softfloat-specialize revision 1.5 1 1.5 martin /* $NetBSD: softfloat-specialize,v 1.5 2011/03/04 11:48:58 martin Exp $ */
2 1.3 bjh21
3 1.3 bjh21 /* This is a derivative work. */
4 1.1 bjh21
5 1.1 bjh21 /*
6 1.1 bjh21 ===============================================================================
7 1.1 bjh21
8 1.1 bjh21 This C source fragment is part of the SoftFloat IEC/IEEE Floating-point
9 1.1 bjh21 Arithmetic Package, Release 2a.
10 1.1 bjh21
11 1.1 bjh21 Written by John R. Hauser. This work was made possible in part by the
12 1.1 bjh21 International Computer Science Institute, located at Suite 600, 1947 Center
13 1.1 bjh21 Street, Berkeley, California 94704. Funding was partially provided by the
14 1.1 bjh21 National Science Foundation under grant MIP-9311980. The original version
15 1.1 bjh21 of this code was written as part of a project to build a fixed-point vector
16 1.1 bjh21 processor in collaboration with the University of California at Berkeley,
17 1.1 bjh21 overseen by Profs. Nelson Morgan and John Wawrzynek. More information
18 1.1 bjh21 is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
19 1.1 bjh21 arithmetic/SoftFloat.html'.
20 1.1 bjh21
21 1.1 bjh21 THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort
22 1.1 bjh21 has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
23 1.1 bjh21 TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO
24 1.1 bjh21 PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
25 1.1 bjh21 AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
26 1.1 bjh21
27 1.1 bjh21 Derivative works are acceptable, even for commercial purposes, so long as
28 1.1 bjh21 (1) they include prominent notice that the work is derivative, and (2) they
29 1.1 bjh21 include prominent notice akin to these four paragraphs for those parts of
30 1.1 bjh21 this code that are retained.
31 1.1 bjh21
32 1.1 bjh21 ===============================================================================
33 1.1 bjh21 */
34 1.1 bjh21
35 1.3 bjh21 #include <signal.h>
36 1.5 martin #include <string.h>
37 1.5 martin #include <unistd.h>
38 1.3 bjh21
39 1.1 bjh21 /*
40 1.1 bjh21 -------------------------------------------------------------------------------
41 1.1 bjh21 Underflow tininess-detection mode, statically initialized to default value.
42 1.1 bjh21 (The declaration in `softfloat.h' must match the `int8' type here.)
43 1.1 bjh21 -------------------------------------------------------------------------------
44 1.1 bjh21 */
45 1.1 bjh21 #ifdef SOFTFLOAT_FOR_GCC
46 1.1 bjh21 static
47 1.1 bjh21 #endif
48 1.1 bjh21 int8 float_detect_tininess = float_tininess_after_rounding;
49 1.1 bjh21
50 1.1 bjh21 /*
51 1.1 bjh21 -------------------------------------------------------------------------------
52 1.1 bjh21 Raises the exceptions specified by `flags'. Floating-point traps can be
53 1.1 bjh21 defined here if desired. It is currently not possible for such a trap to
54 1.1 bjh21 substitute a result value. If traps are not implemented, this routine
55 1.1 bjh21 should be simply `float_exception_flags |= flags;'.
56 1.1 bjh21 -------------------------------------------------------------------------------
57 1.1 bjh21 */
58 1.3 bjh21 fp_except float_exception_mask = 0;
59 1.3 bjh21 void float_raise( fp_except flags )
60 1.1 bjh21 {
61 1.5 martin siginfo_t info;
62 1.1 bjh21
63 1.1 bjh21 float_exception_flags |= flags;
64 1.1 bjh21
65 1.3 bjh21 if ( flags & float_exception_mask ) {
66 1.5 martin memset(&info, 0, sizeof info);
67 1.5 martin info.si_signo = SIGFPE;
68 1.5 martin info.si_pid = getpid();
69 1.5 martin info.si_uid = geteuid();
70 1.5 martin if (flags & float_flag_underflow)
71 1.5 martin info.si_code = FPE_FLTUND;
72 1.5 martin else if (flags & float_flag_overflow)
73 1.5 martin info.si_code = FPE_FLTOVF;
74 1.5 martin else if (flags & float_flag_divbyzero)
75 1.5 martin info.si_code = FPE_FLTDIV;
76 1.5 martin else if (flags & float_flag_invalid)
77 1.5 martin info.si_code = FPE_FLTINV;
78 1.5 martin else if (flags & float_flag_inexact)
79 1.5 martin info.si_code = FPE_FLTRES;
80 1.5 martin sigqueueinfo(getpid(), &info);
81 1.3 bjh21 }
82 1.1 bjh21 }
83 1.1 bjh21
84 1.1 bjh21 /*
85 1.1 bjh21 -------------------------------------------------------------------------------
86 1.1 bjh21 Internal canonical NaN format.
87 1.1 bjh21 -------------------------------------------------------------------------------
88 1.1 bjh21 */
89 1.1 bjh21 typedef struct {
90 1.1 bjh21 flag sign;
91 1.1 bjh21 bits64 high, low;
92 1.1 bjh21 } commonNaNT;
93 1.1 bjh21
94 1.1 bjh21 /*
95 1.1 bjh21 -------------------------------------------------------------------------------
96 1.1 bjh21 The pattern for a default generated single-precision NaN.
97 1.1 bjh21 -------------------------------------------------------------------------------
98 1.1 bjh21 */
99 1.1 bjh21 #define float32_default_nan 0xFFFFFFFF
100 1.1 bjh21
101 1.1 bjh21 /*
102 1.1 bjh21 -------------------------------------------------------------------------------
103 1.1 bjh21 Returns 1 if the single-precision floating-point value `a' is a NaN;
104 1.1 bjh21 otherwise returns 0.
105 1.1 bjh21 -------------------------------------------------------------------------------
106 1.1 bjh21 */
107 1.1 bjh21 #ifdef SOFTFLOAT_FOR_GCC
108 1.1 bjh21 static
109 1.1 bjh21 #endif
110 1.1 bjh21 flag float32_is_nan( float32 a )
111 1.1 bjh21 {
112 1.1 bjh21
113 1.1 bjh21 return ( 0xFF000000 < (bits32) ( a<<1 ) );
114 1.1 bjh21
115 1.1 bjh21 }
116 1.1 bjh21
117 1.1 bjh21 /*
118 1.1 bjh21 -------------------------------------------------------------------------------
119 1.1 bjh21 Returns 1 if the single-precision floating-point value `a' is a signaling
120 1.1 bjh21 NaN; otherwise returns 0.
121 1.1 bjh21 -------------------------------------------------------------------------------
122 1.1 bjh21 */
123 1.4 jmmv #if defined(SOFTFLOAT_FOR_GCC) && !defined(SOFTFLOATSPARC64_FOR_GCC) && \
124 1.4 jmmv !defined(SOFTFLOAT_M68K_FOR_GCC)
125 1.1 bjh21 static
126 1.1 bjh21 #endif
127 1.1 bjh21 flag float32_is_signaling_nan( float32 a )
128 1.1 bjh21 {
129 1.1 bjh21
130 1.1 bjh21 return ( ( ( a>>22 ) & 0x1FF ) == 0x1FE ) && ( a & 0x003FFFFF );
131 1.1 bjh21
132 1.1 bjh21 }
133 1.1 bjh21
134 1.1 bjh21 /*
135 1.1 bjh21 -------------------------------------------------------------------------------
136 1.1 bjh21 Returns the result of converting the single-precision floating-point NaN
137 1.1 bjh21 `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
138 1.1 bjh21 exception is raised.
139 1.1 bjh21 -------------------------------------------------------------------------------
140 1.1 bjh21 */
141 1.1 bjh21 static commonNaNT float32ToCommonNaN( float32 a )
142 1.1 bjh21 {
143 1.1 bjh21 commonNaNT z;
144 1.1 bjh21
145 1.1 bjh21 if ( float32_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
146 1.1 bjh21 z.sign = a>>31;
147 1.1 bjh21 z.low = 0;
148 1.1 bjh21 z.high = ( (bits64) a )<<41;
149 1.1 bjh21 return z;
150 1.1 bjh21
151 1.1 bjh21 }
152 1.1 bjh21
153 1.1 bjh21 /*
154 1.1 bjh21 -------------------------------------------------------------------------------
155 1.1 bjh21 Returns the result of converting the canonical NaN `a' to the single-
156 1.1 bjh21 precision floating-point format.
157 1.1 bjh21 -------------------------------------------------------------------------------
158 1.1 bjh21 */
159 1.1 bjh21 static float32 commonNaNToFloat32( commonNaNT a )
160 1.1 bjh21 {
161 1.1 bjh21
162 1.1 bjh21 return ( ( (bits32) a.sign )<<31 ) | 0x7FC00000 | ( a.high>>41 );
163 1.1 bjh21
164 1.1 bjh21 }
165 1.1 bjh21
166 1.1 bjh21 /*
167 1.1 bjh21 -------------------------------------------------------------------------------
168 1.1 bjh21 Takes two single-precision floating-point values `a' and `b', one of which
169 1.1 bjh21 is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a
170 1.1 bjh21 signaling NaN, the invalid exception is raised.
171 1.1 bjh21 -------------------------------------------------------------------------------
172 1.1 bjh21 */
173 1.1 bjh21 static float32 propagateFloat32NaN( float32 a, float32 b )
174 1.1 bjh21 {
175 1.1 bjh21 flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
176 1.1 bjh21
177 1.1 bjh21 aIsNaN = float32_is_nan( a );
178 1.1 bjh21 aIsSignalingNaN = float32_is_signaling_nan( a );
179 1.1 bjh21 bIsNaN = float32_is_nan( b );
180 1.1 bjh21 bIsSignalingNaN = float32_is_signaling_nan( b );
181 1.1 bjh21 a |= 0x00400000;
182 1.1 bjh21 b |= 0x00400000;
183 1.1 bjh21 if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
184 1.1 bjh21 if ( aIsNaN ) {
185 1.1 bjh21 return ( aIsSignalingNaN & bIsNaN ) ? b : a;
186 1.1 bjh21 }
187 1.1 bjh21 else {
188 1.1 bjh21 return b;
189 1.1 bjh21 }
190 1.1 bjh21
191 1.1 bjh21 }
192 1.1 bjh21
193 1.1 bjh21 /*
194 1.1 bjh21 -------------------------------------------------------------------------------
195 1.1 bjh21 The pattern for a default generated double-precision NaN.
196 1.1 bjh21 -------------------------------------------------------------------------------
197 1.1 bjh21 */
198 1.1 bjh21 #define float64_default_nan LIT64( 0xFFFFFFFFFFFFFFFF )
199 1.1 bjh21
200 1.1 bjh21 /*
201 1.1 bjh21 -------------------------------------------------------------------------------
202 1.1 bjh21 Returns 1 if the double-precision floating-point value `a' is a NaN;
203 1.1 bjh21 otherwise returns 0.
204 1.1 bjh21 -------------------------------------------------------------------------------
205 1.1 bjh21 */
206 1.1 bjh21 #ifdef SOFTFLOAT_FOR_GCC
207 1.1 bjh21 static
208 1.1 bjh21 #endif
209 1.1 bjh21 flag float64_is_nan( float64 a )
210 1.1 bjh21 {
211 1.1 bjh21
212 1.1 bjh21 return ( LIT64( 0xFFE0000000000000 ) <
213 1.1 bjh21 (bits64) ( FLOAT64_DEMANGLE(a)<<1 ) );
214 1.1 bjh21
215 1.1 bjh21 }
216 1.1 bjh21
217 1.1 bjh21 /*
218 1.1 bjh21 -------------------------------------------------------------------------------
219 1.1 bjh21 Returns 1 if the double-precision floating-point value `a' is a signaling
220 1.1 bjh21 NaN; otherwise returns 0.
221 1.1 bjh21 -------------------------------------------------------------------------------
222 1.1 bjh21 */
223 1.4 jmmv #if defined(SOFTFLOAT_FOR_GCC) && !defined(SOFTFLOATSPARC64_FOR_GCC) && \
224 1.4 jmmv !defined(SOFTFLOATM68K_FOR_GCC)
225 1.1 bjh21 static
226 1.1 bjh21 #endif
227 1.1 bjh21 flag float64_is_signaling_nan( float64 a )
228 1.1 bjh21 {
229 1.1 bjh21
230 1.1 bjh21 return
231 1.1 bjh21 ( ( ( FLOAT64_DEMANGLE(a)>>51 ) & 0xFFF ) == 0xFFE )
232 1.1 bjh21 && ( FLOAT64_DEMANGLE(a) & LIT64( 0x0007FFFFFFFFFFFF ) );
233 1.1 bjh21
234 1.1 bjh21 }
235 1.1 bjh21
236 1.1 bjh21 /*
237 1.1 bjh21 -------------------------------------------------------------------------------
238 1.1 bjh21 Returns the result of converting the double-precision floating-point NaN
239 1.1 bjh21 `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
240 1.1 bjh21 exception is raised.
241 1.1 bjh21 -------------------------------------------------------------------------------
242 1.1 bjh21 */
243 1.1 bjh21 static commonNaNT float64ToCommonNaN( float64 a )
244 1.1 bjh21 {
245 1.1 bjh21 commonNaNT z;
246 1.1 bjh21
247 1.1 bjh21 if ( float64_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
248 1.1 bjh21 z.sign = FLOAT64_DEMANGLE(a)>>63;
249 1.1 bjh21 z.low = 0;
250 1.1 bjh21 z.high = FLOAT64_DEMANGLE(a)<<12;
251 1.1 bjh21 return z;
252 1.1 bjh21
253 1.1 bjh21 }
254 1.1 bjh21
255 1.1 bjh21 /*
256 1.1 bjh21 -------------------------------------------------------------------------------
257 1.1 bjh21 Returns the result of converting the canonical NaN `a' to the double-
258 1.1 bjh21 precision floating-point format.
259 1.1 bjh21 -------------------------------------------------------------------------------
260 1.1 bjh21 */
261 1.1 bjh21 static float64 commonNaNToFloat64( commonNaNT a )
262 1.1 bjh21 {
263 1.1 bjh21
264 1.1 bjh21 return FLOAT64_MANGLE(
265 1.1 bjh21 ( ( (bits64) a.sign )<<63 )
266 1.1 bjh21 | LIT64( 0x7FF8000000000000 )
267 1.1 bjh21 | ( a.high>>12 ) );
268 1.1 bjh21
269 1.1 bjh21 }
270 1.1 bjh21
271 1.1 bjh21 /*
272 1.1 bjh21 -------------------------------------------------------------------------------
273 1.1 bjh21 Takes two double-precision floating-point values `a' and `b', one of which
274 1.1 bjh21 is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a
275 1.1 bjh21 signaling NaN, the invalid exception is raised.
276 1.1 bjh21 -------------------------------------------------------------------------------
277 1.1 bjh21 */
278 1.1 bjh21 static float64 propagateFloat64NaN( float64 a, float64 b )
279 1.1 bjh21 {
280 1.1 bjh21 flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
281 1.1 bjh21
282 1.1 bjh21 aIsNaN = float64_is_nan( a );
283 1.1 bjh21 aIsSignalingNaN = float64_is_signaling_nan( a );
284 1.1 bjh21 bIsNaN = float64_is_nan( b );
285 1.1 bjh21 bIsSignalingNaN = float64_is_signaling_nan( b );
286 1.1 bjh21 a |= FLOAT64_MANGLE(LIT64( 0x0008000000000000 ));
287 1.1 bjh21 b |= FLOAT64_MANGLE(LIT64( 0x0008000000000000 ));
288 1.1 bjh21 if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
289 1.1 bjh21 if ( aIsNaN ) {
290 1.1 bjh21 return ( aIsSignalingNaN & bIsNaN ) ? b : a;
291 1.1 bjh21 }
292 1.1 bjh21 else {
293 1.1 bjh21 return b;
294 1.1 bjh21 }
295 1.1 bjh21
296 1.1 bjh21 }
297 1.1 bjh21
298 1.1 bjh21 #ifdef FLOATX80
299 1.1 bjh21
300 1.1 bjh21 /*
301 1.1 bjh21 -------------------------------------------------------------------------------
302 1.1 bjh21 The pattern for a default generated extended double-precision NaN. The
303 1.1 bjh21 `high' and `low' values hold the most- and least-significant bits,
304 1.1 bjh21 respectively.
305 1.1 bjh21 -------------------------------------------------------------------------------
306 1.1 bjh21 */
307 1.1 bjh21 #define floatx80_default_nan_high 0xFFFF
308 1.1 bjh21 #define floatx80_default_nan_low LIT64( 0xFFFFFFFFFFFFFFFF )
309 1.1 bjh21
310 1.1 bjh21 /*
311 1.1 bjh21 -------------------------------------------------------------------------------
312 1.1 bjh21 Returns 1 if the extended double-precision floating-point value `a' is a
313 1.1 bjh21 NaN; otherwise returns 0.
314 1.1 bjh21 -------------------------------------------------------------------------------
315 1.1 bjh21 */
316 1.1 bjh21 flag floatx80_is_nan( floatx80 a )
317 1.1 bjh21 {
318 1.1 bjh21
319 1.1 bjh21 return ( ( a.high & 0x7FFF ) == 0x7FFF ) && (bits64) ( a.low<<1 );
320 1.1 bjh21
321 1.1 bjh21 }
322 1.1 bjh21
323 1.1 bjh21 /*
324 1.1 bjh21 -------------------------------------------------------------------------------
325 1.1 bjh21 Returns 1 if the extended double-precision floating-point value `a' is a
326 1.1 bjh21 signaling NaN; otherwise returns 0.
327 1.1 bjh21 -------------------------------------------------------------------------------
328 1.1 bjh21 */
329 1.1 bjh21 flag floatx80_is_signaling_nan( floatx80 a )
330 1.1 bjh21 {
331 1.1 bjh21 bits64 aLow;
332 1.1 bjh21
333 1.1 bjh21 aLow = a.low & ~ LIT64( 0x4000000000000000 );
334 1.1 bjh21 return
335 1.1 bjh21 ( ( a.high & 0x7FFF ) == 0x7FFF )
336 1.1 bjh21 && (bits64) ( aLow<<1 )
337 1.1 bjh21 && ( a.low == aLow );
338 1.1 bjh21
339 1.1 bjh21 }
340 1.1 bjh21
341 1.1 bjh21 /*
342 1.1 bjh21 -------------------------------------------------------------------------------
343 1.1 bjh21 Returns the result of converting the extended double-precision floating-
344 1.1 bjh21 point NaN `a' to the canonical NaN format. If `a' is a signaling NaN, the
345 1.1 bjh21 invalid exception is raised.
346 1.1 bjh21 -------------------------------------------------------------------------------
347 1.1 bjh21 */
348 1.1 bjh21 static commonNaNT floatx80ToCommonNaN( floatx80 a )
349 1.1 bjh21 {
350 1.1 bjh21 commonNaNT z;
351 1.1 bjh21
352 1.1 bjh21 if ( floatx80_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
353 1.1 bjh21 z.sign = a.high>>15;
354 1.1 bjh21 z.low = 0;
355 1.1 bjh21 z.high = a.low<<1;
356 1.1 bjh21 return z;
357 1.1 bjh21
358 1.1 bjh21 }
359 1.1 bjh21
360 1.1 bjh21 /*
361 1.1 bjh21 -------------------------------------------------------------------------------
362 1.1 bjh21 Returns the result of converting the canonical NaN `a' to the extended
363 1.1 bjh21 double-precision floating-point format.
364 1.1 bjh21 -------------------------------------------------------------------------------
365 1.1 bjh21 */
366 1.1 bjh21 static floatx80 commonNaNToFloatx80( commonNaNT a )
367 1.1 bjh21 {
368 1.1 bjh21 floatx80 z;
369 1.1 bjh21
370 1.1 bjh21 z.low = LIT64( 0xC000000000000000 ) | ( a.high>>1 );
371 1.1 bjh21 z.high = ( ( (bits16) a.sign )<<15 ) | 0x7FFF;
372 1.1 bjh21 return z;
373 1.1 bjh21
374 1.1 bjh21 }
375 1.1 bjh21
376 1.1 bjh21 /*
377 1.1 bjh21 -------------------------------------------------------------------------------
378 1.1 bjh21 Takes two extended double-precision floating-point values `a' and `b', one
379 1.1 bjh21 of which is a NaN, and returns the appropriate NaN result. If either `a' or
380 1.1 bjh21 `b' is a signaling NaN, the invalid exception is raised.
381 1.1 bjh21 -------------------------------------------------------------------------------
382 1.1 bjh21 */
383 1.1 bjh21 static floatx80 propagateFloatx80NaN( floatx80 a, floatx80 b )
384 1.1 bjh21 {
385 1.1 bjh21 flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
386 1.1 bjh21
387 1.1 bjh21 aIsNaN = floatx80_is_nan( a );
388 1.1 bjh21 aIsSignalingNaN = floatx80_is_signaling_nan( a );
389 1.1 bjh21 bIsNaN = floatx80_is_nan( b );
390 1.1 bjh21 bIsSignalingNaN = floatx80_is_signaling_nan( b );
391 1.1 bjh21 a.low |= LIT64( 0xC000000000000000 );
392 1.1 bjh21 b.low |= LIT64( 0xC000000000000000 );
393 1.1 bjh21 if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
394 1.1 bjh21 if ( aIsNaN ) {
395 1.1 bjh21 return ( aIsSignalingNaN & bIsNaN ) ? b : a;
396 1.1 bjh21 }
397 1.1 bjh21 else {
398 1.1 bjh21 return b;
399 1.1 bjh21 }
400 1.1 bjh21
401 1.1 bjh21 }
402 1.1 bjh21
403 1.1 bjh21 #endif
404 1.1 bjh21
405 1.1 bjh21 #ifdef FLOAT128
406 1.1 bjh21
407 1.1 bjh21 /*
408 1.1 bjh21 -------------------------------------------------------------------------------
409 1.1 bjh21 The pattern for a default generated quadruple-precision NaN. The `high' and
410 1.1 bjh21 `low' values hold the most- and least-significant bits, respectively.
411 1.1 bjh21 -------------------------------------------------------------------------------
412 1.1 bjh21 */
413 1.1 bjh21 #define float128_default_nan_high LIT64( 0xFFFFFFFFFFFFFFFF )
414 1.1 bjh21 #define float128_default_nan_low LIT64( 0xFFFFFFFFFFFFFFFF )
415 1.1 bjh21
416 1.1 bjh21 /*
417 1.1 bjh21 -------------------------------------------------------------------------------
418 1.1 bjh21 Returns 1 if the quadruple-precision floating-point value `a' is a NaN;
419 1.1 bjh21 otherwise returns 0.
420 1.1 bjh21 -------------------------------------------------------------------------------
421 1.1 bjh21 */
422 1.1 bjh21 flag float128_is_nan( float128 a )
423 1.1 bjh21 {
424 1.1 bjh21
425 1.1 bjh21 return
426 1.1 bjh21 ( LIT64( 0xFFFE000000000000 ) <= (bits64) ( a.high<<1 ) )
427 1.1 bjh21 && ( a.low || ( a.high & LIT64( 0x0000FFFFFFFFFFFF ) ) );
428 1.1 bjh21
429 1.1 bjh21 }
430 1.1 bjh21
431 1.1 bjh21 /*
432 1.1 bjh21 -------------------------------------------------------------------------------
433 1.1 bjh21 Returns 1 if the quadruple-precision floating-point value `a' is a
434 1.1 bjh21 signaling NaN; otherwise returns 0.
435 1.1 bjh21 -------------------------------------------------------------------------------
436 1.1 bjh21 */
437 1.1 bjh21 flag float128_is_signaling_nan( float128 a )
438 1.1 bjh21 {
439 1.1 bjh21
440 1.1 bjh21 return
441 1.1 bjh21 ( ( ( a.high>>47 ) & 0xFFFF ) == 0xFFFE )
442 1.1 bjh21 && ( a.low || ( a.high & LIT64( 0x00007FFFFFFFFFFF ) ) );
443 1.1 bjh21
444 1.1 bjh21 }
445 1.1 bjh21
446 1.1 bjh21 /*
447 1.1 bjh21 -------------------------------------------------------------------------------
448 1.1 bjh21 Returns the result of converting the quadruple-precision floating-point NaN
449 1.1 bjh21 `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
450 1.1 bjh21 exception is raised.
451 1.1 bjh21 -------------------------------------------------------------------------------
452 1.1 bjh21 */
453 1.1 bjh21 static commonNaNT float128ToCommonNaN( float128 a )
454 1.1 bjh21 {
455 1.1 bjh21 commonNaNT z;
456 1.1 bjh21
457 1.1 bjh21 if ( float128_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
458 1.1 bjh21 z.sign = a.high>>63;
459 1.1 bjh21 shortShift128Left( a.high, a.low, 16, &z.high, &z.low );
460 1.1 bjh21 return z;
461 1.1 bjh21
462 1.1 bjh21 }
463 1.1 bjh21
464 1.1 bjh21 /*
465 1.1 bjh21 -------------------------------------------------------------------------------
466 1.1 bjh21 Returns the result of converting the canonical NaN `a' to the quadruple-
467 1.1 bjh21 precision floating-point format.
468 1.1 bjh21 -------------------------------------------------------------------------------
469 1.1 bjh21 */
470 1.1 bjh21 static float128 commonNaNToFloat128( commonNaNT a )
471 1.1 bjh21 {
472 1.1 bjh21 float128 z;
473 1.1 bjh21
474 1.1 bjh21 shift128Right( a.high, a.low, 16, &z.high, &z.low );
475 1.1 bjh21 z.high |= ( ( (bits64) a.sign )<<63 ) | LIT64( 0x7FFF800000000000 );
476 1.1 bjh21 return z;
477 1.1 bjh21
478 1.1 bjh21 }
479 1.1 bjh21
480 1.1 bjh21 /*
481 1.1 bjh21 -------------------------------------------------------------------------------
482 1.1 bjh21 Takes two quadruple-precision floating-point values `a' and `b', one of
483 1.1 bjh21 which is a NaN, and returns the appropriate NaN result. If either `a' or
484 1.1 bjh21 `b' is a signaling NaN, the invalid exception is raised.
485 1.1 bjh21 -------------------------------------------------------------------------------
486 1.1 bjh21 */
487 1.1 bjh21 static float128 propagateFloat128NaN( float128 a, float128 b )
488 1.1 bjh21 {
489 1.1 bjh21 flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
490 1.1 bjh21
491 1.1 bjh21 aIsNaN = float128_is_nan( a );
492 1.1 bjh21 aIsSignalingNaN = float128_is_signaling_nan( a );
493 1.1 bjh21 bIsNaN = float128_is_nan( b );
494 1.1 bjh21 bIsSignalingNaN = float128_is_signaling_nan( b );
495 1.1 bjh21 a.high |= LIT64( 0x0000800000000000 );
496 1.1 bjh21 b.high |= LIT64( 0x0000800000000000 );
497 1.1 bjh21 if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
498 1.1 bjh21 if ( aIsNaN ) {
499 1.1 bjh21 return ( aIsSignalingNaN & bIsNaN ) ? b : a;
500 1.1 bjh21 }
501 1.1 bjh21 else {
502 1.1 bjh21 return b;
503 1.1 bjh21 }
504 1.1 bjh21
505 1.1 bjh21 }
506 1.1 bjh21
507 1.1 bjh21 #endif
508 1.1 bjh21
509