Home | History | Annotate | Line # | Download | only in softfloat
softfloat-specialize revision 1.5
      1  1.5  martin /*	$NetBSD: softfloat-specialize,v 1.5 2011/03/04 11:48:58 martin Exp $	*/
      2  1.3   bjh21 
      3  1.3   bjh21 /* This is a derivative work. */
      4  1.1   bjh21 
      5  1.1   bjh21 /*
      6  1.1   bjh21 ===============================================================================
      7  1.1   bjh21 
      8  1.1   bjh21 This C source fragment is part of the SoftFloat IEC/IEEE Floating-point
      9  1.1   bjh21 Arithmetic Package, Release 2a.
     10  1.1   bjh21 
     11  1.1   bjh21 Written by John R. Hauser.  This work was made possible in part by the
     12  1.1   bjh21 International Computer Science Institute, located at Suite 600, 1947 Center
     13  1.1   bjh21 Street, Berkeley, California 94704.  Funding was partially provided by the
     14  1.1   bjh21 National Science Foundation under grant MIP-9311980.  The original version
     15  1.1   bjh21 of this code was written as part of a project to build a fixed-point vector
     16  1.1   bjh21 processor in collaboration with the University of California at Berkeley,
     17  1.1   bjh21 overseen by Profs. Nelson Morgan and John Wawrzynek.  More information
     18  1.1   bjh21 is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
     19  1.1   bjh21 arithmetic/SoftFloat.html'.
     20  1.1   bjh21 
     21  1.1   bjh21 THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE.  Although reasonable effort
     22  1.1   bjh21 has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
     23  1.1   bjh21 TIMES RESULT IN INCORRECT BEHAVIOR.  USE OF THIS SOFTWARE IS RESTRICTED TO
     24  1.1   bjh21 PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
     25  1.1   bjh21 AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
     26  1.1   bjh21 
     27  1.1   bjh21 Derivative works are acceptable, even for commercial purposes, so long as
     28  1.1   bjh21 (1) they include prominent notice that the work is derivative, and (2) they
     29  1.1   bjh21 include prominent notice akin to these four paragraphs for those parts of
     30  1.1   bjh21 this code that are retained.
     31  1.1   bjh21 
     32  1.1   bjh21 ===============================================================================
     33  1.1   bjh21 */
     34  1.1   bjh21 
     35  1.3   bjh21 #include <signal.h>
     36  1.5  martin #include <string.h>
     37  1.5  martin #include <unistd.h>
     38  1.3   bjh21 
     39  1.1   bjh21 /*
     40  1.1   bjh21 -------------------------------------------------------------------------------
     41  1.1   bjh21 Underflow tininess-detection mode, statically initialized to default value.
     42  1.1   bjh21 (The declaration in `softfloat.h' must match the `int8' type here.)
     43  1.1   bjh21 -------------------------------------------------------------------------------
     44  1.1   bjh21 */
     45  1.1   bjh21 #ifdef SOFTFLOAT_FOR_GCC
     46  1.1   bjh21 static
     47  1.1   bjh21 #endif
     48  1.1   bjh21 int8 float_detect_tininess = float_tininess_after_rounding;
     49  1.1   bjh21 
     50  1.1   bjh21 /*
     51  1.1   bjh21 -------------------------------------------------------------------------------
     52  1.1   bjh21 Raises the exceptions specified by `flags'.  Floating-point traps can be
     53  1.1   bjh21 defined here if desired.  It is currently not possible for such a trap to
     54  1.1   bjh21 substitute a result value.  If traps are not implemented, this routine
     55  1.1   bjh21 should be simply `float_exception_flags |= flags;'.
     56  1.1   bjh21 -------------------------------------------------------------------------------
     57  1.1   bjh21 */
     58  1.3   bjh21 fp_except float_exception_mask = 0;
     59  1.3   bjh21 void float_raise( fp_except flags )
     60  1.1   bjh21 {
     61  1.5  martin     siginfo_t info;
     62  1.1   bjh21 
     63  1.1   bjh21     float_exception_flags |= flags;
     64  1.1   bjh21 
     65  1.3   bjh21     if ( flags & float_exception_mask ) {
     66  1.5  martin 	memset(&info, 0, sizeof info);
     67  1.5  martin 	info.si_signo = SIGFPE;
     68  1.5  martin 	info.si_pid = getpid();
     69  1.5  martin 	info.si_uid = geteuid();
     70  1.5  martin 	if (flags & float_flag_underflow)
     71  1.5  martin 	    info.si_code = FPE_FLTUND;
     72  1.5  martin 	else if (flags & float_flag_overflow)
     73  1.5  martin 	    info.si_code = FPE_FLTOVF;
     74  1.5  martin 	else if (flags & float_flag_divbyzero)
     75  1.5  martin 	    info.si_code = FPE_FLTDIV;
     76  1.5  martin 	else if (flags & float_flag_invalid)
     77  1.5  martin 	    info.si_code = FPE_FLTINV;
     78  1.5  martin 	else if (flags & float_flag_inexact)
     79  1.5  martin 	    info.si_code = FPE_FLTRES;
     80  1.5  martin 	sigqueueinfo(getpid(), &info);
     81  1.3   bjh21     }
     82  1.1   bjh21 }
     83  1.1   bjh21 
     84  1.1   bjh21 /*
     85  1.1   bjh21 -------------------------------------------------------------------------------
     86  1.1   bjh21 Internal canonical NaN format.
     87  1.1   bjh21 -------------------------------------------------------------------------------
     88  1.1   bjh21 */
     89  1.1   bjh21 typedef struct {
     90  1.1   bjh21     flag sign;
     91  1.1   bjh21     bits64 high, low;
     92  1.1   bjh21 } commonNaNT;
     93  1.1   bjh21 
     94  1.1   bjh21 /*
     95  1.1   bjh21 -------------------------------------------------------------------------------
     96  1.1   bjh21 The pattern for a default generated single-precision NaN.
     97  1.1   bjh21 -------------------------------------------------------------------------------
     98  1.1   bjh21 */
     99  1.1   bjh21 #define float32_default_nan 0xFFFFFFFF
    100  1.1   bjh21 
    101  1.1   bjh21 /*
    102  1.1   bjh21 -------------------------------------------------------------------------------
    103  1.1   bjh21 Returns 1 if the single-precision floating-point value `a' is a NaN;
    104  1.1   bjh21 otherwise returns 0.
    105  1.1   bjh21 -------------------------------------------------------------------------------
    106  1.1   bjh21 */
    107  1.1   bjh21 #ifdef SOFTFLOAT_FOR_GCC
    108  1.1   bjh21 static
    109  1.1   bjh21 #endif
    110  1.1   bjh21 flag float32_is_nan( float32 a )
    111  1.1   bjh21 {
    112  1.1   bjh21 
    113  1.1   bjh21     return ( 0xFF000000 < (bits32) ( a<<1 ) );
    114  1.1   bjh21 
    115  1.1   bjh21 }
    116  1.1   bjh21 
    117  1.1   bjh21 /*
    118  1.1   bjh21 -------------------------------------------------------------------------------
    119  1.1   bjh21 Returns 1 if the single-precision floating-point value `a' is a signaling
    120  1.1   bjh21 NaN; otherwise returns 0.
    121  1.1   bjh21 -------------------------------------------------------------------------------
    122  1.1   bjh21 */
    123  1.4    jmmv #if defined(SOFTFLOAT_FOR_GCC) && !defined(SOFTFLOATSPARC64_FOR_GCC) && \
    124  1.4    jmmv     !defined(SOFTFLOAT_M68K_FOR_GCC)
    125  1.1   bjh21 static
    126  1.1   bjh21 #endif
    127  1.1   bjh21 flag float32_is_signaling_nan( float32 a )
    128  1.1   bjh21 {
    129  1.1   bjh21 
    130  1.1   bjh21     return ( ( ( a>>22 ) & 0x1FF ) == 0x1FE ) && ( a & 0x003FFFFF );
    131  1.1   bjh21 
    132  1.1   bjh21 }
    133  1.1   bjh21 
    134  1.1   bjh21 /*
    135  1.1   bjh21 -------------------------------------------------------------------------------
    136  1.1   bjh21 Returns the result of converting the single-precision floating-point NaN
    137  1.1   bjh21 `a' to the canonical NaN format.  If `a' is a signaling NaN, the invalid
    138  1.1   bjh21 exception is raised.
    139  1.1   bjh21 -------------------------------------------------------------------------------
    140  1.1   bjh21 */
    141  1.1   bjh21 static commonNaNT float32ToCommonNaN( float32 a )
    142  1.1   bjh21 {
    143  1.1   bjh21     commonNaNT z;
    144  1.1   bjh21 
    145  1.1   bjh21     if ( float32_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
    146  1.1   bjh21     z.sign = a>>31;
    147  1.1   bjh21     z.low = 0;
    148  1.1   bjh21     z.high = ( (bits64) a )<<41;
    149  1.1   bjh21     return z;
    150  1.1   bjh21 
    151  1.1   bjh21 }
    152  1.1   bjh21 
    153  1.1   bjh21 /*
    154  1.1   bjh21 -------------------------------------------------------------------------------
    155  1.1   bjh21 Returns the result of converting the canonical NaN `a' to the single-
    156  1.1   bjh21 precision floating-point format.
    157  1.1   bjh21 -------------------------------------------------------------------------------
    158  1.1   bjh21 */
    159  1.1   bjh21 static float32 commonNaNToFloat32( commonNaNT a )
    160  1.1   bjh21 {
    161  1.1   bjh21 
    162  1.1   bjh21     return ( ( (bits32) a.sign )<<31 ) | 0x7FC00000 | ( a.high>>41 );
    163  1.1   bjh21 
    164  1.1   bjh21 }
    165  1.1   bjh21 
    166  1.1   bjh21 /*
    167  1.1   bjh21 -------------------------------------------------------------------------------
    168  1.1   bjh21 Takes two single-precision floating-point values `a' and `b', one of which
    169  1.1   bjh21 is a NaN, and returns the appropriate NaN result.  If either `a' or `b' is a
    170  1.1   bjh21 signaling NaN, the invalid exception is raised.
    171  1.1   bjh21 -------------------------------------------------------------------------------
    172  1.1   bjh21 */
    173  1.1   bjh21 static float32 propagateFloat32NaN( float32 a, float32 b )
    174  1.1   bjh21 {
    175  1.1   bjh21     flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
    176  1.1   bjh21 
    177  1.1   bjh21     aIsNaN = float32_is_nan( a );
    178  1.1   bjh21     aIsSignalingNaN = float32_is_signaling_nan( a );
    179  1.1   bjh21     bIsNaN = float32_is_nan( b );
    180  1.1   bjh21     bIsSignalingNaN = float32_is_signaling_nan( b );
    181  1.1   bjh21     a |= 0x00400000;
    182  1.1   bjh21     b |= 0x00400000;
    183  1.1   bjh21     if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
    184  1.1   bjh21     if ( aIsNaN ) {
    185  1.1   bjh21         return ( aIsSignalingNaN & bIsNaN ) ? b : a;
    186  1.1   bjh21     }
    187  1.1   bjh21     else {
    188  1.1   bjh21         return b;
    189  1.1   bjh21     }
    190  1.1   bjh21 
    191  1.1   bjh21 }
    192  1.1   bjh21 
    193  1.1   bjh21 /*
    194  1.1   bjh21 -------------------------------------------------------------------------------
    195  1.1   bjh21 The pattern for a default generated double-precision NaN.
    196  1.1   bjh21 -------------------------------------------------------------------------------
    197  1.1   bjh21 */
    198  1.1   bjh21 #define float64_default_nan LIT64( 0xFFFFFFFFFFFFFFFF )
    199  1.1   bjh21 
    200  1.1   bjh21 /*
    201  1.1   bjh21 -------------------------------------------------------------------------------
    202  1.1   bjh21 Returns 1 if the double-precision floating-point value `a' is a NaN;
    203  1.1   bjh21 otherwise returns 0.
    204  1.1   bjh21 -------------------------------------------------------------------------------
    205  1.1   bjh21 */
    206  1.1   bjh21 #ifdef SOFTFLOAT_FOR_GCC
    207  1.1   bjh21 static
    208  1.1   bjh21 #endif
    209  1.1   bjh21 flag float64_is_nan( float64 a )
    210  1.1   bjh21 {
    211  1.1   bjh21 
    212  1.1   bjh21     return ( LIT64( 0xFFE0000000000000 ) <
    213  1.1   bjh21 	     (bits64) ( FLOAT64_DEMANGLE(a)<<1 ) );
    214  1.1   bjh21 
    215  1.1   bjh21 }
    216  1.1   bjh21 
    217  1.1   bjh21 /*
    218  1.1   bjh21 -------------------------------------------------------------------------------
    219  1.1   bjh21 Returns 1 if the double-precision floating-point value `a' is a signaling
    220  1.1   bjh21 NaN; otherwise returns 0.
    221  1.1   bjh21 -------------------------------------------------------------------------------
    222  1.1   bjh21 */
    223  1.4    jmmv #if defined(SOFTFLOAT_FOR_GCC) && !defined(SOFTFLOATSPARC64_FOR_GCC) && \
    224  1.4    jmmv     !defined(SOFTFLOATM68K_FOR_GCC)
    225  1.1   bjh21 static
    226  1.1   bjh21 #endif
    227  1.1   bjh21 flag float64_is_signaling_nan( float64 a )
    228  1.1   bjh21 {
    229  1.1   bjh21 
    230  1.1   bjh21     return
    231  1.1   bjh21            ( ( ( FLOAT64_DEMANGLE(a)>>51 ) & 0xFFF ) == 0xFFE )
    232  1.1   bjh21         && ( FLOAT64_DEMANGLE(a) & LIT64( 0x0007FFFFFFFFFFFF ) );
    233  1.1   bjh21 
    234  1.1   bjh21 }
    235  1.1   bjh21 
    236  1.1   bjh21 /*
    237  1.1   bjh21 -------------------------------------------------------------------------------
    238  1.1   bjh21 Returns the result of converting the double-precision floating-point NaN
    239  1.1   bjh21 `a' to the canonical NaN format.  If `a' is a signaling NaN, the invalid
    240  1.1   bjh21 exception is raised.
    241  1.1   bjh21 -------------------------------------------------------------------------------
    242  1.1   bjh21 */
    243  1.1   bjh21 static commonNaNT float64ToCommonNaN( float64 a )
    244  1.1   bjh21 {
    245  1.1   bjh21     commonNaNT z;
    246  1.1   bjh21 
    247  1.1   bjh21     if ( float64_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
    248  1.1   bjh21     z.sign = FLOAT64_DEMANGLE(a)>>63;
    249  1.1   bjh21     z.low = 0;
    250  1.1   bjh21     z.high = FLOAT64_DEMANGLE(a)<<12;
    251  1.1   bjh21     return z;
    252  1.1   bjh21 
    253  1.1   bjh21 }
    254  1.1   bjh21 
    255  1.1   bjh21 /*
    256  1.1   bjh21 -------------------------------------------------------------------------------
    257  1.1   bjh21 Returns the result of converting the canonical NaN `a' to the double-
    258  1.1   bjh21 precision floating-point format.
    259  1.1   bjh21 -------------------------------------------------------------------------------
    260  1.1   bjh21 */
    261  1.1   bjh21 static float64 commonNaNToFloat64( commonNaNT a )
    262  1.1   bjh21 {
    263  1.1   bjh21 
    264  1.1   bjh21     return FLOAT64_MANGLE(
    265  1.1   bjh21 	( ( (bits64) a.sign )<<63 )
    266  1.1   bjh21         | LIT64( 0x7FF8000000000000 )
    267  1.1   bjh21         | ( a.high>>12 ) );
    268  1.1   bjh21 
    269  1.1   bjh21 }
    270  1.1   bjh21 
    271  1.1   bjh21 /*
    272  1.1   bjh21 -------------------------------------------------------------------------------
    273  1.1   bjh21 Takes two double-precision floating-point values `a' and `b', one of which
    274  1.1   bjh21 is a NaN, and returns the appropriate NaN result.  If either `a' or `b' is a
    275  1.1   bjh21 signaling NaN, the invalid exception is raised.
    276  1.1   bjh21 -------------------------------------------------------------------------------
    277  1.1   bjh21 */
    278  1.1   bjh21 static float64 propagateFloat64NaN( float64 a, float64 b )
    279  1.1   bjh21 {
    280  1.1   bjh21     flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
    281  1.1   bjh21 
    282  1.1   bjh21     aIsNaN = float64_is_nan( a );
    283  1.1   bjh21     aIsSignalingNaN = float64_is_signaling_nan( a );
    284  1.1   bjh21     bIsNaN = float64_is_nan( b );
    285  1.1   bjh21     bIsSignalingNaN = float64_is_signaling_nan( b );
    286  1.1   bjh21     a |= FLOAT64_MANGLE(LIT64( 0x0008000000000000 ));
    287  1.1   bjh21     b |= FLOAT64_MANGLE(LIT64( 0x0008000000000000 ));
    288  1.1   bjh21     if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
    289  1.1   bjh21     if ( aIsNaN ) {
    290  1.1   bjh21         return ( aIsSignalingNaN & bIsNaN ) ? b : a;
    291  1.1   bjh21     }
    292  1.1   bjh21     else {
    293  1.1   bjh21         return b;
    294  1.1   bjh21     }
    295  1.1   bjh21 
    296  1.1   bjh21 }
    297  1.1   bjh21 
    298  1.1   bjh21 #ifdef FLOATX80
    299  1.1   bjh21 
    300  1.1   bjh21 /*
    301  1.1   bjh21 -------------------------------------------------------------------------------
    302  1.1   bjh21 The pattern for a default generated extended double-precision NaN.  The
    303  1.1   bjh21 `high' and `low' values hold the most- and least-significant bits,
    304  1.1   bjh21 respectively.
    305  1.1   bjh21 -------------------------------------------------------------------------------
    306  1.1   bjh21 */
    307  1.1   bjh21 #define floatx80_default_nan_high 0xFFFF
    308  1.1   bjh21 #define floatx80_default_nan_low  LIT64( 0xFFFFFFFFFFFFFFFF )
    309  1.1   bjh21 
    310  1.1   bjh21 /*
    311  1.1   bjh21 -------------------------------------------------------------------------------
    312  1.1   bjh21 Returns 1 if the extended double-precision floating-point value `a' is a
    313  1.1   bjh21 NaN; otherwise returns 0.
    314  1.1   bjh21 -------------------------------------------------------------------------------
    315  1.1   bjh21 */
    316  1.1   bjh21 flag floatx80_is_nan( floatx80 a )
    317  1.1   bjh21 {
    318  1.1   bjh21 
    319  1.1   bjh21     return ( ( a.high & 0x7FFF ) == 0x7FFF ) && (bits64) ( a.low<<1 );
    320  1.1   bjh21 
    321  1.1   bjh21 }
    322  1.1   bjh21 
    323  1.1   bjh21 /*
    324  1.1   bjh21 -------------------------------------------------------------------------------
    325  1.1   bjh21 Returns 1 if the extended double-precision floating-point value `a' is a
    326  1.1   bjh21 signaling NaN; otherwise returns 0.
    327  1.1   bjh21 -------------------------------------------------------------------------------
    328  1.1   bjh21 */
    329  1.1   bjh21 flag floatx80_is_signaling_nan( floatx80 a )
    330  1.1   bjh21 {
    331  1.1   bjh21     bits64 aLow;
    332  1.1   bjh21 
    333  1.1   bjh21     aLow = a.low & ~ LIT64( 0x4000000000000000 );
    334  1.1   bjh21     return
    335  1.1   bjh21            ( ( a.high & 0x7FFF ) == 0x7FFF )
    336  1.1   bjh21         && (bits64) ( aLow<<1 )
    337  1.1   bjh21         && ( a.low == aLow );
    338  1.1   bjh21 
    339  1.1   bjh21 }
    340  1.1   bjh21 
    341  1.1   bjh21 /*
    342  1.1   bjh21 -------------------------------------------------------------------------------
    343  1.1   bjh21 Returns the result of converting the extended double-precision floating-
    344  1.1   bjh21 point NaN `a' to the canonical NaN format.  If `a' is a signaling NaN, the
    345  1.1   bjh21 invalid exception is raised.
    346  1.1   bjh21 -------------------------------------------------------------------------------
    347  1.1   bjh21 */
    348  1.1   bjh21 static commonNaNT floatx80ToCommonNaN( floatx80 a )
    349  1.1   bjh21 {
    350  1.1   bjh21     commonNaNT z;
    351  1.1   bjh21 
    352  1.1   bjh21     if ( floatx80_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
    353  1.1   bjh21     z.sign = a.high>>15;
    354  1.1   bjh21     z.low = 0;
    355  1.1   bjh21     z.high = a.low<<1;
    356  1.1   bjh21     return z;
    357  1.1   bjh21 
    358  1.1   bjh21 }
    359  1.1   bjh21 
    360  1.1   bjh21 /*
    361  1.1   bjh21 -------------------------------------------------------------------------------
    362  1.1   bjh21 Returns the result of converting the canonical NaN `a' to the extended
    363  1.1   bjh21 double-precision floating-point format.
    364  1.1   bjh21 -------------------------------------------------------------------------------
    365  1.1   bjh21 */
    366  1.1   bjh21 static floatx80 commonNaNToFloatx80( commonNaNT a )
    367  1.1   bjh21 {
    368  1.1   bjh21     floatx80 z;
    369  1.1   bjh21 
    370  1.1   bjh21     z.low = LIT64( 0xC000000000000000 ) | ( a.high>>1 );
    371  1.1   bjh21     z.high = ( ( (bits16) a.sign )<<15 ) | 0x7FFF;
    372  1.1   bjh21     return z;
    373  1.1   bjh21 
    374  1.1   bjh21 }
    375  1.1   bjh21 
    376  1.1   bjh21 /*
    377  1.1   bjh21 -------------------------------------------------------------------------------
    378  1.1   bjh21 Takes two extended double-precision floating-point values `a' and `b', one
    379  1.1   bjh21 of which is a NaN, and returns the appropriate NaN result.  If either `a' or
    380  1.1   bjh21 `b' is a signaling NaN, the invalid exception is raised.
    381  1.1   bjh21 -------------------------------------------------------------------------------
    382  1.1   bjh21 */
    383  1.1   bjh21 static floatx80 propagateFloatx80NaN( floatx80 a, floatx80 b )
    384  1.1   bjh21 {
    385  1.1   bjh21     flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
    386  1.1   bjh21 
    387  1.1   bjh21     aIsNaN = floatx80_is_nan( a );
    388  1.1   bjh21     aIsSignalingNaN = floatx80_is_signaling_nan( a );
    389  1.1   bjh21     bIsNaN = floatx80_is_nan( b );
    390  1.1   bjh21     bIsSignalingNaN = floatx80_is_signaling_nan( b );
    391  1.1   bjh21     a.low |= LIT64( 0xC000000000000000 );
    392  1.1   bjh21     b.low |= LIT64( 0xC000000000000000 );
    393  1.1   bjh21     if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
    394  1.1   bjh21     if ( aIsNaN ) {
    395  1.1   bjh21         return ( aIsSignalingNaN & bIsNaN ) ? b : a;
    396  1.1   bjh21     }
    397  1.1   bjh21     else {
    398  1.1   bjh21         return b;
    399  1.1   bjh21     }
    400  1.1   bjh21 
    401  1.1   bjh21 }
    402  1.1   bjh21 
    403  1.1   bjh21 #endif
    404  1.1   bjh21 
    405  1.1   bjh21 #ifdef FLOAT128
    406  1.1   bjh21 
    407  1.1   bjh21 /*
    408  1.1   bjh21 -------------------------------------------------------------------------------
    409  1.1   bjh21 The pattern for a default generated quadruple-precision NaN.  The `high' and
    410  1.1   bjh21 `low' values hold the most- and least-significant bits, respectively.
    411  1.1   bjh21 -------------------------------------------------------------------------------
    412  1.1   bjh21 */
    413  1.1   bjh21 #define float128_default_nan_high LIT64( 0xFFFFFFFFFFFFFFFF )
    414  1.1   bjh21 #define float128_default_nan_low  LIT64( 0xFFFFFFFFFFFFFFFF )
    415  1.1   bjh21 
    416  1.1   bjh21 /*
    417  1.1   bjh21 -------------------------------------------------------------------------------
    418  1.1   bjh21 Returns 1 if the quadruple-precision floating-point value `a' is a NaN;
    419  1.1   bjh21 otherwise returns 0.
    420  1.1   bjh21 -------------------------------------------------------------------------------
    421  1.1   bjh21 */
    422  1.1   bjh21 flag float128_is_nan( float128 a )
    423  1.1   bjh21 {
    424  1.1   bjh21 
    425  1.1   bjh21     return
    426  1.1   bjh21            ( LIT64( 0xFFFE000000000000 ) <= (bits64) ( a.high<<1 ) )
    427  1.1   bjh21         && ( a.low || ( a.high & LIT64( 0x0000FFFFFFFFFFFF ) ) );
    428  1.1   bjh21 
    429  1.1   bjh21 }
    430  1.1   bjh21 
    431  1.1   bjh21 /*
    432  1.1   bjh21 -------------------------------------------------------------------------------
    433  1.1   bjh21 Returns 1 if the quadruple-precision floating-point value `a' is a
    434  1.1   bjh21 signaling NaN; otherwise returns 0.
    435  1.1   bjh21 -------------------------------------------------------------------------------
    436  1.1   bjh21 */
    437  1.1   bjh21 flag float128_is_signaling_nan( float128 a )
    438  1.1   bjh21 {
    439  1.1   bjh21 
    440  1.1   bjh21     return
    441  1.1   bjh21            ( ( ( a.high>>47 ) & 0xFFFF ) == 0xFFFE )
    442  1.1   bjh21         && ( a.low || ( a.high & LIT64( 0x00007FFFFFFFFFFF ) ) );
    443  1.1   bjh21 
    444  1.1   bjh21 }
    445  1.1   bjh21 
    446  1.1   bjh21 /*
    447  1.1   bjh21 -------------------------------------------------------------------------------
    448  1.1   bjh21 Returns the result of converting the quadruple-precision floating-point NaN
    449  1.1   bjh21 `a' to the canonical NaN format.  If `a' is a signaling NaN, the invalid
    450  1.1   bjh21 exception is raised.
    451  1.1   bjh21 -------------------------------------------------------------------------------
    452  1.1   bjh21 */
    453  1.1   bjh21 static commonNaNT float128ToCommonNaN( float128 a )
    454  1.1   bjh21 {
    455  1.1   bjh21     commonNaNT z;
    456  1.1   bjh21 
    457  1.1   bjh21     if ( float128_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
    458  1.1   bjh21     z.sign = a.high>>63;
    459  1.1   bjh21     shortShift128Left( a.high, a.low, 16, &z.high, &z.low );
    460  1.1   bjh21     return z;
    461  1.1   bjh21 
    462  1.1   bjh21 }
    463  1.1   bjh21 
    464  1.1   bjh21 /*
    465  1.1   bjh21 -------------------------------------------------------------------------------
    466  1.1   bjh21 Returns the result of converting the canonical NaN `a' to the quadruple-
    467  1.1   bjh21 precision floating-point format.
    468  1.1   bjh21 -------------------------------------------------------------------------------
    469  1.1   bjh21 */
    470  1.1   bjh21 static float128 commonNaNToFloat128( commonNaNT a )
    471  1.1   bjh21 {
    472  1.1   bjh21     float128 z;
    473  1.1   bjh21 
    474  1.1   bjh21     shift128Right( a.high, a.low, 16, &z.high, &z.low );
    475  1.1   bjh21     z.high |= ( ( (bits64) a.sign )<<63 ) | LIT64( 0x7FFF800000000000 );
    476  1.1   bjh21     return z;
    477  1.1   bjh21 
    478  1.1   bjh21 }
    479  1.1   bjh21 
    480  1.1   bjh21 /*
    481  1.1   bjh21 -------------------------------------------------------------------------------
    482  1.1   bjh21 Takes two quadruple-precision floating-point values `a' and `b', one of
    483  1.1   bjh21 which is a NaN, and returns the appropriate NaN result.  If either `a' or
    484  1.1   bjh21 `b' is a signaling NaN, the invalid exception is raised.
    485  1.1   bjh21 -------------------------------------------------------------------------------
    486  1.1   bjh21 */
    487  1.1   bjh21 static float128 propagateFloat128NaN( float128 a, float128 b )
    488  1.1   bjh21 {
    489  1.1   bjh21     flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
    490  1.1   bjh21 
    491  1.1   bjh21     aIsNaN = float128_is_nan( a );
    492  1.1   bjh21     aIsSignalingNaN = float128_is_signaling_nan( a );
    493  1.1   bjh21     bIsNaN = float128_is_nan( b );
    494  1.1   bjh21     bIsSignalingNaN = float128_is_signaling_nan( b );
    495  1.1   bjh21     a.high |= LIT64( 0x0000800000000000 );
    496  1.1   bjh21     b.high |= LIT64( 0x0000800000000000 );
    497  1.1   bjh21     if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
    498  1.1   bjh21     if ( aIsNaN ) {
    499  1.1   bjh21         return ( aIsSignalingNaN & bIsNaN ) ? b : a;
    500  1.1   bjh21     }
    501  1.1   bjh21     else {
    502  1.1   bjh21         return b;
    503  1.1   bjh21     }
    504  1.1   bjh21 
    505  1.1   bjh21 }
    506  1.1   bjh21 
    507  1.1   bjh21 #endif
    508  1.1   bjh21 
    509