Home | History | Annotate | Line # | Download | only in softfloat
softfloat-specialize revision 1.4
      1  1.4   jmmv /*	$NetBSD: softfloat-specialize,v 1.4 2004/09/26 21:13:27 jmmv Exp $	*/
      2  1.3  bjh21 
      3  1.3  bjh21 /* This is a derivative work. */
      4  1.1  bjh21 
      5  1.1  bjh21 /*
      6  1.1  bjh21 ===============================================================================
      7  1.1  bjh21 
      8  1.1  bjh21 This C source fragment is part of the SoftFloat IEC/IEEE Floating-point
      9  1.1  bjh21 Arithmetic Package, Release 2a.
     10  1.1  bjh21 
     11  1.1  bjh21 Written by John R. Hauser.  This work was made possible in part by the
     12  1.1  bjh21 International Computer Science Institute, located at Suite 600, 1947 Center
     13  1.1  bjh21 Street, Berkeley, California 94704.  Funding was partially provided by the
     14  1.1  bjh21 National Science Foundation under grant MIP-9311980.  The original version
     15  1.1  bjh21 of this code was written as part of a project to build a fixed-point vector
     16  1.1  bjh21 processor in collaboration with the University of California at Berkeley,
     17  1.1  bjh21 overseen by Profs. Nelson Morgan and John Wawrzynek.  More information
     18  1.1  bjh21 is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
     19  1.1  bjh21 arithmetic/SoftFloat.html'.
     20  1.1  bjh21 
     21  1.1  bjh21 THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE.  Although reasonable effort
     22  1.1  bjh21 has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
     23  1.1  bjh21 TIMES RESULT IN INCORRECT BEHAVIOR.  USE OF THIS SOFTWARE IS RESTRICTED TO
     24  1.1  bjh21 PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
     25  1.1  bjh21 AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
     26  1.1  bjh21 
     27  1.1  bjh21 Derivative works are acceptable, even for commercial purposes, so long as
     28  1.1  bjh21 (1) they include prominent notice that the work is derivative, and (2) they
     29  1.1  bjh21 include prominent notice akin to these four paragraphs for those parts of
     30  1.1  bjh21 this code that are retained.
     31  1.1  bjh21 
     32  1.1  bjh21 ===============================================================================
     33  1.1  bjh21 */
     34  1.1  bjh21 
     35  1.3  bjh21 #include <signal.h>
     36  1.3  bjh21 
     37  1.1  bjh21 /*
     38  1.1  bjh21 -------------------------------------------------------------------------------
     39  1.1  bjh21 Underflow tininess-detection mode, statically initialized to default value.
     40  1.1  bjh21 (The declaration in `softfloat.h' must match the `int8' type here.)
     41  1.1  bjh21 -------------------------------------------------------------------------------
     42  1.1  bjh21 */
     43  1.1  bjh21 #ifdef SOFTFLOAT_FOR_GCC
     44  1.1  bjh21 static
     45  1.1  bjh21 #endif
     46  1.1  bjh21 int8 float_detect_tininess = float_tininess_after_rounding;
     47  1.1  bjh21 
     48  1.1  bjh21 /*
     49  1.1  bjh21 -------------------------------------------------------------------------------
     50  1.1  bjh21 Raises the exceptions specified by `flags'.  Floating-point traps can be
     51  1.1  bjh21 defined here if desired.  It is currently not possible for such a trap to
     52  1.1  bjh21 substitute a result value.  If traps are not implemented, this routine
     53  1.1  bjh21 should be simply `float_exception_flags |= flags;'.
     54  1.1  bjh21 -------------------------------------------------------------------------------
     55  1.1  bjh21 */
     56  1.3  bjh21 fp_except float_exception_mask = 0;
     57  1.3  bjh21 void float_raise( fp_except flags )
     58  1.1  bjh21 {
     59  1.1  bjh21 
     60  1.1  bjh21     float_exception_flags |= flags;
     61  1.1  bjh21 
     62  1.3  bjh21     if ( flags & float_exception_mask ) {
     63  1.3  bjh21 	raise( SIGFPE );
     64  1.3  bjh21     }
     65  1.1  bjh21 }
     66  1.1  bjh21 
     67  1.1  bjh21 /*
     68  1.1  bjh21 -------------------------------------------------------------------------------
     69  1.1  bjh21 Internal canonical NaN format.
     70  1.1  bjh21 -------------------------------------------------------------------------------
     71  1.1  bjh21 */
     72  1.1  bjh21 typedef struct {
     73  1.1  bjh21     flag sign;
     74  1.1  bjh21     bits64 high, low;
     75  1.1  bjh21 } commonNaNT;
     76  1.1  bjh21 
     77  1.1  bjh21 /*
     78  1.1  bjh21 -------------------------------------------------------------------------------
     79  1.1  bjh21 The pattern for a default generated single-precision NaN.
     80  1.1  bjh21 -------------------------------------------------------------------------------
     81  1.1  bjh21 */
     82  1.1  bjh21 #define float32_default_nan 0xFFFFFFFF
     83  1.1  bjh21 
     84  1.1  bjh21 /*
     85  1.1  bjh21 -------------------------------------------------------------------------------
     86  1.1  bjh21 Returns 1 if the single-precision floating-point value `a' is a NaN;
     87  1.1  bjh21 otherwise returns 0.
     88  1.1  bjh21 -------------------------------------------------------------------------------
     89  1.1  bjh21 */
     90  1.1  bjh21 #ifdef SOFTFLOAT_FOR_GCC
     91  1.1  bjh21 static
     92  1.1  bjh21 #endif
     93  1.1  bjh21 flag float32_is_nan( float32 a )
     94  1.1  bjh21 {
     95  1.1  bjh21 
     96  1.1  bjh21     return ( 0xFF000000 < (bits32) ( a<<1 ) );
     97  1.1  bjh21 
     98  1.1  bjh21 }
     99  1.1  bjh21 
    100  1.1  bjh21 /*
    101  1.1  bjh21 -------------------------------------------------------------------------------
    102  1.1  bjh21 Returns 1 if the single-precision floating-point value `a' is a signaling
    103  1.1  bjh21 NaN; otherwise returns 0.
    104  1.1  bjh21 -------------------------------------------------------------------------------
    105  1.1  bjh21 */
    106  1.4   jmmv #if defined(SOFTFLOAT_FOR_GCC) && !defined(SOFTFLOATSPARC64_FOR_GCC) && \
    107  1.4   jmmv     !defined(SOFTFLOAT_M68K_FOR_GCC)
    108  1.1  bjh21 static
    109  1.1  bjh21 #endif
    110  1.1  bjh21 flag float32_is_signaling_nan( float32 a )
    111  1.1  bjh21 {
    112  1.1  bjh21 
    113  1.1  bjh21     return ( ( ( a>>22 ) & 0x1FF ) == 0x1FE ) && ( a & 0x003FFFFF );
    114  1.1  bjh21 
    115  1.1  bjh21 }
    116  1.1  bjh21 
    117  1.1  bjh21 /*
    118  1.1  bjh21 -------------------------------------------------------------------------------
    119  1.1  bjh21 Returns the result of converting the single-precision floating-point NaN
    120  1.1  bjh21 `a' to the canonical NaN format.  If `a' is a signaling NaN, the invalid
    121  1.1  bjh21 exception is raised.
    122  1.1  bjh21 -------------------------------------------------------------------------------
    123  1.1  bjh21 */
    124  1.1  bjh21 static commonNaNT float32ToCommonNaN( float32 a )
    125  1.1  bjh21 {
    126  1.1  bjh21     commonNaNT z;
    127  1.1  bjh21 
    128  1.1  bjh21     if ( float32_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
    129  1.1  bjh21     z.sign = a>>31;
    130  1.1  bjh21     z.low = 0;
    131  1.1  bjh21     z.high = ( (bits64) a )<<41;
    132  1.1  bjh21     return z;
    133  1.1  bjh21 
    134  1.1  bjh21 }
    135  1.1  bjh21 
    136  1.1  bjh21 /*
    137  1.1  bjh21 -------------------------------------------------------------------------------
    138  1.1  bjh21 Returns the result of converting the canonical NaN `a' to the single-
    139  1.1  bjh21 precision floating-point format.
    140  1.1  bjh21 -------------------------------------------------------------------------------
    141  1.1  bjh21 */
    142  1.1  bjh21 static float32 commonNaNToFloat32( commonNaNT a )
    143  1.1  bjh21 {
    144  1.1  bjh21 
    145  1.1  bjh21     return ( ( (bits32) a.sign )<<31 ) | 0x7FC00000 | ( a.high>>41 );
    146  1.1  bjh21 
    147  1.1  bjh21 }
    148  1.1  bjh21 
    149  1.1  bjh21 /*
    150  1.1  bjh21 -------------------------------------------------------------------------------
    151  1.1  bjh21 Takes two single-precision floating-point values `a' and `b', one of which
    152  1.1  bjh21 is a NaN, and returns the appropriate NaN result.  If either `a' or `b' is a
    153  1.1  bjh21 signaling NaN, the invalid exception is raised.
    154  1.1  bjh21 -------------------------------------------------------------------------------
    155  1.1  bjh21 */
    156  1.1  bjh21 static float32 propagateFloat32NaN( float32 a, float32 b )
    157  1.1  bjh21 {
    158  1.1  bjh21     flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
    159  1.1  bjh21 
    160  1.1  bjh21     aIsNaN = float32_is_nan( a );
    161  1.1  bjh21     aIsSignalingNaN = float32_is_signaling_nan( a );
    162  1.1  bjh21     bIsNaN = float32_is_nan( b );
    163  1.1  bjh21     bIsSignalingNaN = float32_is_signaling_nan( b );
    164  1.1  bjh21     a |= 0x00400000;
    165  1.1  bjh21     b |= 0x00400000;
    166  1.1  bjh21     if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
    167  1.1  bjh21     if ( aIsNaN ) {
    168  1.1  bjh21         return ( aIsSignalingNaN & bIsNaN ) ? b : a;
    169  1.1  bjh21     }
    170  1.1  bjh21     else {
    171  1.1  bjh21         return b;
    172  1.1  bjh21     }
    173  1.1  bjh21 
    174  1.1  bjh21 }
    175  1.1  bjh21 
    176  1.1  bjh21 /*
    177  1.1  bjh21 -------------------------------------------------------------------------------
    178  1.1  bjh21 The pattern for a default generated double-precision NaN.
    179  1.1  bjh21 -------------------------------------------------------------------------------
    180  1.1  bjh21 */
    181  1.1  bjh21 #define float64_default_nan LIT64( 0xFFFFFFFFFFFFFFFF )
    182  1.1  bjh21 
    183  1.1  bjh21 /*
    184  1.1  bjh21 -------------------------------------------------------------------------------
    185  1.1  bjh21 Returns 1 if the double-precision floating-point value `a' is a NaN;
    186  1.1  bjh21 otherwise returns 0.
    187  1.1  bjh21 -------------------------------------------------------------------------------
    188  1.1  bjh21 */
    189  1.1  bjh21 #ifdef SOFTFLOAT_FOR_GCC
    190  1.1  bjh21 static
    191  1.1  bjh21 #endif
    192  1.1  bjh21 flag float64_is_nan( float64 a )
    193  1.1  bjh21 {
    194  1.1  bjh21 
    195  1.1  bjh21     return ( LIT64( 0xFFE0000000000000 ) <
    196  1.1  bjh21 	     (bits64) ( FLOAT64_DEMANGLE(a)<<1 ) );
    197  1.1  bjh21 
    198  1.1  bjh21 }
    199  1.1  bjh21 
    200  1.1  bjh21 /*
    201  1.1  bjh21 -------------------------------------------------------------------------------
    202  1.1  bjh21 Returns 1 if the double-precision floating-point value `a' is a signaling
    203  1.1  bjh21 NaN; otherwise returns 0.
    204  1.1  bjh21 -------------------------------------------------------------------------------
    205  1.1  bjh21 */
    206  1.4   jmmv #if defined(SOFTFLOAT_FOR_GCC) && !defined(SOFTFLOATSPARC64_FOR_GCC) && \
    207  1.4   jmmv     !defined(SOFTFLOATM68K_FOR_GCC)
    208  1.1  bjh21 static
    209  1.1  bjh21 #endif
    210  1.1  bjh21 flag float64_is_signaling_nan( float64 a )
    211  1.1  bjh21 {
    212  1.1  bjh21 
    213  1.1  bjh21     return
    214  1.1  bjh21            ( ( ( FLOAT64_DEMANGLE(a)>>51 ) & 0xFFF ) == 0xFFE )
    215  1.1  bjh21         && ( FLOAT64_DEMANGLE(a) & LIT64( 0x0007FFFFFFFFFFFF ) );
    216  1.1  bjh21 
    217  1.1  bjh21 }
    218  1.1  bjh21 
    219  1.1  bjh21 /*
    220  1.1  bjh21 -------------------------------------------------------------------------------
    221  1.1  bjh21 Returns the result of converting the double-precision floating-point NaN
    222  1.1  bjh21 `a' to the canonical NaN format.  If `a' is a signaling NaN, the invalid
    223  1.1  bjh21 exception is raised.
    224  1.1  bjh21 -------------------------------------------------------------------------------
    225  1.1  bjh21 */
    226  1.1  bjh21 static commonNaNT float64ToCommonNaN( float64 a )
    227  1.1  bjh21 {
    228  1.1  bjh21     commonNaNT z;
    229  1.1  bjh21 
    230  1.1  bjh21     if ( float64_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
    231  1.1  bjh21     z.sign = FLOAT64_DEMANGLE(a)>>63;
    232  1.1  bjh21     z.low = 0;
    233  1.1  bjh21     z.high = FLOAT64_DEMANGLE(a)<<12;
    234  1.1  bjh21     return z;
    235  1.1  bjh21 
    236  1.1  bjh21 }
    237  1.1  bjh21 
    238  1.1  bjh21 /*
    239  1.1  bjh21 -------------------------------------------------------------------------------
    240  1.1  bjh21 Returns the result of converting the canonical NaN `a' to the double-
    241  1.1  bjh21 precision floating-point format.
    242  1.1  bjh21 -------------------------------------------------------------------------------
    243  1.1  bjh21 */
    244  1.1  bjh21 static float64 commonNaNToFloat64( commonNaNT a )
    245  1.1  bjh21 {
    246  1.1  bjh21 
    247  1.1  bjh21     return FLOAT64_MANGLE(
    248  1.1  bjh21 	( ( (bits64) a.sign )<<63 )
    249  1.1  bjh21         | LIT64( 0x7FF8000000000000 )
    250  1.1  bjh21         | ( a.high>>12 ) );
    251  1.1  bjh21 
    252  1.1  bjh21 }
    253  1.1  bjh21 
    254  1.1  bjh21 /*
    255  1.1  bjh21 -------------------------------------------------------------------------------
    256  1.1  bjh21 Takes two double-precision floating-point values `a' and `b', one of which
    257  1.1  bjh21 is a NaN, and returns the appropriate NaN result.  If either `a' or `b' is a
    258  1.1  bjh21 signaling NaN, the invalid exception is raised.
    259  1.1  bjh21 -------------------------------------------------------------------------------
    260  1.1  bjh21 */
    261  1.1  bjh21 static float64 propagateFloat64NaN( float64 a, float64 b )
    262  1.1  bjh21 {
    263  1.1  bjh21     flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
    264  1.1  bjh21 
    265  1.1  bjh21     aIsNaN = float64_is_nan( a );
    266  1.1  bjh21     aIsSignalingNaN = float64_is_signaling_nan( a );
    267  1.1  bjh21     bIsNaN = float64_is_nan( b );
    268  1.1  bjh21     bIsSignalingNaN = float64_is_signaling_nan( b );
    269  1.1  bjh21     a |= FLOAT64_MANGLE(LIT64( 0x0008000000000000 ));
    270  1.1  bjh21     b |= FLOAT64_MANGLE(LIT64( 0x0008000000000000 ));
    271  1.1  bjh21     if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
    272  1.1  bjh21     if ( aIsNaN ) {
    273  1.1  bjh21         return ( aIsSignalingNaN & bIsNaN ) ? b : a;
    274  1.1  bjh21     }
    275  1.1  bjh21     else {
    276  1.1  bjh21         return b;
    277  1.1  bjh21     }
    278  1.1  bjh21 
    279  1.1  bjh21 }
    280  1.1  bjh21 
    281  1.1  bjh21 #ifdef FLOATX80
    282  1.1  bjh21 
    283  1.1  bjh21 /*
    284  1.1  bjh21 -------------------------------------------------------------------------------
    285  1.1  bjh21 The pattern for a default generated extended double-precision NaN.  The
    286  1.1  bjh21 `high' and `low' values hold the most- and least-significant bits,
    287  1.1  bjh21 respectively.
    288  1.1  bjh21 -------------------------------------------------------------------------------
    289  1.1  bjh21 */
    290  1.1  bjh21 #define floatx80_default_nan_high 0xFFFF
    291  1.1  bjh21 #define floatx80_default_nan_low  LIT64( 0xFFFFFFFFFFFFFFFF )
    292  1.1  bjh21 
    293  1.1  bjh21 /*
    294  1.1  bjh21 -------------------------------------------------------------------------------
    295  1.1  bjh21 Returns 1 if the extended double-precision floating-point value `a' is a
    296  1.1  bjh21 NaN; otherwise returns 0.
    297  1.1  bjh21 -------------------------------------------------------------------------------
    298  1.1  bjh21 */
    299  1.1  bjh21 flag floatx80_is_nan( floatx80 a )
    300  1.1  bjh21 {
    301  1.1  bjh21 
    302  1.1  bjh21     return ( ( a.high & 0x7FFF ) == 0x7FFF ) && (bits64) ( a.low<<1 );
    303  1.1  bjh21 
    304  1.1  bjh21 }
    305  1.1  bjh21 
    306  1.1  bjh21 /*
    307  1.1  bjh21 -------------------------------------------------------------------------------
    308  1.1  bjh21 Returns 1 if the extended double-precision floating-point value `a' is a
    309  1.1  bjh21 signaling NaN; otherwise returns 0.
    310  1.1  bjh21 -------------------------------------------------------------------------------
    311  1.1  bjh21 */
    312  1.1  bjh21 flag floatx80_is_signaling_nan( floatx80 a )
    313  1.1  bjh21 {
    314  1.1  bjh21     bits64 aLow;
    315  1.1  bjh21 
    316  1.1  bjh21     aLow = a.low & ~ LIT64( 0x4000000000000000 );
    317  1.1  bjh21     return
    318  1.1  bjh21            ( ( a.high & 0x7FFF ) == 0x7FFF )
    319  1.1  bjh21         && (bits64) ( aLow<<1 )
    320  1.1  bjh21         && ( a.low == aLow );
    321  1.1  bjh21 
    322  1.1  bjh21 }
    323  1.1  bjh21 
    324  1.1  bjh21 /*
    325  1.1  bjh21 -------------------------------------------------------------------------------
    326  1.1  bjh21 Returns the result of converting the extended double-precision floating-
    327  1.1  bjh21 point NaN `a' to the canonical NaN format.  If `a' is a signaling NaN, the
    328  1.1  bjh21 invalid exception is raised.
    329  1.1  bjh21 -------------------------------------------------------------------------------
    330  1.1  bjh21 */
    331  1.1  bjh21 static commonNaNT floatx80ToCommonNaN( floatx80 a )
    332  1.1  bjh21 {
    333  1.1  bjh21     commonNaNT z;
    334  1.1  bjh21 
    335  1.1  bjh21     if ( floatx80_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
    336  1.1  bjh21     z.sign = a.high>>15;
    337  1.1  bjh21     z.low = 0;
    338  1.1  bjh21     z.high = a.low<<1;
    339  1.1  bjh21     return z;
    340  1.1  bjh21 
    341  1.1  bjh21 }
    342  1.1  bjh21 
    343  1.1  bjh21 /*
    344  1.1  bjh21 -------------------------------------------------------------------------------
    345  1.1  bjh21 Returns the result of converting the canonical NaN `a' to the extended
    346  1.1  bjh21 double-precision floating-point format.
    347  1.1  bjh21 -------------------------------------------------------------------------------
    348  1.1  bjh21 */
    349  1.1  bjh21 static floatx80 commonNaNToFloatx80( commonNaNT a )
    350  1.1  bjh21 {
    351  1.1  bjh21     floatx80 z;
    352  1.1  bjh21 
    353  1.1  bjh21     z.low = LIT64( 0xC000000000000000 ) | ( a.high>>1 );
    354  1.1  bjh21     z.high = ( ( (bits16) a.sign )<<15 ) | 0x7FFF;
    355  1.1  bjh21     return z;
    356  1.1  bjh21 
    357  1.1  bjh21 }
    358  1.1  bjh21 
    359  1.1  bjh21 /*
    360  1.1  bjh21 -------------------------------------------------------------------------------
    361  1.1  bjh21 Takes two extended double-precision floating-point values `a' and `b', one
    362  1.1  bjh21 of which is a NaN, and returns the appropriate NaN result.  If either `a' or
    363  1.1  bjh21 `b' is a signaling NaN, the invalid exception is raised.
    364  1.1  bjh21 -------------------------------------------------------------------------------
    365  1.1  bjh21 */
    366  1.1  bjh21 static floatx80 propagateFloatx80NaN( floatx80 a, floatx80 b )
    367  1.1  bjh21 {
    368  1.1  bjh21     flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
    369  1.1  bjh21 
    370  1.1  bjh21     aIsNaN = floatx80_is_nan( a );
    371  1.1  bjh21     aIsSignalingNaN = floatx80_is_signaling_nan( a );
    372  1.1  bjh21     bIsNaN = floatx80_is_nan( b );
    373  1.1  bjh21     bIsSignalingNaN = floatx80_is_signaling_nan( b );
    374  1.1  bjh21     a.low |= LIT64( 0xC000000000000000 );
    375  1.1  bjh21     b.low |= LIT64( 0xC000000000000000 );
    376  1.1  bjh21     if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
    377  1.1  bjh21     if ( aIsNaN ) {
    378  1.1  bjh21         return ( aIsSignalingNaN & bIsNaN ) ? b : a;
    379  1.1  bjh21     }
    380  1.1  bjh21     else {
    381  1.1  bjh21         return b;
    382  1.1  bjh21     }
    383  1.1  bjh21 
    384  1.1  bjh21 }
    385  1.1  bjh21 
    386  1.1  bjh21 #endif
    387  1.1  bjh21 
    388  1.1  bjh21 #ifdef FLOAT128
    389  1.1  bjh21 
    390  1.1  bjh21 /*
    391  1.1  bjh21 -------------------------------------------------------------------------------
    392  1.1  bjh21 The pattern for a default generated quadruple-precision NaN.  The `high' and
    393  1.1  bjh21 `low' values hold the most- and least-significant bits, respectively.
    394  1.1  bjh21 -------------------------------------------------------------------------------
    395  1.1  bjh21 */
    396  1.1  bjh21 #define float128_default_nan_high LIT64( 0xFFFFFFFFFFFFFFFF )
    397  1.1  bjh21 #define float128_default_nan_low  LIT64( 0xFFFFFFFFFFFFFFFF )
    398  1.1  bjh21 
    399  1.1  bjh21 /*
    400  1.1  bjh21 -------------------------------------------------------------------------------
    401  1.1  bjh21 Returns 1 if the quadruple-precision floating-point value `a' is a NaN;
    402  1.1  bjh21 otherwise returns 0.
    403  1.1  bjh21 -------------------------------------------------------------------------------
    404  1.1  bjh21 */
    405  1.1  bjh21 flag float128_is_nan( float128 a )
    406  1.1  bjh21 {
    407  1.1  bjh21 
    408  1.1  bjh21     return
    409  1.1  bjh21            ( LIT64( 0xFFFE000000000000 ) <= (bits64) ( a.high<<1 ) )
    410  1.1  bjh21         && ( a.low || ( a.high & LIT64( 0x0000FFFFFFFFFFFF ) ) );
    411  1.1  bjh21 
    412  1.1  bjh21 }
    413  1.1  bjh21 
    414  1.1  bjh21 /*
    415  1.1  bjh21 -------------------------------------------------------------------------------
    416  1.1  bjh21 Returns 1 if the quadruple-precision floating-point value `a' is a
    417  1.1  bjh21 signaling NaN; otherwise returns 0.
    418  1.1  bjh21 -------------------------------------------------------------------------------
    419  1.1  bjh21 */
    420  1.1  bjh21 flag float128_is_signaling_nan( float128 a )
    421  1.1  bjh21 {
    422  1.1  bjh21 
    423  1.1  bjh21     return
    424  1.1  bjh21            ( ( ( a.high>>47 ) & 0xFFFF ) == 0xFFFE )
    425  1.1  bjh21         && ( a.low || ( a.high & LIT64( 0x00007FFFFFFFFFFF ) ) );
    426  1.1  bjh21 
    427  1.1  bjh21 }
    428  1.1  bjh21 
    429  1.1  bjh21 /*
    430  1.1  bjh21 -------------------------------------------------------------------------------
    431  1.1  bjh21 Returns the result of converting the quadruple-precision floating-point NaN
    432  1.1  bjh21 `a' to the canonical NaN format.  If `a' is a signaling NaN, the invalid
    433  1.1  bjh21 exception is raised.
    434  1.1  bjh21 -------------------------------------------------------------------------------
    435  1.1  bjh21 */
    436  1.1  bjh21 static commonNaNT float128ToCommonNaN( float128 a )
    437  1.1  bjh21 {
    438  1.1  bjh21     commonNaNT z;
    439  1.1  bjh21 
    440  1.1  bjh21     if ( float128_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
    441  1.1  bjh21     z.sign = a.high>>63;
    442  1.1  bjh21     shortShift128Left( a.high, a.low, 16, &z.high, &z.low );
    443  1.1  bjh21     return z;
    444  1.1  bjh21 
    445  1.1  bjh21 }
    446  1.1  bjh21 
    447  1.1  bjh21 /*
    448  1.1  bjh21 -------------------------------------------------------------------------------
    449  1.1  bjh21 Returns the result of converting the canonical NaN `a' to the quadruple-
    450  1.1  bjh21 precision floating-point format.
    451  1.1  bjh21 -------------------------------------------------------------------------------
    452  1.1  bjh21 */
    453  1.1  bjh21 static float128 commonNaNToFloat128( commonNaNT a )
    454  1.1  bjh21 {
    455  1.1  bjh21     float128 z;
    456  1.1  bjh21 
    457  1.1  bjh21     shift128Right( a.high, a.low, 16, &z.high, &z.low );
    458  1.1  bjh21     z.high |= ( ( (bits64) a.sign )<<63 ) | LIT64( 0x7FFF800000000000 );
    459  1.1  bjh21     return z;
    460  1.1  bjh21 
    461  1.1  bjh21 }
    462  1.1  bjh21 
    463  1.1  bjh21 /*
    464  1.1  bjh21 -------------------------------------------------------------------------------
    465  1.1  bjh21 Takes two quadruple-precision floating-point values `a' and `b', one of
    466  1.1  bjh21 which is a NaN, and returns the appropriate NaN result.  If either `a' or
    467  1.1  bjh21 `b' is a signaling NaN, the invalid exception is raised.
    468  1.1  bjh21 -------------------------------------------------------------------------------
    469  1.1  bjh21 */
    470  1.1  bjh21 static float128 propagateFloat128NaN( float128 a, float128 b )
    471  1.1  bjh21 {
    472  1.1  bjh21     flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
    473  1.1  bjh21 
    474  1.1  bjh21     aIsNaN = float128_is_nan( a );
    475  1.1  bjh21     aIsSignalingNaN = float128_is_signaling_nan( a );
    476  1.1  bjh21     bIsNaN = float128_is_nan( b );
    477  1.1  bjh21     bIsSignalingNaN = float128_is_signaling_nan( b );
    478  1.1  bjh21     a.high |= LIT64( 0x0000800000000000 );
    479  1.1  bjh21     b.high |= LIT64( 0x0000800000000000 );
    480  1.1  bjh21     if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
    481  1.1  bjh21     if ( aIsNaN ) {
    482  1.1  bjh21         return ( aIsSignalingNaN & bIsNaN ) ? b : a;
    483  1.1  bjh21     }
    484  1.1  bjh21     else {
    485  1.1  bjh21         return b;
    486  1.1  bjh21     }
    487  1.1  bjh21 
    488  1.1  bjh21 }
    489  1.1  bjh21 
    490  1.1  bjh21 #endif
    491  1.1  bjh21 
    492