Home | History | Annotate | Line # | Download | only in templates
      1  1.1  bjh21 
      2  1.1  bjh21 /*
      3  1.1  bjh21 ===============================================================================
      4  1.1  bjh21 
      5  1.1  bjh21 This C source fragment is part of the SoftFloat IEC/IEEE Floating-point
      6  1.1  bjh21 Arithmetic Package, Release 2a.
      7  1.1  bjh21 
      8  1.1  bjh21 Written by John R. Hauser.  This work was made possible in part by the
      9  1.1  bjh21 International Computer Science Institute, located at Suite 600, 1947 Center
     10  1.1  bjh21 Street, Berkeley, California 94704.  Funding was partially provided by the
     11  1.1  bjh21 National Science Foundation under grant MIP-9311980.  The original version
     12  1.1  bjh21 of this code was written as part of a project to build a fixed-point vector
     13  1.1  bjh21 processor in collaboration with the University of California at Berkeley,
     14  1.1  bjh21 overseen by Profs. Nelson Morgan and John Wawrzynek.  More information
     15  1.1  bjh21 is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
     16  1.1  bjh21 arithmetic/SoftFloat.html'.
     17  1.1  bjh21 
     18  1.1  bjh21 THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE.  Although reasonable effort
     19  1.1  bjh21 has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
     20  1.1  bjh21 TIMES RESULT IN INCORRECT BEHAVIOR.  USE OF THIS SOFTWARE IS RESTRICTED TO
     21  1.1  bjh21 PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
     22  1.1  bjh21 AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
     23  1.1  bjh21 
     24  1.1  bjh21 Derivative works are acceptable, even for commercial purposes, so long as
     25  1.1  bjh21 (1) they include prominent notice that the work is derivative, and (2) they
     26  1.1  bjh21 include prominent notice akin to these four paragraphs for those parts of
     27  1.1  bjh21 this code that are retained.
     28  1.1  bjh21 
     29  1.1  bjh21 ===============================================================================
     30  1.1  bjh21 */
     31  1.1  bjh21 
     32  1.1  bjh21 /*
     33  1.1  bjh21 -------------------------------------------------------------------------------
     34  1.1  bjh21 Underflow tininess-detection mode, statically initialized to default value.
     35  1.1  bjh21 (The declaration in `softfloat.h' must match the `int8' type here.)
     36  1.1  bjh21 -------------------------------------------------------------------------------
     37  1.1  bjh21 */
     38  1.1  bjh21 int8 float_detect_tininess = float_tininess_after_rounding;
     39  1.1  bjh21 
     40  1.1  bjh21 /*
     41  1.1  bjh21 -------------------------------------------------------------------------------
     42  1.1  bjh21 Raises the exceptions specified by `flags'.  Floating-point traps can be
     43  1.1  bjh21 defined here if desired.  It is currently not possible for such a trap to
     44  1.1  bjh21 substitute a result value.  If traps are not implemented, this routine
     45  1.1  bjh21 should be simply `float_exception_flags |= flags;'.
     46  1.1  bjh21 -------------------------------------------------------------------------------
     47  1.1  bjh21 */
     48  1.1  bjh21 void float_raise( int8 flags )
     49  1.1  bjh21 {
     50  1.1  bjh21 
     51  1.1  bjh21     float_exception_flags |= flags;
     52  1.1  bjh21 
     53  1.1  bjh21 }
     54  1.1  bjh21 
     55  1.1  bjh21 /*
     56  1.1  bjh21 -------------------------------------------------------------------------------
     57  1.1  bjh21 Internal canonical NaN format.
     58  1.1  bjh21 -------------------------------------------------------------------------------
     59  1.1  bjh21 */
     60  1.1  bjh21 typedef struct {
     61  1.1  bjh21     flag sign;
     62  1.1  bjh21     bits64 high, low;
     63  1.1  bjh21 } commonNaNT;
     64  1.1  bjh21 
     65  1.1  bjh21 /*
     66  1.1  bjh21 -------------------------------------------------------------------------------
     67  1.1  bjh21 The pattern for a default generated single-precision NaN.
     68  1.1  bjh21 -------------------------------------------------------------------------------
     69  1.1  bjh21 */
     70  1.1  bjh21 #define float32_default_nan 0xFFFFFFFF
     71  1.1  bjh21 
     72  1.1  bjh21 /*
     73  1.1  bjh21 -------------------------------------------------------------------------------
     74  1.1  bjh21 Returns 1 if the single-precision floating-point value `a' is a NaN;
     75  1.1  bjh21 otherwise returns 0.
     76  1.1  bjh21 -------------------------------------------------------------------------------
     77  1.1  bjh21 */
     78  1.1  bjh21 flag float32_is_nan( float32 a )
     79  1.1  bjh21 {
     80  1.1  bjh21 
     81  1.1  bjh21     return ( 0xFF000000 < (bits32) ( a<<1 ) );
     82  1.1  bjh21 
     83  1.1  bjh21 }
     84  1.1  bjh21 
     85  1.1  bjh21 /*
     86  1.1  bjh21 -------------------------------------------------------------------------------
     87  1.1  bjh21 Returns 1 if the single-precision floating-point value `a' is a signaling
     88  1.1  bjh21 NaN; otherwise returns 0.
     89  1.1  bjh21 -------------------------------------------------------------------------------
     90  1.1  bjh21 */
     91  1.1  bjh21 flag float32_is_signaling_nan( float32 a )
     92  1.1  bjh21 {
     93  1.1  bjh21 
     94  1.1  bjh21     return ( ( ( a>>22 ) & 0x1FF ) == 0x1FE ) && ( a & 0x003FFFFF );
     95  1.1  bjh21 
     96  1.1  bjh21 }
     97  1.1  bjh21 
     98  1.1  bjh21 /*
     99  1.1  bjh21 -------------------------------------------------------------------------------
    100  1.1  bjh21 Returns the result of converting the single-precision floating-point NaN
    101  1.1  bjh21 `a' to the canonical NaN format.  If `a' is a signaling NaN, the invalid
    102  1.1  bjh21 exception is raised.
    103  1.1  bjh21 -------------------------------------------------------------------------------
    104  1.1  bjh21 */
    105  1.1  bjh21 static commonNaNT float32ToCommonNaN( float32 a )
    106  1.1  bjh21 {
    107  1.1  bjh21     commonNaNT z;
    108  1.1  bjh21 
    109  1.1  bjh21     if ( float32_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
    110  1.1  bjh21     z.sign = a>>31;
    111  1.1  bjh21     z.low = 0;
    112  1.1  bjh21     z.high = ( (bits64) a )<<41;
    113  1.1  bjh21     return z;
    114  1.1  bjh21 
    115  1.1  bjh21 }
    116  1.1  bjh21 
    117  1.1  bjh21 /*
    118  1.1  bjh21 -------------------------------------------------------------------------------
    119  1.1  bjh21 Returns the result of converting the canonical NaN `a' to the single-
    120  1.1  bjh21 precision floating-point format.
    121  1.1  bjh21 -------------------------------------------------------------------------------
    122  1.1  bjh21 */
    123  1.1  bjh21 static float32 commonNaNToFloat32( commonNaNT a )
    124  1.1  bjh21 {
    125  1.1  bjh21 
    126  1.1  bjh21     return ( ( (bits32) a.sign )<<31 ) | 0x7FC00000 | ( a.high>>41 );
    127  1.1  bjh21 
    128  1.1  bjh21 }
    129  1.1  bjh21 
    130  1.1  bjh21 /*
    131  1.1  bjh21 -------------------------------------------------------------------------------
    132  1.1  bjh21 Takes two single-precision floating-point values `a' and `b', one of which
    133  1.1  bjh21 is a NaN, and returns the appropriate NaN result.  If either `a' or `b' is a
    134  1.1  bjh21 signaling NaN, the invalid exception is raised.
    135  1.1  bjh21 -------------------------------------------------------------------------------
    136  1.1  bjh21 */
    137  1.1  bjh21 static float32 propagateFloat32NaN( float32 a, float32 b )
    138  1.1  bjh21 {
    139  1.1  bjh21     flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
    140  1.1  bjh21 
    141  1.1  bjh21     aIsNaN = float32_is_nan( a );
    142  1.1  bjh21     aIsSignalingNaN = float32_is_signaling_nan( a );
    143  1.1  bjh21     bIsNaN = float32_is_nan( b );
    144  1.1  bjh21     bIsSignalingNaN = float32_is_signaling_nan( b );
    145  1.1  bjh21     a |= 0x00400000;
    146  1.1  bjh21     b |= 0x00400000;
    147  1.1  bjh21     if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
    148  1.1  bjh21     if ( aIsNaN ) {
    149  1.1  bjh21         return ( aIsSignalingNaN & bIsNaN ) ? b : a;
    150  1.1  bjh21     }
    151  1.1  bjh21     else {
    152  1.1  bjh21         return b;
    153  1.1  bjh21     }
    154  1.1  bjh21 
    155  1.1  bjh21 }
    156  1.1  bjh21 
    157  1.1  bjh21 /*
    158  1.1  bjh21 -------------------------------------------------------------------------------
    159  1.1  bjh21 The pattern for a default generated double-precision NaN.
    160  1.1  bjh21 -------------------------------------------------------------------------------
    161  1.1  bjh21 */
    162  1.1  bjh21 #define float64_default_nan LIT64( 0xFFFFFFFFFFFFFFFF )
    163  1.1  bjh21 
    164  1.1  bjh21 /*
    165  1.1  bjh21 -------------------------------------------------------------------------------
    166  1.1  bjh21 Returns 1 if the double-precision floating-point value `a' is a NaN;
    167  1.1  bjh21 otherwise returns 0.
    168  1.1  bjh21 -------------------------------------------------------------------------------
    169  1.1  bjh21 */
    170  1.1  bjh21 flag float64_is_nan( float64 a )
    171  1.1  bjh21 {
    172  1.1  bjh21 
    173  1.1  bjh21     return ( LIT64( 0xFFE0000000000000 ) < (bits64) ( a<<1 ) );
    174  1.1  bjh21 
    175  1.1  bjh21 }
    176  1.1  bjh21 
    177  1.1  bjh21 /*
    178  1.1  bjh21 -------------------------------------------------------------------------------
    179  1.1  bjh21 Returns 1 if the double-precision floating-point value `a' is a signaling
    180  1.1  bjh21 NaN; otherwise returns 0.
    181  1.1  bjh21 -------------------------------------------------------------------------------
    182  1.1  bjh21 */
    183  1.1  bjh21 flag float64_is_signaling_nan( float64 a )
    184  1.1  bjh21 {
    185  1.1  bjh21 
    186  1.1  bjh21     return
    187  1.1  bjh21            ( ( ( a>>51 ) & 0xFFF ) == 0xFFE )
    188  1.1  bjh21         && ( a & LIT64( 0x0007FFFFFFFFFFFF ) );
    189  1.1  bjh21 
    190  1.1  bjh21 }
    191  1.1  bjh21 
    192  1.1  bjh21 /*
    193  1.1  bjh21 -------------------------------------------------------------------------------
    194  1.1  bjh21 Returns the result of converting the double-precision floating-point NaN
    195  1.1  bjh21 `a' to the canonical NaN format.  If `a' is a signaling NaN, the invalid
    196  1.1  bjh21 exception is raised.
    197  1.1  bjh21 -------------------------------------------------------------------------------
    198  1.1  bjh21 */
    199  1.1  bjh21 static commonNaNT float64ToCommonNaN( float64 a )
    200  1.1  bjh21 {
    201  1.1  bjh21     commonNaNT z;
    202  1.1  bjh21 
    203  1.1  bjh21     if ( float64_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
    204  1.1  bjh21     z.sign = a>>63;
    205  1.1  bjh21     z.low = 0;
    206  1.1  bjh21     z.high = a<<12;
    207  1.1  bjh21     return z;
    208  1.1  bjh21 
    209  1.1  bjh21 }
    210  1.1  bjh21 
    211  1.1  bjh21 /*
    212  1.1  bjh21 -------------------------------------------------------------------------------
    213  1.1  bjh21 Returns the result of converting the canonical NaN `a' to the double-
    214  1.1  bjh21 precision floating-point format.
    215  1.1  bjh21 -------------------------------------------------------------------------------
    216  1.1  bjh21 */
    217  1.1  bjh21 static float64 commonNaNToFloat64( commonNaNT a )
    218  1.1  bjh21 {
    219  1.1  bjh21 
    220  1.1  bjh21     return
    221  1.1  bjh21           ( ( (bits64) a.sign )<<63 )
    222  1.1  bjh21         | LIT64( 0x7FF8000000000000 )
    223  1.1  bjh21         | ( a.high>>12 );
    224  1.1  bjh21 
    225  1.1  bjh21 }
    226  1.1  bjh21 
    227  1.1  bjh21 /*
    228  1.1  bjh21 -------------------------------------------------------------------------------
    229  1.1  bjh21 Takes two double-precision floating-point values `a' and `b', one of which
    230  1.1  bjh21 is a NaN, and returns the appropriate NaN result.  If either `a' or `b' is a
    231  1.1  bjh21 signaling NaN, the invalid exception is raised.
    232  1.1  bjh21 -------------------------------------------------------------------------------
    233  1.1  bjh21 */
    234  1.1  bjh21 static float64 propagateFloat64NaN( float64 a, float64 b )
    235  1.1  bjh21 {
    236  1.1  bjh21     flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
    237  1.1  bjh21 
    238  1.1  bjh21     aIsNaN = float64_is_nan( a );
    239  1.1  bjh21     aIsSignalingNaN = float64_is_signaling_nan( a );
    240  1.1  bjh21     bIsNaN = float64_is_nan( b );
    241  1.1  bjh21     bIsSignalingNaN = float64_is_signaling_nan( b );
    242  1.1  bjh21     a |= LIT64( 0x0008000000000000 );
    243  1.1  bjh21     b |= LIT64( 0x0008000000000000 );
    244  1.1  bjh21     if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
    245  1.1  bjh21     if ( aIsNaN ) {
    246  1.1  bjh21         return ( aIsSignalingNaN & bIsNaN ) ? b : a;
    247  1.1  bjh21     }
    248  1.1  bjh21     else {
    249  1.1  bjh21         return b;
    250  1.1  bjh21     }
    251  1.1  bjh21 
    252  1.1  bjh21 }
    253  1.1  bjh21 
    254  1.1  bjh21 #ifdef FLOATX80
    255  1.1  bjh21 
    256  1.1  bjh21 /*
    257  1.1  bjh21 -------------------------------------------------------------------------------
    258  1.1  bjh21 The pattern for a default generated extended double-precision NaN.  The
    259  1.1  bjh21 `high' and `low' values hold the most- and least-significant bits,
    260  1.1  bjh21 respectively.
    261  1.1  bjh21 -------------------------------------------------------------------------------
    262  1.1  bjh21 */
    263  1.1  bjh21 #define floatx80_default_nan_high 0xFFFF
    264  1.1  bjh21 #define floatx80_default_nan_low  LIT64( 0xFFFFFFFFFFFFFFFF )
    265  1.1  bjh21 
    266  1.1  bjh21 /*
    267  1.1  bjh21 -------------------------------------------------------------------------------
    268  1.1  bjh21 Returns 1 if the extended double-precision floating-point value `a' is a
    269  1.1  bjh21 NaN; otherwise returns 0.
    270  1.1  bjh21 -------------------------------------------------------------------------------
    271  1.1  bjh21 */
    272  1.1  bjh21 flag floatx80_is_nan( floatx80 a )
    273  1.1  bjh21 {
    274  1.1  bjh21 
    275  1.1  bjh21     return ( ( a.high & 0x7FFF ) == 0x7FFF ) && (bits64) ( a.low<<1 );
    276  1.1  bjh21 
    277  1.1  bjh21 }
    278  1.1  bjh21 
    279  1.1  bjh21 /*
    280  1.1  bjh21 -------------------------------------------------------------------------------
    281  1.1  bjh21 Returns 1 if the extended double-precision floating-point value `a' is a
    282  1.1  bjh21 signaling NaN; otherwise returns 0.
    283  1.1  bjh21 -------------------------------------------------------------------------------
    284  1.1  bjh21 */
    285  1.1  bjh21 flag floatx80_is_signaling_nan( floatx80 a )
    286  1.1  bjh21 {
    287  1.1  bjh21     bits64 aLow;
    288  1.1  bjh21 
    289  1.1  bjh21     aLow = a.low & ~ LIT64( 0x4000000000000000 );
    290  1.1  bjh21     return
    291  1.1  bjh21            ( ( a.high & 0x7FFF ) == 0x7FFF )
    292  1.1  bjh21         && (bits64) ( aLow<<1 )
    293  1.1  bjh21         && ( a.low == aLow );
    294  1.1  bjh21 
    295  1.1  bjh21 }
    296  1.1  bjh21 
    297  1.1  bjh21 /*
    298  1.1  bjh21 -------------------------------------------------------------------------------
    299  1.1  bjh21 Returns the result of converting the extended double-precision floating-
    300  1.1  bjh21 point NaN `a' to the canonical NaN format.  If `a' is a signaling NaN, the
    301  1.1  bjh21 invalid exception is raised.
    302  1.1  bjh21 -------------------------------------------------------------------------------
    303  1.1  bjh21 */
    304  1.1  bjh21 static commonNaNT floatx80ToCommonNaN( floatx80 a )
    305  1.1  bjh21 {
    306  1.1  bjh21     commonNaNT z;
    307  1.1  bjh21 
    308  1.1  bjh21     if ( floatx80_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
    309  1.1  bjh21     z.sign = a.high>>15;
    310  1.1  bjh21     z.low = 0;
    311  1.1  bjh21     z.high = a.low<<1;
    312  1.1  bjh21     return z;
    313  1.1  bjh21 
    314  1.1  bjh21 }
    315  1.1  bjh21 
    316  1.1  bjh21 /*
    317  1.1  bjh21 -------------------------------------------------------------------------------
    318  1.1  bjh21 Returns the result of converting the canonical NaN `a' to the extended
    319  1.1  bjh21 double-precision floating-point format.
    320  1.1  bjh21 -------------------------------------------------------------------------------
    321  1.1  bjh21 */
    322  1.1  bjh21 static floatx80 commonNaNToFloatx80( commonNaNT a )
    323  1.1  bjh21 {
    324  1.1  bjh21     floatx80 z;
    325  1.1  bjh21 
    326  1.1  bjh21     z.low = LIT64( 0xC000000000000000 ) | ( a.high>>1 );
    327  1.1  bjh21     z.high = ( ( (bits16) a.sign )<<15 ) | 0x7FFF;
    328  1.1  bjh21     return z;
    329  1.1  bjh21 
    330  1.1  bjh21 }
    331  1.1  bjh21 
    332  1.1  bjh21 /*
    333  1.1  bjh21 -------------------------------------------------------------------------------
    334  1.1  bjh21 Takes two extended double-precision floating-point values `a' and `b', one
    335  1.1  bjh21 of which is a NaN, and returns the appropriate NaN result.  If either `a' or
    336  1.1  bjh21 `b' is a signaling NaN, the invalid exception is raised.
    337  1.1  bjh21 -------------------------------------------------------------------------------
    338  1.1  bjh21 */
    339  1.1  bjh21 static floatx80 propagateFloatx80NaN( floatx80 a, floatx80 b )
    340  1.1  bjh21 {
    341  1.1  bjh21     flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
    342  1.1  bjh21 
    343  1.1  bjh21     aIsNaN = floatx80_is_nan( a );
    344  1.1  bjh21     aIsSignalingNaN = floatx80_is_signaling_nan( a );
    345  1.1  bjh21     bIsNaN = floatx80_is_nan( b );
    346  1.1  bjh21     bIsSignalingNaN = floatx80_is_signaling_nan( b );
    347  1.1  bjh21     a.low |= LIT64( 0xC000000000000000 );
    348  1.1  bjh21     b.low |= LIT64( 0xC000000000000000 );
    349  1.1  bjh21     if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
    350  1.1  bjh21     if ( aIsNaN ) {
    351  1.1  bjh21         return ( aIsSignalingNaN & bIsNaN ) ? b : a;
    352  1.1  bjh21     }
    353  1.1  bjh21     else {
    354  1.1  bjh21         return b;
    355  1.1  bjh21     }
    356  1.1  bjh21 
    357  1.1  bjh21 }
    358  1.1  bjh21 
    359  1.1  bjh21 #endif
    360  1.1  bjh21 
    361  1.1  bjh21 #ifdef FLOAT128
    362  1.1  bjh21 
    363  1.1  bjh21 /*
    364  1.1  bjh21 -------------------------------------------------------------------------------
    365  1.1  bjh21 The pattern for a default generated quadruple-precision NaN.  The `high' and
    366  1.1  bjh21 `low' values hold the most- and least-significant bits, respectively.
    367  1.1  bjh21 -------------------------------------------------------------------------------
    368  1.1  bjh21 */
    369  1.1  bjh21 #define float128_default_nan_high LIT64( 0xFFFFFFFFFFFFFFFF )
    370  1.1  bjh21 #define float128_default_nan_low  LIT64( 0xFFFFFFFFFFFFFFFF )
    371  1.1  bjh21 
    372  1.1  bjh21 /*
    373  1.1  bjh21 -------------------------------------------------------------------------------
    374  1.1  bjh21 Returns 1 if the quadruple-precision floating-point value `a' is a NaN;
    375  1.1  bjh21 otherwise returns 0.
    376  1.1  bjh21 -------------------------------------------------------------------------------
    377  1.1  bjh21 */
    378  1.1  bjh21 flag float128_is_nan( float128 a )
    379  1.1  bjh21 {
    380  1.1  bjh21 
    381  1.1  bjh21     return
    382  1.1  bjh21            ( LIT64( 0xFFFE000000000000 ) <= (bits64) ( a.high<<1 ) )
    383  1.1  bjh21         && ( a.low || ( a.high & LIT64( 0x0000FFFFFFFFFFFF ) ) );
    384  1.1  bjh21 
    385  1.1  bjh21 }
    386  1.1  bjh21 
    387  1.1  bjh21 /*
    388  1.1  bjh21 -------------------------------------------------------------------------------
    389  1.1  bjh21 Returns 1 if the quadruple-precision floating-point value `a' is a
    390  1.1  bjh21 signaling NaN; otherwise returns 0.
    391  1.1  bjh21 -------------------------------------------------------------------------------
    392  1.1  bjh21 */
    393  1.1  bjh21 flag float128_is_signaling_nan( float128 a )
    394  1.1  bjh21 {
    395  1.1  bjh21 
    396  1.1  bjh21     return
    397  1.1  bjh21            ( ( ( a.high>>47 ) & 0xFFFF ) == 0xFFFE )
    398  1.1  bjh21         && ( a.low || ( a.high & LIT64( 0x00007FFFFFFFFFFF ) ) );
    399  1.1  bjh21 
    400  1.1  bjh21 }
    401  1.1  bjh21 
    402  1.1  bjh21 /*
    403  1.1  bjh21 -------------------------------------------------------------------------------
    404  1.1  bjh21 Returns the result of converting the quadruple-precision floating-point NaN
    405  1.1  bjh21 `a' to the canonical NaN format.  If `a' is a signaling NaN, the invalid
    406  1.1  bjh21 exception is raised.
    407  1.1  bjh21 -------------------------------------------------------------------------------
    408  1.1  bjh21 */
    409  1.1  bjh21 static commonNaNT float128ToCommonNaN( float128 a )
    410  1.1  bjh21 {
    411  1.1  bjh21     commonNaNT z;
    412  1.1  bjh21 
    413  1.1  bjh21     if ( float128_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
    414  1.1  bjh21     z.sign = a.high>>63;
    415  1.1  bjh21     shortShift128Left( a.high, a.low, 16, &z.high, &z.low );
    416  1.1  bjh21     return z;
    417  1.1  bjh21 
    418  1.1  bjh21 }
    419  1.1  bjh21 
    420  1.1  bjh21 /*
    421  1.1  bjh21 -------------------------------------------------------------------------------
    422  1.1  bjh21 Returns the result of converting the canonical NaN `a' to the quadruple-
    423  1.1  bjh21 precision floating-point format.
    424  1.1  bjh21 -------------------------------------------------------------------------------
    425  1.1  bjh21 */
    426  1.1  bjh21 static float128 commonNaNToFloat128( commonNaNT a )
    427  1.1  bjh21 {
    428  1.1  bjh21     float128 z;
    429  1.1  bjh21 
    430  1.1  bjh21     shift128Right( a.high, a.low, 16, &z.high, &z.low );
    431  1.1  bjh21     z.high |= ( ( (bits64) a.sign )<<63 ) | LIT64( 0x7FFF800000000000 );
    432  1.1  bjh21     return z;
    433  1.1  bjh21 
    434  1.1  bjh21 }
    435  1.1  bjh21 
    436  1.1  bjh21 /*
    437  1.1  bjh21 -------------------------------------------------------------------------------
    438  1.1  bjh21 Takes two quadruple-precision floating-point values `a' and `b', one of
    439  1.1  bjh21 which is a NaN, and returns the appropriate NaN result.  If either `a' or
    440  1.1  bjh21 `b' is a signaling NaN, the invalid exception is raised.
    441  1.1  bjh21 -------------------------------------------------------------------------------
    442  1.1  bjh21 */
    443  1.1  bjh21 static float128 propagateFloat128NaN( float128 a, float128 b )
    444  1.1  bjh21 {
    445  1.1  bjh21     flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
    446  1.1  bjh21 
    447  1.1  bjh21     aIsNaN = float128_is_nan( a );
    448  1.1  bjh21     aIsSignalingNaN = float128_is_signaling_nan( a );
    449  1.1  bjh21     bIsNaN = float128_is_nan( b );
    450  1.1  bjh21     bIsSignalingNaN = float128_is_signaling_nan( b );
    451  1.1  bjh21     a.high |= LIT64( 0x0000800000000000 );
    452  1.1  bjh21     b.high |= LIT64( 0x0000800000000000 );
    453  1.1  bjh21     if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
    454  1.1  bjh21     if ( aIsNaN ) {
    455  1.1  bjh21         return ( aIsSignalingNaN & bIsNaN ) ? b : a;
    456  1.1  bjh21     }
    457  1.1  bjh21     else {
    458  1.1  bjh21         return b;
    459  1.1  bjh21     }
    460  1.1  bjh21 
    461  1.1  bjh21 }
    462  1.1  bjh21 
    463  1.1  bjh21 #endif
    464  1.1  bjh21 
    465