softfloat-specialize revision 1.1 1 1.1 bjh21
2 1.1 bjh21 /*
3 1.1 bjh21 ===============================================================================
4 1.1 bjh21
5 1.1 bjh21 This C source fragment is part of the SoftFloat IEC/IEEE Floating-point
6 1.1 bjh21 Arithmetic Package, Release 2a.
7 1.1 bjh21
8 1.1 bjh21 Written by John R. Hauser. This work was made possible in part by the
9 1.1 bjh21 International Computer Science Institute, located at Suite 600, 1947 Center
10 1.1 bjh21 Street, Berkeley, California 94704. Funding was partially provided by the
11 1.1 bjh21 National Science Foundation under grant MIP-9311980. The original version
12 1.1 bjh21 of this code was written as part of a project to build a fixed-point vector
13 1.1 bjh21 processor in collaboration with the University of California at Berkeley,
14 1.1 bjh21 overseen by Profs. Nelson Morgan and John Wawrzynek. More information
15 1.1 bjh21 is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
16 1.1 bjh21 arithmetic/SoftFloat.html'.
17 1.1 bjh21
18 1.1 bjh21 THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort
19 1.1 bjh21 has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
20 1.1 bjh21 TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO
21 1.1 bjh21 PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
22 1.1 bjh21 AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
23 1.1 bjh21
24 1.1 bjh21 Derivative works are acceptable, even for commercial purposes, so long as
25 1.1 bjh21 (1) they include prominent notice that the work is derivative, and (2) they
26 1.1 bjh21 include prominent notice akin to these four paragraphs for those parts of
27 1.1 bjh21 this code that are retained.
28 1.1 bjh21
29 1.1 bjh21 ===============================================================================
30 1.1 bjh21 */
31 1.1 bjh21
32 1.1 bjh21 /*
33 1.1 bjh21 -------------------------------------------------------------------------------
34 1.1 bjh21 Underflow tininess-detection mode, statically initialized to default value.
35 1.1 bjh21 (The declaration in `softfloat.h' must match the `int8' type here.)
36 1.1 bjh21 -------------------------------------------------------------------------------
37 1.1 bjh21 */
38 1.1 bjh21 int8 float_detect_tininess = float_tininess_after_rounding;
39 1.1 bjh21
40 1.1 bjh21 /*
41 1.1 bjh21 -------------------------------------------------------------------------------
42 1.1 bjh21 Raises the exceptions specified by `flags'. Floating-point traps can be
43 1.1 bjh21 defined here if desired. It is currently not possible for such a trap to
44 1.1 bjh21 substitute a result value. If traps are not implemented, this routine
45 1.1 bjh21 should be simply `float_exception_flags |= flags;'.
46 1.1 bjh21 -------------------------------------------------------------------------------
47 1.1 bjh21 */
48 1.1 bjh21 void float_raise( int8 flags )
49 1.1 bjh21 {
50 1.1 bjh21
51 1.1 bjh21 float_exception_flags |= flags;
52 1.1 bjh21
53 1.1 bjh21 }
54 1.1 bjh21
55 1.1 bjh21 /*
56 1.1 bjh21 -------------------------------------------------------------------------------
57 1.1 bjh21 Internal canonical NaN format.
58 1.1 bjh21 -------------------------------------------------------------------------------
59 1.1 bjh21 */
60 1.1 bjh21 typedef struct {
61 1.1 bjh21 flag sign;
62 1.1 bjh21 bits64 high, low;
63 1.1 bjh21 } commonNaNT;
64 1.1 bjh21
65 1.1 bjh21 /*
66 1.1 bjh21 -------------------------------------------------------------------------------
67 1.1 bjh21 The pattern for a default generated single-precision NaN.
68 1.1 bjh21 -------------------------------------------------------------------------------
69 1.1 bjh21 */
70 1.1 bjh21 #define float32_default_nan 0xFFFFFFFF
71 1.1 bjh21
72 1.1 bjh21 /*
73 1.1 bjh21 -------------------------------------------------------------------------------
74 1.1 bjh21 Returns 1 if the single-precision floating-point value `a' is a NaN;
75 1.1 bjh21 otherwise returns 0.
76 1.1 bjh21 -------------------------------------------------------------------------------
77 1.1 bjh21 */
78 1.1 bjh21 flag float32_is_nan( float32 a )
79 1.1 bjh21 {
80 1.1 bjh21
81 1.1 bjh21 return ( 0xFF000000 < (bits32) ( a<<1 ) );
82 1.1 bjh21
83 1.1 bjh21 }
84 1.1 bjh21
85 1.1 bjh21 /*
86 1.1 bjh21 -------------------------------------------------------------------------------
87 1.1 bjh21 Returns 1 if the single-precision floating-point value `a' is a signaling
88 1.1 bjh21 NaN; otherwise returns 0.
89 1.1 bjh21 -------------------------------------------------------------------------------
90 1.1 bjh21 */
91 1.1 bjh21 flag float32_is_signaling_nan( float32 a )
92 1.1 bjh21 {
93 1.1 bjh21
94 1.1 bjh21 return ( ( ( a>>22 ) & 0x1FF ) == 0x1FE ) && ( a & 0x003FFFFF );
95 1.1 bjh21
96 1.1 bjh21 }
97 1.1 bjh21
98 1.1 bjh21 /*
99 1.1 bjh21 -------------------------------------------------------------------------------
100 1.1 bjh21 Returns the result of converting the single-precision floating-point NaN
101 1.1 bjh21 `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
102 1.1 bjh21 exception is raised.
103 1.1 bjh21 -------------------------------------------------------------------------------
104 1.1 bjh21 */
105 1.1 bjh21 static commonNaNT float32ToCommonNaN( float32 a )
106 1.1 bjh21 {
107 1.1 bjh21 commonNaNT z;
108 1.1 bjh21
109 1.1 bjh21 if ( float32_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
110 1.1 bjh21 z.sign = a>>31;
111 1.1 bjh21 z.low = 0;
112 1.1 bjh21 z.high = ( (bits64) a )<<41;
113 1.1 bjh21 return z;
114 1.1 bjh21
115 1.1 bjh21 }
116 1.1 bjh21
117 1.1 bjh21 /*
118 1.1 bjh21 -------------------------------------------------------------------------------
119 1.1 bjh21 Returns the result of converting the canonical NaN `a' to the single-
120 1.1 bjh21 precision floating-point format.
121 1.1 bjh21 -------------------------------------------------------------------------------
122 1.1 bjh21 */
123 1.1 bjh21 static float32 commonNaNToFloat32( commonNaNT a )
124 1.1 bjh21 {
125 1.1 bjh21
126 1.1 bjh21 return ( ( (bits32) a.sign )<<31 ) | 0x7FC00000 | ( a.high>>41 );
127 1.1 bjh21
128 1.1 bjh21 }
129 1.1 bjh21
130 1.1 bjh21 /*
131 1.1 bjh21 -------------------------------------------------------------------------------
132 1.1 bjh21 Takes two single-precision floating-point values `a' and `b', one of which
133 1.1 bjh21 is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a
134 1.1 bjh21 signaling NaN, the invalid exception is raised.
135 1.1 bjh21 -------------------------------------------------------------------------------
136 1.1 bjh21 */
137 1.1 bjh21 static float32 propagateFloat32NaN( float32 a, float32 b )
138 1.1 bjh21 {
139 1.1 bjh21 flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
140 1.1 bjh21
141 1.1 bjh21 aIsNaN = float32_is_nan( a );
142 1.1 bjh21 aIsSignalingNaN = float32_is_signaling_nan( a );
143 1.1 bjh21 bIsNaN = float32_is_nan( b );
144 1.1 bjh21 bIsSignalingNaN = float32_is_signaling_nan( b );
145 1.1 bjh21 a |= 0x00400000;
146 1.1 bjh21 b |= 0x00400000;
147 1.1 bjh21 if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
148 1.1 bjh21 if ( aIsNaN ) {
149 1.1 bjh21 return ( aIsSignalingNaN & bIsNaN ) ? b : a;
150 1.1 bjh21 }
151 1.1 bjh21 else {
152 1.1 bjh21 return b;
153 1.1 bjh21 }
154 1.1 bjh21
155 1.1 bjh21 }
156 1.1 bjh21
157 1.1 bjh21 /*
158 1.1 bjh21 -------------------------------------------------------------------------------
159 1.1 bjh21 The pattern for a default generated double-precision NaN.
160 1.1 bjh21 -------------------------------------------------------------------------------
161 1.1 bjh21 */
162 1.1 bjh21 #define float64_default_nan LIT64( 0xFFFFFFFFFFFFFFFF )
163 1.1 bjh21
164 1.1 bjh21 /*
165 1.1 bjh21 -------------------------------------------------------------------------------
166 1.1 bjh21 Returns 1 if the double-precision floating-point value `a' is a NaN;
167 1.1 bjh21 otherwise returns 0.
168 1.1 bjh21 -------------------------------------------------------------------------------
169 1.1 bjh21 */
170 1.1 bjh21 flag float64_is_nan( float64 a )
171 1.1 bjh21 {
172 1.1 bjh21
173 1.1 bjh21 return ( LIT64( 0xFFE0000000000000 ) < (bits64) ( a<<1 ) );
174 1.1 bjh21
175 1.1 bjh21 }
176 1.1 bjh21
177 1.1 bjh21 /*
178 1.1 bjh21 -------------------------------------------------------------------------------
179 1.1 bjh21 Returns 1 if the double-precision floating-point value `a' is a signaling
180 1.1 bjh21 NaN; otherwise returns 0.
181 1.1 bjh21 -------------------------------------------------------------------------------
182 1.1 bjh21 */
183 1.1 bjh21 flag float64_is_signaling_nan( float64 a )
184 1.1 bjh21 {
185 1.1 bjh21
186 1.1 bjh21 return
187 1.1 bjh21 ( ( ( a>>51 ) & 0xFFF ) == 0xFFE )
188 1.1 bjh21 && ( a & LIT64( 0x0007FFFFFFFFFFFF ) );
189 1.1 bjh21
190 1.1 bjh21 }
191 1.1 bjh21
192 1.1 bjh21 /*
193 1.1 bjh21 -------------------------------------------------------------------------------
194 1.1 bjh21 Returns the result of converting the double-precision floating-point NaN
195 1.1 bjh21 `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
196 1.1 bjh21 exception is raised.
197 1.1 bjh21 -------------------------------------------------------------------------------
198 1.1 bjh21 */
199 1.1 bjh21 static commonNaNT float64ToCommonNaN( float64 a )
200 1.1 bjh21 {
201 1.1 bjh21 commonNaNT z;
202 1.1 bjh21
203 1.1 bjh21 if ( float64_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
204 1.1 bjh21 z.sign = a>>63;
205 1.1 bjh21 z.low = 0;
206 1.1 bjh21 z.high = a<<12;
207 1.1 bjh21 return z;
208 1.1 bjh21
209 1.1 bjh21 }
210 1.1 bjh21
211 1.1 bjh21 /*
212 1.1 bjh21 -------------------------------------------------------------------------------
213 1.1 bjh21 Returns the result of converting the canonical NaN `a' to the double-
214 1.1 bjh21 precision floating-point format.
215 1.1 bjh21 -------------------------------------------------------------------------------
216 1.1 bjh21 */
217 1.1 bjh21 static float64 commonNaNToFloat64( commonNaNT a )
218 1.1 bjh21 {
219 1.1 bjh21
220 1.1 bjh21 return
221 1.1 bjh21 ( ( (bits64) a.sign )<<63 )
222 1.1 bjh21 | LIT64( 0x7FF8000000000000 )
223 1.1 bjh21 | ( a.high>>12 );
224 1.1 bjh21
225 1.1 bjh21 }
226 1.1 bjh21
227 1.1 bjh21 /*
228 1.1 bjh21 -------------------------------------------------------------------------------
229 1.1 bjh21 Takes two double-precision floating-point values `a' and `b', one of which
230 1.1 bjh21 is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a
231 1.1 bjh21 signaling NaN, the invalid exception is raised.
232 1.1 bjh21 -------------------------------------------------------------------------------
233 1.1 bjh21 */
234 1.1 bjh21 static float64 propagateFloat64NaN( float64 a, float64 b )
235 1.1 bjh21 {
236 1.1 bjh21 flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
237 1.1 bjh21
238 1.1 bjh21 aIsNaN = float64_is_nan( a );
239 1.1 bjh21 aIsSignalingNaN = float64_is_signaling_nan( a );
240 1.1 bjh21 bIsNaN = float64_is_nan( b );
241 1.1 bjh21 bIsSignalingNaN = float64_is_signaling_nan( b );
242 1.1 bjh21 a |= LIT64( 0x0008000000000000 );
243 1.1 bjh21 b |= LIT64( 0x0008000000000000 );
244 1.1 bjh21 if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
245 1.1 bjh21 if ( aIsNaN ) {
246 1.1 bjh21 return ( aIsSignalingNaN & bIsNaN ) ? b : a;
247 1.1 bjh21 }
248 1.1 bjh21 else {
249 1.1 bjh21 return b;
250 1.1 bjh21 }
251 1.1 bjh21
252 1.1 bjh21 }
253 1.1 bjh21
254 1.1 bjh21 #ifdef FLOATX80
255 1.1 bjh21
256 1.1 bjh21 /*
257 1.1 bjh21 -------------------------------------------------------------------------------
258 1.1 bjh21 The pattern for a default generated extended double-precision NaN. The
259 1.1 bjh21 `high' and `low' values hold the most- and least-significant bits,
260 1.1 bjh21 respectively.
261 1.1 bjh21 -------------------------------------------------------------------------------
262 1.1 bjh21 */
263 1.1 bjh21 #define floatx80_default_nan_high 0xFFFF
264 1.1 bjh21 #define floatx80_default_nan_low LIT64( 0xFFFFFFFFFFFFFFFF )
265 1.1 bjh21
266 1.1 bjh21 /*
267 1.1 bjh21 -------------------------------------------------------------------------------
268 1.1 bjh21 Returns 1 if the extended double-precision floating-point value `a' is a
269 1.1 bjh21 NaN; otherwise returns 0.
270 1.1 bjh21 -------------------------------------------------------------------------------
271 1.1 bjh21 */
272 1.1 bjh21 flag floatx80_is_nan( floatx80 a )
273 1.1 bjh21 {
274 1.1 bjh21
275 1.1 bjh21 return ( ( a.high & 0x7FFF ) == 0x7FFF ) && (bits64) ( a.low<<1 );
276 1.1 bjh21
277 1.1 bjh21 }
278 1.1 bjh21
279 1.1 bjh21 /*
280 1.1 bjh21 -------------------------------------------------------------------------------
281 1.1 bjh21 Returns 1 if the extended double-precision floating-point value `a' is a
282 1.1 bjh21 signaling NaN; otherwise returns 0.
283 1.1 bjh21 -------------------------------------------------------------------------------
284 1.1 bjh21 */
285 1.1 bjh21 flag floatx80_is_signaling_nan( floatx80 a )
286 1.1 bjh21 {
287 1.1 bjh21 bits64 aLow;
288 1.1 bjh21
289 1.1 bjh21 aLow = a.low & ~ LIT64( 0x4000000000000000 );
290 1.1 bjh21 return
291 1.1 bjh21 ( ( a.high & 0x7FFF ) == 0x7FFF )
292 1.1 bjh21 && (bits64) ( aLow<<1 )
293 1.1 bjh21 && ( a.low == aLow );
294 1.1 bjh21
295 1.1 bjh21 }
296 1.1 bjh21
297 1.1 bjh21 /*
298 1.1 bjh21 -------------------------------------------------------------------------------
299 1.1 bjh21 Returns the result of converting the extended double-precision floating-
300 1.1 bjh21 point NaN `a' to the canonical NaN format. If `a' is a signaling NaN, the
301 1.1 bjh21 invalid exception is raised.
302 1.1 bjh21 -------------------------------------------------------------------------------
303 1.1 bjh21 */
304 1.1 bjh21 static commonNaNT floatx80ToCommonNaN( floatx80 a )
305 1.1 bjh21 {
306 1.1 bjh21 commonNaNT z;
307 1.1 bjh21
308 1.1 bjh21 if ( floatx80_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
309 1.1 bjh21 z.sign = a.high>>15;
310 1.1 bjh21 z.low = 0;
311 1.1 bjh21 z.high = a.low<<1;
312 1.1 bjh21 return z;
313 1.1 bjh21
314 1.1 bjh21 }
315 1.1 bjh21
316 1.1 bjh21 /*
317 1.1 bjh21 -------------------------------------------------------------------------------
318 1.1 bjh21 Returns the result of converting the canonical NaN `a' to the extended
319 1.1 bjh21 double-precision floating-point format.
320 1.1 bjh21 -------------------------------------------------------------------------------
321 1.1 bjh21 */
322 1.1 bjh21 static floatx80 commonNaNToFloatx80( commonNaNT a )
323 1.1 bjh21 {
324 1.1 bjh21 floatx80 z;
325 1.1 bjh21
326 1.1 bjh21 z.low = LIT64( 0xC000000000000000 ) | ( a.high>>1 );
327 1.1 bjh21 z.high = ( ( (bits16) a.sign )<<15 ) | 0x7FFF;
328 1.1 bjh21 return z;
329 1.1 bjh21
330 1.1 bjh21 }
331 1.1 bjh21
332 1.1 bjh21 /*
333 1.1 bjh21 -------------------------------------------------------------------------------
334 1.1 bjh21 Takes two extended double-precision floating-point values `a' and `b', one
335 1.1 bjh21 of which is a NaN, and returns the appropriate NaN result. If either `a' or
336 1.1 bjh21 `b' is a signaling NaN, the invalid exception is raised.
337 1.1 bjh21 -------------------------------------------------------------------------------
338 1.1 bjh21 */
339 1.1 bjh21 static floatx80 propagateFloatx80NaN( floatx80 a, floatx80 b )
340 1.1 bjh21 {
341 1.1 bjh21 flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
342 1.1 bjh21
343 1.1 bjh21 aIsNaN = floatx80_is_nan( a );
344 1.1 bjh21 aIsSignalingNaN = floatx80_is_signaling_nan( a );
345 1.1 bjh21 bIsNaN = floatx80_is_nan( b );
346 1.1 bjh21 bIsSignalingNaN = floatx80_is_signaling_nan( b );
347 1.1 bjh21 a.low |= LIT64( 0xC000000000000000 );
348 1.1 bjh21 b.low |= LIT64( 0xC000000000000000 );
349 1.1 bjh21 if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
350 1.1 bjh21 if ( aIsNaN ) {
351 1.1 bjh21 return ( aIsSignalingNaN & bIsNaN ) ? b : a;
352 1.1 bjh21 }
353 1.1 bjh21 else {
354 1.1 bjh21 return b;
355 1.1 bjh21 }
356 1.1 bjh21
357 1.1 bjh21 }
358 1.1 bjh21
359 1.1 bjh21 #endif
360 1.1 bjh21
361 1.1 bjh21 #ifdef FLOAT128
362 1.1 bjh21
363 1.1 bjh21 /*
364 1.1 bjh21 -------------------------------------------------------------------------------
365 1.1 bjh21 The pattern for a default generated quadruple-precision NaN. The `high' and
366 1.1 bjh21 `low' values hold the most- and least-significant bits, respectively.
367 1.1 bjh21 -------------------------------------------------------------------------------
368 1.1 bjh21 */
369 1.1 bjh21 #define float128_default_nan_high LIT64( 0xFFFFFFFFFFFFFFFF )
370 1.1 bjh21 #define float128_default_nan_low LIT64( 0xFFFFFFFFFFFFFFFF )
371 1.1 bjh21
372 1.1 bjh21 /*
373 1.1 bjh21 -------------------------------------------------------------------------------
374 1.1 bjh21 Returns 1 if the quadruple-precision floating-point value `a' is a NaN;
375 1.1 bjh21 otherwise returns 0.
376 1.1 bjh21 -------------------------------------------------------------------------------
377 1.1 bjh21 */
378 1.1 bjh21 flag float128_is_nan( float128 a )
379 1.1 bjh21 {
380 1.1 bjh21
381 1.1 bjh21 return
382 1.1 bjh21 ( LIT64( 0xFFFE000000000000 ) <= (bits64) ( a.high<<1 ) )
383 1.1 bjh21 && ( a.low || ( a.high & LIT64( 0x0000FFFFFFFFFFFF ) ) );
384 1.1 bjh21
385 1.1 bjh21 }
386 1.1 bjh21
387 1.1 bjh21 /*
388 1.1 bjh21 -------------------------------------------------------------------------------
389 1.1 bjh21 Returns 1 if the quadruple-precision floating-point value `a' is a
390 1.1 bjh21 signaling NaN; otherwise returns 0.
391 1.1 bjh21 -------------------------------------------------------------------------------
392 1.1 bjh21 */
393 1.1 bjh21 flag float128_is_signaling_nan( float128 a )
394 1.1 bjh21 {
395 1.1 bjh21
396 1.1 bjh21 return
397 1.1 bjh21 ( ( ( a.high>>47 ) & 0xFFFF ) == 0xFFFE )
398 1.1 bjh21 && ( a.low || ( a.high & LIT64( 0x00007FFFFFFFFFFF ) ) );
399 1.1 bjh21
400 1.1 bjh21 }
401 1.1 bjh21
402 1.1 bjh21 /*
403 1.1 bjh21 -------------------------------------------------------------------------------
404 1.1 bjh21 Returns the result of converting the quadruple-precision floating-point NaN
405 1.1 bjh21 `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
406 1.1 bjh21 exception is raised.
407 1.1 bjh21 -------------------------------------------------------------------------------
408 1.1 bjh21 */
409 1.1 bjh21 static commonNaNT float128ToCommonNaN( float128 a )
410 1.1 bjh21 {
411 1.1 bjh21 commonNaNT z;
412 1.1 bjh21
413 1.1 bjh21 if ( float128_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
414 1.1 bjh21 z.sign = a.high>>63;
415 1.1 bjh21 shortShift128Left( a.high, a.low, 16, &z.high, &z.low );
416 1.1 bjh21 return z;
417 1.1 bjh21
418 1.1 bjh21 }
419 1.1 bjh21
420 1.1 bjh21 /*
421 1.1 bjh21 -------------------------------------------------------------------------------
422 1.1 bjh21 Returns the result of converting the canonical NaN `a' to the quadruple-
423 1.1 bjh21 precision floating-point format.
424 1.1 bjh21 -------------------------------------------------------------------------------
425 1.1 bjh21 */
426 1.1 bjh21 static float128 commonNaNToFloat128( commonNaNT a )
427 1.1 bjh21 {
428 1.1 bjh21 float128 z;
429 1.1 bjh21
430 1.1 bjh21 shift128Right( a.high, a.low, 16, &z.high, &z.low );
431 1.1 bjh21 z.high |= ( ( (bits64) a.sign )<<63 ) | LIT64( 0x7FFF800000000000 );
432 1.1 bjh21 return z;
433 1.1 bjh21
434 1.1 bjh21 }
435 1.1 bjh21
436 1.1 bjh21 /*
437 1.1 bjh21 -------------------------------------------------------------------------------
438 1.1 bjh21 Takes two quadruple-precision floating-point values `a' and `b', one of
439 1.1 bjh21 which is a NaN, and returns the appropriate NaN result. If either `a' or
440 1.1 bjh21 `b' is a signaling NaN, the invalid exception is raised.
441 1.1 bjh21 -------------------------------------------------------------------------------
442 1.1 bjh21 */
443 1.1 bjh21 static float128 propagateFloat128NaN( float128 a, float128 b )
444 1.1 bjh21 {
445 1.1 bjh21 flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
446 1.1 bjh21
447 1.1 bjh21 aIsNaN = float128_is_nan( a );
448 1.1 bjh21 aIsSignalingNaN = float128_is_signaling_nan( a );
449 1.1 bjh21 bIsNaN = float128_is_nan( b );
450 1.1 bjh21 bIsSignalingNaN = float128_is_signaling_nan( b );
451 1.1 bjh21 a.high |= LIT64( 0x0000800000000000 );
452 1.1 bjh21 b.high |= LIT64( 0x0000800000000000 );
453 1.1 bjh21 if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
454 1.1 bjh21 if ( aIsNaN ) {
455 1.1 bjh21 return ( aIsSignalingNaN & bIsNaN ) ? b : a;
456 1.1 bjh21 }
457 1.1 bjh21 else {
458 1.1 bjh21 return b;
459 1.1 bjh21 }
460 1.1 bjh21
461 1.1 bjh21 }
462 1.1 bjh21
463 1.1 bjh21 #endif
464 1.1 bjh21
465