Home | History | Annotate | Line # | Download | only in stdlib
div.c revision 1.4
      1  1.4  thorpej /*	$NetBSD: div.c,v 1.4 1995/12/28 08:52:13 thorpej Exp $	*/
      2  1.4  thorpej 
      3  1.1      cgd /*
      4  1.1      cgd  * Copyright (c) 1990 Regents of the University of California.
      5  1.1      cgd  * All rights reserved.
      6  1.1      cgd  *
      7  1.1      cgd  * This code is derived from software contributed to Berkeley by
      8  1.1      cgd  * Chris Torek.
      9  1.1      cgd  *
     10  1.1      cgd  * Redistribution and use in source and binary forms, with or without
     11  1.1      cgd  * modification, are permitted provided that the following conditions
     12  1.1      cgd  * are met:
     13  1.1      cgd  * 1. Redistributions of source code must retain the above copyright
     14  1.1      cgd  *    notice, this list of conditions and the following disclaimer.
     15  1.1      cgd  * 2. Redistributions in binary form must reproduce the above copyright
     16  1.1      cgd  *    notice, this list of conditions and the following disclaimer in the
     17  1.1      cgd  *    documentation and/or other materials provided with the distribution.
     18  1.1      cgd  * 3. All advertising materials mentioning features or use of this software
     19  1.1      cgd  *    must display the following acknowledgement:
     20  1.1      cgd  *	This product includes software developed by the University of
     21  1.1      cgd  *	California, Berkeley and its contributors.
     22  1.1      cgd  * 4. Neither the name of the University nor the names of its contributors
     23  1.1      cgd  *    may be used to endorse or promote products derived from this software
     24  1.1      cgd  *    without specific prior written permission.
     25  1.1      cgd  *
     26  1.1      cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     27  1.1      cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     28  1.1      cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     29  1.1      cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     30  1.1      cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     31  1.1      cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     32  1.1      cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     33  1.1      cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     34  1.1      cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     35  1.1      cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     36  1.1      cgd  * SUCH DAMAGE.
     37  1.1      cgd  */
     38  1.1      cgd 
     39  1.1      cgd #if defined(LIBC_SCCS) && !defined(lint)
     40  1.4  thorpej #if 0
     41  1.4  thorpej static char *sccsid = "from: @(#)div.c	5.2 (Berkeley) 4/16/91";
     42  1.4  thorpej #else
     43  1.4  thorpej static char *rcsid = "$NetBSD: div.c,v 1.4 1995/12/28 08:52:13 thorpej Exp $";
     44  1.4  thorpej #endif
     45  1.1      cgd #endif /* LIBC_SCCS and not lint */
     46  1.1      cgd 
     47  1.1      cgd #include <stdlib.h>		/* div_t */
     48  1.1      cgd 
     49  1.1      cgd div_t
     50  1.1      cgd div(num, denom)
     51  1.1      cgd 	int num, denom;
     52  1.1      cgd {
     53  1.1      cgd 	div_t r;
     54  1.1      cgd 
     55  1.1      cgd 	r.quot = num / denom;
     56  1.1      cgd 	r.rem = num % denom;
     57  1.1      cgd 	/*
     58  1.1      cgd 	 * The ANSI standard says that |r.quot| <= |n/d|, where
     59  1.1      cgd 	 * n/d is to be computed in infinite precision.  In other
     60  1.1      cgd 	 * words, we should always truncate the quotient towards
     61  1.1      cgd 	 * 0, never -infinity.
     62  1.1      cgd 	 *
     63  1.1      cgd 	 * Machine division and remainer may work either way when
     64  1.1      cgd 	 * one or both of n or d is negative.  If only one is
     65  1.1      cgd 	 * negative and r.quot has been truncated towards -inf,
     66  1.1      cgd 	 * r.rem will have the same sign as denom and the opposite
     67  1.1      cgd 	 * sign of num; if both are negative and r.quot has been
     68  1.1      cgd 	 * truncated towards -inf, r.rem will be positive (will
     69  1.1      cgd 	 * have the opposite sign of num).  These are considered
     70  1.1      cgd 	 * `wrong'.
     71  1.1      cgd 	 *
     72  1.1      cgd 	 * If both are num and denom are positive, r will always
     73  1.1      cgd 	 * be positive.
     74  1.1      cgd 	 *
     75  1.1      cgd 	 * This all boils down to:
     76  1.1      cgd 	 *	if num >= 0, but r.rem < 0, we got the wrong answer.
     77  1.1      cgd 	 * In that case, to get the right answer, add 1 to r.quot and
     78  1.1      cgd 	 * subtract denom from r.rem.
     79  1.1      cgd 	 */
     80  1.1      cgd 	if (num >= 0 && r.rem < 0) {
     81  1.1      cgd 		r.quot++;
     82  1.1      cgd 		r.rem -= denom;
     83  1.1      cgd 	}
     84  1.1      cgd 	return (r);
     85  1.1      cgd }
     86