softfloat-specialize revision 1.4
11.4Sjmmv/* $NetBSD: softfloat-specialize,v 1.4 2004/09/26 21:13:27 jmmv Exp $ */ 21.3Sbjh21 31.3Sbjh21/* This is a derivative work. */ 41.1Sbjh21 51.1Sbjh21/* 61.1Sbjh21=============================================================================== 71.1Sbjh21 81.1Sbjh21This C source fragment is part of the SoftFloat IEC/IEEE Floating-point 91.1Sbjh21Arithmetic Package, Release 2a. 101.1Sbjh21 111.1Sbjh21Written by John R. Hauser. This work was made possible in part by the 121.1Sbjh21International Computer Science Institute, located at Suite 600, 1947 Center 131.1Sbjh21Street, Berkeley, California 94704. Funding was partially provided by the 141.1Sbjh21National Science Foundation under grant MIP-9311980. The original version 151.1Sbjh21of this code was written as part of a project to build a fixed-point vector 161.1Sbjh21processor in collaboration with the University of California at Berkeley, 171.1Sbjh21overseen by Profs. Nelson Morgan and John Wawrzynek. More information 181.1Sbjh21is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/ 191.1Sbjh21arithmetic/SoftFloat.html'. 201.1Sbjh21 211.1Sbjh21THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort 221.1Sbjh21has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT 231.1Sbjh21TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO 241.1Sbjh21PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY 251.1Sbjh21AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE. 261.1Sbjh21 271.1Sbjh21Derivative works are acceptable, even for commercial purposes, so long as 281.1Sbjh21(1) they include prominent notice that the work is derivative, and (2) they 291.1Sbjh21include prominent notice akin to these four paragraphs for those parts of 301.1Sbjh21this code that are retained. 311.1Sbjh21 321.1Sbjh21=============================================================================== 331.1Sbjh21*/ 341.1Sbjh21 351.3Sbjh21#include <signal.h> 361.3Sbjh21 371.1Sbjh21/* 381.1Sbjh21------------------------------------------------------------------------------- 391.1Sbjh21Underflow tininess-detection mode, statically initialized to default value. 401.1Sbjh21(The declaration in `softfloat.h' must match the `int8' type here.) 411.1Sbjh21------------------------------------------------------------------------------- 421.1Sbjh21*/ 431.1Sbjh21#ifdef SOFTFLOAT_FOR_GCC 441.1Sbjh21static 451.1Sbjh21#endif 461.1Sbjh21int8 float_detect_tininess = float_tininess_after_rounding; 471.1Sbjh21 481.1Sbjh21/* 491.1Sbjh21------------------------------------------------------------------------------- 501.1Sbjh21Raises the exceptions specified by `flags'. Floating-point traps can be 511.1Sbjh21defined here if desired. It is currently not possible for such a trap to 521.1Sbjh21substitute a result value. If traps are not implemented, this routine 531.1Sbjh21should be simply `float_exception_flags |= flags;'. 541.1Sbjh21------------------------------------------------------------------------------- 551.1Sbjh21*/ 561.3Sbjh21fp_except float_exception_mask = 0; 571.3Sbjh21void float_raise( fp_except flags ) 581.1Sbjh21{ 591.1Sbjh21 601.1Sbjh21 float_exception_flags |= flags; 611.1Sbjh21 621.3Sbjh21 if ( flags & float_exception_mask ) { 631.3Sbjh21 raise( SIGFPE ); 641.3Sbjh21 } 651.1Sbjh21} 661.1Sbjh21 671.1Sbjh21/* 681.1Sbjh21------------------------------------------------------------------------------- 691.1Sbjh21Internal canonical NaN format. 701.1Sbjh21------------------------------------------------------------------------------- 711.1Sbjh21*/ 721.1Sbjh21typedef struct { 731.1Sbjh21 flag sign; 741.1Sbjh21 bits64 high, low; 751.1Sbjh21} commonNaNT; 761.1Sbjh21 771.1Sbjh21/* 781.1Sbjh21------------------------------------------------------------------------------- 791.1Sbjh21The pattern for a default generated single-precision NaN. 801.1Sbjh21------------------------------------------------------------------------------- 811.1Sbjh21*/ 821.1Sbjh21#define float32_default_nan 0xFFFFFFFF 831.1Sbjh21 841.1Sbjh21/* 851.1Sbjh21------------------------------------------------------------------------------- 861.1Sbjh21Returns 1 if the single-precision floating-point value `a' is a NaN; 871.1Sbjh21otherwise returns 0. 881.1Sbjh21------------------------------------------------------------------------------- 891.1Sbjh21*/ 901.1Sbjh21#ifdef SOFTFLOAT_FOR_GCC 911.1Sbjh21static 921.1Sbjh21#endif 931.1Sbjh21flag float32_is_nan( float32 a ) 941.1Sbjh21{ 951.1Sbjh21 961.1Sbjh21 return ( 0xFF000000 < (bits32) ( a<<1 ) ); 971.1Sbjh21 981.1Sbjh21} 991.1Sbjh21 1001.1Sbjh21/* 1011.1Sbjh21------------------------------------------------------------------------------- 1021.1Sbjh21Returns 1 if the single-precision floating-point value `a' is a signaling 1031.1Sbjh21NaN; otherwise returns 0. 1041.1Sbjh21------------------------------------------------------------------------------- 1051.1Sbjh21*/ 1061.4Sjmmv#if defined(SOFTFLOAT_FOR_GCC) && !defined(SOFTFLOATSPARC64_FOR_GCC) && \ 1071.4Sjmmv !defined(SOFTFLOAT_M68K_FOR_GCC) 1081.1Sbjh21static 1091.1Sbjh21#endif 1101.1Sbjh21flag float32_is_signaling_nan( float32 a ) 1111.1Sbjh21{ 1121.1Sbjh21 1131.1Sbjh21 return ( ( ( a>>22 ) & 0x1FF ) == 0x1FE ) && ( a & 0x003FFFFF ); 1141.1Sbjh21 1151.1Sbjh21} 1161.1Sbjh21 1171.1Sbjh21/* 1181.1Sbjh21------------------------------------------------------------------------------- 1191.1Sbjh21Returns the result of converting the single-precision floating-point NaN 1201.1Sbjh21`a' to the canonical NaN format. If `a' is a signaling NaN, the invalid 1211.1Sbjh21exception is raised. 1221.1Sbjh21------------------------------------------------------------------------------- 1231.1Sbjh21*/ 1241.1Sbjh21static commonNaNT float32ToCommonNaN( float32 a ) 1251.1Sbjh21{ 1261.1Sbjh21 commonNaNT z; 1271.1Sbjh21 1281.1Sbjh21 if ( float32_is_signaling_nan( a ) ) float_raise( float_flag_invalid ); 1291.1Sbjh21 z.sign = a>>31; 1301.1Sbjh21 z.low = 0; 1311.1Sbjh21 z.high = ( (bits64) a )<<41; 1321.1Sbjh21 return z; 1331.1Sbjh21 1341.1Sbjh21} 1351.1Sbjh21 1361.1Sbjh21/* 1371.1Sbjh21------------------------------------------------------------------------------- 1381.1Sbjh21Returns the result of converting the canonical NaN `a' to the single- 1391.1Sbjh21precision floating-point format. 1401.1Sbjh21------------------------------------------------------------------------------- 1411.1Sbjh21*/ 1421.1Sbjh21static float32 commonNaNToFloat32( commonNaNT a ) 1431.1Sbjh21{ 1441.1Sbjh21 1451.1Sbjh21 return ( ( (bits32) a.sign )<<31 ) | 0x7FC00000 | ( a.high>>41 ); 1461.1Sbjh21 1471.1Sbjh21} 1481.1Sbjh21 1491.1Sbjh21/* 1501.1Sbjh21------------------------------------------------------------------------------- 1511.1Sbjh21Takes two single-precision floating-point values `a' and `b', one of which 1521.1Sbjh21is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a 1531.1Sbjh21signaling NaN, the invalid exception is raised. 1541.1Sbjh21------------------------------------------------------------------------------- 1551.1Sbjh21*/ 1561.1Sbjh21static float32 propagateFloat32NaN( float32 a, float32 b ) 1571.1Sbjh21{ 1581.1Sbjh21 flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN; 1591.1Sbjh21 1601.1Sbjh21 aIsNaN = float32_is_nan( a ); 1611.1Sbjh21 aIsSignalingNaN = float32_is_signaling_nan( a ); 1621.1Sbjh21 bIsNaN = float32_is_nan( b ); 1631.1Sbjh21 bIsSignalingNaN = float32_is_signaling_nan( b ); 1641.1Sbjh21 a |= 0x00400000; 1651.1Sbjh21 b |= 0x00400000; 1661.1Sbjh21 if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid ); 1671.1Sbjh21 if ( aIsNaN ) { 1681.1Sbjh21 return ( aIsSignalingNaN & bIsNaN ) ? b : a; 1691.1Sbjh21 } 1701.1Sbjh21 else { 1711.1Sbjh21 return b; 1721.1Sbjh21 } 1731.1Sbjh21 1741.1Sbjh21} 1751.1Sbjh21 1761.1Sbjh21/* 1771.1Sbjh21------------------------------------------------------------------------------- 1781.1Sbjh21The pattern for a default generated double-precision NaN. 1791.1Sbjh21------------------------------------------------------------------------------- 1801.1Sbjh21*/ 1811.1Sbjh21#define float64_default_nan LIT64( 0xFFFFFFFFFFFFFFFF ) 1821.1Sbjh21 1831.1Sbjh21/* 1841.1Sbjh21------------------------------------------------------------------------------- 1851.1Sbjh21Returns 1 if the double-precision floating-point value `a' is a NaN; 1861.1Sbjh21otherwise returns 0. 1871.1Sbjh21------------------------------------------------------------------------------- 1881.1Sbjh21*/ 1891.1Sbjh21#ifdef SOFTFLOAT_FOR_GCC 1901.1Sbjh21static 1911.1Sbjh21#endif 1921.1Sbjh21flag float64_is_nan( float64 a ) 1931.1Sbjh21{ 1941.1Sbjh21 1951.1Sbjh21 return ( LIT64( 0xFFE0000000000000 ) < 1961.1Sbjh21 (bits64) ( FLOAT64_DEMANGLE(a)<<1 ) ); 1971.1Sbjh21 1981.1Sbjh21} 1991.1Sbjh21 2001.1Sbjh21/* 2011.1Sbjh21------------------------------------------------------------------------------- 2021.1Sbjh21Returns 1 if the double-precision floating-point value `a' is a signaling 2031.1Sbjh21NaN; otherwise returns 0. 2041.1Sbjh21------------------------------------------------------------------------------- 2051.1Sbjh21*/ 2061.4Sjmmv#if defined(SOFTFLOAT_FOR_GCC) && !defined(SOFTFLOATSPARC64_FOR_GCC) && \ 2071.4Sjmmv !defined(SOFTFLOATM68K_FOR_GCC) 2081.1Sbjh21static 2091.1Sbjh21#endif 2101.1Sbjh21flag float64_is_signaling_nan( float64 a ) 2111.1Sbjh21{ 2121.1Sbjh21 2131.1Sbjh21 return 2141.1Sbjh21 ( ( ( FLOAT64_DEMANGLE(a)>>51 ) & 0xFFF ) == 0xFFE ) 2151.1Sbjh21 && ( FLOAT64_DEMANGLE(a) & LIT64( 0x0007FFFFFFFFFFFF ) ); 2161.1Sbjh21 2171.1Sbjh21} 2181.1Sbjh21 2191.1Sbjh21/* 2201.1Sbjh21------------------------------------------------------------------------------- 2211.1Sbjh21Returns the result of converting the double-precision floating-point NaN 2221.1Sbjh21`a' to the canonical NaN format. If `a' is a signaling NaN, the invalid 2231.1Sbjh21exception is raised. 2241.1Sbjh21------------------------------------------------------------------------------- 2251.1Sbjh21*/ 2261.1Sbjh21static commonNaNT float64ToCommonNaN( float64 a ) 2271.1Sbjh21{ 2281.1Sbjh21 commonNaNT z; 2291.1Sbjh21 2301.1Sbjh21 if ( float64_is_signaling_nan( a ) ) float_raise( float_flag_invalid ); 2311.1Sbjh21 z.sign = FLOAT64_DEMANGLE(a)>>63; 2321.1Sbjh21 z.low = 0; 2331.1Sbjh21 z.high = FLOAT64_DEMANGLE(a)<<12; 2341.1Sbjh21 return z; 2351.1Sbjh21 2361.1Sbjh21} 2371.1Sbjh21 2381.1Sbjh21/* 2391.1Sbjh21------------------------------------------------------------------------------- 2401.1Sbjh21Returns the result of converting the canonical NaN `a' to the double- 2411.1Sbjh21precision floating-point format. 2421.1Sbjh21------------------------------------------------------------------------------- 2431.1Sbjh21*/ 2441.1Sbjh21static float64 commonNaNToFloat64( commonNaNT a ) 2451.1Sbjh21{ 2461.1Sbjh21 2471.1Sbjh21 return FLOAT64_MANGLE( 2481.1Sbjh21 ( ( (bits64) a.sign )<<63 ) 2491.1Sbjh21 | LIT64( 0x7FF8000000000000 ) 2501.1Sbjh21 | ( a.high>>12 ) ); 2511.1Sbjh21 2521.1Sbjh21} 2531.1Sbjh21 2541.1Sbjh21/* 2551.1Sbjh21------------------------------------------------------------------------------- 2561.1Sbjh21Takes two double-precision floating-point values `a' and `b', one of which 2571.1Sbjh21is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a 2581.1Sbjh21signaling NaN, the invalid exception is raised. 2591.1Sbjh21------------------------------------------------------------------------------- 2601.1Sbjh21*/ 2611.1Sbjh21static float64 propagateFloat64NaN( float64 a, float64 b ) 2621.1Sbjh21{ 2631.1Sbjh21 flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN; 2641.1Sbjh21 2651.1Sbjh21 aIsNaN = float64_is_nan( a ); 2661.1Sbjh21 aIsSignalingNaN = float64_is_signaling_nan( a ); 2671.1Sbjh21 bIsNaN = float64_is_nan( b ); 2681.1Sbjh21 bIsSignalingNaN = float64_is_signaling_nan( b ); 2691.1Sbjh21 a |= FLOAT64_MANGLE(LIT64( 0x0008000000000000 )); 2701.1Sbjh21 b |= FLOAT64_MANGLE(LIT64( 0x0008000000000000 )); 2711.1Sbjh21 if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid ); 2721.1Sbjh21 if ( aIsNaN ) { 2731.1Sbjh21 return ( aIsSignalingNaN & bIsNaN ) ? b : a; 2741.1Sbjh21 } 2751.1Sbjh21 else { 2761.1Sbjh21 return b; 2771.1Sbjh21 } 2781.1Sbjh21 2791.1Sbjh21} 2801.1Sbjh21 2811.1Sbjh21#ifdef FLOATX80 2821.1Sbjh21 2831.1Sbjh21/* 2841.1Sbjh21------------------------------------------------------------------------------- 2851.1Sbjh21The pattern for a default generated extended double-precision NaN. The 2861.1Sbjh21`high' and `low' values hold the most- and least-significant bits, 2871.1Sbjh21respectively. 2881.1Sbjh21------------------------------------------------------------------------------- 2891.1Sbjh21*/ 2901.1Sbjh21#define floatx80_default_nan_high 0xFFFF 2911.1Sbjh21#define floatx80_default_nan_low LIT64( 0xFFFFFFFFFFFFFFFF ) 2921.1Sbjh21 2931.1Sbjh21/* 2941.1Sbjh21------------------------------------------------------------------------------- 2951.1Sbjh21Returns 1 if the extended double-precision floating-point value `a' is a 2961.1Sbjh21NaN; otherwise returns 0. 2971.1Sbjh21------------------------------------------------------------------------------- 2981.1Sbjh21*/ 2991.1Sbjh21flag floatx80_is_nan( floatx80 a ) 3001.1Sbjh21{ 3011.1Sbjh21 3021.1Sbjh21 return ( ( a.high & 0x7FFF ) == 0x7FFF ) && (bits64) ( a.low<<1 ); 3031.1Sbjh21 3041.1Sbjh21} 3051.1Sbjh21 3061.1Sbjh21/* 3071.1Sbjh21------------------------------------------------------------------------------- 3081.1Sbjh21Returns 1 if the extended double-precision floating-point value `a' is a 3091.1Sbjh21signaling NaN; otherwise returns 0. 3101.1Sbjh21------------------------------------------------------------------------------- 3111.1Sbjh21*/ 3121.1Sbjh21flag floatx80_is_signaling_nan( floatx80 a ) 3131.1Sbjh21{ 3141.1Sbjh21 bits64 aLow; 3151.1Sbjh21 3161.1Sbjh21 aLow = a.low & ~ LIT64( 0x4000000000000000 ); 3171.1Sbjh21 return 3181.1Sbjh21 ( ( a.high & 0x7FFF ) == 0x7FFF ) 3191.1Sbjh21 && (bits64) ( aLow<<1 ) 3201.1Sbjh21 && ( a.low == aLow ); 3211.1Sbjh21 3221.1Sbjh21} 3231.1Sbjh21 3241.1Sbjh21/* 3251.1Sbjh21------------------------------------------------------------------------------- 3261.1Sbjh21Returns the result of converting the extended double-precision floating- 3271.1Sbjh21point NaN `a' to the canonical NaN format. If `a' is a signaling NaN, the 3281.1Sbjh21invalid exception is raised. 3291.1Sbjh21------------------------------------------------------------------------------- 3301.1Sbjh21*/ 3311.1Sbjh21static commonNaNT floatx80ToCommonNaN( floatx80 a ) 3321.1Sbjh21{ 3331.1Sbjh21 commonNaNT z; 3341.1Sbjh21 3351.1Sbjh21 if ( floatx80_is_signaling_nan( a ) ) float_raise( float_flag_invalid ); 3361.1Sbjh21 z.sign = a.high>>15; 3371.1Sbjh21 z.low = 0; 3381.1Sbjh21 z.high = a.low<<1; 3391.1Sbjh21 return z; 3401.1Sbjh21 3411.1Sbjh21} 3421.1Sbjh21 3431.1Sbjh21/* 3441.1Sbjh21------------------------------------------------------------------------------- 3451.1Sbjh21Returns the result of converting the canonical NaN `a' to the extended 3461.1Sbjh21double-precision floating-point format. 3471.1Sbjh21------------------------------------------------------------------------------- 3481.1Sbjh21*/ 3491.1Sbjh21static floatx80 commonNaNToFloatx80( commonNaNT a ) 3501.1Sbjh21{ 3511.1Sbjh21 floatx80 z; 3521.1Sbjh21 3531.1Sbjh21 z.low = LIT64( 0xC000000000000000 ) | ( a.high>>1 ); 3541.1Sbjh21 z.high = ( ( (bits16) a.sign )<<15 ) | 0x7FFF; 3551.1Sbjh21 return z; 3561.1Sbjh21 3571.1Sbjh21} 3581.1Sbjh21 3591.1Sbjh21/* 3601.1Sbjh21------------------------------------------------------------------------------- 3611.1Sbjh21Takes two extended double-precision floating-point values `a' and `b', one 3621.1Sbjh21of which is a NaN, and returns the appropriate NaN result. If either `a' or 3631.1Sbjh21`b' is a signaling NaN, the invalid exception is raised. 3641.1Sbjh21------------------------------------------------------------------------------- 3651.1Sbjh21*/ 3661.1Sbjh21static floatx80 propagateFloatx80NaN( floatx80 a, floatx80 b ) 3671.1Sbjh21{ 3681.1Sbjh21 flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN; 3691.1Sbjh21 3701.1Sbjh21 aIsNaN = floatx80_is_nan( a ); 3711.1Sbjh21 aIsSignalingNaN = floatx80_is_signaling_nan( a ); 3721.1Sbjh21 bIsNaN = floatx80_is_nan( b ); 3731.1Sbjh21 bIsSignalingNaN = floatx80_is_signaling_nan( b ); 3741.1Sbjh21 a.low |= LIT64( 0xC000000000000000 ); 3751.1Sbjh21 b.low |= LIT64( 0xC000000000000000 ); 3761.1Sbjh21 if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid ); 3771.1Sbjh21 if ( aIsNaN ) { 3781.1Sbjh21 return ( aIsSignalingNaN & bIsNaN ) ? b : a; 3791.1Sbjh21 } 3801.1Sbjh21 else { 3811.1Sbjh21 return b; 3821.1Sbjh21 } 3831.1Sbjh21 3841.1Sbjh21} 3851.1Sbjh21 3861.1Sbjh21#endif 3871.1Sbjh21 3881.1Sbjh21#ifdef FLOAT128 3891.1Sbjh21 3901.1Sbjh21/* 3911.1Sbjh21------------------------------------------------------------------------------- 3921.1Sbjh21The pattern for a default generated quadruple-precision NaN. The `high' and 3931.1Sbjh21`low' values hold the most- and least-significant bits, respectively. 3941.1Sbjh21------------------------------------------------------------------------------- 3951.1Sbjh21*/ 3961.1Sbjh21#define float128_default_nan_high LIT64( 0xFFFFFFFFFFFFFFFF ) 3971.1Sbjh21#define float128_default_nan_low LIT64( 0xFFFFFFFFFFFFFFFF ) 3981.1Sbjh21 3991.1Sbjh21/* 4001.1Sbjh21------------------------------------------------------------------------------- 4011.1Sbjh21Returns 1 if the quadruple-precision floating-point value `a' is a NaN; 4021.1Sbjh21otherwise returns 0. 4031.1Sbjh21------------------------------------------------------------------------------- 4041.1Sbjh21*/ 4051.1Sbjh21flag float128_is_nan( float128 a ) 4061.1Sbjh21{ 4071.1Sbjh21 4081.1Sbjh21 return 4091.1Sbjh21 ( LIT64( 0xFFFE000000000000 ) <= (bits64) ( a.high<<1 ) ) 4101.1Sbjh21 && ( a.low || ( a.high & LIT64( 0x0000FFFFFFFFFFFF ) ) ); 4111.1Sbjh21 4121.1Sbjh21} 4131.1Sbjh21 4141.1Sbjh21/* 4151.1Sbjh21------------------------------------------------------------------------------- 4161.1Sbjh21Returns 1 if the quadruple-precision floating-point value `a' is a 4171.1Sbjh21signaling NaN; otherwise returns 0. 4181.1Sbjh21------------------------------------------------------------------------------- 4191.1Sbjh21*/ 4201.1Sbjh21flag float128_is_signaling_nan( float128 a ) 4211.1Sbjh21{ 4221.1Sbjh21 4231.1Sbjh21 return 4241.1Sbjh21 ( ( ( a.high>>47 ) & 0xFFFF ) == 0xFFFE ) 4251.1Sbjh21 && ( a.low || ( a.high & LIT64( 0x00007FFFFFFFFFFF ) ) ); 4261.1Sbjh21 4271.1Sbjh21} 4281.1Sbjh21 4291.1Sbjh21/* 4301.1Sbjh21------------------------------------------------------------------------------- 4311.1Sbjh21Returns the result of converting the quadruple-precision floating-point NaN 4321.1Sbjh21`a' to the canonical NaN format. If `a' is a signaling NaN, the invalid 4331.1Sbjh21exception is raised. 4341.1Sbjh21------------------------------------------------------------------------------- 4351.1Sbjh21*/ 4361.1Sbjh21static commonNaNT float128ToCommonNaN( float128 a ) 4371.1Sbjh21{ 4381.1Sbjh21 commonNaNT z; 4391.1Sbjh21 4401.1Sbjh21 if ( float128_is_signaling_nan( a ) ) float_raise( float_flag_invalid ); 4411.1Sbjh21 z.sign = a.high>>63; 4421.1Sbjh21 shortShift128Left( a.high, a.low, 16, &z.high, &z.low ); 4431.1Sbjh21 return z; 4441.1Sbjh21 4451.1Sbjh21} 4461.1Sbjh21 4471.1Sbjh21/* 4481.1Sbjh21------------------------------------------------------------------------------- 4491.1Sbjh21Returns the result of converting the canonical NaN `a' to the quadruple- 4501.1Sbjh21precision floating-point format. 4511.1Sbjh21------------------------------------------------------------------------------- 4521.1Sbjh21*/ 4531.1Sbjh21static float128 commonNaNToFloat128( commonNaNT a ) 4541.1Sbjh21{ 4551.1Sbjh21 float128 z; 4561.1Sbjh21 4571.1Sbjh21 shift128Right( a.high, a.low, 16, &z.high, &z.low ); 4581.1Sbjh21 z.high |= ( ( (bits64) a.sign )<<63 ) | LIT64( 0x7FFF800000000000 ); 4591.1Sbjh21 return z; 4601.1Sbjh21 4611.1Sbjh21} 4621.1Sbjh21 4631.1Sbjh21/* 4641.1Sbjh21------------------------------------------------------------------------------- 4651.1Sbjh21Takes two quadruple-precision floating-point values `a' and `b', one of 4661.1Sbjh21which is a NaN, and returns the appropriate NaN result. If either `a' or 4671.1Sbjh21`b' is a signaling NaN, the invalid exception is raised. 4681.1Sbjh21------------------------------------------------------------------------------- 4691.1Sbjh21*/ 4701.1Sbjh21static float128 propagateFloat128NaN( float128 a, float128 b ) 4711.1Sbjh21{ 4721.1Sbjh21 flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN; 4731.1Sbjh21 4741.1Sbjh21 aIsNaN = float128_is_nan( a ); 4751.1Sbjh21 aIsSignalingNaN = float128_is_signaling_nan( a ); 4761.1Sbjh21 bIsNaN = float128_is_nan( b ); 4771.1Sbjh21 bIsSignalingNaN = float128_is_signaling_nan( b ); 4781.1Sbjh21 a.high |= LIT64( 0x0000800000000000 ); 4791.1Sbjh21 b.high |= LIT64( 0x0000800000000000 ); 4801.1Sbjh21 if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid ); 4811.1Sbjh21 if ( aIsNaN ) { 4821.1Sbjh21 return ( aIsSignalingNaN & bIsNaN ) ? b : a; 4831.1Sbjh21 } 4841.1Sbjh21 else { 4851.1Sbjh21 return b; 4861.1Sbjh21 } 4871.1Sbjh21 4881.1Sbjh21} 4891.1Sbjh21 4901.1Sbjh21#endif 4911.1Sbjh21 492