softfloat-specialize revision 1.3 1 1.3 bjh21 /* $NetBSD: softfloat-specialize,v 1.3 2002/05/12 13:12:45 bjh21 Exp $ */
2 1.3 bjh21
3 1.3 bjh21 /* This is a derivative work. */
4 1.1 bjh21
5 1.1 bjh21 /*
6 1.1 bjh21 ===============================================================================
7 1.1 bjh21
8 1.1 bjh21 This C source fragment is part of the SoftFloat IEC/IEEE Floating-point
9 1.1 bjh21 Arithmetic Package, Release 2a.
10 1.1 bjh21
11 1.1 bjh21 Written by John R. Hauser. This work was made possible in part by the
12 1.1 bjh21 International Computer Science Institute, located at Suite 600, 1947 Center
13 1.1 bjh21 Street, Berkeley, California 94704. Funding was partially provided by the
14 1.1 bjh21 National Science Foundation under grant MIP-9311980. The original version
15 1.1 bjh21 of this code was written as part of a project to build a fixed-point vector
16 1.1 bjh21 processor in collaboration with the University of California at Berkeley,
17 1.1 bjh21 overseen by Profs. Nelson Morgan and John Wawrzynek. More information
18 1.1 bjh21 is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
19 1.1 bjh21 arithmetic/SoftFloat.html'.
20 1.1 bjh21
21 1.1 bjh21 THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort
22 1.1 bjh21 has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
23 1.1 bjh21 TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO
24 1.1 bjh21 PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
25 1.1 bjh21 AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
26 1.1 bjh21
27 1.1 bjh21 Derivative works are acceptable, even for commercial purposes, so long as
28 1.1 bjh21 (1) they include prominent notice that the work is derivative, and (2) they
29 1.1 bjh21 include prominent notice akin to these four paragraphs for those parts of
30 1.1 bjh21 this code that are retained.
31 1.1 bjh21
32 1.1 bjh21 ===============================================================================
33 1.1 bjh21 */
34 1.1 bjh21
35 1.3 bjh21 #include <signal.h>
36 1.3 bjh21
37 1.1 bjh21 /*
38 1.1 bjh21 -------------------------------------------------------------------------------
39 1.1 bjh21 Underflow tininess-detection mode, statically initialized to default value.
40 1.1 bjh21 (The declaration in `softfloat.h' must match the `int8' type here.)
41 1.1 bjh21 -------------------------------------------------------------------------------
42 1.1 bjh21 */
43 1.1 bjh21 #ifdef SOFTFLOAT_FOR_GCC
44 1.1 bjh21 static
45 1.1 bjh21 #endif
46 1.1 bjh21 int8 float_detect_tininess = float_tininess_after_rounding;
47 1.1 bjh21
48 1.1 bjh21 /*
49 1.1 bjh21 -------------------------------------------------------------------------------
50 1.1 bjh21 Raises the exceptions specified by `flags'. Floating-point traps can be
51 1.1 bjh21 defined here if desired. It is currently not possible for such a trap to
52 1.1 bjh21 substitute a result value. If traps are not implemented, this routine
53 1.1 bjh21 should be simply `float_exception_flags |= flags;'.
54 1.1 bjh21 -------------------------------------------------------------------------------
55 1.1 bjh21 */
56 1.3 bjh21 fp_except float_exception_mask = 0;
57 1.3 bjh21 void float_raise( fp_except flags )
58 1.1 bjh21 {
59 1.1 bjh21
60 1.1 bjh21 float_exception_flags |= flags;
61 1.1 bjh21
62 1.3 bjh21 if ( flags & float_exception_mask ) {
63 1.3 bjh21 raise( SIGFPE );
64 1.3 bjh21 }
65 1.1 bjh21 }
66 1.1 bjh21
67 1.1 bjh21 /*
68 1.1 bjh21 -------------------------------------------------------------------------------
69 1.1 bjh21 Internal canonical NaN format.
70 1.1 bjh21 -------------------------------------------------------------------------------
71 1.1 bjh21 */
72 1.1 bjh21 typedef struct {
73 1.1 bjh21 flag sign;
74 1.1 bjh21 bits64 high, low;
75 1.1 bjh21 } commonNaNT;
76 1.1 bjh21
77 1.1 bjh21 /*
78 1.1 bjh21 -------------------------------------------------------------------------------
79 1.1 bjh21 The pattern for a default generated single-precision NaN.
80 1.1 bjh21 -------------------------------------------------------------------------------
81 1.1 bjh21 */
82 1.1 bjh21 #define float32_default_nan 0xFFFFFFFF
83 1.1 bjh21
84 1.1 bjh21 /*
85 1.1 bjh21 -------------------------------------------------------------------------------
86 1.1 bjh21 Returns 1 if the single-precision floating-point value `a' is a NaN;
87 1.1 bjh21 otherwise returns 0.
88 1.1 bjh21 -------------------------------------------------------------------------------
89 1.1 bjh21 */
90 1.1 bjh21 #ifdef SOFTFLOAT_FOR_GCC
91 1.1 bjh21 static
92 1.1 bjh21 #endif
93 1.1 bjh21 flag float32_is_nan( float32 a )
94 1.1 bjh21 {
95 1.1 bjh21
96 1.1 bjh21 return ( 0xFF000000 < (bits32) ( a<<1 ) );
97 1.1 bjh21
98 1.1 bjh21 }
99 1.1 bjh21
100 1.1 bjh21 /*
101 1.1 bjh21 -------------------------------------------------------------------------------
102 1.1 bjh21 Returns 1 if the single-precision floating-point value `a' is a signaling
103 1.1 bjh21 NaN; otherwise returns 0.
104 1.1 bjh21 -------------------------------------------------------------------------------
105 1.1 bjh21 */
106 1.2 agc #if defined(SOFTFLOAT_FOR_GCC) && !defined(SOFTFLOATSPARC64_FOR_GCC)
107 1.1 bjh21 static
108 1.1 bjh21 #endif
109 1.1 bjh21 flag float32_is_signaling_nan( float32 a )
110 1.1 bjh21 {
111 1.1 bjh21
112 1.1 bjh21 return ( ( ( a>>22 ) & 0x1FF ) == 0x1FE ) && ( a & 0x003FFFFF );
113 1.1 bjh21
114 1.1 bjh21 }
115 1.1 bjh21
116 1.1 bjh21 /*
117 1.1 bjh21 -------------------------------------------------------------------------------
118 1.1 bjh21 Returns the result of converting the single-precision floating-point NaN
119 1.1 bjh21 `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
120 1.1 bjh21 exception is raised.
121 1.1 bjh21 -------------------------------------------------------------------------------
122 1.1 bjh21 */
123 1.1 bjh21 static commonNaNT float32ToCommonNaN( float32 a )
124 1.1 bjh21 {
125 1.1 bjh21 commonNaNT z;
126 1.1 bjh21
127 1.1 bjh21 if ( float32_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
128 1.1 bjh21 z.sign = a>>31;
129 1.1 bjh21 z.low = 0;
130 1.1 bjh21 z.high = ( (bits64) a )<<41;
131 1.1 bjh21 return z;
132 1.1 bjh21
133 1.1 bjh21 }
134 1.1 bjh21
135 1.1 bjh21 /*
136 1.1 bjh21 -------------------------------------------------------------------------------
137 1.1 bjh21 Returns the result of converting the canonical NaN `a' to the single-
138 1.1 bjh21 precision floating-point format.
139 1.1 bjh21 -------------------------------------------------------------------------------
140 1.1 bjh21 */
141 1.1 bjh21 static float32 commonNaNToFloat32( commonNaNT a )
142 1.1 bjh21 {
143 1.1 bjh21
144 1.1 bjh21 return ( ( (bits32) a.sign )<<31 ) | 0x7FC00000 | ( a.high>>41 );
145 1.1 bjh21
146 1.1 bjh21 }
147 1.1 bjh21
148 1.1 bjh21 /*
149 1.1 bjh21 -------------------------------------------------------------------------------
150 1.1 bjh21 Takes two single-precision floating-point values `a' and `b', one of which
151 1.1 bjh21 is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a
152 1.1 bjh21 signaling NaN, the invalid exception is raised.
153 1.1 bjh21 -------------------------------------------------------------------------------
154 1.1 bjh21 */
155 1.1 bjh21 static float32 propagateFloat32NaN( float32 a, float32 b )
156 1.1 bjh21 {
157 1.1 bjh21 flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
158 1.1 bjh21
159 1.1 bjh21 aIsNaN = float32_is_nan( a );
160 1.1 bjh21 aIsSignalingNaN = float32_is_signaling_nan( a );
161 1.1 bjh21 bIsNaN = float32_is_nan( b );
162 1.1 bjh21 bIsSignalingNaN = float32_is_signaling_nan( b );
163 1.1 bjh21 a |= 0x00400000;
164 1.1 bjh21 b |= 0x00400000;
165 1.1 bjh21 if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
166 1.1 bjh21 if ( aIsNaN ) {
167 1.1 bjh21 return ( aIsSignalingNaN & bIsNaN ) ? b : a;
168 1.1 bjh21 }
169 1.1 bjh21 else {
170 1.1 bjh21 return b;
171 1.1 bjh21 }
172 1.1 bjh21
173 1.1 bjh21 }
174 1.1 bjh21
175 1.1 bjh21 /*
176 1.1 bjh21 -------------------------------------------------------------------------------
177 1.1 bjh21 The pattern for a default generated double-precision NaN.
178 1.1 bjh21 -------------------------------------------------------------------------------
179 1.1 bjh21 */
180 1.1 bjh21 #define float64_default_nan LIT64( 0xFFFFFFFFFFFFFFFF )
181 1.1 bjh21
182 1.1 bjh21 /*
183 1.1 bjh21 -------------------------------------------------------------------------------
184 1.1 bjh21 Returns 1 if the double-precision floating-point value `a' is a NaN;
185 1.1 bjh21 otherwise returns 0.
186 1.1 bjh21 -------------------------------------------------------------------------------
187 1.1 bjh21 */
188 1.1 bjh21 #ifdef SOFTFLOAT_FOR_GCC
189 1.1 bjh21 static
190 1.1 bjh21 #endif
191 1.1 bjh21 flag float64_is_nan( float64 a )
192 1.1 bjh21 {
193 1.1 bjh21
194 1.1 bjh21 return ( LIT64( 0xFFE0000000000000 ) <
195 1.1 bjh21 (bits64) ( FLOAT64_DEMANGLE(a)<<1 ) );
196 1.1 bjh21
197 1.1 bjh21 }
198 1.1 bjh21
199 1.1 bjh21 /*
200 1.1 bjh21 -------------------------------------------------------------------------------
201 1.1 bjh21 Returns 1 if the double-precision floating-point value `a' is a signaling
202 1.1 bjh21 NaN; otherwise returns 0.
203 1.1 bjh21 -------------------------------------------------------------------------------
204 1.1 bjh21 */
205 1.2 agc #if defined(SOFTFLOAT_FOR_GCC) && !defined(SOFTFLOATSPARC64_FOR_GCC)
206 1.1 bjh21 static
207 1.1 bjh21 #endif
208 1.1 bjh21 flag float64_is_signaling_nan( float64 a )
209 1.1 bjh21 {
210 1.1 bjh21
211 1.1 bjh21 return
212 1.1 bjh21 ( ( ( FLOAT64_DEMANGLE(a)>>51 ) & 0xFFF ) == 0xFFE )
213 1.1 bjh21 && ( FLOAT64_DEMANGLE(a) & LIT64( 0x0007FFFFFFFFFFFF ) );
214 1.1 bjh21
215 1.1 bjh21 }
216 1.1 bjh21
217 1.1 bjh21 /*
218 1.1 bjh21 -------------------------------------------------------------------------------
219 1.1 bjh21 Returns the result of converting the double-precision floating-point NaN
220 1.1 bjh21 `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
221 1.1 bjh21 exception is raised.
222 1.1 bjh21 -------------------------------------------------------------------------------
223 1.1 bjh21 */
224 1.1 bjh21 static commonNaNT float64ToCommonNaN( float64 a )
225 1.1 bjh21 {
226 1.1 bjh21 commonNaNT z;
227 1.1 bjh21
228 1.1 bjh21 if ( float64_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
229 1.1 bjh21 z.sign = FLOAT64_DEMANGLE(a)>>63;
230 1.1 bjh21 z.low = 0;
231 1.1 bjh21 z.high = FLOAT64_DEMANGLE(a)<<12;
232 1.1 bjh21 return z;
233 1.1 bjh21
234 1.1 bjh21 }
235 1.1 bjh21
236 1.1 bjh21 /*
237 1.1 bjh21 -------------------------------------------------------------------------------
238 1.1 bjh21 Returns the result of converting the canonical NaN `a' to the double-
239 1.1 bjh21 precision floating-point format.
240 1.1 bjh21 -------------------------------------------------------------------------------
241 1.1 bjh21 */
242 1.1 bjh21 static float64 commonNaNToFloat64( commonNaNT a )
243 1.1 bjh21 {
244 1.1 bjh21
245 1.1 bjh21 return FLOAT64_MANGLE(
246 1.1 bjh21 ( ( (bits64) a.sign )<<63 )
247 1.1 bjh21 | LIT64( 0x7FF8000000000000 )
248 1.1 bjh21 | ( a.high>>12 ) );
249 1.1 bjh21
250 1.1 bjh21 }
251 1.1 bjh21
252 1.1 bjh21 /*
253 1.1 bjh21 -------------------------------------------------------------------------------
254 1.1 bjh21 Takes two double-precision floating-point values `a' and `b', one of which
255 1.1 bjh21 is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a
256 1.1 bjh21 signaling NaN, the invalid exception is raised.
257 1.1 bjh21 -------------------------------------------------------------------------------
258 1.1 bjh21 */
259 1.1 bjh21 static float64 propagateFloat64NaN( float64 a, float64 b )
260 1.1 bjh21 {
261 1.1 bjh21 flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
262 1.1 bjh21
263 1.1 bjh21 aIsNaN = float64_is_nan( a );
264 1.1 bjh21 aIsSignalingNaN = float64_is_signaling_nan( a );
265 1.1 bjh21 bIsNaN = float64_is_nan( b );
266 1.1 bjh21 bIsSignalingNaN = float64_is_signaling_nan( b );
267 1.1 bjh21 a |= FLOAT64_MANGLE(LIT64( 0x0008000000000000 ));
268 1.1 bjh21 b |= FLOAT64_MANGLE(LIT64( 0x0008000000000000 ));
269 1.1 bjh21 if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
270 1.1 bjh21 if ( aIsNaN ) {
271 1.1 bjh21 return ( aIsSignalingNaN & bIsNaN ) ? b : a;
272 1.1 bjh21 }
273 1.1 bjh21 else {
274 1.1 bjh21 return b;
275 1.1 bjh21 }
276 1.1 bjh21
277 1.1 bjh21 }
278 1.1 bjh21
279 1.1 bjh21 #ifdef FLOATX80
280 1.1 bjh21
281 1.1 bjh21 /*
282 1.1 bjh21 -------------------------------------------------------------------------------
283 1.1 bjh21 The pattern for a default generated extended double-precision NaN. The
284 1.1 bjh21 `high' and `low' values hold the most- and least-significant bits,
285 1.1 bjh21 respectively.
286 1.1 bjh21 -------------------------------------------------------------------------------
287 1.1 bjh21 */
288 1.1 bjh21 #define floatx80_default_nan_high 0xFFFF
289 1.1 bjh21 #define floatx80_default_nan_low LIT64( 0xFFFFFFFFFFFFFFFF )
290 1.1 bjh21
291 1.1 bjh21 /*
292 1.1 bjh21 -------------------------------------------------------------------------------
293 1.1 bjh21 Returns 1 if the extended double-precision floating-point value `a' is a
294 1.1 bjh21 NaN; otherwise returns 0.
295 1.1 bjh21 -------------------------------------------------------------------------------
296 1.1 bjh21 */
297 1.1 bjh21 flag floatx80_is_nan( floatx80 a )
298 1.1 bjh21 {
299 1.1 bjh21
300 1.1 bjh21 return ( ( a.high & 0x7FFF ) == 0x7FFF ) && (bits64) ( a.low<<1 );
301 1.1 bjh21
302 1.1 bjh21 }
303 1.1 bjh21
304 1.1 bjh21 /*
305 1.1 bjh21 -------------------------------------------------------------------------------
306 1.1 bjh21 Returns 1 if the extended double-precision floating-point value `a' is a
307 1.1 bjh21 signaling NaN; otherwise returns 0.
308 1.1 bjh21 -------------------------------------------------------------------------------
309 1.1 bjh21 */
310 1.1 bjh21 flag floatx80_is_signaling_nan( floatx80 a )
311 1.1 bjh21 {
312 1.1 bjh21 bits64 aLow;
313 1.1 bjh21
314 1.1 bjh21 aLow = a.low & ~ LIT64( 0x4000000000000000 );
315 1.1 bjh21 return
316 1.1 bjh21 ( ( a.high & 0x7FFF ) == 0x7FFF )
317 1.1 bjh21 && (bits64) ( aLow<<1 )
318 1.1 bjh21 && ( a.low == aLow );
319 1.1 bjh21
320 1.1 bjh21 }
321 1.1 bjh21
322 1.1 bjh21 /*
323 1.1 bjh21 -------------------------------------------------------------------------------
324 1.1 bjh21 Returns the result of converting the extended double-precision floating-
325 1.1 bjh21 point NaN `a' to the canonical NaN format. If `a' is a signaling NaN, the
326 1.1 bjh21 invalid exception is raised.
327 1.1 bjh21 -------------------------------------------------------------------------------
328 1.1 bjh21 */
329 1.1 bjh21 static commonNaNT floatx80ToCommonNaN( floatx80 a )
330 1.1 bjh21 {
331 1.1 bjh21 commonNaNT z;
332 1.1 bjh21
333 1.1 bjh21 if ( floatx80_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
334 1.1 bjh21 z.sign = a.high>>15;
335 1.1 bjh21 z.low = 0;
336 1.1 bjh21 z.high = a.low<<1;
337 1.1 bjh21 return z;
338 1.1 bjh21
339 1.1 bjh21 }
340 1.1 bjh21
341 1.1 bjh21 /*
342 1.1 bjh21 -------------------------------------------------------------------------------
343 1.1 bjh21 Returns the result of converting the canonical NaN `a' to the extended
344 1.1 bjh21 double-precision floating-point format.
345 1.1 bjh21 -------------------------------------------------------------------------------
346 1.1 bjh21 */
347 1.1 bjh21 static floatx80 commonNaNToFloatx80( commonNaNT a )
348 1.1 bjh21 {
349 1.1 bjh21 floatx80 z;
350 1.1 bjh21
351 1.1 bjh21 z.low = LIT64( 0xC000000000000000 ) | ( a.high>>1 );
352 1.1 bjh21 z.high = ( ( (bits16) a.sign )<<15 ) | 0x7FFF;
353 1.1 bjh21 return z;
354 1.1 bjh21
355 1.1 bjh21 }
356 1.1 bjh21
357 1.1 bjh21 /*
358 1.1 bjh21 -------------------------------------------------------------------------------
359 1.1 bjh21 Takes two extended double-precision floating-point values `a' and `b', one
360 1.1 bjh21 of which is a NaN, and returns the appropriate NaN result. If either `a' or
361 1.1 bjh21 `b' is a signaling NaN, the invalid exception is raised.
362 1.1 bjh21 -------------------------------------------------------------------------------
363 1.1 bjh21 */
364 1.1 bjh21 static floatx80 propagateFloatx80NaN( floatx80 a, floatx80 b )
365 1.1 bjh21 {
366 1.1 bjh21 flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
367 1.1 bjh21
368 1.1 bjh21 aIsNaN = floatx80_is_nan( a );
369 1.1 bjh21 aIsSignalingNaN = floatx80_is_signaling_nan( a );
370 1.1 bjh21 bIsNaN = floatx80_is_nan( b );
371 1.1 bjh21 bIsSignalingNaN = floatx80_is_signaling_nan( b );
372 1.1 bjh21 a.low |= LIT64( 0xC000000000000000 );
373 1.1 bjh21 b.low |= LIT64( 0xC000000000000000 );
374 1.1 bjh21 if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
375 1.1 bjh21 if ( aIsNaN ) {
376 1.1 bjh21 return ( aIsSignalingNaN & bIsNaN ) ? b : a;
377 1.1 bjh21 }
378 1.1 bjh21 else {
379 1.1 bjh21 return b;
380 1.1 bjh21 }
381 1.1 bjh21
382 1.1 bjh21 }
383 1.1 bjh21
384 1.1 bjh21 #endif
385 1.1 bjh21
386 1.1 bjh21 #ifdef FLOAT128
387 1.1 bjh21
388 1.1 bjh21 /*
389 1.1 bjh21 -------------------------------------------------------------------------------
390 1.1 bjh21 The pattern for a default generated quadruple-precision NaN. The `high' and
391 1.1 bjh21 `low' values hold the most- and least-significant bits, respectively.
392 1.1 bjh21 -------------------------------------------------------------------------------
393 1.1 bjh21 */
394 1.1 bjh21 #define float128_default_nan_high LIT64( 0xFFFFFFFFFFFFFFFF )
395 1.1 bjh21 #define float128_default_nan_low LIT64( 0xFFFFFFFFFFFFFFFF )
396 1.1 bjh21
397 1.1 bjh21 /*
398 1.1 bjh21 -------------------------------------------------------------------------------
399 1.1 bjh21 Returns 1 if the quadruple-precision floating-point value `a' is a NaN;
400 1.1 bjh21 otherwise returns 0.
401 1.1 bjh21 -------------------------------------------------------------------------------
402 1.1 bjh21 */
403 1.1 bjh21 flag float128_is_nan( float128 a )
404 1.1 bjh21 {
405 1.1 bjh21
406 1.1 bjh21 return
407 1.1 bjh21 ( LIT64( 0xFFFE000000000000 ) <= (bits64) ( a.high<<1 ) )
408 1.1 bjh21 && ( a.low || ( a.high & LIT64( 0x0000FFFFFFFFFFFF ) ) );
409 1.1 bjh21
410 1.1 bjh21 }
411 1.1 bjh21
412 1.1 bjh21 /*
413 1.1 bjh21 -------------------------------------------------------------------------------
414 1.1 bjh21 Returns 1 if the quadruple-precision floating-point value `a' is a
415 1.1 bjh21 signaling NaN; otherwise returns 0.
416 1.1 bjh21 -------------------------------------------------------------------------------
417 1.1 bjh21 */
418 1.1 bjh21 flag float128_is_signaling_nan( float128 a )
419 1.1 bjh21 {
420 1.1 bjh21
421 1.1 bjh21 return
422 1.1 bjh21 ( ( ( a.high>>47 ) & 0xFFFF ) == 0xFFFE )
423 1.1 bjh21 && ( a.low || ( a.high & LIT64( 0x00007FFFFFFFFFFF ) ) );
424 1.1 bjh21
425 1.1 bjh21 }
426 1.1 bjh21
427 1.1 bjh21 /*
428 1.1 bjh21 -------------------------------------------------------------------------------
429 1.1 bjh21 Returns the result of converting the quadruple-precision floating-point NaN
430 1.1 bjh21 `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
431 1.1 bjh21 exception is raised.
432 1.1 bjh21 -------------------------------------------------------------------------------
433 1.1 bjh21 */
434 1.1 bjh21 static commonNaNT float128ToCommonNaN( float128 a )
435 1.1 bjh21 {
436 1.1 bjh21 commonNaNT z;
437 1.1 bjh21
438 1.1 bjh21 if ( float128_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
439 1.1 bjh21 z.sign = a.high>>63;
440 1.1 bjh21 shortShift128Left( a.high, a.low, 16, &z.high, &z.low );
441 1.1 bjh21 return z;
442 1.1 bjh21
443 1.1 bjh21 }
444 1.1 bjh21
445 1.1 bjh21 /*
446 1.1 bjh21 -------------------------------------------------------------------------------
447 1.1 bjh21 Returns the result of converting the canonical NaN `a' to the quadruple-
448 1.1 bjh21 precision floating-point format.
449 1.1 bjh21 -------------------------------------------------------------------------------
450 1.1 bjh21 */
451 1.1 bjh21 static float128 commonNaNToFloat128( commonNaNT a )
452 1.1 bjh21 {
453 1.1 bjh21 float128 z;
454 1.1 bjh21
455 1.1 bjh21 shift128Right( a.high, a.low, 16, &z.high, &z.low );
456 1.1 bjh21 z.high |= ( ( (bits64) a.sign )<<63 ) | LIT64( 0x7FFF800000000000 );
457 1.1 bjh21 return z;
458 1.1 bjh21
459 1.1 bjh21 }
460 1.1 bjh21
461 1.1 bjh21 /*
462 1.1 bjh21 -------------------------------------------------------------------------------
463 1.1 bjh21 Takes two quadruple-precision floating-point values `a' and `b', one of
464 1.1 bjh21 which is a NaN, and returns the appropriate NaN result. If either `a' or
465 1.1 bjh21 `b' is a signaling NaN, the invalid exception is raised.
466 1.1 bjh21 -------------------------------------------------------------------------------
467 1.1 bjh21 */
468 1.1 bjh21 static float128 propagateFloat128NaN( float128 a, float128 b )
469 1.1 bjh21 {
470 1.1 bjh21 flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
471 1.1 bjh21
472 1.1 bjh21 aIsNaN = float128_is_nan( a );
473 1.1 bjh21 aIsSignalingNaN = float128_is_signaling_nan( a );
474 1.1 bjh21 bIsNaN = float128_is_nan( b );
475 1.1 bjh21 bIsSignalingNaN = float128_is_signaling_nan( b );
476 1.1 bjh21 a.high |= LIT64( 0x0000800000000000 );
477 1.1 bjh21 b.high |= LIT64( 0x0000800000000000 );
478 1.1 bjh21 if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
479 1.1 bjh21 if ( aIsNaN ) {
480 1.1 bjh21 return ( aIsSignalingNaN & bIsNaN ) ? b : a;
481 1.1 bjh21 }
482 1.1 bjh21 else {
483 1.1 bjh21 return b;
484 1.1 bjh21 }
485 1.1 bjh21
486 1.1 bjh21 }
487 1.1 bjh21
488 1.1 bjh21 #endif
489 1.1 bjh21
490