softfloat-specialize revision 1.4 1 1.4 jmmv /* $NetBSD: softfloat-specialize,v 1.4 2004/09/26 21:13:27 jmmv Exp $ */
2 1.3 bjh21
3 1.3 bjh21 /* This is a derivative work. */
4 1.1 bjh21
5 1.1 bjh21 /*
6 1.1 bjh21 ===============================================================================
7 1.1 bjh21
8 1.1 bjh21 This C source fragment is part of the SoftFloat IEC/IEEE Floating-point
9 1.1 bjh21 Arithmetic Package, Release 2a.
10 1.1 bjh21
11 1.1 bjh21 Written by John R. Hauser. This work was made possible in part by the
12 1.1 bjh21 International Computer Science Institute, located at Suite 600, 1947 Center
13 1.1 bjh21 Street, Berkeley, California 94704. Funding was partially provided by the
14 1.1 bjh21 National Science Foundation under grant MIP-9311980. The original version
15 1.1 bjh21 of this code was written as part of a project to build a fixed-point vector
16 1.1 bjh21 processor in collaboration with the University of California at Berkeley,
17 1.1 bjh21 overseen by Profs. Nelson Morgan and John Wawrzynek. More information
18 1.1 bjh21 is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
19 1.1 bjh21 arithmetic/SoftFloat.html'.
20 1.1 bjh21
21 1.1 bjh21 THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort
22 1.1 bjh21 has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
23 1.1 bjh21 TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO
24 1.1 bjh21 PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
25 1.1 bjh21 AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
26 1.1 bjh21
27 1.1 bjh21 Derivative works are acceptable, even for commercial purposes, so long as
28 1.1 bjh21 (1) they include prominent notice that the work is derivative, and (2) they
29 1.1 bjh21 include prominent notice akin to these four paragraphs for those parts of
30 1.1 bjh21 this code that are retained.
31 1.1 bjh21
32 1.1 bjh21 ===============================================================================
33 1.1 bjh21 */
34 1.1 bjh21
35 1.3 bjh21 #include <signal.h>
36 1.3 bjh21
37 1.1 bjh21 /*
38 1.1 bjh21 -------------------------------------------------------------------------------
39 1.1 bjh21 Underflow tininess-detection mode, statically initialized to default value.
40 1.1 bjh21 (The declaration in `softfloat.h' must match the `int8' type here.)
41 1.1 bjh21 -------------------------------------------------------------------------------
42 1.1 bjh21 */
43 1.1 bjh21 #ifdef SOFTFLOAT_FOR_GCC
44 1.1 bjh21 static
45 1.1 bjh21 #endif
46 1.1 bjh21 int8 float_detect_tininess = float_tininess_after_rounding;
47 1.1 bjh21
48 1.1 bjh21 /*
49 1.1 bjh21 -------------------------------------------------------------------------------
50 1.1 bjh21 Raises the exceptions specified by `flags'. Floating-point traps can be
51 1.1 bjh21 defined here if desired. It is currently not possible for such a trap to
52 1.1 bjh21 substitute a result value. If traps are not implemented, this routine
53 1.1 bjh21 should be simply `float_exception_flags |= flags;'.
54 1.1 bjh21 -------------------------------------------------------------------------------
55 1.1 bjh21 */
56 1.3 bjh21 fp_except float_exception_mask = 0;
57 1.3 bjh21 void float_raise( fp_except flags )
58 1.1 bjh21 {
59 1.1 bjh21
60 1.1 bjh21 float_exception_flags |= flags;
61 1.1 bjh21
62 1.3 bjh21 if ( flags & float_exception_mask ) {
63 1.3 bjh21 raise( SIGFPE );
64 1.3 bjh21 }
65 1.1 bjh21 }
66 1.1 bjh21
67 1.1 bjh21 /*
68 1.1 bjh21 -------------------------------------------------------------------------------
69 1.1 bjh21 Internal canonical NaN format.
70 1.1 bjh21 -------------------------------------------------------------------------------
71 1.1 bjh21 */
72 1.1 bjh21 typedef struct {
73 1.1 bjh21 flag sign;
74 1.1 bjh21 bits64 high, low;
75 1.1 bjh21 } commonNaNT;
76 1.1 bjh21
77 1.1 bjh21 /*
78 1.1 bjh21 -------------------------------------------------------------------------------
79 1.1 bjh21 The pattern for a default generated single-precision NaN.
80 1.1 bjh21 -------------------------------------------------------------------------------
81 1.1 bjh21 */
82 1.1 bjh21 #define float32_default_nan 0xFFFFFFFF
83 1.1 bjh21
84 1.1 bjh21 /*
85 1.1 bjh21 -------------------------------------------------------------------------------
86 1.1 bjh21 Returns 1 if the single-precision floating-point value `a' is a NaN;
87 1.1 bjh21 otherwise returns 0.
88 1.1 bjh21 -------------------------------------------------------------------------------
89 1.1 bjh21 */
90 1.1 bjh21 #ifdef SOFTFLOAT_FOR_GCC
91 1.1 bjh21 static
92 1.1 bjh21 #endif
93 1.1 bjh21 flag float32_is_nan( float32 a )
94 1.1 bjh21 {
95 1.1 bjh21
96 1.1 bjh21 return ( 0xFF000000 < (bits32) ( a<<1 ) );
97 1.1 bjh21
98 1.1 bjh21 }
99 1.1 bjh21
100 1.1 bjh21 /*
101 1.1 bjh21 -------------------------------------------------------------------------------
102 1.1 bjh21 Returns 1 if the single-precision floating-point value `a' is a signaling
103 1.1 bjh21 NaN; otherwise returns 0.
104 1.1 bjh21 -------------------------------------------------------------------------------
105 1.1 bjh21 */
106 1.4 jmmv #if defined(SOFTFLOAT_FOR_GCC) && !defined(SOFTFLOATSPARC64_FOR_GCC) && \
107 1.4 jmmv !defined(SOFTFLOAT_M68K_FOR_GCC)
108 1.1 bjh21 static
109 1.1 bjh21 #endif
110 1.1 bjh21 flag float32_is_signaling_nan( float32 a )
111 1.1 bjh21 {
112 1.1 bjh21
113 1.1 bjh21 return ( ( ( a>>22 ) & 0x1FF ) == 0x1FE ) && ( a & 0x003FFFFF );
114 1.1 bjh21
115 1.1 bjh21 }
116 1.1 bjh21
117 1.1 bjh21 /*
118 1.1 bjh21 -------------------------------------------------------------------------------
119 1.1 bjh21 Returns the result of converting the single-precision floating-point NaN
120 1.1 bjh21 `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
121 1.1 bjh21 exception is raised.
122 1.1 bjh21 -------------------------------------------------------------------------------
123 1.1 bjh21 */
124 1.1 bjh21 static commonNaNT float32ToCommonNaN( float32 a )
125 1.1 bjh21 {
126 1.1 bjh21 commonNaNT z;
127 1.1 bjh21
128 1.1 bjh21 if ( float32_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
129 1.1 bjh21 z.sign = a>>31;
130 1.1 bjh21 z.low = 0;
131 1.1 bjh21 z.high = ( (bits64) a )<<41;
132 1.1 bjh21 return z;
133 1.1 bjh21
134 1.1 bjh21 }
135 1.1 bjh21
136 1.1 bjh21 /*
137 1.1 bjh21 -------------------------------------------------------------------------------
138 1.1 bjh21 Returns the result of converting the canonical NaN `a' to the single-
139 1.1 bjh21 precision floating-point format.
140 1.1 bjh21 -------------------------------------------------------------------------------
141 1.1 bjh21 */
142 1.1 bjh21 static float32 commonNaNToFloat32( commonNaNT a )
143 1.1 bjh21 {
144 1.1 bjh21
145 1.1 bjh21 return ( ( (bits32) a.sign )<<31 ) | 0x7FC00000 | ( a.high>>41 );
146 1.1 bjh21
147 1.1 bjh21 }
148 1.1 bjh21
149 1.1 bjh21 /*
150 1.1 bjh21 -------------------------------------------------------------------------------
151 1.1 bjh21 Takes two single-precision floating-point values `a' and `b', one of which
152 1.1 bjh21 is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a
153 1.1 bjh21 signaling NaN, the invalid exception is raised.
154 1.1 bjh21 -------------------------------------------------------------------------------
155 1.1 bjh21 */
156 1.1 bjh21 static float32 propagateFloat32NaN( float32 a, float32 b )
157 1.1 bjh21 {
158 1.1 bjh21 flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
159 1.1 bjh21
160 1.1 bjh21 aIsNaN = float32_is_nan( a );
161 1.1 bjh21 aIsSignalingNaN = float32_is_signaling_nan( a );
162 1.1 bjh21 bIsNaN = float32_is_nan( b );
163 1.1 bjh21 bIsSignalingNaN = float32_is_signaling_nan( b );
164 1.1 bjh21 a |= 0x00400000;
165 1.1 bjh21 b |= 0x00400000;
166 1.1 bjh21 if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
167 1.1 bjh21 if ( aIsNaN ) {
168 1.1 bjh21 return ( aIsSignalingNaN & bIsNaN ) ? b : a;
169 1.1 bjh21 }
170 1.1 bjh21 else {
171 1.1 bjh21 return b;
172 1.1 bjh21 }
173 1.1 bjh21
174 1.1 bjh21 }
175 1.1 bjh21
176 1.1 bjh21 /*
177 1.1 bjh21 -------------------------------------------------------------------------------
178 1.1 bjh21 The pattern for a default generated double-precision NaN.
179 1.1 bjh21 -------------------------------------------------------------------------------
180 1.1 bjh21 */
181 1.1 bjh21 #define float64_default_nan LIT64( 0xFFFFFFFFFFFFFFFF )
182 1.1 bjh21
183 1.1 bjh21 /*
184 1.1 bjh21 -------------------------------------------------------------------------------
185 1.1 bjh21 Returns 1 if the double-precision floating-point value `a' is a NaN;
186 1.1 bjh21 otherwise returns 0.
187 1.1 bjh21 -------------------------------------------------------------------------------
188 1.1 bjh21 */
189 1.1 bjh21 #ifdef SOFTFLOAT_FOR_GCC
190 1.1 bjh21 static
191 1.1 bjh21 #endif
192 1.1 bjh21 flag float64_is_nan( float64 a )
193 1.1 bjh21 {
194 1.1 bjh21
195 1.1 bjh21 return ( LIT64( 0xFFE0000000000000 ) <
196 1.1 bjh21 (bits64) ( FLOAT64_DEMANGLE(a)<<1 ) );
197 1.1 bjh21
198 1.1 bjh21 }
199 1.1 bjh21
200 1.1 bjh21 /*
201 1.1 bjh21 -------------------------------------------------------------------------------
202 1.1 bjh21 Returns 1 if the double-precision floating-point value `a' is a signaling
203 1.1 bjh21 NaN; otherwise returns 0.
204 1.1 bjh21 -------------------------------------------------------------------------------
205 1.1 bjh21 */
206 1.4 jmmv #if defined(SOFTFLOAT_FOR_GCC) && !defined(SOFTFLOATSPARC64_FOR_GCC) && \
207 1.4 jmmv !defined(SOFTFLOATM68K_FOR_GCC)
208 1.1 bjh21 static
209 1.1 bjh21 #endif
210 1.1 bjh21 flag float64_is_signaling_nan( float64 a )
211 1.1 bjh21 {
212 1.1 bjh21
213 1.1 bjh21 return
214 1.1 bjh21 ( ( ( FLOAT64_DEMANGLE(a)>>51 ) & 0xFFF ) == 0xFFE )
215 1.1 bjh21 && ( FLOAT64_DEMANGLE(a) & LIT64( 0x0007FFFFFFFFFFFF ) );
216 1.1 bjh21
217 1.1 bjh21 }
218 1.1 bjh21
219 1.1 bjh21 /*
220 1.1 bjh21 -------------------------------------------------------------------------------
221 1.1 bjh21 Returns the result of converting the double-precision floating-point NaN
222 1.1 bjh21 `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
223 1.1 bjh21 exception is raised.
224 1.1 bjh21 -------------------------------------------------------------------------------
225 1.1 bjh21 */
226 1.1 bjh21 static commonNaNT float64ToCommonNaN( float64 a )
227 1.1 bjh21 {
228 1.1 bjh21 commonNaNT z;
229 1.1 bjh21
230 1.1 bjh21 if ( float64_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
231 1.1 bjh21 z.sign = FLOAT64_DEMANGLE(a)>>63;
232 1.1 bjh21 z.low = 0;
233 1.1 bjh21 z.high = FLOAT64_DEMANGLE(a)<<12;
234 1.1 bjh21 return z;
235 1.1 bjh21
236 1.1 bjh21 }
237 1.1 bjh21
238 1.1 bjh21 /*
239 1.1 bjh21 -------------------------------------------------------------------------------
240 1.1 bjh21 Returns the result of converting the canonical NaN `a' to the double-
241 1.1 bjh21 precision floating-point format.
242 1.1 bjh21 -------------------------------------------------------------------------------
243 1.1 bjh21 */
244 1.1 bjh21 static float64 commonNaNToFloat64( commonNaNT a )
245 1.1 bjh21 {
246 1.1 bjh21
247 1.1 bjh21 return FLOAT64_MANGLE(
248 1.1 bjh21 ( ( (bits64) a.sign )<<63 )
249 1.1 bjh21 | LIT64( 0x7FF8000000000000 )
250 1.1 bjh21 | ( a.high>>12 ) );
251 1.1 bjh21
252 1.1 bjh21 }
253 1.1 bjh21
254 1.1 bjh21 /*
255 1.1 bjh21 -------------------------------------------------------------------------------
256 1.1 bjh21 Takes two double-precision floating-point values `a' and `b', one of which
257 1.1 bjh21 is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a
258 1.1 bjh21 signaling NaN, the invalid exception is raised.
259 1.1 bjh21 -------------------------------------------------------------------------------
260 1.1 bjh21 */
261 1.1 bjh21 static float64 propagateFloat64NaN( float64 a, float64 b )
262 1.1 bjh21 {
263 1.1 bjh21 flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
264 1.1 bjh21
265 1.1 bjh21 aIsNaN = float64_is_nan( a );
266 1.1 bjh21 aIsSignalingNaN = float64_is_signaling_nan( a );
267 1.1 bjh21 bIsNaN = float64_is_nan( b );
268 1.1 bjh21 bIsSignalingNaN = float64_is_signaling_nan( b );
269 1.1 bjh21 a |= FLOAT64_MANGLE(LIT64( 0x0008000000000000 ));
270 1.1 bjh21 b |= FLOAT64_MANGLE(LIT64( 0x0008000000000000 ));
271 1.1 bjh21 if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
272 1.1 bjh21 if ( aIsNaN ) {
273 1.1 bjh21 return ( aIsSignalingNaN & bIsNaN ) ? b : a;
274 1.1 bjh21 }
275 1.1 bjh21 else {
276 1.1 bjh21 return b;
277 1.1 bjh21 }
278 1.1 bjh21
279 1.1 bjh21 }
280 1.1 bjh21
281 1.1 bjh21 #ifdef FLOATX80
282 1.1 bjh21
283 1.1 bjh21 /*
284 1.1 bjh21 -------------------------------------------------------------------------------
285 1.1 bjh21 The pattern for a default generated extended double-precision NaN. The
286 1.1 bjh21 `high' and `low' values hold the most- and least-significant bits,
287 1.1 bjh21 respectively.
288 1.1 bjh21 -------------------------------------------------------------------------------
289 1.1 bjh21 */
290 1.1 bjh21 #define floatx80_default_nan_high 0xFFFF
291 1.1 bjh21 #define floatx80_default_nan_low LIT64( 0xFFFFFFFFFFFFFFFF )
292 1.1 bjh21
293 1.1 bjh21 /*
294 1.1 bjh21 -------------------------------------------------------------------------------
295 1.1 bjh21 Returns 1 if the extended double-precision floating-point value `a' is a
296 1.1 bjh21 NaN; otherwise returns 0.
297 1.1 bjh21 -------------------------------------------------------------------------------
298 1.1 bjh21 */
299 1.1 bjh21 flag floatx80_is_nan( floatx80 a )
300 1.1 bjh21 {
301 1.1 bjh21
302 1.1 bjh21 return ( ( a.high & 0x7FFF ) == 0x7FFF ) && (bits64) ( a.low<<1 );
303 1.1 bjh21
304 1.1 bjh21 }
305 1.1 bjh21
306 1.1 bjh21 /*
307 1.1 bjh21 -------------------------------------------------------------------------------
308 1.1 bjh21 Returns 1 if the extended double-precision floating-point value `a' is a
309 1.1 bjh21 signaling NaN; otherwise returns 0.
310 1.1 bjh21 -------------------------------------------------------------------------------
311 1.1 bjh21 */
312 1.1 bjh21 flag floatx80_is_signaling_nan( floatx80 a )
313 1.1 bjh21 {
314 1.1 bjh21 bits64 aLow;
315 1.1 bjh21
316 1.1 bjh21 aLow = a.low & ~ LIT64( 0x4000000000000000 );
317 1.1 bjh21 return
318 1.1 bjh21 ( ( a.high & 0x7FFF ) == 0x7FFF )
319 1.1 bjh21 && (bits64) ( aLow<<1 )
320 1.1 bjh21 && ( a.low == aLow );
321 1.1 bjh21
322 1.1 bjh21 }
323 1.1 bjh21
324 1.1 bjh21 /*
325 1.1 bjh21 -------------------------------------------------------------------------------
326 1.1 bjh21 Returns the result of converting the extended double-precision floating-
327 1.1 bjh21 point NaN `a' to the canonical NaN format. If `a' is a signaling NaN, the
328 1.1 bjh21 invalid exception is raised.
329 1.1 bjh21 -------------------------------------------------------------------------------
330 1.1 bjh21 */
331 1.1 bjh21 static commonNaNT floatx80ToCommonNaN( floatx80 a )
332 1.1 bjh21 {
333 1.1 bjh21 commonNaNT z;
334 1.1 bjh21
335 1.1 bjh21 if ( floatx80_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
336 1.1 bjh21 z.sign = a.high>>15;
337 1.1 bjh21 z.low = 0;
338 1.1 bjh21 z.high = a.low<<1;
339 1.1 bjh21 return z;
340 1.1 bjh21
341 1.1 bjh21 }
342 1.1 bjh21
343 1.1 bjh21 /*
344 1.1 bjh21 -------------------------------------------------------------------------------
345 1.1 bjh21 Returns the result of converting the canonical NaN `a' to the extended
346 1.1 bjh21 double-precision floating-point format.
347 1.1 bjh21 -------------------------------------------------------------------------------
348 1.1 bjh21 */
349 1.1 bjh21 static floatx80 commonNaNToFloatx80( commonNaNT a )
350 1.1 bjh21 {
351 1.1 bjh21 floatx80 z;
352 1.1 bjh21
353 1.1 bjh21 z.low = LIT64( 0xC000000000000000 ) | ( a.high>>1 );
354 1.1 bjh21 z.high = ( ( (bits16) a.sign )<<15 ) | 0x7FFF;
355 1.1 bjh21 return z;
356 1.1 bjh21
357 1.1 bjh21 }
358 1.1 bjh21
359 1.1 bjh21 /*
360 1.1 bjh21 -------------------------------------------------------------------------------
361 1.1 bjh21 Takes two extended double-precision floating-point values `a' and `b', one
362 1.1 bjh21 of which is a NaN, and returns the appropriate NaN result. If either `a' or
363 1.1 bjh21 `b' is a signaling NaN, the invalid exception is raised.
364 1.1 bjh21 -------------------------------------------------------------------------------
365 1.1 bjh21 */
366 1.1 bjh21 static floatx80 propagateFloatx80NaN( floatx80 a, floatx80 b )
367 1.1 bjh21 {
368 1.1 bjh21 flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
369 1.1 bjh21
370 1.1 bjh21 aIsNaN = floatx80_is_nan( a );
371 1.1 bjh21 aIsSignalingNaN = floatx80_is_signaling_nan( a );
372 1.1 bjh21 bIsNaN = floatx80_is_nan( b );
373 1.1 bjh21 bIsSignalingNaN = floatx80_is_signaling_nan( b );
374 1.1 bjh21 a.low |= LIT64( 0xC000000000000000 );
375 1.1 bjh21 b.low |= LIT64( 0xC000000000000000 );
376 1.1 bjh21 if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
377 1.1 bjh21 if ( aIsNaN ) {
378 1.1 bjh21 return ( aIsSignalingNaN & bIsNaN ) ? b : a;
379 1.1 bjh21 }
380 1.1 bjh21 else {
381 1.1 bjh21 return b;
382 1.1 bjh21 }
383 1.1 bjh21
384 1.1 bjh21 }
385 1.1 bjh21
386 1.1 bjh21 #endif
387 1.1 bjh21
388 1.1 bjh21 #ifdef FLOAT128
389 1.1 bjh21
390 1.1 bjh21 /*
391 1.1 bjh21 -------------------------------------------------------------------------------
392 1.1 bjh21 The pattern for a default generated quadruple-precision NaN. The `high' and
393 1.1 bjh21 `low' values hold the most- and least-significant bits, respectively.
394 1.1 bjh21 -------------------------------------------------------------------------------
395 1.1 bjh21 */
396 1.1 bjh21 #define float128_default_nan_high LIT64( 0xFFFFFFFFFFFFFFFF )
397 1.1 bjh21 #define float128_default_nan_low LIT64( 0xFFFFFFFFFFFFFFFF )
398 1.1 bjh21
399 1.1 bjh21 /*
400 1.1 bjh21 -------------------------------------------------------------------------------
401 1.1 bjh21 Returns 1 if the quadruple-precision floating-point value `a' is a NaN;
402 1.1 bjh21 otherwise returns 0.
403 1.1 bjh21 -------------------------------------------------------------------------------
404 1.1 bjh21 */
405 1.1 bjh21 flag float128_is_nan( float128 a )
406 1.1 bjh21 {
407 1.1 bjh21
408 1.1 bjh21 return
409 1.1 bjh21 ( LIT64( 0xFFFE000000000000 ) <= (bits64) ( a.high<<1 ) )
410 1.1 bjh21 && ( a.low || ( a.high & LIT64( 0x0000FFFFFFFFFFFF ) ) );
411 1.1 bjh21
412 1.1 bjh21 }
413 1.1 bjh21
414 1.1 bjh21 /*
415 1.1 bjh21 -------------------------------------------------------------------------------
416 1.1 bjh21 Returns 1 if the quadruple-precision floating-point value `a' is a
417 1.1 bjh21 signaling NaN; otherwise returns 0.
418 1.1 bjh21 -------------------------------------------------------------------------------
419 1.1 bjh21 */
420 1.1 bjh21 flag float128_is_signaling_nan( float128 a )
421 1.1 bjh21 {
422 1.1 bjh21
423 1.1 bjh21 return
424 1.1 bjh21 ( ( ( a.high>>47 ) & 0xFFFF ) == 0xFFFE )
425 1.1 bjh21 && ( a.low || ( a.high & LIT64( 0x00007FFFFFFFFFFF ) ) );
426 1.1 bjh21
427 1.1 bjh21 }
428 1.1 bjh21
429 1.1 bjh21 /*
430 1.1 bjh21 -------------------------------------------------------------------------------
431 1.1 bjh21 Returns the result of converting the quadruple-precision floating-point NaN
432 1.1 bjh21 `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
433 1.1 bjh21 exception is raised.
434 1.1 bjh21 -------------------------------------------------------------------------------
435 1.1 bjh21 */
436 1.1 bjh21 static commonNaNT float128ToCommonNaN( float128 a )
437 1.1 bjh21 {
438 1.1 bjh21 commonNaNT z;
439 1.1 bjh21
440 1.1 bjh21 if ( float128_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
441 1.1 bjh21 z.sign = a.high>>63;
442 1.1 bjh21 shortShift128Left( a.high, a.low, 16, &z.high, &z.low );
443 1.1 bjh21 return z;
444 1.1 bjh21
445 1.1 bjh21 }
446 1.1 bjh21
447 1.1 bjh21 /*
448 1.1 bjh21 -------------------------------------------------------------------------------
449 1.1 bjh21 Returns the result of converting the canonical NaN `a' to the quadruple-
450 1.1 bjh21 precision floating-point format.
451 1.1 bjh21 -------------------------------------------------------------------------------
452 1.1 bjh21 */
453 1.1 bjh21 static float128 commonNaNToFloat128( commonNaNT a )
454 1.1 bjh21 {
455 1.1 bjh21 float128 z;
456 1.1 bjh21
457 1.1 bjh21 shift128Right( a.high, a.low, 16, &z.high, &z.low );
458 1.1 bjh21 z.high |= ( ( (bits64) a.sign )<<63 ) | LIT64( 0x7FFF800000000000 );
459 1.1 bjh21 return z;
460 1.1 bjh21
461 1.1 bjh21 }
462 1.1 bjh21
463 1.1 bjh21 /*
464 1.1 bjh21 -------------------------------------------------------------------------------
465 1.1 bjh21 Takes two quadruple-precision floating-point values `a' and `b', one of
466 1.1 bjh21 which is a NaN, and returns the appropriate NaN result. If either `a' or
467 1.1 bjh21 `b' is a signaling NaN, the invalid exception is raised.
468 1.1 bjh21 -------------------------------------------------------------------------------
469 1.1 bjh21 */
470 1.1 bjh21 static float128 propagateFloat128NaN( float128 a, float128 b )
471 1.1 bjh21 {
472 1.1 bjh21 flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
473 1.1 bjh21
474 1.1 bjh21 aIsNaN = float128_is_nan( a );
475 1.1 bjh21 aIsSignalingNaN = float128_is_signaling_nan( a );
476 1.1 bjh21 bIsNaN = float128_is_nan( b );
477 1.1 bjh21 bIsSignalingNaN = float128_is_signaling_nan( b );
478 1.1 bjh21 a.high |= LIT64( 0x0000800000000000 );
479 1.1 bjh21 b.high |= LIT64( 0x0000800000000000 );
480 1.1 bjh21 if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
481 1.1 bjh21 if ( aIsNaN ) {
482 1.1 bjh21 return ( aIsSignalingNaN & bIsNaN ) ? b : a;
483 1.1 bjh21 }
484 1.1 bjh21 else {
485 1.1 bjh21 return b;
486 1.1 bjh21 }
487 1.1 bjh21
488 1.1 bjh21 }
489 1.1 bjh21
490 1.1 bjh21 #endif
491 1.1 bjh21
492