ( a.high>>47 ) & 0xFFFF ) == 0xFFFE )
4231.1Sbjh21        && ( a.low || ( a.high & LIT64( 0x00007FFFFFFFFFFF ) ) );
4241.1Sbjh21
4251.1Sbjh21}
4261.1Sbjh21
4271.1Sbjh21/*
4281.1Sbjh21-------------------------------------------------------------------------------
4291.1Sbjh21Returns the result of converting the quadruple-precision floating-point NaN
4301.1Sbjh21`a' to the canonical NaN format.  If `a' is a signaling NaN, the invalid
4311.1Sbjh21exception is raised.
4321.1Sbjh21-------------------------------------------------------------------------------
4331.1Sbjh21*/
4341.1Sbjh21static commonNaNT float128ToCommonNaN( float128 a )
4351.1Sbjh21{
4361.1Sbjh21    commonNaNT z;
4371.1Sbjh21
4381.1Sbjh21    if ( float128_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
4391.1Sbjh21    z.sign = a.high>>63;
4401.1Sbjh21    shortShift128Left( a.high, a.low, 16, &z.high, &z.low );
4411.1Sbjh21    return z;
4421.1Sbjh21
4431.1Sbjh21}
4441.1Sbjh21
4451.1Sbjh21/*
4461.1Sbjh21-------------------------------------------------------------------------------
4471.1Sbjh21Returns the result of converting the canonical NaN `a' to the quadruple-
4481.1Sbjh21precision floating-point format.
4491.1Sbjh21-------------------------------------------------------------------------------
4501.1Sbjh21*/
4511.1Sbjh21static float128 commonNaNToFloat128( commonNaNT a )
4521.1Sbjh21{
4531.1Sbjh21    float128 z;
4541.1Sbjh21
4551.1Sbjh21    shift128Right( a.high, a.low, 16, &z.high, &z.low );
4561.1Sbjh21    z.high |= ( ( (bits64) a.sign )<<63 ) | LIT64( 0x7FFF800000000000 );
4571.1Sbjh21    return z;
4581.1Sbjh21
4591.1Sbjh21}
4601.1Sbjh21
4611.1Sbjh21/*
4621.1Sbjh21-------------------------------------------------------------------------------
4631.1Sbjh21Takes two quadruple-precision floating-point values `a' and `b', one of
4641.1Sbjh21which is a NaN, and returns the appropriate NaN result.  If either `a' or
4651.1Sbjh21`b' is a signaling NaN, the invalid exception is raised.
4661.1Sbjh21-------------------------------------------------------------------------------
4671.1Sbjh21*/
4681.1Sbjh21static float128 propagateFloat128NaN( float128 a, float128 b )
4691.1Sbjh21{
4701.1Sbjh21    flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
4711.1Sbjh21
4721.1Sbjh21    aIsNaN = float128_is_nan( a );
4731.1Sbjh21    aIsSignalingNaN = float128_is_signaling_nan( a );
4741.1Sbjh21    bIsNaN = float128_is_nan( b );
4751.1Sbjh21    bIsSignalingNaN = float128_is_signaling_nan( b );
4761.1Sbjh21    a.high |= LIT64( 0x0000800000000000 );
4771.1Sbjh21    b.high |= LIT64( 0x0000800000000000 );
4781.1Sbjh21    if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
4791.1Sbjh21    if ( aIsNaN ) {
4801.1Sbjh21        return ( aIsSignalingNaN & bIsNaN ) ? b : a;
4811.1Sbjh21    }
4821.1Sbjh21    else {
4831.1Sbjh21        return b;
4841.1Sbjh21    }
4851.1Sbjh21
4861.1Sbjh21}
4871.1Sbjh21
4881.1Sbjh21#endif
4891.1Sbjh21
490