jemalloc.c revision 1.1 1 1.1 ad /*-
2 1.1 ad * Copyright (C) 2006,2007 Jason Evans <jasone (at) FreeBSD.org>.
3 1.1 ad * All rights reserved.
4 1.1 ad *
5 1.1 ad * Redistribution and use in source and binary forms, with or without
6 1.1 ad * modification, are permitted provided that the following conditions
7 1.1 ad * are met:
8 1.1 ad * 1. Redistributions of source code must retain the above copyright
9 1.1 ad * notice(s), this list of conditions and the following disclaimer as
10 1.1 ad * the first lines of this file unmodified other than the possible
11 1.1 ad * addition of one or more copyright notices.
12 1.1 ad * 2. Redistributions in binary form must reproduce the above copyright
13 1.1 ad * notice(s), this list of conditions and the following disclaimer in
14 1.1 ad * the documentation and/or other materials provided with the
15 1.1 ad * distribution.
16 1.1 ad *
17 1.1 ad * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY
18 1.1 ad * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 1.1 ad * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
20 1.1 ad * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE
21 1.1 ad * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22 1.1 ad * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 1.1 ad * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
24 1.1 ad * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
25 1.1 ad * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
26 1.1 ad * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
27 1.1 ad * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 1.1 ad *
29 1.1 ad *******************************************************************************
30 1.1 ad *
31 1.1 ad * This allocator implementation is designed to provide scalable performance
32 1.1 ad * for multi-threaded programs on multi-processor systems. The following
33 1.1 ad * features are included for this purpose:
34 1.1 ad *
35 1.1 ad * + Multiple arenas are used if there are multiple CPUs, which reduces lock
36 1.1 ad * contention and cache sloshing.
37 1.1 ad *
38 1.1 ad * + Cache line sharing between arenas is avoided for internal data
39 1.1 ad * structures.
40 1.1 ad *
41 1.1 ad * + Memory is managed in chunks and runs (chunks can be split into runs),
42 1.1 ad * rather than as individual pages. This provides a constant-time
43 1.1 ad * mechanism for associating allocations with particular arenas.
44 1.1 ad *
45 1.1 ad * Allocation requests are rounded up to the nearest size class, and no record
46 1.1 ad * of the original request size is maintained. Allocations are broken into
47 1.1 ad * categories according to size class. Assuming runtime defaults, 4 kB pages
48 1.1 ad * and a 16 byte quantum, the size classes in each category are as follows:
49 1.1 ad *
50 1.1 ad * |=====================================|
51 1.1 ad * | Category | Subcategory | Size |
52 1.1 ad * |=====================================|
53 1.1 ad * | Small | Tiny | 2 |
54 1.1 ad * | | | 4 |
55 1.1 ad * | | | 8 |
56 1.1 ad * | |----------------+---------|
57 1.1 ad * | | Quantum-spaced | 16 |
58 1.1 ad * | | | 32 |
59 1.1 ad * | | | 48 |
60 1.1 ad * | | | ... |
61 1.1 ad * | | | 480 |
62 1.1 ad * | | | 496 |
63 1.1 ad * | | | 512 |
64 1.1 ad * | |----------------+---------|
65 1.1 ad * | | Sub-page | 1 kB |
66 1.1 ad * | | | 2 kB |
67 1.1 ad * |=====================================|
68 1.1 ad * | Large | 4 kB |
69 1.1 ad * | | 8 kB |
70 1.1 ad * | | 12 kB |
71 1.1 ad * | | ... |
72 1.1 ad * | | 1012 kB |
73 1.1 ad * | | 1016 kB |
74 1.1 ad * | | 1020 kB |
75 1.1 ad * |=====================================|
76 1.1 ad * | Huge | 1 MB |
77 1.1 ad * | | 2 MB |
78 1.1 ad * | | 3 MB |
79 1.1 ad * | | ... |
80 1.1 ad * |=====================================|
81 1.1 ad *
82 1.1 ad * A different mechanism is used for each category:
83 1.1 ad *
84 1.1 ad * Small : Each size class is segregated into its own set of runs. Each run
85 1.1 ad * maintains a bitmap of which regions are free/allocated.
86 1.1 ad *
87 1.1 ad * Large : Each allocation is backed by a dedicated run. Metadata are stored
88 1.1 ad * in the associated arena chunk header maps.
89 1.1 ad *
90 1.1 ad * Huge : Each allocation is backed by a dedicated contiguous set of chunks.
91 1.1 ad * Metadata are stored in a separate red-black tree.
92 1.1 ad *
93 1.1 ad *******************************************************************************
94 1.1 ad */
95 1.1 ad
96 1.1 ad /*
97 1.1 ad * MALLOC_PRODUCTION disables assertions and statistics gathering. It also
98 1.1 ad * defaults the A and J runtime options to off. These settings are appropriate
99 1.1 ad * for production systems.
100 1.1 ad */
101 1.1 ad /* #define MALLOC_PRODUCTION */
102 1.1 ad
103 1.1 ad #ifndef MALLOC_PRODUCTION
104 1.1 ad # define MALLOC_DEBUG
105 1.1 ad #endif
106 1.1 ad
107 1.1 ad #include <sys/cdefs.h>
108 1.1 ad __FBSDID("$FreeBSD: src/lib/libc/stdlib/malloc.c,v 1.147 2007/06/15 22:00:16 jasone Exp $");
109 1.1 ad
110 1.1 ad #include "libc_private.h"
111 1.1 ad #ifdef MALLOC_DEBUG
112 1.1 ad # define _LOCK_DEBUG
113 1.1 ad #endif
114 1.1 ad #include "spinlock.h"
115 1.1 ad #include "namespace.h"
116 1.1 ad #include <sys/mman.h>
117 1.1 ad #include <sys/param.h>
118 1.1 ad #include <sys/stddef.h>
119 1.1 ad #include <sys/time.h>
120 1.1 ad #include <sys/types.h>
121 1.1 ad #include <sys/sysctl.h>
122 1.1 ad #include <sys/tree.h>
123 1.1 ad #include <sys/uio.h>
124 1.1 ad #include <sys/ktrace.h> /* Must come after several other sys/ includes. */
125 1.1 ad
126 1.1 ad #include <machine/atomic.h>
127 1.1 ad #include <machine/cpufunc.h>
128 1.1 ad #include <machine/vmparam.h>
129 1.1 ad
130 1.1 ad #include <errno.h>
131 1.1 ad #include <limits.h>
132 1.1 ad #include <pthread.h>
133 1.1 ad #include <sched.h>
134 1.1 ad #include <stdarg.h>
135 1.1 ad #include <stdbool.h>
136 1.1 ad #include <stdio.h>
137 1.1 ad #include <stdint.h>
138 1.1 ad #include <stdlib.h>
139 1.1 ad #include <string.h>
140 1.1 ad #include <strings.h>
141 1.1 ad #include <unistd.h>
142 1.1 ad
143 1.1 ad #include "un-namespace.h"
144 1.1 ad
145 1.1 ad /* MALLOC_STATS enables statistics calculation. */
146 1.1 ad #ifndef MALLOC_PRODUCTION
147 1.1 ad # define MALLOC_STATS
148 1.1 ad #endif
149 1.1 ad
150 1.1 ad #ifdef MALLOC_DEBUG
151 1.1 ad # ifdef NDEBUG
152 1.1 ad # undef NDEBUG
153 1.1 ad # endif
154 1.1 ad #else
155 1.1 ad # ifndef NDEBUG
156 1.1 ad # define NDEBUG
157 1.1 ad # endif
158 1.1 ad #endif
159 1.1 ad #include <assert.h>
160 1.1 ad
161 1.1 ad #ifdef MALLOC_DEBUG
162 1.1 ad /* Disable inlining to make debugging easier. */
163 1.1 ad # define inline
164 1.1 ad #endif
165 1.1 ad
166 1.1 ad /* Size of stack-allocated buffer passed to strerror_r(). */
167 1.1 ad #define STRERROR_BUF 64
168 1.1 ad
169 1.1 ad /* Minimum alignment of allocations is 2^QUANTUM_2POW_MIN bytes. */
170 1.1 ad #ifdef __i386__
171 1.1 ad # define QUANTUM_2POW_MIN 4
172 1.1 ad # define SIZEOF_PTR_2POW 2
173 1.1 ad # define USE_BRK
174 1.1 ad #endif
175 1.1 ad #ifdef __ia64__
176 1.1 ad # define QUANTUM_2POW_MIN 4
177 1.1 ad # define SIZEOF_PTR_2POW 3
178 1.1 ad #endif
179 1.1 ad #ifdef __alpha__
180 1.1 ad # define QUANTUM_2POW_MIN 4
181 1.1 ad # define SIZEOF_PTR_2POW 3
182 1.1 ad # define NO_TLS
183 1.1 ad #endif
184 1.1 ad #ifdef __sparc64__
185 1.1 ad # define QUANTUM_2POW_MIN 4
186 1.1 ad # define SIZEOF_PTR_2POW 3
187 1.1 ad # define NO_TLS
188 1.1 ad #endif
189 1.1 ad #ifdef __amd64__
190 1.1 ad # define QUANTUM_2POW_MIN 4
191 1.1 ad # define SIZEOF_PTR_2POW 3
192 1.1 ad #endif
193 1.1 ad #ifdef __arm__
194 1.1 ad # define QUANTUM_2POW_MIN 3
195 1.1 ad # define SIZEOF_PTR_2POW 2
196 1.1 ad # define USE_BRK
197 1.1 ad # define NO_TLS
198 1.1 ad #endif
199 1.1 ad #ifdef __powerpc__
200 1.1 ad # define QUANTUM_2POW_MIN 4
201 1.1 ad # define SIZEOF_PTR_2POW 2
202 1.1 ad # define USE_BRK
203 1.1 ad #endif
204 1.1 ad
205 1.1 ad #define SIZEOF_PTR (1 << SIZEOF_PTR_2POW)
206 1.1 ad
207 1.1 ad /* sizeof(int) == (1 << SIZEOF_INT_2POW). */
208 1.1 ad #ifndef SIZEOF_INT_2POW
209 1.1 ad # define SIZEOF_INT_2POW 2
210 1.1 ad #endif
211 1.1 ad
212 1.1 ad /* We can't use TLS in non-PIC programs, since TLS relies on loader magic. */
213 1.1 ad #if (!defined(PIC) && !defined(NO_TLS))
214 1.1 ad # define NO_TLS
215 1.1 ad #endif
216 1.1 ad
217 1.1 ad /*
218 1.1 ad * Size and alignment of memory chunks that are allocated by the OS's virtual
219 1.1 ad * memory system.
220 1.1 ad */
221 1.1 ad #define CHUNK_2POW_DEFAULT 20
222 1.1 ad
223 1.1 ad /*
224 1.1 ad * Maximum size of L1 cache line. This is used to avoid cache line aliasing,
225 1.1 ad * so over-estimates are okay (up to a point), but under-estimates will
226 1.1 ad * negatively affect performance.
227 1.1 ad */
228 1.1 ad #define CACHELINE_2POW 6
229 1.1 ad #define CACHELINE ((size_t)(1 << CACHELINE_2POW))
230 1.1 ad
231 1.1 ad /* Smallest size class to support. */
232 1.1 ad #define TINY_MIN_2POW 1
233 1.1 ad
234 1.1 ad /*
235 1.1 ad * Maximum size class that is a multiple of the quantum, but not (necessarily)
236 1.1 ad * a power of 2. Above this size, allocations are rounded up to the nearest
237 1.1 ad * power of 2.
238 1.1 ad */
239 1.1 ad #define SMALL_MAX_2POW_DEFAULT 9
240 1.1 ad #define SMALL_MAX_DEFAULT (1 << SMALL_MAX_2POW_DEFAULT)
241 1.1 ad
242 1.1 ad /*
243 1.1 ad * Maximum desired run header overhead. Runs are sized as small as possible
244 1.1 ad * such that this setting is still honored, without violating other constraints.
245 1.1 ad * The goal is to make runs as small as possible without exceeding a per run
246 1.1 ad * external fragmentation threshold.
247 1.1 ad *
248 1.1 ad * Note that it is possible to set this low enough that it cannot be honored
249 1.1 ad * for some/all object sizes, since there is one bit of header overhead per
250 1.1 ad * object (plus a constant). In such cases, this constraint is relaxed.
251 1.1 ad *
252 1.1 ad * RUN_MAX_OVRHD_RELAX specifies the maximum number of bits per region of
253 1.1 ad * overhead for which RUN_MAX_OVRHD is relaxed.
254 1.1 ad */
255 1.1 ad #define RUN_MAX_OVRHD 0.015
256 1.1 ad #define RUN_MAX_OVRHD_RELAX 1.5
257 1.1 ad
258 1.1 ad /* Put a cap on small object run size. This overrides RUN_MAX_OVRHD. */
259 1.1 ad #define RUN_MAX_SMALL_2POW 15
260 1.1 ad #define RUN_MAX_SMALL (1 << RUN_MAX_SMALL_2POW)
261 1.1 ad
262 1.1 ad /******************************************************************************/
263 1.1 ad
264 1.1 ad /*
265 1.1 ad * Mutexes based on spinlocks. We can't use normal pthread mutexes, because
266 1.1 ad * they require malloc()ed memory.
267 1.1 ad */
268 1.1 ad typedef struct {
269 1.1 ad spinlock_t lock;
270 1.1 ad } malloc_mutex_t;
271 1.1 ad
272 1.1 ad /* Set to true once the allocator has been initialized. */
273 1.1 ad static bool malloc_initialized = false;
274 1.1 ad
275 1.1 ad /* Used to avoid initialization races. */
276 1.1 ad static malloc_mutex_t init_lock = {_SPINLOCK_INITIALIZER};
277 1.1 ad
278 1.1 ad /******************************************************************************/
279 1.1 ad /*
280 1.1 ad * Statistics data structures.
281 1.1 ad */
282 1.1 ad
283 1.1 ad #ifdef MALLOC_STATS
284 1.1 ad
285 1.1 ad typedef struct malloc_bin_stats_s malloc_bin_stats_t;
286 1.1 ad struct malloc_bin_stats_s {
287 1.1 ad /*
288 1.1 ad * Number of allocation requests that corresponded to the size of this
289 1.1 ad * bin.
290 1.1 ad */
291 1.1 ad uint64_t nrequests;
292 1.1 ad
293 1.1 ad /* Total number of runs created for this bin's size class. */
294 1.1 ad uint64_t nruns;
295 1.1 ad
296 1.1 ad /*
297 1.1 ad * Total number of runs reused by extracting them from the runs tree for
298 1.1 ad * this bin's size class.
299 1.1 ad */
300 1.1 ad uint64_t reruns;
301 1.1 ad
302 1.1 ad /* High-water mark for this bin. */
303 1.1 ad unsigned long highruns;
304 1.1 ad
305 1.1 ad /* Current number of runs in this bin. */
306 1.1 ad unsigned long curruns;
307 1.1 ad };
308 1.1 ad
309 1.1 ad typedef struct arena_stats_s arena_stats_t;
310 1.1 ad struct arena_stats_s {
311 1.1 ad /* Number of bytes currently mapped. */
312 1.1 ad size_t mapped;
313 1.1 ad
314 1.1 ad /* Per-size-category statistics. */
315 1.1 ad size_t allocated_small;
316 1.1 ad uint64_t nmalloc_small;
317 1.1 ad uint64_t ndalloc_small;
318 1.1 ad
319 1.1 ad size_t allocated_large;
320 1.1 ad uint64_t nmalloc_large;
321 1.1 ad uint64_t ndalloc_large;
322 1.1 ad };
323 1.1 ad
324 1.1 ad typedef struct chunk_stats_s chunk_stats_t;
325 1.1 ad struct chunk_stats_s {
326 1.1 ad /* Number of chunks that were allocated. */
327 1.1 ad uint64_t nchunks;
328 1.1 ad
329 1.1 ad /* High-water mark for number of chunks allocated. */
330 1.1 ad unsigned long highchunks;
331 1.1 ad
332 1.1 ad /*
333 1.1 ad * Current number of chunks allocated. This value isn't maintained for
334 1.1 ad * any other purpose, so keep track of it in order to be able to set
335 1.1 ad * highchunks.
336 1.1 ad */
337 1.1 ad unsigned long curchunks;
338 1.1 ad };
339 1.1 ad
340 1.1 ad #endif /* #ifdef MALLOC_STATS */
341 1.1 ad
342 1.1 ad /******************************************************************************/
343 1.1 ad /*
344 1.1 ad * Chunk data structures.
345 1.1 ad */
346 1.1 ad
347 1.1 ad /* Tree of chunks. */
348 1.1 ad typedef struct chunk_node_s chunk_node_t;
349 1.1 ad struct chunk_node_s {
350 1.1 ad /* Linkage for the chunk tree. */
351 1.1 ad RB_ENTRY(chunk_node_s) link;
352 1.1 ad
353 1.1 ad /*
354 1.1 ad * Pointer to the chunk that this tree node is responsible for. In some
355 1.1 ad * (but certainly not all) cases, this data structure is placed at the
356 1.1 ad * beginning of the corresponding chunk, so this field may point to this
357 1.1 ad * node.
358 1.1 ad */
359 1.1 ad void *chunk;
360 1.1 ad
361 1.1 ad /* Total chunk size. */
362 1.1 ad size_t size;
363 1.1 ad };
364 1.1 ad typedef struct chunk_tree_s chunk_tree_t;
365 1.1 ad RB_HEAD(chunk_tree_s, chunk_node_s);
366 1.1 ad
367 1.1 ad /******************************************************************************/
368 1.1 ad /*
369 1.1 ad * Arena data structures.
370 1.1 ad */
371 1.1 ad
372 1.1 ad typedef struct arena_s arena_t;
373 1.1 ad typedef struct arena_bin_s arena_bin_t;
374 1.1 ad
375 1.1 ad typedef struct arena_chunk_map_s arena_chunk_map_t;
376 1.1 ad struct arena_chunk_map_s {
377 1.1 ad /* Number of pages in run. */
378 1.1 ad uint32_t npages;
379 1.1 ad /*
380 1.1 ad * Position within run. For a free run, this is POS_FREE for the first
381 1.1 ad * and last pages. The POS_FREE special value makes it possible to
382 1.1 ad * quickly coalesce free runs.
383 1.1 ad *
384 1.1 ad * This is the limiting factor for chunksize; there can be at most 2^31
385 1.1 ad * pages in a run.
386 1.1 ad */
387 1.1 ad #define POS_FREE ((uint32_t)0xffffffffU)
388 1.1 ad uint32_t pos;
389 1.1 ad };
390 1.1 ad
391 1.1 ad /* Arena chunk header. */
392 1.1 ad typedef struct arena_chunk_s arena_chunk_t;
393 1.1 ad struct arena_chunk_s {
394 1.1 ad /* Arena that owns the chunk. */
395 1.1 ad arena_t *arena;
396 1.1 ad
397 1.1 ad /* Linkage for the arena's chunk tree. */
398 1.1 ad RB_ENTRY(arena_chunk_s) link;
399 1.1 ad
400 1.1 ad /*
401 1.1 ad * Number of pages in use. This is maintained in order to make
402 1.1 ad * detection of empty chunks fast.
403 1.1 ad */
404 1.1 ad uint32_t pages_used;
405 1.1 ad
406 1.1 ad /*
407 1.1 ad * Every time a free run larger than this value is created/coalesced,
408 1.1 ad * this value is increased. The only way that the value decreases is if
409 1.1 ad * arena_run_alloc() fails to find a free run as large as advertised by
410 1.1 ad * this value.
411 1.1 ad */
412 1.1 ad uint32_t max_frun_npages;
413 1.1 ad
414 1.1 ad /*
415 1.1 ad * Every time a free run that starts at an earlier page than this value
416 1.1 ad * is created/coalesced, this value is decreased. It is reset in a
417 1.1 ad * similar fashion to max_frun_npages.
418 1.1 ad */
419 1.1 ad uint32_t min_frun_ind;
420 1.1 ad
421 1.1 ad /*
422 1.1 ad * Map of pages within chunk that keeps track of free/large/small. For
423 1.1 ad * free runs, only the map entries for the first and last pages are
424 1.1 ad * kept up to date, so that free runs can be quickly coalesced.
425 1.1 ad */
426 1.1 ad arena_chunk_map_t map[1]; /* Dynamically sized. */
427 1.1 ad };
428 1.1 ad typedef struct arena_chunk_tree_s arena_chunk_tree_t;
429 1.1 ad RB_HEAD(arena_chunk_tree_s, arena_chunk_s);
430 1.1 ad
431 1.1 ad typedef struct arena_run_s arena_run_t;
432 1.1 ad struct arena_run_s {
433 1.1 ad /* Linkage for run trees. */
434 1.1 ad RB_ENTRY(arena_run_s) link;
435 1.1 ad
436 1.1 ad #ifdef MALLOC_DEBUG
437 1.1 ad uint32_t magic;
438 1.1 ad # define ARENA_RUN_MAGIC 0x384adf93
439 1.1 ad #endif
440 1.1 ad
441 1.1 ad /* Bin this run is associated with. */
442 1.1 ad arena_bin_t *bin;
443 1.1 ad
444 1.1 ad /* Index of first element that might have a free region. */
445 1.1 ad unsigned regs_minelm;
446 1.1 ad
447 1.1 ad /* Number of free regions in run. */
448 1.1 ad unsigned nfree;
449 1.1 ad
450 1.1 ad /* Bitmask of in-use regions (0: in use, 1: free). */
451 1.1 ad unsigned regs_mask[1]; /* Dynamically sized. */
452 1.1 ad };
453 1.1 ad typedef struct arena_run_tree_s arena_run_tree_t;
454 1.1 ad RB_HEAD(arena_run_tree_s, arena_run_s);
455 1.1 ad
456 1.1 ad struct arena_bin_s {
457 1.1 ad /*
458 1.1 ad * Current run being used to service allocations of this bin's size
459 1.1 ad * class.
460 1.1 ad */
461 1.1 ad arena_run_t *runcur;
462 1.1 ad
463 1.1 ad /*
464 1.1 ad * Tree of non-full runs. This tree is used when looking for an
465 1.1 ad * existing run when runcur is no longer usable. We choose the
466 1.1 ad * non-full run that is lowest in memory; this policy tends to keep
467 1.1 ad * objects packed well, and it can also help reduce the number of
468 1.1 ad * almost-empty chunks.
469 1.1 ad */
470 1.1 ad arena_run_tree_t runs;
471 1.1 ad
472 1.1 ad /* Size of regions in a run for this bin's size class. */
473 1.1 ad size_t reg_size;
474 1.1 ad
475 1.1 ad /* Total size of a run for this bin's size class. */
476 1.1 ad size_t run_size;
477 1.1 ad
478 1.1 ad /* Total number of regions in a run for this bin's size class. */
479 1.1 ad uint32_t nregs;
480 1.1 ad
481 1.1 ad /* Number of elements in a run's regs_mask for this bin's size class. */
482 1.1 ad uint32_t regs_mask_nelms;
483 1.1 ad
484 1.1 ad /* Offset of first region in a run for this bin's size class. */
485 1.1 ad uint32_t reg0_offset;
486 1.1 ad
487 1.1 ad #ifdef MALLOC_STATS
488 1.1 ad /* Bin statistics. */
489 1.1 ad malloc_bin_stats_t stats;
490 1.1 ad #endif
491 1.1 ad };
492 1.1 ad
493 1.1 ad struct arena_s {
494 1.1 ad #ifdef MALLOC_DEBUG
495 1.1 ad uint32_t magic;
496 1.1 ad # define ARENA_MAGIC 0x947d3d24
497 1.1 ad #endif
498 1.1 ad
499 1.1 ad /* All operations on this arena require that mtx be locked. */
500 1.1 ad malloc_mutex_t mtx;
501 1.1 ad
502 1.1 ad #ifdef MALLOC_STATS
503 1.1 ad arena_stats_t stats;
504 1.1 ad #endif
505 1.1 ad
506 1.1 ad /*
507 1.1 ad * Tree of chunks this arena manages.
508 1.1 ad */
509 1.1 ad arena_chunk_tree_t chunks;
510 1.1 ad
511 1.1 ad /*
512 1.1 ad * In order to avoid rapid chunk allocation/deallocation when an arena
513 1.1 ad * oscillates right on the cusp of needing a new chunk, cache the most
514 1.1 ad * recently freed chunk. This caching is disabled by opt_hint.
515 1.1 ad *
516 1.1 ad * There is one spare chunk per arena, rather than one spare total, in
517 1.1 ad * order to avoid interactions between multiple threads that could make
518 1.1 ad * a single spare inadequate.
519 1.1 ad */
520 1.1 ad arena_chunk_t *spare;
521 1.1 ad
522 1.1 ad /*
523 1.1 ad * bins is used to store rings of free regions of the following sizes,
524 1.1 ad * assuming a 16-byte quantum, 4kB pagesize, and default MALLOC_OPTIONS.
525 1.1 ad *
526 1.1 ad * bins[i] | size |
527 1.1 ad * --------+------+
528 1.1 ad * 0 | 2 |
529 1.1 ad * 1 | 4 |
530 1.1 ad * 2 | 8 |
531 1.1 ad * --------+------+
532 1.1 ad * 3 | 16 |
533 1.1 ad * 4 | 32 |
534 1.1 ad * 5 | 48 |
535 1.1 ad * 6 | 64 |
536 1.1 ad * : :
537 1.1 ad * : :
538 1.1 ad * 33 | 496 |
539 1.1 ad * 34 | 512 |
540 1.1 ad * --------+------+
541 1.1 ad * 35 | 1024 |
542 1.1 ad * 36 | 2048 |
543 1.1 ad * --------+------+
544 1.1 ad */
545 1.1 ad arena_bin_t bins[1]; /* Dynamically sized. */
546 1.1 ad };
547 1.1 ad
548 1.1 ad /******************************************************************************/
549 1.1 ad /*
550 1.1 ad * Data.
551 1.1 ad */
552 1.1 ad
553 1.1 ad /* Number of CPUs. */
554 1.1 ad static unsigned ncpus;
555 1.1 ad
556 1.1 ad /* VM page size. */
557 1.1 ad static size_t pagesize;
558 1.1 ad static size_t pagesize_mask;
559 1.1 ad static size_t pagesize_2pow;
560 1.1 ad
561 1.1 ad /* Various bin-related settings. */
562 1.1 ad static size_t bin_maxclass; /* Max size class for bins. */
563 1.1 ad static unsigned ntbins; /* Number of (2^n)-spaced tiny bins. */
564 1.1 ad static unsigned nqbins; /* Number of quantum-spaced bins. */
565 1.1 ad static unsigned nsbins; /* Number of (2^n)-spaced sub-page bins. */
566 1.1 ad static size_t small_min;
567 1.1 ad static size_t small_max;
568 1.1 ad
569 1.1 ad /* Various quantum-related settings. */
570 1.1 ad static size_t quantum;
571 1.1 ad static size_t quantum_mask; /* (quantum - 1). */
572 1.1 ad
573 1.1 ad /* Various chunk-related settings. */
574 1.1 ad static size_t chunksize;
575 1.1 ad static size_t chunksize_mask; /* (chunksize - 1). */
576 1.1 ad static unsigned chunk_npages;
577 1.1 ad static unsigned arena_chunk_header_npages;
578 1.1 ad static size_t arena_maxclass; /* Max size class for arenas. */
579 1.1 ad
580 1.1 ad /********/
581 1.1 ad /*
582 1.1 ad * Chunks.
583 1.1 ad */
584 1.1 ad
585 1.1 ad /* Protects chunk-related data structures. */
586 1.1 ad static malloc_mutex_t chunks_mtx;
587 1.1 ad
588 1.1 ad /* Tree of chunks that are stand-alone huge allocations. */
589 1.1 ad static chunk_tree_t huge;
590 1.1 ad
591 1.1 ad #ifdef USE_BRK
592 1.1 ad /*
593 1.1 ad * Try to use brk for chunk-size allocations, due to address space constraints.
594 1.1 ad */
595 1.1 ad /*
596 1.1 ad * Protects sbrk() calls. This must be separate from chunks_mtx, since
597 1.1 ad * base_pages_alloc() also uses sbrk(), but cannot lock chunks_mtx (doing so
598 1.1 ad * could cause recursive lock acquisition).
599 1.1 ad */
600 1.1 ad static malloc_mutex_t brk_mtx;
601 1.1 ad /* Result of first sbrk(0) call. */
602 1.1 ad static void *brk_base;
603 1.1 ad /* Current end of brk, or ((void *)-1) if brk is exhausted. */
604 1.1 ad static void *brk_prev;
605 1.1 ad /* Current upper limit on brk addresses. */
606 1.1 ad static void *brk_max;
607 1.1 ad #endif
608 1.1 ad
609 1.1 ad #ifdef MALLOC_STATS
610 1.1 ad /* Huge allocation statistics. */
611 1.1 ad static uint64_t huge_nmalloc;
612 1.1 ad static uint64_t huge_ndalloc;
613 1.1 ad static size_t huge_allocated;
614 1.1 ad #endif
615 1.1 ad
616 1.1 ad /*
617 1.1 ad * Tree of chunks that were previously allocated. This is used when allocating
618 1.1 ad * chunks, in an attempt to re-use address space.
619 1.1 ad */
620 1.1 ad static chunk_tree_t old_chunks;
621 1.1 ad
622 1.1 ad /****************************/
623 1.1 ad /*
624 1.1 ad * base (internal allocation).
625 1.1 ad */
626 1.1 ad
627 1.1 ad /*
628 1.1 ad * Current pages that are being used for internal memory allocations. These
629 1.1 ad * pages are carved up in cacheline-size quanta, so that there is no chance of
630 1.1 ad * false cache line sharing.
631 1.1 ad */
632 1.1 ad static void *base_pages;
633 1.1 ad static void *base_next_addr;
634 1.1 ad static void *base_past_addr; /* Addr immediately past base_pages. */
635 1.1 ad static chunk_node_t *base_chunk_nodes; /* LIFO cache of chunk nodes. */
636 1.1 ad static malloc_mutex_t base_mtx;
637 1.1 ad #ifdef MALLOC_STATS
638 1.1 ad static size_t base_mapped;
639 1.1 ad #endif
640 1.1 ad
641 1.1 ad /********/
642 1.1 ad /*
643 1.1 ad * Arenas.
644 1.1 ad */
645 1.1 ad
646 1.1 ad /*
647 1.1 ad * Arenas that are used to service external requests. Not all elements of the
648 1.1 ad * arenas array are necessarily used; arenas are created lazily as needed.
649 1.1 ad */
650 1.1 ad static arena_t **arenas;
651 1.1 ad static unsigned narenas;
652 1.1 ad #ifndef NO_TLS
653 1.1 ad static unsigned next_arena;
654 1.1 ad #endif
655 1.1 ad static malloc_mutex_t arenas_mtx; /* Protects arenas initialization. */
656 1.1 ad
657 1.1 ad #ifndef NO_TLS
658 1.1 ad /*
659 1.1 ad * Map of pthread_self() --> arenas[???], used for selecting an arena to use
660 1.1 ad * for allocations.
661 1.1 ad */
662 1.1 ad static __thread arena_t *arenas_map;
663 1.1 ad #endif
664 1.1 ad
665 1.1 ad #ifdef MALLOC_STATS
666 1.1 ad /* Chunk statistics. */
667 1.1 ad static chunk_stats_t stats_chunks;
668 1.1 ad #endif
669 1.1 ad
670 1.1 ad /*******************************/
671 1.1 ad /*
672 1.1 ad * Runtime configuration options.
673 1.1 ad */
674 1.1 ad const char *_malloc_options;
675 1.1 ad
676 1.1 ad #ifndef MALLOC_PRODUCTION
677 1.1 ad static bool opt_abort = true;
678 1.1 ad static bool opt_junk = true;
679 1.1 ad #else
680 1.1 ad static bool opt_abort = false;
681 1.1 ad static bool opt_junk = false;
682 1.1 ad #endif
683 1.1 ad static bool opt_hint = false;
684 1.1 ad static bool opt_print_stats = false;
685 1.1 ad static size_t opt_quantum_2pow = QUANTUM_2POW_MIN;
686 1.1 ad static size_t opt_small_max_2pow = SMALL_MAX_2POW_DEFAULT;
687 1.1 ad static size_t opt_chunk_2pow = CHUNK_2POW_DEFAULT;
688 1.1 ad static bool opt_utrace = false;
689 1.1 ad static bool opt_sysv = false;
690 1.1 ad static bool opt_xmalloc = false;
691 1.1 ad static bool opt_zero = false;
692 1.1 ad static int32_t opt_narenas_lshift = 0;
693 1.1 ad
694 1.1 ad typedef struct {
695 1.1 ad void *p;
696 1.1 ad size_t s;
697 1.1 ad void *r;
698 1.1 ad } malloc_utrace_t;
699 1.1 ad
700 1.1 ad #define UTRACE(a, b, c) \
701 1.1 ad if (opt_utrace) { \
702 1.1 ad malloc_utrace_t ut = {a, b, c}; \
703 1.1 ad utrace(&ut, sizeof(ut)); \
704 1.1 ad }
705 1.1 ad
706 1.1 ad /******************************************************************************/
707 1.1 ad /*
708 1.1 ad * Begin function prototypes for non-inline static functions.
709 1.1 ad */
710 1.1 ad
711 1.1 ad static void malloc_mutex_init(malloc_mutex_t *a_mutex);
712 1.1 ad static void wrtmessage(const char *p1, const char *p2, const char *p3,
713 1.1 ad const char *p4);
714 1.1 ad #ifdef MALLOC_STATS
715 1.1 ad static void malloc_printf(const char *format, ...);
716 1.1 ad #endif
717 1.1 ad static char *umax2s(uintmax_t x, char *s);
718 1.1 ad static bool base_pages_alloc(size_t minsize);
719 1.1 ad static void *base_alloc(size_t size);
720 1.1 ad static chunk_node_t *base_chunk_node_alloc(void);
721 1.1 ad static void base_chunk_node_dealloc(chunk_node_t *node);
722 1.1 ad #ifdef MALLOC_STATS
723 1.1 ad static void stats_print(arena_t *arena);
724 1.1 ad #endif
725 1.1 ad static void *pages_map(void *addr, size_t size);
726 1.1 ad static void pages_unmap(void *addr, size_t size);
727 1.1 ad static void *chunk_alloc(size_t size);
728 1.1 ad static void chunk_dealloc(void *chunk, size_t size);
729 1.1 ad #ifndef NO_TLS
730 1.1 ad static arena_t *choose_arena_hard(void);
731 1.1 ad #endif
732 1.1 ad static void arena_run_split(arena_t *arena, arena_run_t *run, size_t size);
733 1.1 ad static arena_chunk_t *arena_chunk_alloc(arena_t *arena);
734 1.1 ad static void arena_chunk_dealloc(arena_t *arena, arena_chunk_t *chunk);
735 1.1 ad static arena_run_t *arena_run_alloc(arena_t *arena, size_t size);
736 1.1 ad static void arena_run_dalloc(arena_t *arena, arena_run_t *run, size_t size);
737 1.1 ad static arena_run_t *arena_bin_nonfull_run_get(arena_t *arena, arena_bin_t *bin);
738 1.1 ad static void *arena_bin_malloc_hard(arena_t *arena, arena_bin_t *bin);
739 1.1 ad static size_t arena_bin_run_size_calc(arena_bin_t *bin, size_t min_run_size);
740 1.1 ad static void *arena_malloc(arena_t *arena, size_t size);
741 1.1 ad static void *arena_palloc(arena_t *arena, size_t alignment, size_t size,
742 1.1 ad size_t alloc_size);
743 1.1 ad static size_t arena_salloc(const void *ptr);
744 1.1 ad static void *arena_ralloc(void *ptr, size_t size, size_t oldsize);
745 1.1 ad static void arena_dalloc(arena_t *arena, arena_chunk_t *chunk, void *ptr);
746 1.1 ad static bool arena_new(arena_t *arena);
747 1.1 ad static arena_t *arenas_extend(unsigned ind);
748 1.1 ad static void *huge_malloc(size_t size);
749 1.1 ad static void *huge_palloc(size_t alignment, size_t size);
750 1.1 ad static void *huge_ralloc(void *ptr, size_t size, size_t oldsize);
751 1.1 ad static void huge_dalloc(void *ptr);
752 1.1 ad static void *imalloc(size_t size);
753 1.1 ad static void *ipalloc(size_t alignment, size_t size);
754 1.1 ad static void *icalloc(size_t size);
755 1.1 ad static size_t isalloc(const void *ptr);
756 1.1 ad static void *iralloc(void *ptr, size_t size);
757 1.1 ad static void idalloc(void *ptr);
758 1.1 ad static void malloc_print_stats(void);
759 1.1 ad static bool malloc_init_hard(void);
760 1.1 ad
761 1.1 ad /*
762 1.1 ad * End function prototypes.
763 1.1 ad */
764 1.1 ad /******************************************************************************/
765 1.1 ad /*
766 1.1 ad * Begin mutex.
767 1.1 ad */
768 1.1 ad
769 1.1 ad static void
770 1.1 ad malloc_mutex_init(malloc_mutex_t *a_mutex)
771 1.1 ad {
772 1.1 ad static const spinlock_t lock = _SPINLOCK_INITIALIZER;
773 1.1 ad
774 1.1 ad a_mutex->lock = lock;
775 1.1 ad }
776 1.1 ad
777 1.1 ad static inline void
778 1.1 ad malloc_mutex_lock(malloc_mutex_t *a_mutex)
779 1.1 ad {
780 1.1 ad
781 1.1 ad if (__isthreaded)
782 1.1 ad _SPINLOCK(&a_mutex->lock);
783 1.1 ad }
784 1.1 ad
785 1.1 ad static inline void
786 1.1 ad malloc_mutex_unlock(malloc_mutex_t *a_mutex)
787 1.1 ad {
788 1.1 ad
789 1.1 ad if (__isthreaded)
790 1.1 ad _SPINUNLOCK(&a_mutex->lock);
791 1.1 ad }
792 1.1 ad
793 1.1 ad /*
794 1.1 ad * End mutex.
795 1.1 ad */
796 1.1 ad /******************************************************************************/
797 1.1 ad /*
798 1.1 ad * Begin Utility functions/macros.
799 1.1 ad */
800 1.1 ad
801 1.1 ad /* Return the chunk address for allocation address a. */
802 1.1 ad #define CHUNK_ADDR2BASE(a) \
803 1.1 ad ((void *)((uintptr_t)(a) & ~chunksize_mask))
804 1.1 ad
805 1.1 ad /* Return the chunk offset of address a. */
806 1.1 ad #define CHUNK_ADDR2OFFSET(a) \
807 1.1 ad ((size_t)((uintptr_t)(a) & chunksize_mask))
808 1.1 ad
809 1.1 ad /* Return the smallest chunk multiple that is >= s. */
810 1.1 ad #define CHUNK_CEILING(s) \
811 1.1 ad (((s) + chunksize_mask) & ~chunksize_mask)
812 1.1 ad
813 1.1 ad /* Return the smallest cacheline multiple that is >= s. */
814 1.1 ad #define CACHELINE_CEILING(s) \
815 1.1 ad (((s) + (CACHELINE - 1)) & ~(CACHELINE - 1))
816 1.1 ad
817 1.1 ad /* Return the smallest quantum multiple that is >= a. */
818 1.1 ad #define QUANTUM_CEILING(a) \
819 1.1 ad (((a) + quantum_mask) & ~quantum_mask)
820 1.1 ad
821 1.1 ad /* Return the smallest pagesize multiple that is >= s. */
822 1.1 ad #define PAGE_CEILING(s) \
823 1.1 ad (((s) + pagesize_mask) & ~pagesize_mask)
824 1.1 ad
825 1.1 ad /* Compute the smallest power of 2 that is >= x. */
826 1.1 ad static inline size_t
827 1.1 ad pow2_ceil(size_t x)
828 1.1 ad {
829 1.1 ad
830 1.1 ad x--;
831 1.1 ad x |= x >> 1;
832 1.1 ad x |= x >> 2;
833 1.1 ad x |= x >> 4;
834 1.1 ad x |= x >> 8;
835 1.1 ad x |= x >> 16;
836 1.1 ad #if (SIZEOF_PTR == 8)
837 1.1 ad x |= x >> 32;
838 1.1 ad #endif
839 1.1 ad x++;
840 1.1 ad return (x);
841 1.1 ad }
842 1.1 ad
843 1.1 ad static void
844 1.1 ad wrtmessage(const char *p1, const char *p2, const char *p3, const char *p4)
845 1.1 ad {
846 1.1 ad
847 1.1 ad _write(STDERR_FILENO, p1, strlen(p1));
848 1.1 ad _write(STDERR_FILENO, p2, strlen(p2));
849 1.1 ad _write(STDERR_FILENO, p3, strlen(p3));
850 1.1 ad _write(STDERR_FILENO, p4, strlen(p4));
851 1.1 ad }
852 1.1 ad
853 1.1 ad void (*_malloc_message)(const char *p1, const char *p2, const char *p3,
854 1.1 ad const char *p4) = wrtmessage;
855 1.1 ad
856 1.1 ad #ifdef MALLOC_STATS
857 1.1 ad /*
858 1.1 ad * Print to stderr in such a way as to (hopefully) avoid memory allocation.
859 1.1 ad */
860 1.1 ad static void
861 1.1 ad malloc_printf(const char *format, ...)
862 1.1 ad {
863 1.1 ad char buf[4096];
864 1.1 ad va_list ap;
865 1.1 ad
866 1.1 ad va_start(ap, format);
867 1.1 ad vsnprintf(buf, sizeof(buf), format, ap);
868 1.1 ad va_end(ap);
869 1.1 ad _malloc_message(buf, "", "", "");
870 1.1 ad }
871 1.1 ad #endif
872 1.1 ad
873 1.1 ad /*
874 1.1 ad * We don't want to depend on vsnprintf() for production builds, since that can
875 1.1 ad * cause unnecessary bloat for static binaries. umax2s() provides minimal
876 1.1 ad * integer printing functionality, so that malloc_printf() use can be limited to
877 1.1 ad * MALLOC_STATS code.
878 1.1 ad */
879 1.1 ad #define UMAX2S_BUFSIZE 21
880 1.1 ad static char *
881 1.1 ad umax2s(uintmax_t x, char *s)
882 1.1 ad {
883 1.1 ad unsigned i;
884 1.1 ad
885 1.1 ad /* Make sure UMAX2S_BUFSIZE is large enough. */
886 1.1 ad assert(sizeof(uintmax_t) <= 8);
887 1.1 ad
888 1.1 ad i = UMAX2S_BUFSIZE - 1;
889 1.1 ad s[i] = '\0';
890 1.1 ad do {
891 1.1 ad i--;
892 1.1 ad s[i] = "0123456789"[x % 10];
893 1.1 ad x /= 10;
894 1.1 ad } while (x > 0);
895 1.1 ad
896 1.1 ad return (&s[i]);
897 1.1 ad }
898 1.1 ad
899 1.1 ad /******************************************************************************/
900 1.1 ad
901 1.1 ad static bool
902 1.1 ad base_pages_alloc(size_t minsize)
903 1.1 ad {
904 1.1 ad size_t csize;
905 1.1 ad
906 1.1 ad #ifdef USE_BRK
907 1.1 ad /*
908 1.1 ad * Do special brk allocation here, since base allocations don't need to
909 1.1 ad * be chunk-aligned.
910 1.1 ad */
911 1.1 ad if (brk_prev != (void *)-1) {
912 1.1 ad void *brk_cur;
913 1.1 ad intptr_t incr;
914 1.1 ad
915 1.1 ad if (minsize != 0)
916 1.1 ad csize = CHUNK_CEILING(minsize);
917 1.1 ad
918 1.1 ad malloc_mutex_lock(&brk_mtx);
919 1.1 ad do {
920 1.1 ad /* Get the current end of brk. */
921 1.1 ad brk_cur = sbrk(0);
922 1.1 ad
923 1.1 ad /*
924 1.1 ad * Calculate how much padding is necessary to
925 1.1 ad * chunk-align the end of brk. Don't worry about
926 1.1 ad * brk_cur not being chunk-aligned though.
927 1.1 ad */
928 1.1 ad incr = (intptr_t)chunksize
929 1.1 ad - (intptr_t)CHUNK_ADDR2OFFSET(brk_cur);
930 1.1 ad if (incr < minsize)
931 1.1 ad incr += csize;
932 1.1 ad
933 1.1 ad brk_prev = sbrk(incr);
934 1.1 ad if (brk_prev == brk_cur) {
935 1.1 ad /* Success. */
936 1.1 ad malloc_mutex_unlock(&brk_mtx);
937 1.1 ad base_pages = brk_cur;
938 1.1 ad base_next_addr = base_pages;
939 1.1 ad base_past_addr = (void *)((uintptr_t)base_pages
940 1.1 ad + incr);
941 1.1 ad #ifdef MALLOC_STATS
942 1.1 ad base_mapped += incr;
943 1.1 ad #endif
944 1.1 ad return (false);
945 1.1 ad }
946 1.1 ad } while (brk_prev != (void *)-1);
947 1.1 ad malloc_mutex_unlock(&brk_mtx);
948 1.1 ad }
949 1.1 ad if (minsize == 0) {
950 1.1 ad /*
951 1.1 ad * Failure during initialization doesn't matter, so avoid
952 1.1 ad * falling through to the mmap-based page mapping code.
953 1.1 ad */
954 1.1 ad return (true);
955 1.1 ad }
956 1.1 ad #endif
957 1.1 ad assert(minsize != 0);
958 1.1 ad csize = PAGE_CEILING(minsize);
959 1.1 ad base_pages = pages_map(NULL, csize);
960 1.1 ad if (base_pages == NULL)
961 1.1 ad return (true);
962 1.1 ad base_next_addr = base_pages;
963 1.1 ad base_past_addr = (void *)((uintptr_t)base_pages + csize);
964 1.1 ad #ifdef MALLOC_STATS
965 1.1 ad base_mapped += csize;
966 1.1 ad #endif
967 1.1 ad return (false);
968 1.1 ad }
969 1.1 ad
970 1.1 ad static void *
971 1.1 ad base_alloc(size_t size)
972 1.1 ad {
973 1.1 ad void *ret;
974 1.1 ad size_t csize;
975 1.1 ad
976 1.1 ad /* Round size up to nearest multiple of the cacheline size. */
977 1.1 ad csize = CACHELINE_CEILING(size);
978 1.1 ad
979 1.1 ad malloc_mutex_lock(&base_mtx);
980 1.1 ad
981 1.1 ad /* Make sure there's enough space for the allocation. */
982 1.1 ad if ((uintptr_t)base_next_addr + csize > (uintptr_t)base_past_addr) {
983 1.1 ad if (base_pages_alloc(csize)) {
984 1.1 ad ret = NULL;
985 1.1 ad goto RETURN;
986 1.1 ad }
987 1.1 ad }
988 1.1 ad
989 1.1 ad /* Allocate. */
990 1.1 ad ret = base_next_addr;
991 1.1 ad base_next_addr = (void *)((uintptr_t)base_next_addr + csize);
992 1.1 ad
993 1.1 ad RETURN:
994 1.1 ad malloc_mutex_unlock(&base_mtx);
995 1.1 ad return (ret);
996 1.1 ad }
997 1.1 ad
998 1.1 ad static chunk_node_t *
999 1.1 ad base_chunk_node_alloc(void)
1000 1.1 ad {
1001 1.1 ad chunk_node_t *ret;
1002 1.1 ad
1003 1.1 ad malloc_mutex_lock(&base_mtx);
1004 1.1 ad if (base_chunk_nodes != NULL) {
1005 1.1 ad ret = base_chunk_nodes;
1006 1.1 ad base_chunk_nodes = *(chunk_node_t **)ret;
1007 1.1 ad malloc_mutex_unlock(&base_mtx);
1008 1.1 ad } else {
1009 1.1 ad malloc_mutex_unlock(&base_mtx);
1010 1.1 ad ret = (chunk_node_t *)base_alloc(sizeof(chunk_node_t));
1011 1.1 ad }
1012 1.1 ad
1013 1.1 ad return (ret);
1014 1.1 ad }
1015 1.1 ad
1016 1.1 ad static void
1017 1.1 ad base_chunk_node_dealloc(chunk_node_t *node)
1018 1.1 ad {
1019 1.1 ad
1020 1.1 ad malloc_mutex_lock(&base_mtx);
1021 1.1 ad *(chunk_node_t **)node = base_chunk_nodes;
1022 1.1 ad base_chunk_nodes = node;
1023 1.1 ad malloc_mutex_unlock(&base_mtx);
1024 1.1 ad }
1025 1.1 ad
1026 1.1 ad /******************************************************************************/
1027 1.1 ad
1028 1.1 ad #ifdef MALLOC_STATS
1029 1.1 ad static void
1030 1.1 ad stats_print(arena_t *arena)
1031 1.1 ad {
1032 1.1 ad unsigned i;
1033 1.1 ad int gap_start;
1034 1.1 ad
1035 1.1 ad malloc_printf(
1036 1.1 ad " allocated/mapped nmalloc ndalloc\n");
1037 1.1 ad malloc_printf("small: %12llu %-12s %12llu %12llu\n",
1038 1.1 ad arena->stats.allocated_small, "", arena->stats.nmalloc_small,
1039 1.1 ad arena->stats.ndalloc_small);
1040 1.1 ad malloc_printf("large: %12llu %-12s %12llu %12llu\n",
1041 1.1 ad arena->stats.allocated_large, "", arena->stats.nmalloc_large,
1042 1.1 ad arena->stats.ndalloc_large);
1043 1.1 ad malloc_printf("total: %12llu/%-12llu %12llu %12llu\n",
1044 1.1 ad arena->stats.allocated_small + arena->stats.allocated_large,
1045 1.1 ad arena->stats.mapped,
1046 1.1 ad arena->stats.nmalloc_small + arena->stats.nmalloc_large,
1047 1.1 ad arena->stats.ndalloc_small + arena->stats.ndalloc_large);
1048 1.1 ad
1049 1.1 ad malloc_printf("bins: bin size regs pgs requests newruns"
1050 1.1 ad " reruns maxruns curruns\n");
1051 1.1 ad for (i = 0, gap_start = -1; i < ntbins + nqbins + nsbins; i++) {
1052 1.1 ad if (arena->bins[i].stats.nrequests == 0) {
1053 1.1 ad if (gap_start == -1)
1054 1.1 ad gap_start = i;
1055 1.1 ad } else {
1056 1.1 ad if (gap_start != -1) {
1057 1.1 ad if (i > gap_start + 1) {
1058 1.1 ad /* Gap of more than one size class. */
1059 1.1 ad malloc_printf("[%u..%u]\n",
1060 1.1 ad gap_start, i - 1);
1061 1.1 ad } else {
1062 1.1 ad /* Gap of one size class. */
1063 1.1 ad malloc_printf("[%u]\n", gap_start);
1064 1.1 ad }
1065 1.1 ad gap_start = -1;
1066 1.1 ad }
1067 1.1 ad malloc_printf(
1068 1.1 ad "%13u %1s %4u %4u %3u %9llu %9llu"
1069 1.1 ad " %9llu %7lu %7lu\n",
1070 1.1 ad i,
1071 1.1 ad i < ntbins ? "T" : i < ntbins + nqbins ? "Q" : "S",
1072 1.1 ad arena->bins[i].reg_size,
1073 1.1 ad arena->bins[i].nregs,
1074 1.1 ad arena->bins[i].run_size >> pagesize_2pow,
1075 1.1 ad arena->bins[i].stats.nrequests,
1076 1.1 ad arena->bins[i].stats.nruns,
1077 1.1 ad arena->bins[i].stats.reruns,
1078 1.1 ad arena->bins[i].stats.highruns,
1079 1.1 ad arena->bins[i].stats.curruns);
1080 1.1 ad }
1081 1.1 ad }
1082 1.1 ad if (gap_start != -1) {
1083 1.1 ad if (i > gap_start + 1) {
1084 1.1 ad /* Gap of more than one size class. */
1085 1.1 ad malloc_printf("[%u..%u]\n", gap_start, i - 1);
1086 1.1 ad } else {
1087 1.1 ad /* Gap of one size class. */
1088 1.1 ad malloc_printf("[%u]\n", gap_start);
1089 1.1 ad }
1090 1.1 ad }
1091 1.1 ad }
1092 1.1 ad #endif
1093 1.1 ad
1094 1.1 ad /*
1095 1.1 ad * End Utility functions/macros.
1096 1.1 ad */
1097 1.1 ad /******************************************************************************/
1098 1.1 ad /*
1099 1.1 ad * Begin chunk management functions.
1100 1.1 ad */
1101 1.1 ad
1102 1.1 ad static inline int
1103 1.1 ad chunk_comp(chunk_node_t *a, chunk_node_t *b)
1104 1.1 ad {
1105 1.1 ad
1106 1.1 ad assert(a != NULL);
1107 1.1 ad assert(b != NULL);
1108 1.1 ad
1109 1.1 ad if ((uintptr_t)a->chunk < (uintptr_t)b->chunk)
1110 1.1 ad return (-1);
1111 1.1 ad else if (a->chunk == b->chunk)
1112 1.1 ad return (0);
1113 1.1 ad else
1114 1.1 ad return (1);
1115 1.1 ad }
1116 1.1 ad
1117 1.1 ad /* Generate red-black tree code for chunks. */
1118 1.1 ad RB_GENERATE_STATIC(chunk_tree_s, chunk_node_s, link, chunk_comp);
1119 1.1 ad
1120 1.1 ad static void *
1121 1.1 ad pages_map(void *addr, size_t size)
1122 1.1 ad {
1123 1.1 ad void *ret;
1124 1.1 ad
1125 1.1 ad /*
1126 1.1 ad * We don't use MAP_FIXED here, because it can cause the *replacement*
1127 1.1 ad * of existing mappings, and we only want to create new mappings.
1128 1.1 ad */
1129 1.1 ad ret = mmap(addr, size, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANON,
1130 1.1 ad -1, 0);
1131 1.1 ad assert(ret != NULL);
1132 1.1 ad
1133 1.1 ad if (ret == MAP_FAILED)
1134 1.1 ad ret = NULL;
1135 1.1 ad else if (addr != NULL && ret != addr) {
1136 1.1 ad /*
1137 1.1 ad * We succeeded in mapping memory, but not in the right place.
1138 1.1 ad */
1139 1.1 ad if (munmap(ret, size) == -1) {
1140 1.1 ad char buf[STRERROR_BUF];
1141 1.1 ad
1142 1.1 ad strerror_r(errno, buf, sizeof(buf));
1143 1.1 ad _malloc_message(_getprogname(),
1144 1.1 ad ": (malloc) Error in munmap(): ", buf, "\n");
1145 1.1 ad if (opt_abort)
1146 1.1 ad abort();
1147 1.1 ad }
1148 1.1 ad ret = NULL;
1149 1.1 ad }
1150 1.1 ad
1151 1.1 ad assert(ret == NULL || (addr == NULL && ret != addr)
1152 1.1 ad || (addr != NULL && ret == addr));
1153 1.1 ad return (ret);
1154 1.1 ad }
1155 1.1 ad
1156 1.1 ad static void
1157 1.1 ad pages_unmap(void *addr, size_t size)
1158 1.1 ad {
1159 1.1 ad
1160 1.1 ad if (munmap(addr, size) == -1) {
1161 1.1 ad char buf[STRERROR_BUF];
1162 1.1 ad
1163 1.1 ad strerror_r(errno, buf, sizeof(buf));
1164 1.1 ad _malloc_message(_getprogname(),
1165 1.1 ad ": (malloc) Error in munmap(): ", buf, "\n");
1166 1.1 ad if (opt_abort)
1167 1.1 ad abort();
1168 1.1 ad }
1169 1.1 ad }
1170 1.1 ad
1171 1.1 ad static void *
1172 1.1 ad chunk_alloc(size_t size)
1173 1.1 ad {
1174 1.1 ad void *ret, *chunk;
1175 1.1 ad chunk_node_t *tchunk, *delchunk;
1176 1.1 ad
1177 1.1 ad assert(size != 0);
1178 1.1 ad assert((size & chunksize_mask) == 0);
1179 1.1 ad
1180 1.1 ad malloc_mutex_lock(&chunks_mtx);
1181 1.1 ad
1182 1.1 ad if (size == chunksize) {
1183 1.1 ad /*
1184 1.1 ad * Check for address ranges that were previously chunks and try
1185 1.1 ad * to use them.
1186 1.1 ad */
1187 1.1 ad
1188 1.1 ad tchunk = RB_MIN(chunk_tree_s, &old_chunks);
1189 1.1 ad while (tchunk != NULL) {
1190 1.1 ad /* Found an address range. Try to recycle it. */
1191 1.1 ad
1192 1.1 ad chunk = tchunk->chunk;
1193 1.1 ad delchunk = tchunk;
1194 1.1 ad tchunk = RB_NEXT(chunk_tree_s, &old_chunks, delchunk);
1195 1.1 ad
1196 1.1 ad /* Remove delchunk from the tree. */
1197 1.1 ad RB_REMOVE(chunk_tree_s, &old_chunks, delchunk);
1198 1.1 ad base_chunk_node_dealloc(delchunk);
1199 1.1 ad
1200 1.1 ad #ifdef USE_BRK
1201 1.1 ad if ((uintptr_t)chunk >= (uintptr_t)brk_base
1202 1.1 ad && (uintptr_t)chunk < (uintptr_t)brk_max) {
1203 1.1 ad /* Re-use a previously freed brk chunk. */
1204 1.1 ad ret = chunk;
1205 1.1 ad goto RETURN;
1206 1.1 ad }
1207 1.1 ad #endif
1208 1.1 ad if ((ret = pages_map(chunk, size)) != NULL) {
1209 1.1 ad /* Success. */
1210 1.1 ad goto RETURN;
1211 1.1 ad }
1212 1.1 ad }
1213 1.1 ad }
1214 1.1 ad
1215 1.1 ad /*
1216 1.1 ad * Try to over-allocate, but allow the OS to place the allocation
1217 1.1 ad * anywhere. Beware of size_t wrap-around.
1218 1.1 ad */
1219 1.1 ad if (size + chunksize > size) {
1220 1.1 ad if ((ret = pages_map(NULL, size + chunksize)) != NULL) {
1221 1.1 ad size_t offset = CHUNK_ADDR2OFFSET(ret);
1222 1.1 ad
1223 1.1 ad /*
1224 1.1 ad * Success. Clean up unneeded leading/trailing space.
1225 1.1 ad */
1226 1.1 ad if (offset != 0) {
1227 1.1 ad /* Leading space. */
1228 1.1 ad pages_unmap(ret, chunksize - offset);
1229 1.1 ad
1230 1.1 ad ret = (void *)((uintptr_t)ret + (chunksize -
1231 1.1 ad offset));
1232 1.1 ad
1233 1.1 ad /* Trailing space. */
1234 1.1 ad pages_unmap((void *)((uintptr_t)ret + size),
1235 1.1 ad offset);
1236 1.1 ad } else {
1237 1.1 ad /* Trailing space only. */
1238 1.1 ad pages_unmap((void *)((uintptr_t)ret + size),
1239 1.1 ad chunksize);
1240 1.1 ad }
1241 1.1 ad goto RETURN;
1242 1.1 ad }
1243 1.1 ad }
1244 1.1 ad
1245 1.1 ad #ifdef USE_BRK
1246 1.1 ad /*
1247 1.1 ad * Try to create allocations in brk, in order to make full use of
1248 1.1 ad * limited address space.
1249 1.1 ad */
1250 1.1 ad if (brk_prev != (void *)-1) {
1251 1.1 ad void *brk_cur;
1252 1.1 ad intptr_t incr;
1253 1.1 ad
1254 1.1 ad /*
1255 1.1 ad * The loop is necessary to recover from races with other
1256 1.1 ad * threads that are using brk for something other than malloc.
1257 1.1 ad */
1258 1.1 ad malloc_mutex_lock(&brk_mtx);
1259 1.1 ad do {
1260 1.1 ad /* Get the current end of brk. */
1261 1.1 ad brk_cur = sbrk(0);
1262 1.1 ad
1263 1.1 ad /*
1264 1.1 ad * Calculate how much padding is necessary to
1265 1.1 ad * chunk-align the end of brk.
1266 1.1 ad */
1267 1.1 ad incr = (intptr_t)size
1268 1.1 ad - (intptr_t)CHUNK_ADDR2OFFSET(brk_cur);
1269 1.1 ad if (incr == size) {
1270 1.1 ad ret = brk_cur;
1271 1.1 ad } else {
1272 1.1 ad ret = (void *)((intptr_t)brk_cur + incr);
1273 1.1 ad incr += size;
1274 1.1 ad }
1275 1.1 ad
1276 1.1 ad brk_prev = sbrk(incr);
1277 1.1 ad if (brk_prev == brk_cur) {
1278 1.1 ad /* Success. */
1279 1.1 ad malloc_mutex_unlock(&brk_mtx);
1280 1.1 ad brk_max = (void *)((intptr_t)ret + size);
1281 1.1 ad goto RETURN;
1282 1.1 ad }
1283 1.1 ad } while (brk_prev != (void *)-1);
1284 1.1 ad malloc_mutex_unlock(&brk_mtx);
1285 1.1 ad }
1286 1.1 ad #endif
1287 1.1 ad
1288 1.1 ad /* All strategies for allocation failed. */
1289 1.1 ad ret = NULL;
1290 1.1 ad RETURN:
1291 1.1 ad if (ret != NULL) {
1292 1.1 ad chunk_node_t key;
1293 1.1 ad /*
1294 1.1 ad * Clean out any entries in old_chunks that overlap with the
1295 1.1 ad * memory we just allocated.
1296 1.1 ad */
1297 1.1 ad key.chunk = ret;
1298 1.1 ad tchunk = RB_NFIND(chunk_tree_s, &old_chunks, &key);
1299 1.1 ad while (tchunk != NULL
1300 1.1 ad && (uintptr_t)tchunk->chunk >= (uintptr_t)ret
1301 1.1 ad && (uintptr_t)tchunk->chunk < (uintptr_t)ret + size) {
1302 1.1 ad delchunk = tchunk;
1303 1.1 ad tchunk = RB_NEXT(chunk_tree_s, &old_chunks, delchunk);
1304 1.1 ad RB_REMOVE(chunk_tree_s, &old_chunks, delchunk);
1305 1.1 ad base_chunk_node_dealloc(delchunk);
1306 1.1 ad }
1307 1.1 ad
1308 1.1 ad }
1309 1.1 ad #ifdef MALLOC_STATS
1310 1.1 ad if (ret != NULL) {
1311 1.1 ad stats_chunks.nchunks += (size / chunksize);
1312 1.1 ad stats_chunks.curchunks += (size / chunksize);
1313 1.1 ad }
1314 1.1 ad if (stats_chunks.curchunks > stats_chunks.highchunks)
1315 1.1 ad stats_chunks.highchunks = stats_chunks.curchunks;
1316 1.1 ad #endif
1317 1.1 ad malloc_mutex_unlock(&chunks_mtx);
1318 1.1 ad
1319 1.1 ad assert(CHUNK_ADDR2BASE(ret) == ret);
1320 1.1 ad return (ret);
1321 1.1 ad }
1322 1.1 ad
1323 1.1 ad static void
1324 1.1 ad chunk_dealloc(void *chunk, size_t size)
1325 1.1 ad {
1326 1.1 ad chunk_node_t *node;
1327 1.1 ad
1328 1.1 ad assert(chunk != NULL);
1329 1.1 ad assert(CHUNK_ADDR2BASE(chunk) == chunk);
1330 1.1 ad assert(size != 0);
1331 1.1 ad assert((size & chunksize_mask) == 0);
1332 1.1 ad
1333 1.1 ad malloc_mutex_lock(&chunks_mtx);
1334 1.1 ad
1335 1.1 ad #ifdef USE_BRK
1336 1.1 ad if ((uintptr_t)chunk >= (uintptr_t)brk_base
1337 1.1 ad && (uintptr_t)chunk < (uintptr_t)brk_max) {
1338 1.1 ad void *brk_cur;
1339 1.1 ad
1340 1.1 ad malloc_mutex_lock(&brk_mtx);
1341 1.1 ad /* Get the current end of brk. */
1342 1.1 ad brk_cur = sbrk(0);
1343 1.1 ad
1344 1.1 ad /*
1345 1.1 ad * Try to shrink the data segment if this chunk is at the end
1346 1.1 ad * of the data segment. The sbrk() call here is subject to a
1347 1.1 ad * race condition with threads that use brk(2) or sbrk(2)
1348 1.1 ad * directly, but the alternative would be to leak memory for
1349 1.1 ad * the sake of poorly designed multi-threaded programs.
1350 1.1 ad */
1351 1.1 ad if (brk_cur == brk_max
1352 1.1 ad && (void *)((uintptr_t)chunk + size) == brk_max
1353 1.1 ad && sbrk(-(intptr_t)size) == brk_max) {
1354 1.1 ad malloc_mutex_unlock(&brk_mtx);
1355 1.1 ad if (brk_prev == brk_max) {
1356 1.1 ad /* Success. */
1357 1.1 ad brk_prev = (void *)((intptr_t)brk_max
1358 1.1 ad - (intptr_t)size);
1359 1.1 ad brk_max = brk_prev;
1360 1.1 ad }
1361 1.1 ad } else {
1362 1.1 ad size_t offset;
1363 1.1 ad
1364 1.1 ad malloc_mutex_unlock(&brk_mtx);
1365 1.1 ad madvise(chunk, size, MADV_FREE);
1366 1.1 ad
1367 1.1 ad /*
1368 1.1 ad * Iteratively create records of each chunk-sized
1369 1.1 ad * memory region that 'chunk' is comprised of, so that
1370 1.1 ad * the address range can be recycled if memory usage
1371 1.1 ad * increases later on.
1372 1.1 ad */
1373 1.1 ad for (offset = 0; offset < size; offset += chunksize) {
1374 1.1 ad node = base_chunk_node_alloc();
1375 1.1 ad if (node == NULL)
1376 1.1 ad break;
1377 1.1 ad
1378 1.1 ad node->chunk = (void *)((uintptr_t)chunk
1379 1.1 ad + (uintptr_t)offset);
1380 1.1 ad node->size = chunksize;
1381 1.1 ad RB_INSERT(chunk_tree_s, &old_chunks, node);
1382 1.1 ad }
1383 1.1 ad }
1384 1.1 ad } else {
1385 1.1 ad #endif
1386 1.1 ad pages_unmap(chunk, size);
1387 1.1 ad
1388 1.1 ad /*
1389 1.1 ad * Make a record of the chunk's address, so that the address
1390 1.1 ad * range can be recycled if memory usage increases later on.
1391 1.1 ad * Don't bother to create entries if (size > chunksize), since
1392 1.1 ad * doing so could cause scalability issues for truly gargantuan
1393 1.1 ad * objects (many gigabytes or larger).
1394 1.1 ad */
1395 1.1 ad if (size == chunksize) {
1396 1.1 ad node = base_chunk_node_alloc();
1397 1.1 ad if (node != NULL) {
1398 1.1 ad node->chunk = (void *)(uintptr_t)chunk;
1399 1.1 ad node->size = chunksize;
1400 1.1 ad RB_INSERT(chunk_tree_s, &old_chunks, node);
1401 1.1 ad }
1402 1.1 ad }
1403 1.1 ad #ifdef USE_BRK
1404 1.1 ad }
1405 1.1 ad #endif
1406 1.1 ad
1407 1.1 ad #ifdef MALLOC_STATS
1408 1.1 ad stats_chunks.curchunks -= (size / chunksize);
1409 1.1 ad #endif
1410 1.1 ad malloc_mutex_unlock(&chunks_mtx);
1411 1.1 ad }
1412 1.1 ad
1413 1.1 ad /*
1414 1.1 ad * End chunk management functions.
1415 1.1 ad */
1416 1.1 ad /******************************************************************************/
1417 1.1 ad /*
1418 1.1 ad * Begin arena.
1419 1.1 ad */
1420 1.1 ad
1421 1.1 ad /*
1422 1.1 ad * Choose an arena based on a per-thread value (fast-path code, calls slow-path
1423 1.1 ad * code if necessary).
1424 1.1 ad */
1425 1.1 ad static inline arena_t *
1426 1.1 ad choose_arena(void)
1427 1.1 ad {
1428 1.1 ad arena_t *ret;
1429 1.1 ad
1430 1.1 ad /*
1431 1.1 ad * We can only use TLS if this is a PIC library, since for the static
1432 1.1 ad * library version, libc's malloc is used by TLS allocation, which
1433 1.1 ad * introduces a bootstrapping issue.
1434 1.1 ad */
1435 1.1 ad #ifndef NO_TLS
1436 1.1 ad if (__isthreaded == false) {
1437 1.1 ad /*
1438 1.1 ad * Avoid the overhead of TLS for single-threaded operation. If the
1439 1.1 ad * app switches to threaded mode, the initial thread may end up
1440 1.1 ad * being assigned to some other arena, but this one-time switch
1441 1.1 ad * shouldn't cause significant issues.
1442 1.1 ad */
1443 1.1 ad return (arenas[0]);
1444 1.1 ad }
1445 1.1 ad
1446 1.1 ad ret = arenas_map;
1447 1.1 ad if (ret == NULL)
1448 1.1 ad ret = choose_arena_hard();
1449 1.1 ad #else
1450 1.1 ad if (__isthreaded) {
1451 1.1 ad unsigned long ind;
1452 1.1 ad
1453 1.1 ad /*
1454 1.1 ad * Hash _pthread_self() to one of the arenas. There is a prime
1455 1.1 ad * number of arenas, so this has a reasonable chance of
1456 1.1 ad * working. Even so, the hashing can be easily thwarted by
1457 1.1 ad * inconvenient _pthread_self() values. Without specific
1458 1.1 ad * knowledge of how _pthread_self() calculates values, we can't
1459 1.1 ad * easily do much better than this.
1460 1.1 ad */
1461 1.1 ad ind = (unsigned long) _pthread_self() % narenas;
1462 1.1 ad
1463 1.1 ad /*
1464 1.1 ad * Optimistially assume that arenas[ind] has been initialized.
1465 1.1 ad * At worst, we find out that some other thread has already
1466 1.1 ad * done so, after acquiring the lock in preparation. Note that
1467 1.1 ad * this lazy locking also has the effect of lazily forcing
1468 1.1 ad * cache coherency; without the lock acquisition, there's no
1469 1.1 ad * guarantee that modification of arenas[ind] by another thread
1470 1.1 ad * would be seen on this CPU for an arbitrary amount of time.
1471 1.1 ad *
1472 1.1 ad * In general, this approach to modifying a synchronized value
1473 1.1 ad * isn't a good idea, but in this case we only ever modify the
1474 1.1 ad * value once, so things work out well.
1475 1.1 ad */
1476 1.1 ad ret = arenas[ind];
1477 1.1 ad if (ret == NULL) {
1478 1.1 ad /*
1479 1.1 ad * Avoid races with another thread that may have already
1480 1.1 ad * initialized arenas[ind].
1481 1.1 ad */
1482 1.1 ad malloc_mutex_lock(&arenas_mtx);
1483 1.1 ad if (arenas[ind] == NULL)
1484 1.1 ad ret = arenas_extend((unsigned)ind);
1485 1.1 ad else
1486 1.1 ad ret = arenas[ind];
1487 1.1 ad malloc_mutex_unlock(&arenas_mtx);
1488 1.1 ad }
1489 1.1 ad } else
1490 1.1 ad ret = arenas[0];
1491 1.1 ad #endif
1492 1.1 ad
1493 1.1 ad assert(ret != NULL);
1494 1.1 ad return (ret);
1495 1.1 ad }
1496 1.1 ad
1497 1.1 ad #ifndef NO_TLS
1498 1.1 ad /*
1499 1.1 ad * Choose an arena based on a per-thread value (slow-path code only, called
1500 1.1 ad * only by choose_arena()).
1501 1.1 ad */
1502 1.1 ad static arena_t *
1503 1.1 ad choose_arena_hard(void)
1504 1.1 ad {
1505 1.1 ad arena_t *ret;
1506 1.1 ad
1507 1.1 ad assert(__isthreaded);
1508 1.1 ad
1509 1.1 ad /* Assign one of the arenas to this thread, in a round-robin fashion. */
1510 1.1 ad malloc_mutex_lock(&arenas_mtx);
1511 1.1 ad ret = arenas[next_arena];
1512 1.1 ad if (ret == NULL)
1513 1.1 ad ret = arenas_extend(next_arena);
1514 1.1 ad if (ret == NULL) {
1515 1.1 ad /*
1516 1.1 ad * Make sure that this function never returns NULL, so that
1517 1.1 ad * choose_arena() doesn't have to check for a NULL return
1518 1.1 ad * value.
1519 1.1 ad */
1520 1.1 ad ret = arenas[0];
1521 1.1 ad }
1522 1.1 ad next_arena = (next_arena + 1) % narenas;
1523 1.1 ad malloc_mutex_unlock(&arenas_mtx);
1524 1.1 ad arenas_map = ret;
1525 1.1 ad
1526 1.1 ad return (ret);
1527 1.1 ad }
1528 1.1 ad #endif
1529 1.1 ad
1530 1.1 ad static inline int
1531 1.1 ad arena_chunk_comp(arena_chunk_t *a, arena_chunk_t *b)
1532 1.1 ad {
1533 1.1 ad
1534 1.1 ad assert(a != NULL);
1535 1.1 ad assert(b != NULL);
1536 1.1 ad
1537 1.1 ad if ((uintptr_t)a < (uintptr_t)b)
1538 1.1 ad return (-1);
1539 1.1 ad else if (a == b)
1540 1.1 ad return (0);
1541 1.1 ad else
1542 1.1 ad return (1);
1543 1.1 ad }
1544 1.1 ad
1545 1.1 ad /* Generate red-black tree code for arena chunks. */
1546 1.1 ad RB_GENERATE_STATIC(arena_chunk_tree_s, arena_chunk_s, link, arena_chunk_comp);
1547 1.1 ad
1548 1.1 ad static inline int
1549 1.1 ad arena_run_comp(arena_run_t *a, arena_run_t *b)
1550 1.1 ad {
1551 1.1 ad
1552 1.1 ad assert(a != NULL);
1553 1.1 ad assert(b != NULL);
1554 1.1 ad
1555 1.1 ad if ((uintptr_t)a < (uintptr_t)b)
1556 1.1 ad return (-1);
1557 1.1 ad else if (a == b)
1558 1.1 ad return (0);
1559 1.1 ad else
1560 1.1 ad return (1);
1561 1.1 ad }
1562 1.1 ad
1563 1.1 ad /* Generate red-black tree code for arena runs. */
1564 1.1 ad RB_GENERATE_STATIC(arena_run_tree_s, arena_run_s, link, arena_run_comp);
1565 1.1 ad
1566 1.1 ad static inline void *
1567 1.1 ad arena_run_reg_alloc(arena_run_t *run, arena_bin_t *bin)
1568 1.1 ad {
1569 1.1 ad void *ret;
1570 1.1 ad unsigned i, mask, bit, regind;
1571 1.1 ad
1572 1.1 ad assert(run->magic == ARENA_RUN_MAGIC);
1573 1.1 ad assert(run->regs_minelm < bin->regs_mask_nelms);
1574 1.1 ad
1575 1.1 ad /*
1576 1.1 ad * Move the first check outside the loop, so that run->regs_minelm can
1577 1.1 ad * be updated unconditionally, without the possibility of updating it
1578 1.1 ad * multiple times.
1579 1.1 ad */
1580 1.1 ad i = run->regs_minelm;
1581 1.1 ad mask = run->regs_mask[i];
1582 1.1 ad if (mask != 0) {
1583 1.1 ad /* Usable allocation found. */
1584 1.1 ad bit = ffs((int)mask) - 1;
1585 1.1 ad
1586 1.1 ad regind = ((i << (SIZEOF_INT_2POW + 3)) + bit);
1587 1.1 ad ret = (void *)(((uintptr_t)run) + bin->reg0_offset
1588 1.1 ad + (bin->reg_size * regind));
1589 1.1 ad
1590 1.1 ad /* Clear bit. */
1591 1.1 ad mask ^= (1 << bit);
1592 1.1 ad run->regs_mask[i] = mask;
1593 1.1 ad
1594 1.1 ad return (ret);
1595 1.1 ad }
1596 1.1 ad
1597 1.1 ad for (i++; i < bin->regs_mask_nelms; i++) {
1598 1.1 ad mask = run->regs_mask[i];
1599 1.1 ad if (mask != 0) {
1600 1.1 ad /* Usable allocation found. */
1601 1.1 ad bit = ffs((int)mask) - 1;
1602 1.1 ad
1603 1.1 ad regind = ((i << (SIZEOF_INT_2POW + 3)) + bit);
1604 1.1 ad ret = (void *)(((uintptr_t)run) + bin->reg0_offset
1605 1.1 ad + (bin->reg_size * regind));
1606 1.1 ad
1607 1.1 ad /* Clear bit. */
1608 1.1 ad mask ^= (1 << bit);
1609 1.1 ad run->regs_mask[i] = mask;
1610 1.1 ad
1611 1.1 ad /*
1612 1.1 ad * Make a note that nothing before this element
1613 1.1 ad * contains a free region.
1614 1.1 ad */
1615 1.1 ad run->regs_minelm = i; /* Low payoff: + (mask == 0); */
1616 1.1 ad
1617 1.1 ad return (ret);
1618 1.1 ad }
1619 1.1 ad }
1620 1.1 ad /* Not reached. */
1621 1.1 ad assert(0);
1622 1.1 ad return (NULL);
1623 1.1 ad }
1624 1.1 ad
1625 1.1 ad static inline void
1626 1.1 ad arena_run_reg_dalloc(arena_run_t *run, arena_bin_t *bin, void *ptr, size_t size)
1627 1.1 ad {
1628 1.1 ad /*
1629 1.1 ad * To divide by a number D that is not a power of two we multiply
1630 1.1 ad * by (2^21 / D) and then right shift by 21 positions.
1631 1.1 ad *
1632 1.1 ad * X / D
1633 1.1 ad *
1634 1.1 ad * becomes
1635 1.1 ad *
1636 1.1 ad * (X * size_invs[(D >> QUANTUM_2POW_MIN) - 3]) >> SIZE_INV_SHIFT
1637 1.1 ad */
1638 1.1 ad #define SIZE_INV_SHIFT 21
1639 1.1 ad #define SIZE_INV(s) (((1 << SIZE_INV_SHIFT) / (s << QUANTUM_2POW_MIN)) + 1)
1640 1.1 ad static const unsigned size_invs[] = {
1641 1.1 ad SIZE_INV(3),
1642 1.1 ad SIZE_INV(4), SIZE_INV(5), SIZE_INV(6), SIZE_INV(7),
1643 1.1 ad SIZE_INV(8), SIZE_INV(9), SIZE_INV(10), SIZE_INV(11),
1644 1.1 ad SIZE_INV(12),SIZE_INV(13), SIZE_INV(14), SIZE_INV(15),
1645 1.1 ad SIZE_INV(16),SIZE_INV(17), SIZE_INV(18), SIZE_INV(19),
1646 1.1 ad SIZE_INV(20),SIZE_INV(21), SIZE_INV(22), SIZE_INV(23),
1647 1.1 ad SIZE_INV(24),SIZE_INV(25), SIZE_INV(26), SIZE_INV(27),
1648 1.1 ad SIZE_INV(28),SIZE_INV(29), SIZE_INV(30), SIZE_INV(31)
1649 1.1 ad #if (QUANTUM_2POW_MIN < 4)
1650 1.1 ad ,
1651 1.1 ad SIZE_INV(32), SIZE_INV(33), SIZE_INV(34), SIZE_INV(35),
1652 1.1 ad SIZE_INV(36), SIZE_INV(37), SIZE_INV(38), SIZE_INV(39),
1653 1.1 ad SIZE_INV(40), SIZE_INV(41), SIZE_INV(42), SIZE_INV(43),
1654 1.1 ad SIZE_INV(44), SIZE_INV(45), SIZE_INV(46), SIZE_INV(47),
1655 1.1 ad SIZE_INV(48), SIZE_INV(49), SIZE_INV(50), SIZE_INV(51),
1656 1.1 ad SIZE_INV(52), SIZE_INV(53), SIZE_INV(54), SIZE_INV(55),
1657 1.1 ad SIZE_INV(56), SIZE_INV(57), SIZE_INV(58), SIZE_INV(59),
1658 1.1 ad SIZE_INV(60), SIZE_INV(61), SIZE_INV(62), SIZE_INV(63)
1659 1.1 ad #endif
1660 1.1 ad };
1661 1.1 ad unsigned diff, regind, elm, bit;
1662 1.1 ad
1663 1.1 ad assert(run->magic == ARENA_RUN_MAGIC);
1664 1.1 ad assert(((sizeof(size_invs)) / sizeof(unsigned)) + 3
1665 1.1 ad >= (SMALL_MAX_DEFAULT >> QUANTUM_2POW_MIN));
1666 1.1 ad
1667 1.1 ad /*
1668 1.1 ad * Avoid doing division with a variable divisor if possible. Using
1669 1.1 ad * actual division here can reduce allocator throughput by over 20%!
1670 1.1 ad */
1671 1.1 ad diff = (unsigned)((uintptr_t)ptr - (uintptr_t)run - bin->reg0_offset);
1672 1.1 ad if ((size & (size - 1)) == 0) {
1673 1.1 ad /*
1674 1.1 ad * log2_table allows fast division of a power of two in the
1675 1.1 ad * [1..128] range.
1676 1.1 ad *
1677 1.1 ad * (x / divisor) becomes (x >> log2_table[divisor - 1]).
1678 1.1 ad */
1679 1.1 ad static const unsigned char log2_table[] = {
1680 1.1 ad 0, 1, 0, 2, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 4,
1681 1.1 ad 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5,
1682 1.1 ad 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1683 1.1 ad 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6,
1684 1.1 ad 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1685 1.1 ad 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1686 1.1 ad 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1687 1.1 ad 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7
1688 1.1 ad };
1689 1.1 ad
1690 1.1 ad if (size <= 128)
1691 1.1 ad regind = (diff >> log2_table[size - 1]);
1692 1.1 ad else if (size <= 32768)
1693 1.1 ad regind = diff >> (8 + log2_table[(size >> 8) - 1]);
1694 1.1 ad else {
1695 1.1 ad /*
1696 1.1 ad * The page size is too large for us to use the lookup
1697 1.1 ad * table. Use real division.
1698 1.1 ad */
1699 1.1 ad regind = diff / size;
1700 1.1 ad }
1701 1.1 ad } else if (size <= ((sizeof(size_invs) / sizeof(unsigned))
1702 1.1 ad << QUANTUM_2POW_MIN) + 2) {
1703 1.1 ad regind = size_invs[(size >> QUANTUM_2POW_MIN) - 3] * diff;
1704 1.1 ad regind >>= SIZE_INV_SHIFT;
1705 1.1 ad } else {
1706 1.1 ad /*
1707 1.1 ad * size_invs isn't large enough to handle this size class, so
1708 1.1 ad * calculate regind using actual division. This only happens
1709 1.1 ad * if the user increases small_max via the 'S' runtime
1710 1.1 ad * configuration option.
1711 1.1 ad */
1712 1.1 ad regind = diff / size;
1713 1.1 ad };
1714 1.1 ad assert(diff == regind * size);
1715 1.1 ad assert(regind < bin->nregs);
1716 1.1 ad
1717 1.1 ad elm = regind >> (SIZEOF_INT_2POW + 3);
1718 1.1 ad if (elm < run->regs_minelm)
1719 1.1 ad run->regs_minelm = elm;
1720 1.1 ad bit = regind - (elm << (SIZEOF_INT_2POW + 3));
1721 1.1 ad assert((run->regs_mask[elm] & (1 << bit)) == 0);
1722 1.1 ad run->regs_mask[elm] |= (1 << bit);
1723 1.1 ad #undef SIZE_INV
1724 1.1 ad #undef SIZE_INV_SHIFT
1725 1.1 ad }
1726 1.1 ad
1727 1.1 ad static void
1728 1.1 ad arena_run_split(arena_t *arena, arena_run_t *run, size_t size)
1729 1.1 ad {
1730 1.1 ad arena_chunk_t *chunk;
1731 1.1 ad unsigned run_ind, map_offset, total_pages, need_pages, rem_pages;
1732 1.1 ad unsigned i;
1733 1.1 ad
1734 1.1 ad chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(run);
1735 1.1 ad run_ind = (unsigned)(((uintptr_t)run - (uintptr_t)chunk)
1736 1.1 ad >> pagesize_2pow);
1737 1.1 ad total_pages = chunk->map[run_ind].npages;
1738 1.1 ad need_pages = (size >> pagesize_2pow);
1739 1.1 ad assert(need_pages <= total_pages);
1740 1.1 ad rem_pages = total_pages - need_pages;
1741 1.1 ad
1742 1.1 ad /* Split enough pages from the front of run to fit allocation size. */
1743 1.1 ad map_offset = run_ind;
1744 1.1 ad for (i = 0; i < need_pages; i++) {
1745 1.1 ad chunk->map[map_offset + i].npages = need_pages;
1746 1.1 ad chunk->map[map_offset + i].pos = i;
1747 1.1 ad }
1748 1.1 ad
1749 1.1 ad /* Keep track of trailing unused pages for later use. */
1750 1.1 ad if (rem_pages > 0) {
1751 1.1 ad /* Update map for trailing pages. */
1752 1.1 ad map_offset += need_pages;
1753 1.1 ad chunk->map[map_offset].npages = rem_pages;
1754 1.1 ad chunk->map[map_offset].pos = POS_FREE;
1755 1.1 ad chunk->map[map_offset + rem_pages - 1].npages = rem_pages;
1756 1.1 ad chunk->map[map_offset + rem_pages - 1].pos = POS_FREE;
1757 1.1 ad }
1758 1.1 ad
1759 1.1 ad chunk->pages_used += need_pages;
1760 1.1 ad }
1761 1.1 ad
1762 1.1 ad static arena_chunk_t *
1763 1.1 ad arena_chunk_alloc(arena_t *arena)
1764 1.1 ad {
1765 1.1 ad arena_chunk_t *chunk;
1766 1.1 ad
1767 1.1 ad if (arena->spare != NULL) {
1768 1.1 ad chunk = arena->spare;
1769 1.1 ad arena->spare = NULL;
1770 1.1 ad
1771 1.1 ad RB_INSERT(arena_chunk_tree_s, &arena->chunks, chunk);
1772 1.1 ad } else {
1773 1.1 ad chunk = (arena_chunk_t *)chunk_alloc(chunksize);
1774 1.1 ad if (chunk == NULL)
1775 1.1 ad return (NULL);
1776 1.1 ad #ifdef MALLOC_STATS
1777 1.1 ad arena->stats.mapped += chunksize;
1778 1.1 ad #endif
1779 1.1 ad
1780 1.1 ad chunk->arena = arena;
1781 1.1 ad
1782 1.1 ad RB_INSERT(arena_chunk_tree_s, &arena->chunks, chunk);
1783 1.1 ad
1784 1.1 ad /*
1785 1.1 ad * Claim that no pages are in use, since the header is merely
1786 1.1 ad * overhead.
1787 1.1 ad */
1788 1.1 ad chunk->pages_used = 0;
1789 1.1 ad
1790 1.1 ad chunk->max_frun_npages = chunk_npages -
1791 1.1 ad arena_chunk_header_npages;
1792 1.1 ad chunk->min_frun_ind = arena_chunk_header_npages;
1793 1.1 ad
1794 1.1 ad /*
1795 1.1 ad * Initialize enough of the map to support one maximal free run.
1796 1.1 ad */
1797 1.1 ad chunk->map[arena_chunk_header_npages].npages = chunk_npages -
1798 1.1 ad arena_chunk_header_npages;
1799 1.1 ad chunk->map[arena_chunk_header_npages].pos = POS_FREE;
1800 1.1 ad chunk->map[chunk_npages - 1].npages = chunk_npages -
1801 1.1 ad arena_chunk_header_npages;
1802 1.1 ad chunk->map[chunk_npages - 1].pos = POS_FREE;
1803 1.1 ad }
1804 1.1 ad
1805 1.1 ad return (chunk);
1806 1.1 ad }
1807 1.1 ad
1808 1.1 ad static void
1809 1.1 ad arena_chunk_dealloc(arena_t *arena, arena_chunk_t *chunk)
1810 1.1 ad {
1811 1.1 ad
1812 1.1 ad /*
1813 1.1 ad * Remove chunk from the chunk tree, regardless of whether this chunk
1814 1.1 ad * will be cached, so that the arena does not use it.
1815 1.1 ad */
1816 1.1 ad RB_REMOVE(arena_chunk_tree_s, &chunk->arena->chunks, chunk);
1817 1.1 ad
1818 1.1 ad if (opt_hint == false) {
1819 1.1 ad if (arena->spare != NULL) {
1820 1.1 ad chunk_dealloc((void *)arena->spare, chunksize);
1821 1.1 ad #ifdef MALLOC_STATS
1822 1.1 ad arena->stats.mapped -= chunksize;
1823 1.1 ad #endif
1824 1.1 ad }
1825 1.1 ad arena->spare = chunk;
1826 1.1 ad } else {
1827 1.1 ad assert(arena->spare == NULL);
1828 1.1 ad chunk_dealloc((void *)chunk, chunksize);
1829 1.1 ad #ifdef MALLOC_STATS
1830 1.1 ad arena->stats.mapped -= chunksize;
1831 1.1 ad #endif
1832 1.1 ad }
1833 1.1 ad }
1834 1.1 ad
1835 1.1 ad static arena_run_t *
1836 1.1 ad arena_run_alloc(arena_t *arena, size_t size)
1837 1.1 ad {
1838 1.1 ad arena_chunk_t *chunk;
1839 1.1 ad arena_run_t *run;
1840 1.1 ad unsigned need_npages, limit_pages, compl_need_npages;
1841 1.1 ad
1842 1.1 ad assert(size <= (chunksize - (arena_chunk_header_npages <<
1843 1.1 ad pagesize_2pow)));
1844 1.1 ad assert((size & pagesize_mask) == 0);
1845 1.1 ad
1846 1.1 ad /*
1847 1.1 ad * Search through arena's chunks in address order for a free run that is
1848 1.1 ad * large enough. Look for the first fit.
1849 1.1 ad */
1850 1.1 ad need_npages = (size >> pagesize_2pow);
1851 1.1 ad limit_pages = chunk_npages - arena_chunk_header_npages;
1852 1.1 ad compl_need_npages = limit_pages - need_npages;
1853 1.1 ad RB_FOREACH(chunk, arena_chunk_tree_s, &arena->chunks) {
1854 1.1 ad /*
1855 1.1 ad * Avoid searching this chunk if there are not enough
1856 1.1 ad * contiguous free pages for there to possibly be a large
1857 1.1 ad * enough free run.
1858 1.1 ad */
1859 1.1 ad if (chunk->pages_used <= compl_need_npages &&
1860 1.1 ad need_npages <= chunk->max_frun_npages) {
1861 1.1 ad arena_chunk_map_t *mapelm;
1862 1.1 ad unsigned i;
1863 1.1 ad unsigned max_frun_npages = 0;
1864 1.1 ad unsigned min_frun_ind = chunk_npages;
1865 1.1 ad
1866 1.1 ad assert(chunk->min_frun_ind >=
1867 1.1 ad arena_chunk_header_npages);
1868 1.1 ad for (i = chunk->min_frun_ind; i < chunk_npages;) {
1869 1.1 ad mapelm = &chunk->map[i];
1870 1.1 ad if (mapelm->pos == POS_FREE) {
1871 1.1 ad if (mapelm->npages >= need_npages) {
1872 1.1 ad run = (arena_run_t *)
1873 1.1 ad ((uintptr_t)chunk + (i <<
1874 1.1 ad pagesize_2pow));
1875 1.1 ad /* Update page map. */
1876 1.1 ad arena_run_split(arena, run,
1877 1.1 ad size);
1878 1.1 ad return (run);
1879 1.1 ad }
1880 1.1 ad if (mapelm->npages >
1881 1.1 ad max_frun_npages) {
1882 1.1 ad max_frun_npages =
1883 1.1 ad mapelm->npages;
1884 1.1 ad }
1885 1.1 ad if (i < min_frun_ind) {
1886 1.1 ad min_frun_ind = i;
1887 1.1 ad if (i < chunk->min_frun_ind)
1888 1.1 ad chunk->min_frun_ind = i;
1889 1.1 ad }
1890 1.1 ad }
1891 1.1 ad i += mapelm->npages;
1892 1.1 ad }
1893 1.1 ad /*
1894 1.1 ad * Search failure. Reset cached chunk->max_frun_npages.
1895 1.1 ad * chunk->min_frun_ind was already reset above (if
1896 1.1 ad * necessary).
1897 1.1 ad */
1898 1.1 ad chunk->max_frun_npages = max_frun_npages;
1899 1.1 ad }
1900 1.1 ad }
1901 1.1 ad
1902 1.1 ad /*
1903 1.1 ad * No usable runs. Create a new chunk from which to allocate the run.
1904 1.1 ad */
1905 1.1 ad chunk = arena_chunk_alloc(arena);
1906 1.1 ad if (chunk == NULL)
1907 1.1 ad return (NULL);
1908 1.1 ad run = (arena_run_t *)((uintptr_t)chunk + (arena_chunk_header_npages <<
1909 1.1 ad pagesize_2pow));
1910 1.1 ad /* Update page map. */
1911 1.1 ad arena_run_split(arena, run, size);
1912 1.1 ad return (run);
1913 1.1 ad }
1914 1.1 ad
1915 1.1 ad static void
1916 1.1 ad arena_run_dalloc(arena_t *arena, arena_run_t *run, size_t size)
1917 1.1 ad {
1918 1.1 ad arena_chunk_t *chunk;
1919 1.1 ad unsigned run_ind, run_pages;
1920 1.1 ad
1921 1.1 ad chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(run);
1922 1.1 ad
1923 1.1 ad run_ind = (unsigned)(((uintptr_t)run - (uintptr_t)chunk)
1924 1.1 ad >> pagesize_2pow);
1925 1.1 ad assert(run_ind >= arena_chunk_header_npages);
1926 1.1 ad assert(run_ind < (chunksize >> pagesize_2pow));
1927 1.1 ad run_pages = (size >> pagesize_2pow);
1928 1.1 ad assert(run_pages == chunk->map[run_ind].npages);
1929 1.1 ad
1930 1.1 ad /* Subtract pages from count of pages used in chunk. */
1931 1.1 ad chunk->pages_used -= run_pages;
1932 1.1 ad
1933 1.1 ad /* Mark run as deallocated. */
1934 1.1 ad assert(chunk->map[run_ind].npages == run_pages);
1935 1.1 ad chunk->map[run_ind].pos = POS_FREE;
1936 1.1 ad assert(chunk->map[run_ind + run_pages - 1].npages == run_pages);
1937 1.1 ad chunk->map[run_ind + run_pages - 1].pos = POS_FREE;
1938 1.1 ad
1939 1.1 ad /*
1940 1.1 ad * Tell the kernel that we don't need the data in this run, but only if
1941 1.1 ad * requested via runtime configuration.
1942 1.1 ad */
1943 1.1 ad if (opt_hint)
1944 1.1 ad madvise(run, size, MADV_FREE);
1945 1.1 ad
1946 1.1 ad /* Try to coalesce with neighboring runs. */
1947 1.1 ad if (run_ind > arena_chunk_header_npages &&
1948 1.1 ad chunk->map[run_ind - 1].pos == POS_FREE) {
1949 1.1 ad unsigned prev_npages;
1950 1.1 ad
1951 1.1 ad /* Coalesce with previous run. */
1952 1.1 ad prev_npages = chunk->map[run_ind - 1].npages;
1953 1.1 ad run_ind -= prev_npages;
1954 1.1 ad assert(chunk->map[run_ind].npages == prev_npages);
1955 1.1 ad assert(chunk->map[run_ind].pos == POS_FREE);
1956 1.1 ad run_pages += prev_npages;
1957 1.1 ad
1958 1.1 ad chunk->map[run_ind].npages = run_pages;
1959 1.1 ad assert(chunk->map[run_ind].pos == POS_FREE);
1960 1.1 ad chunk->map[run_ind + run_pages - 1].npages = run_pages;
1961 1.1 ad assert(chunk->map[run_ind + run_pages - 1].pos == POS_FREE);
1962 1.1 ad }
1963 1.1 ad
1964 1.1 ad if (run_ind + run_pages < chunk_npages &&
1965 1.1 ad chunk->map[run_ind + run_pages].pos == POS_FREE) {
1966 1.1 ad unsigned next_npages;
1967 1.1 ad
1968 1.1 ad /* Coalesce with next run. */
1969 1.1 ad next_npages = chunk->map[run_ind + run_pages].npages;
1970 1.1 ad run_pages += next_npages;
1971 1.1 ad assert(chunk->map[run_ind + run_pages - 1].npages ==
1972 1.1 ad next_npages);
1973 1.1 ad assert(chunk->map[run_ind + run_pages - 1].pos == POS_FREE);
1974 1.1 ad
1975 1.1 ad chunk->map[run_ind].npages = run_pages;
1976 1.1 ad chunk->map[run_ind].pos = POS_FREE;
1977 1.1 ad chunk->map[run_ind + run_pages - 1].npages = run_pages;
1978 1.1 ad assert(chunk->map[run_ind + run_pages - 1].pos == POS_FREE);
1979 1.1 ad }
1980 1.1 ad
1981 1.1 ad if (chunk->map[run_ind].npages > chunk->max_frun_npages)
1982 1.1 ad chunk->max_frun_npages = chunk->map[run_ind].npages;
1983 1.1 ad if (run_ind < chunk->min_frun_ind)
1984 1.1 ad chunk->min_frun_ind = run_ind;
1985 1.1 ad
1986 1.1 ad /* Deallocate chunk if it is now completely unused. */
1987 1.1 ad if (chunk->pages_used == 0)
1988 1.1 ad arena_chunk_dealloc(arena, chunk);
1989 1.1 ad }
1990 1.1 ad
1991 1.1 ad static arena_run_t *
1992 1.1 ad arena_bin_nonfull_run_get(arena_t *arena, arena_bin_t *bin)
1993 1.1 ad {
1994 1.1 ad arena_run_t *run;
1995 1.1 ad unsigned i, remainder;
1996 1.1 ad
1997 1.1 ad /* Look for a usable run. */
1998 1.1 ad if ((run = RB_MIN(arena_run_tree_s, &bin->runs)) != NULL) {
1999 1.1 ad /* run is guaranteed to have available space. */
2000 1.1 ad RB_REMOVE(arena_run_tree_s, &bin->runs, run);
2001 1.1 ad #ifdef MALLOC_STATS
2002 1.1 ad bin->stats.reruns++;
2003 1.1 ad #endif
2004 1.1 ad return (run);
2005 1.1 ad }
2006 1.1 ad /* No existing runs have any space available. */
2007 1.1 ad
2008 1.1 ad /* Allocate a new run. */
2009 1.1 ad run = arena_run_alloc(arena, bin->run_size);
2010 1.1 ad if (run == NULL)
2011 1.1 ad return (NULL);
2012 1.1 ad
2013 1.1 ad /* Initialize run internals. */
2014 1.1 ad run->bin = bin;
2015 1.1 ad
2016 1.1 ad for (i = 0; i < bin->regs_mask_nelms; i++)
2017 1.1 ad run->regs_mask[i] = UINT_MAX;
2018 1.1 ad remainder = bin->nregs & ((1 << (SIZEOF_INT_2POW + 3)) - 1);
2019 1.1 ad if (remainder != 0) {
2020 1.1 ad /* The last element has spare bits that need to be unset. */
2021 1.1 ad run->regs_mask[i] = (UINT_MAX >> ((1 << (SIZEOF_INT_2POW + 3))
2022 1.1 ad - remainder));
2023 1.1 ad }
2024 1.1 ad
2025 1.1 ad run->regs_minelm = 0;
2026 1.1 ad
2027 1.1 ad run->nfree = bin->nregs;
2028 1.1 ad #ifdef MALLOC_DEBUG
2029 1.1 ad run->magic = ARENA_RUN_MAGIC;
2030 1.1 ad #endif
2031 1.1 ad
2032 1.1 ad #ifdef MALLOC_STATS
2033 1.1 ad bin->stats.nruns++;
2034 1.1 ad bin->stats.curruns++;
2035 1.1 ad if (bin->stats.curruns > bin->stats.highruns)
2036 1.1 ad bin->stats.highruns = bin->stats.curruns;
2037 1.1 ad #endif
2038 1.1 ad return (run);
2039 1.1 ad }
2040 1.1 ad
2041 1.1 ad /* bin->runcur must have space available before this function is called. */
2042 1.1 ad static inline void *
2043 1.1 ad arena_bin_malloc_easy(arena_t *arena, arena_bin_t *bin, arena_run_t *run)
2044 1.1 ad {
2045 1.1 ad void *ret;
2046 1.1 ad
2047 1.1 ad assert(run->magic == ARENA_RUN_MAGIC);
2048 1.1 ad assert(run->nfree > 0);
2049 1.1 ad
2050 1.1 ad ret = arena_run_reg_alloc(run, bin);
2051 1.1 ad assert(ret != NULL);
2052 1.1 ad run->nfree--;
2053 1.1 ad
2054 1.1 ad return (ret);
2055 1.1 ad }
2056 1.1 ad
2057 1.1 ad /* Re-fill bin->runcur, then call arena_bin_malloc_easy(). */
2058 1.1 ad static void *
2059 1.1 ad arena_bin_malloc_hard(arena_t *arena, arena_bin_t *bin)
2060 1.1 ad {
2061 1.1 ad
2062 1.1 ad bin->runcur = arena_bin_nonfull_run_get(arena, bin);
2063 1.1 ad if (bin->runcur == NULL)
2064 1.1 ad return (NULL);
2065 1.1 ad assert(bin->runcur->magic == ARENA_RUN_MAGIC);
2066 1.1 ad assert(bin->runcur->nfree > 0);
2067 1.1 ad
2068 1.1 ad return (arena_bin_malloc_easy(arena, bin, bin->runcur));
2069 1.1 ad }
2070 1.1 ad
2071 1.1 ad /*
2072 1.1 ad * Calculate bin->run_size such that it meets the following constraints:
2073 1.1 ad *
2074 1.1 ad * *) bin->run_size >= min_run_size
2075 1.1 ad * *) bin->run_size <= arena_maxclass
2076 1.1 ad * *) bin->run_size <= RUN_MAX_SMALL
2077 1.1 ad * *) run header overhead <= RUN_MAX_OVRHD (or header overhead relaxed).
2078 1.1 ad *
2079 1.1 ad * bin->nregs, bin->regs_mask_nelms, and bin->reg0_offset are
2080 1.1 ad * also calculated here, since these settings are all interdependent.
2081 1.1 ad */
2082 1.1 ad static size_t
2083 1.1 ad arena_bin_run_size_calc(arena_bin_t *bin, size_t min_run_size)
2084 1.1 ad {
2085 1.1 ad size_t try_run_size, good_run_size;
2086 1.1 ad unsigned good_nregs, good_mask_nelms, good_reg0_offset;
2087 1.1 ad unsigned try_nregs, try_mask_nelms, try_reg0_offset;
2088 1.1 ad float max_ovrhd = RUN_MAX_OVRHD;
2089 1.1 ad
2090 1.1 ad assert(min_run_size >= pagesize);
2091 1.1 ad assert(min_run_size <= arena_maxclass);
2092 1.1 ad assert(min_run_size <= RUN_MAX_SMALL);
2093 1.1 ad
2094 1.1 ad /*
2095 1.1 ad * Calculate known-valid settings before entering the run_size
2096 1.1 ad * expansion loop, so that the first part of the loop always copies
2097 1.1 ad * valid settings.
2098 1.1 ad *
2099 1.1 ad * The do..while loop iteratively reduces the number of regions until
2100 1.1 ad * the run header and the regions no longer overlap. A closed formula
2101 1.1 ad * would be quite messy, since there is an interdependency between the
2102 1.1 ad * header's mask length and the number of regions.
2103 1.1 ad */
2104 1.1 ad try_run_size = min_run_size;
2105 1.1 ad try_nregs = ((try_run_size - sizeof(arena_run_t)) / bin->reg_size)
2106 1.1 ad + 1; /* Counter-act the first line of the loop. */
2107 1.1 ad do {
2108 1.1 ad try_nregs--;
2109 1.1 ad try_mask_nelms = (try_nregs >> (SIZEOF_INT_2POW + 3)) +
2110 1.1 ad ((try_nregs & ((1 << (SIZEOF_INT_2POW + 3)) - 1)) ? 1 : 0);
2111 1.1 ad try_reg0_offset = try_run_size - (try_nregs * bin->reg_size);
2112 1.1 ad } while (sizeof(arena_run_t) + (sizeof(unsigned) * (try_mask_nelms - 1))
2113 1.1 ad > try_reg0_offset);
2114 1.1 ad
2115 1.1 ad /* run_size expansion loop. */
2116 1.1 ad do {
2117 1.1 ad /*
2118 1.1 ad * Copy valid settings before trying more aggressive settings.
2119 1.1 ad */
2120 1.1 ad good_run_size = try_run_size;
2121 1.1 ad good_nregs = try_nregs;
2122 1.1 ad good_mask_nelms = try_mask_nelms;
2123 1.1 ad good_reg0_offset = try_reg0_offset;
2124 1.1 ad
2125 1.1 ad /* Try more aggressive settings. */
2126 1.1 ad try_run_size += pagesize;
2127 1.1 ad try_nregs = ((try_run_size - sizeof(arena_run_t)) /
2128 1.1 ad bin->reg_size) + 1; /* Counter-act try_nregs-- in loop. */
2129 1.1 ad do {
2130 1.1 ad try_nregs--;
2131 1.1 ad try_mask_nelms = (try_nregs >> (SIZEOF_INT_2POW + 3)) +
2132 1.1 ad ((try_nregs & ((1 << (SIZEOF_INT_2POW + 3)) - 1)) ?
2133 1.1 ad 1 : 0);
2134 1.1 ad try_reg0_offset = try_run_size - (try_nregs *
2135 1.1 ad bin->reg_size);
2136 1.1 ad } while (sizeof(arena_run_t) + (sizeof(unsigned) *
2137 1.1 ad (try_mask_nelms - 1)) > try_reg0_offset);
2138 1.1 ad } while (try_run_size <= arena_maxclass && try_run_size <= RUN_MAX_SMALL
2139 1.1 ad && max_ovrhd > RUN_MAX_OVRHD_RELAX / ((float)(bin->reg_size << 3))
2140 1.1 ad && ((float)(try_reg0_offset)) / ((float)(try_run_size)) >
2141 1.1 ad max_ovrhd);
2142 1.1 ad
2143 1.1 ad assert(sizeof(arena_run_t) + (sizeof(unsigned) * (good_mask_nelms - 1))
2144 1.1 ad <= good_reg0_offset);
2145 1.1 ad assert((good_mask_nelms << (SIZEOF_INT_2POW + 3)) >= good_nregs);
2146 1.1 ad
2147 1.1 ad /* Copy final settings. */
2148 1.1 ad bin->run_size = good_run_size;
2149 1.1 ad bin->nregs = good_nregs;
2150 1.1 ad bin->regs_mask_nelms = good_mask_nelms;
2151 1.1 ad bin->reg0_offset = good_reg0_offset;
2152 1.1 ad
2153 1.1 ad return (good_run_size);
2154 1.1 ad }
2155 1.1 ad
2156 1.1 ad static void *
2157 1.1 ad arena_malloc(arena_t *arena, size_t size)
2158 1.1 ad {
2159 1.1 ad void *ret;
2160 1.1 ad
2161 1.1 ad assert(arena != NULL);
2162 1.1 ad assert(arena->magic == ARENA_MAGIC);
2163 1.1 ad assert(size != 0);
2164 1.1 ad assert(QUANTUM_CEILING(size) <= arena_maxclass);
2165 1.1 ad
2166 1.1 ad if (size <= bin_maxclass) {
2167 1.1 ad arena_bin_t *bin;
2168 1.1 ad arena_run_t *run;
2169 1.1 ad
2170 1.1 ad /* Small allocation. */
2171 1.1 ad
2172 1.1 ad if (size < small_min) {
2173 1.1 ad /* Tiny. */
2174 1.1 ad size = pow2_ceil(size);
2175 1.1 ad bin = &arena->bins[ffs((int)(size >> (TINY_MIN_2POW +
2176 1.1 ad 1)))];
2177 1.1 ad #if (!defined(NDEBUG) || defined(MALLOC_STATS))
2178 1.1 ad /*
2179 1.1 ad * Bin calculation is always correct, but we may need
2180 1.1 ad * to fix size for the purposes of assertions and/or
2181 1.1 ad * stats accuracy.
2182 1.1 ad */
2183 1.1 ad if (size < (1 << TINY_MIN_2POW))
2184 1.1 ad size = (1 << TINY_MIN_2POW);
2185 1.1 ad #endif
2186 1.1 ad } else if (size <= small_max) {
2187 1.1 ad /* Quantum-spaced. */
2188 1.1 ad size = QUANTUM_CEILING(size);
2189 1.1 ad bin = &arena->bins[ntbins + (size >> opt_quantum_2pow)
2190 1.1 ad - 1];
2191 1.1 ad } else {
2192 1.1 ad /* Sub-page. */
2193 1.1 ad size = pow2_ceil(size);
2194 1.1 ad bin = &arena->bins[ntbins + nqbins
2195 1.1 ad + (ffs((int)(size >> opt_small_max_2pow)) - 2)];
2196 1.1 ad }
2197 1.1 ad assert(size == bin->reg_size);
2198 1.1 ad
2199 1.1 ad malloc_mutex_lock(&arena->mtx);
2200 1.1 ad if ((run = bin->runcur) != NULL && run->nfree > 0)
2201 1.1 ad ret = arena_bin_malloc_easy(arena, bin, run);
2202 1.1 ad else
2203 1.1 ad ret = arena_bin_malloc_hard(arena, bin);
2204 1.1 ad
2205 1.1 ad if (ret == NULL) {
2206 1.1 ad malloc_mutex_unlock(&arena->mtx);
2207 1.1 ad return (NULL);
2208 1.1 ad }
2209 1.1 ad
2210 1.1 ad #ifdef MALLOC_STATS
2211 1.1 ad bin->stats.nrequests++;
2212 1.1 ad arena->stats.nmalloc_small++;
2213 1.1 ad arena->stats.allocated_small += size;
2214 1.1 ad #endif
2215 1.1 ad } else {
2216 1.1 ad /* Large allocation. */
2217 1.1 ad size = PAGE_CEILING(size);
2218 1.1 ad malloc_mutex_lock(&arena->mtx);
2219 1.1 ad ret = (void *)arena_run_alloc(arena, size);
2220 1.1 ad if (ret == NULL) {
2221 1.1 ad malloc_mutex_unlock(&arena->mtx);
2222 1.1 ad return (NULL);
2223 1.1 ad }
2224 1.1 ad #ifdef MALLOC_STATS
2225 1.1 ad arena->stats.nmalloc_large++;
2226 1.1 ad arena->stats.allocated_large += size;
2227 1.1 ad #endif
2228 1.1 ad }
2229 1.1 ad
2230 1.1 ad malloc_mutex_unlock(&arena->mtx);
2231 1.1 ad
2232 1.1 ad if (opt_junk)
2233 1.1 ad memset(ret, 0xa5, size);
2234 1.1 ad else if (opt_zero)
2235 1.1 ad memset(ret, 0, size);
2236 1.1 ad return (ret);
2237 1.1 ad }
2238 1.1 ad
2239 1.1 ad static inline void
2240 1.1 ad arena_palloc_trim(arena_t *arena, arena_chunk_t *chunk, unsigned pageind,
2241 1.1 ad unsigned npages)
2242 1.1 ad {
2243 1.1 ad unsigned i;
2244 1.1 ad
2245 1.1 ad assert(npages > 0);
2246 1.1 ad
2247 1.1 ad /*
2248 1.1 ad * Modifiy the map such that arena_run_dalloc() sees the run as
2249 1.1 ad * separately allocated.
2250 1.1 ad */
2251 1.1 ad for (i = 0; i < npages; i++) {
2252 1.1 ad chunk->map[pageind + i].npages = npages;
2253 1.1 ad chunk->map[pageind + i].pos = i;
2254 1.1 ad }
2255 1.1 ad arena_run_dalloc(arena, (arena_run_t *)((uintptr_t)chunk + (pageind <<
2256 1.1 ad pagesize_2pow)), npages << pagesize_2pow);
2257 1.1 ad }
2258 1.1 ad
2259 1.1 ad /* Only handles large allocations that require more than page alignment. */
2260 1.1 ad static void *
2261 1.1 ad arena_palloc(arena_t *arena, size_t alignment, size_t size, size_t alloc_size)
2262 1.1 ad {
2263 1.1 ad void *ret;
2264 1.1 ad size_t offset;
2265 1.1 ad arena_chunk_t *chunk;
2266 1.1 ad unsigned pageind, i, npages;
2267 1.1 ad
2268 1.1 ad assert((size & pagesize_mask) == 0);
2269 1.1 ad assert((alignment & pagesize_mask) == 0);
2270 1.1 ad
2271 1.1 ad npages = size >> pagesize_2pow;
2272 1.1 ad
2273 1.1 ad malloc_mutex_lock(&arena->mtx);
2274 1.1 ad ret = (void *)arena_run_alloc(arena, alloc_size);
2275 1.1 ad if (ret == NULL) {
2276 1.1 ad malloc_mutex_unlock(&arena->mtx);
2277 1.1 ad return (NULL);
2278 1.1 ad }
2279 1.1 ad
2280 1.1 ad chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ret);
2281 1.1 ad
2282 1.1 ad offset = (uintptr_t)ret & (alignment - 1);
2283 1.1 ad assert((offset & pagesize_mask) == 0);
2284 1.1 ad assert(offset < alloc_size);
2285 1.1 ad if (offset == 0) {
2286 1.1 ad pageind = (((uintptr_t)ret - (uintptr_t)chunk) >>
2287 1.1 ad pagesize_2pow);
2288 1.1 ad
2289 1.1 ad /* Update the map for the run to be kept. */
2290 1.1 ad for (i = 0; i < npages; i++) {
2291 1.1 ad chunk->map[pageind + i].npages = npages;
2292 1.1 ad assert(chunk->map[pageind + i].pos == i);
2293 1.1 ad }
2294 1.1 ad
2295 1.1 ad /* Trim trailing space. */
2296 1.1 ad arena_palloc_trim(arena, chunk, pageind + npages,
2297 1.1 ad (alloc_size - size) >> pagesize_2pow);
2298 1.1 ad } else {
2299 1.1 ad size_t leadsize, trailsize;
2300 1.1 ad
2301 1.1 ad leadsize = alignment - offset;
2302 1.1 ad ret = (void *)((uintptr_t)ret + leadsize);
2303 1.1 ad pageind = (((uintptr_t)ret - (uintptr_t)chunk) >>
2304 1.1 ad pagesize_2pow);
2305 1.1 ad
2306 1.1 ad /* Update the map for the run to be kept. */
2307 1.1 ad for (i = 0; i < npages; i++) {
2308 1.1 ad chunk->map[pageind + i].npages = npages;
2309 1.1 ad chunk->map[pageind + i].pos = i;
2310 1.1 ad }
2311 1.1 ad
2312 1.1 ad /* Trim leading space. */
2313 1.1 ad arena_palloc_trim(arena, chunk, pageind - (leadsize >>
2314 1.1 ad pagesize_2pow), leadsize >> pagesize_2pow);
2315 1.1 ad
2316 1.1 ad trailsize = alloc_size - leadsize - size;
2317 1.1 ad if (trailsize != 0) {
2318 1.1 ad /* Trim trailing space. */
2319 1.1 ad assert(trailsize < alloc_size);
2320 1.1 ad arena_palloc_trim(arena, chunk, pageind + npages,
2321 1.1 ad trailsize >> pagesize_2pow);
2322 1.1 ad }
2323 1.1 ad }
2324 1.1 ad
2325 1.1 ad #ifdef MALLOC_STATS
2326 1.1 ad arena->stats.nmalloc_large++;
2327 1.1 ad arena->stats.allocated_large += size;
2328 1.1 ad #endif
2329 1.1 ad malloc_mutex_unlock(&arena->mtx);
2330 1.1 ad
2331 1.1 ad if (opt_junk)
2332 1.1 ad memset(ret, 0xa5, size);
2333 1.1 ad else if (opt_zero)
2334 1.1 ad memset(ret, 0, size);
2335 1.1 ad return (ret);
2336 1.1 ad }
2337 1.1 ad
2338 1.1 ad /* Return the size of the allocation pointed to by ptr. */
2339 1.1 ad static size_t
2340 1.1 ad arena_salloc(const void *ptr)
2341 1.1 ad {
2342 1.1 ad size_t ret;
2343 1.1 ad arena_chunk_t *chunk;
2344 1.1 ad arena_chunk_map_t *mapelm;
2345 1.1 ad unsigned pageind;
2346 1.1 ad
2347 1.1 ad assert(ptr != NULL);
2348 1.1 ad assert(CHUNK_ADDR2BASE(ptr) != ptr);
2349 1.1 ad
2350 1.1 ad /*
2351 1.1 ad * No arena data structures that we query here can change in a way that
2352 1.1 ad * affects this function, so we don't need to lock.
2353 1.1 ad */
2354 1.1 ad chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
2355 1.1 ad pageind = (((uintptr_t)ptr - (uintptr_t)chunk) >> pagesize_2pow);
2356 1.1 ad mapelm = &chunk->map[pageind];
2357 1.1 ad if (mapelm->pos != 0 || ptr != (void *)((uintptr_t)chunk) + (pageind <<
2358 1.1 ad pagesize_2pow)) {
2359 1.1 ad arena_run_t *run;
2360 1.1 ad
2361 1.1 ad pageind -= mapelm->pos;
2362 1.1 ad
2363 1.1 ad run = (arena_run_t *)((uintptr_t)chunk + (pageind <<
2364 1.1 ad pagesize_2pow));
2365 1.1 ad assert(run->magic == ARENA_RUN_MAGIC);
2366 1.1 ad ret = run->bin->reg_size;
2367 1.1 ad } else
2368 1.1 ad ret = mapelm->npages << pagesize_2pow;
2369 1.1 ad
2370 1.1 ad return (ret);
2371 1.1 ad }
2372 1.1 ad
2373 1.1 ad static void *
2374 1.1 ad arena_ralloc(void *ptr, size_t size, size_t oldsize)
2375 1.1 ad {
2376 1.1 ad void *ret;
2377 1.1 ad
2378 1.1 ad /* Avoid moving the allocation if the size class would not change. */
2379 1.1 ad if (size < small_min) {
2380 1.1 ad if (oldsize < small_min &&
2381 1.1 ad ffs((int)(pow2_ceil(size) >> (TINY_MIN_2POW + 1)))
2382 1.1 ad == ffs((int)(pow2_ceil(oldsize) >> (TINY_MIN_2POW + 1))))
2383 1.1 ad goto IN_PLACE;
2384 1.1 ad } else if (size <= small_max) {
2385 1.1 ad if (oldsize >= small_min && oldsize <= small_max &&
2386 1.1 ad (QUANTUM_CEILING(size) >> opt_quantum_2pow)
2387 1.1 ad == (QUANTUM_CEILING(oldsize) >> opt_quantum_2pow))
2388 1.1 ad goto IN_PLACE;
2389 1.1 ad } else {
2390 1.1 ad /*
2391 1.1 ad * We make no attempt to resize runs here, though it would be
2392 1.1 ad * possible to do so.
2393 1.1 ad */
2394 1.1 ad if (oldsize > small_max && PAGE_CEILING(size) == oldsize)
2395 1.1 ad goto IN_PLACE;
2396 1.1 ad }
2397 1.1 ad
2398 1.1 ad /*
2399 1.1 ad * If we get here, then size and oldsize are different enough that we
2400 1.1 ad * need to use a different size class. In that case, fall back to
2401 1.1 ad * allocating new space and copying.
2402 1.1 ad */
2403 1.1 ad ret = arena_malloc(choose_arena(), size);
2404 1.1 ad if (ret == NULL)
2405 1.1 ad return (NULL);
2406 1.1 ad
2407 1.1 ad /* Junk/zero-filling were already done by arena_malloc(). */
2408 1.1 ad if (size < oldsize)
2409 1.1 ad memcpy(ret, ptr, size);
2410 1.1 ad else
2411 1.1 ad memcpy(ret, ptr, oldsize);
2412 1.1 ad idalloc(ptr);
2413 1.1 ad return (ret);
2414 1.1 ad IN_PLACE:
2415 1.1 ad if (opt_junk && size < oldsize)
2416 1.1 ad memset((void *)((uintptr_t)ptr + size), 0x5a, oldsize - size);
2417 1.1 ad else if (opt_zero && size > oldsize)
2418 1.1 ad memset((void *)((uintptr_t)ptr + oldsize), 0, size - oldsize);
2419 1.1 ad return (ptr);
2420 1.1 ad }
2421 1.1 ad
2422 1.1 ad static void
2423 1.1 ad arena_dalloc(arena_t *arena, arena_chunk_t *chunk, void *ptr)
2424 1.1 ad {
2425 1.1 ad unsigned pageind;
2426 1.1 ad arena_chunk_map_t *mapelm;
2427 1.1 ad size_t size;
2428 1.1 ad
2429 1.1 ad assert(arena != NULL);
2430 1.1 ad assert(arena->magic == ARENA_MAGIC);
2431 1.1 ad assert(chunk->arena == arena);
2432 1.1 ad assert(ptr != NULL);
2433 1.1 ad assert(CHUNK_ADDR2BASE(ptr) != ptr);
2434 1.1 ad
2435 1.1 ad pageind = (((uintptr_t)ptr - (uintptr_t)chunk) >> pagesize_2pow);
2436 1.1 ad mapelm = &chunk->map[pageind];
2437 1.1 ad if (mapelm->pos != 0 || ptr != (void *)((uintptr_t)chunk) + (pageind <<
2438 1.1 ad pagesize_2pow)) {
2439 1.1 ad arena_run_t *run;
2440 1.1 ad arena_bin_t *bin;
2441 1.1 ad
2442 1.1 ad /* Small allocation. */
2443 1.1 ad
2444 1.1 ad pageind -= mapelm->pos;
2445 1.1 ad
2446 1.1 ad run = (arena_run_t *)((uintptr_t)chunk + (pageind <<
2447 1.1 ad pagesize_2pow));
2448 1.1 ad assert(run->magic == ARENA_RUN_MAGIC);
2449 1.1 ad bin = run->bin;
2450 1.1 ad size = bin->reg_size;
2451 1.1 ad
2452 1.1 ad if (opt_junk)
2453 1.1 ad memset(ptr, 0x5a, size);
2454 1.1 ad
2455 1.1 ad malloc_mutex_lock(&arena->mtx);
2456 1.1 ad arena_run_reg_dalloc(run, bin, ptr, size);
2457 1.1 ad run->nfree++;
2458 1.1 ad
2459 1.1 ad if (run->nfree == bin->nregs) {
2460 1.1 ad /* Deallocate run. */
2461 1.1 ad if (run == bin->runcur)
2462 1.1 ad bin->runcur = NULL;
2463 1.1 ad else if (bin->nregs != 1) {
2464 1.1 ad /*
2465 1.1 ad * This block's conditional is necessary because
2466 1.1 ad * if the run only contains one region, then it
2467 1.1 ad * never gets inserted into the non-full runs
2468 1.1 ad * tree.
2469 1.1 ad */
2470 1.1 ad RB_REMOVE(arena_run_tree_s, &bin->runs, run);
2471 1.1 ad }
2472 1.1 ad #ifdef MALLOC_DEBUG
2473 1.1 ad run->magic = 0;
2474 1.1 ad #endif
2475 1.1 ad arena_run_dalloc(arena, run, bin->run_size);
2476 1.1 ad #ifdef MALLOC_STATS
2477 1.1 ad bin->stats.curruns--;
2478 1.1 ad #endif
2479 1.1 ad } else if (run->nfree == 1 && run != bin->runcur) {
2480 1.1 ad /*
2481 1.1 ad * Make sure that bin->runcur always refers to the
2482 1.1 ad * lowest non-full run, if one exists.
2483 1.1 ad */
2484 1.1 ad if (bin->runcur == NULL)
2485 1.1 ad bin->runcur = run;
2486 1.1 ad else if ((uintptr_t)run < (uintptr_t)bin->runcur) {
2487 1.1 ad /* Switch runcur. */
2488 1.1 ad if (bin->runcur->nfree > 0) {
2489 1.1 ad /* Insert runcur. */
2490 1.1 ad RB_INSERT(arena_run_tree_s, &bin->runs,
2491 1.1 ad bin->runcur);
2492 1.1 ad }
2493 1.1 ad bin->runcur = run;
2494 1.1 ad } else
2495 1.1 ad RB_INSERT(arena_run_tree_s, &bin->runs, run);
2496 1.1 ad }
2497 1.1 ad #ifdef MALLOC_STATS
2498 1.1 ad arena->stats.allocated_small -= size;
2499 1.1 ad arena->stats.ndalloc_small++;
2500 1.1 ad #endif
2501 1.1 ad } else {
2502 1.1 ad /* Large allocation. */
2503 1.1 ad
2504 1.1 ad size = mapelm->npages << pagesize_2pow;
2505 1.1 ad assert((((uintptr_t)ptr) & pagesize_mask) == 0);
2506 1.1 ad
2507 1.1 ad if (opt_junk)
2508 1.1 ad memset(ptr, 0x5a, size);
2509 1.1 ad
2510 1.1 ad malloc_mutex_lock(&arena->mtx);
2511 1.1 ad arena_run_dalloc(arena, (arena_run_t *)ptr, size);
2512 1.1 ad #ifdef MALLOC_STATS
2513 1.1 ad arena->stats.allocated_large -= size;
2514 1.1 ad arena->stats.ndalloc_large++;
2515 1.1 ad #endif
2516 1.1 ad }
2517 1.1 ad
2518 1.1 ad malloc_mutex_unlock(&arena->mtx);
2519 1.1 ad }
2520 1.1 ad
2521 1.1 ad static bool
2522 1.1 ad arena_new(arena_t *arena)
2523 1.1 ad {
2524 1.1 ad unsigned i;
2525 1.1 ad arena_bin_t *bin;
2526 1.1 ad size_t pow2_size, prev_run_size;
2527 1.1 ad
2528 1.1 ad malloc_mutex_init(&arena->mtx);
2529 1.1 ad
2530 1.1 ad #ifdef MALLOC_STATS
2531 1.1 ad memset(&arena->stats, 0, sizeof(arena_stats_t));
2532 1.1 ad #endif
2533 1.1 ad
2534 1.1 ad /* Initialize chunks. */
2535 1.1 ad RB_INIT(&arena->chunks);
2536 1.1 ad arena->spare = NULL;
2537 1.1 ad
2538 1.1 ad /* Initialize bins. */
2539 1.1 ad prev_run_size = pagesize;
2540 1.1 ad
2541 1.1 ad /* (2^n)-spaced tiny bins. */
2542 1.1 ad for (i = 0; i < ntbins; i++) {
2543 1.1 ad bin = &arena->bins[i];
2544 1.1 ad bin->runcur = NULL;
2545 1.1 ad RB_INIT(&bin->runs);
2546 1.1 ad
2547 1.1 ad bin->reg_size = (1 << (TINY_MIN_2POW + i));
2548 1.1 ad
2549 1.1 ad prev_run_size = arena_bin_run_size_calc(bin, prev_run_size);
2550 1.1 ad
2551 1.1 ad #ifdef MALLOC_STATS
2552 1.1 ad memset(&bin->stats, 0, sizeof(malloc_bin_stats_t));
2553 1.1 ad #endif
2554 1.1 ad }
2555 1.1 ad
2556 1.1 ad /* Quantum-spaced bins. */
2557 1.1 ad for (; i < ntbins + nqbins; i++) {
2558 1.1 ad bin = &arena->bins[i];
2559 1.1 ad bin->runcur = NULL;
2560 1.1 ad RB_INIT(&bin->runs);
2561 1.1 ad
2562 1.1 ad bin->reg_size = quantum * (i - ntbins + 1);
2563 1.1 ad
2564 1.1 ad pow2_size = pow2_ceil(quantum * (i - ntbins + 1));
2565 1.1 ad prev_run_size = arena_bin_run_size_calc(bin, prev_run_size);
2566 1.1 ad
2567 1.1 ad #ifdef MALLOC_STATS
2568 1.1 ad memset(&bin->stats, 0, sizeof(malloc_bin_stats_t));
2569 1.1 ad #endif
2570 1.1 ad }
2571 1.1 ad
2572 1.1 ad /* (2^n)-spaced sub-page bins. */
2573 1.1 ad for (; i < ntbins + nqbins + nsbins; i++) {
2574 1.1 ad bin = &arena->bins[i];
2575 1.1 ad bin->runcur = NULL;
2576 1.1 ad RB_INIT(&bin->runs);
2577 1.1 ad
2578 1.1 ad bin->reg_size = (small_max << (i - (ntbins + nqbins) + 1));
2579 1.1 ad
2580 1.1 ad prev_run_size = arena_bin_run_size_calc(bin, prev_run_size);
2581 1.1 ad
2582 1.1 ad #ifdef MALLOC_STATS
2583 1.1 ad memset(&bin->stats, 0, sizeof(malloc_bin_stats_t));
2584 1.1 ad #endif
2585 1.1 ad }
2586 1.1 ad
2587 1.1 ad #ifdef MALLOC_DEBUG
2588 1.1 ad arena->magic = ARENA_MAGIC;
2589 1.1 ad #endif
2590 1.1 ad
2591 1.1 ad return (false);
2592 1.1 ad }
2593 1.1 ad
2594 1.1 ad /* Create a new arena and insert it into the arenas array at index ind. */
2595 1.1 ad static arena_t *
2596 1.1 ad arenas_extend(unsigned ind)
2597 1.1 ad {
2598 1.1 ad arena_t *ret;
2599 1.1 ad
2600 1.1 ad /* Allocate enough space for trailing bins. */
2601 1.1 ad ret = (arena_t *)base_alloc(sizeof(arena_t)
2602 1.1 ad + (sizeof(arena_bin_t) * (ntbins + nqbins + nsbins - 1)));
2603 1.1 ad if (ret != NULL && arena_new(ret) == false) {
2604 1.1 ad arenas[ind] = ret;
2605 1.1 ad return (ret);
2606 1.1 ad }
2607 1.1 ad /* Only reached if there is an OOM error. */
2608 1.1 ad
2609 1.1 ad /*
2610 1.1 ad * OOM here is quite inconvenient to propagate, since dealing with it
2611 1.1 ad * would require a check for failure in the fast path. Instead, punt
2612 1.1 ad * by using arenas[0]. In practice, this is an extremely unlikely
2613 1.1 ad * failure.
2614 1.1 ad */
2615 1.1 ad _malloc_message(_getprogname(),
2616 1.1 ad ": (malloc) Error initializing arena\n", "", "");
2617 1.1 ad if (opt_abort)
2618 1.1 ad abort();
2619 1.1 ad
2620 1.1 ad return (arenas[0]);
2621 1.1 ad }
2622 1.1 ad
2623 1.1 ad /*
2624 1.1 ad * End arena.
2625 1.1 ad */
2626 1.1 ad /******************************************************************************/
2627 1.1 ad /*
2628 1.1 ad * Begin general internal functions.
2629 1.1 ad */
2630 1.1 ad
2631 1.1 ad static void *
2632 1.1 ad huge_malloc(size_t size)
2633 1.1 ad {
2634 1.1 ad void *ret;
2635 1.1 ad size_t csize;
2636 1.1 ad chunk_node_t *node;
2637 1.1 ad
2638 1.1 ad /* Allocate one or more contiguous chunks for this request. */
2639 1.1 ad
2640 1.1 ad csize = CHUNK_CEILING(size);
2641 1.1 ad if (csize == 0) {
2642 1.1 ad /* size is large enough to cause size_t wrap-around. */
2643 1.1 ad return (NULL);
2644 1.1 ad }
2645 1.1 ad
2646 1.1 ad /* Allocate a chunk node with which to track the chunk. */
2647 1.1 ad node = base_chunk_node_alloc();
2648 1.1 ad if (node == NULL)
2649 1.1 ad return (NULL);
2650 1.1 ad
2651 1.1 ad ret = chunk_alloc(csize);
2652 1.1 ad if (ret == NULL) {
2653 1.1 ad base_chunk_node_dealloc(node);
2654 1.1 ad return (NULL);
2655 1.1 ad }
2656 1.1 ad
2657 1.1 ad /* Insert node into huge. */
2658 1.1 ad node->chunk = ret;
2659 1.1 ad node->size = csize;
2660 1.1 ad
2661 1.1 ad malloc_mutex_lock(&chunks_mtx);
2662 1.1 ad RB_INSERT(chunk_tree_s, &huge, node);
2663 1.1 ad #ifdef MALLOC_STATS
2664 1.1 ad huge_nmalloc++;
2665 1.1 ad huge_allocated += csize;
2666 1.1 ad #endif
2667 1.1 ad malloc_mutex_unlock(&chunks_mtx);
2668 1.1 ad
2669 1.1 ad if (opt_junk)
2670 1.1 ad memset(ret, 0xa5, csize);
2671 1.1 ad else if (opt_zero)
2672 1.1 ad memset(ret, 0, csize);
2673 1.1 ad
2674 1.1 ad return (ret);
2675 1.1 ad }
2676 1.1 ad
2677 1.1 ad /* Only handles large allocations that require more than chunk alignment. */
2678 1.1 ad static void *
2679 1.1 ad huge_palloc(size_t alignment, size_t size)
2680 1.1 ad {
2681 1.1 ad void *ret;
2682 1.1 ad size_t alloc_size, chunk_size, offset;
2683 1.1 ad chunk_node_t *node;
2684 1.1 ad
2685 1.1 ad /*
2686 1.1 ad * This allocation requires alignment that is even larger than chunk
2687 1.1 ad * alignment. This means that huge_malloc() isn't good enough.
2688 1.1 ad *
2689 1.1 ad * Allocate almost twice as many chunks as are demanded by the size or
2690 1.1 ad * alignment, in order to assure the alignment can be achieved, then
2691 1.1 ad * unmap leading and trailing chunks.
2692 1.1 ad */
2693 1.1 ad assert(alignment >= chunksize);
2694 1.1 ad
2695 1.1 ad chunk_size = CHUNK_CEILING(size);
2696 1.1 ad
2697 1.1 ad if (size >= alignment)
2698 1.1 ad alloc_size = chunk_size + alignment - chunksize;
2699 1.1 ad else
2700 1.1 ad alloc_size = (alignment << 1) - chunksize;
2701 1.1 ad
2702 1.1 ad /* Allocate a chunk node with which to track the chunk. */
2703 1.1 ad node = base_chunk_node_alloc();
2704 1.1 ad if (node == NULL)
2705 1.1 ad return (NULL);
2706 1.1 ad
2707 1.1 ad ret = chunk_alloc(alloc_size);
2708 1.1 ad if (ret == NULL) {
2709 1.1 ad base_chunk_node_dealloc(node);
2710 1.1 ad return (NULL);
2711 1.1 ad }
2712 1.1 ad
2713 1.1 ad offset = (uintptr_t)ret & (alignment - 1);
2714 1.1 ad assert((offset & chunksize_mask) == 0);
2715 1.1 ad assert(offset < alloc_size);
2716 1.1 ad if (offset == 0) {
2717 1.1 ad /* Trim trailing space. */
2718 1.1 ad chunk_dealloc((void *)((uintptr_t)ret + chunk_size), alloc_size
2719 1.1 ad - chunk_size);
2720 1.1 ad } else {
2721 1.1 ad size_t trailsize;
2722 1.1 ad
2723 1.1 ad /* Trim leading space. */
2724 1.1 ad chunk_dealloc(ret, alignment - offset);
2725 1.1 ad
2726 1.1 ad ret = (void *)((uintptr_t)ret + (alignment - offset));
2727 1.1 ad
2728 1.1 ad trailsize = alloc_size - (alignment - offset) - chunk_size;
2729 1.1 ad if (trailsize != 0) {
2730 1.1 ad /* Trim trailing space. */
2731 1.1 ad assert(trailsize < alloc_size);
2732 1.1 ad chunk_dealloc((void *)((uintptr_t)ret + chunk_size),
2733 1.1 ad trailsize);
2734 1.1 ad }
2735 1.1 ad }
2736 1.1 ad
2737 1.1 ad /* Insert node into huge. */
2738 1.1 ad node->chunk = ret;
2739 1.1 ad node->size = chunk_size;
2740 1.1 ad
2741 1.1 ad malloc_mutex_lock(&chunks_mtx);
2742 1.1 ad RB_INSERT(chunk_tree_s, &huge, node);
2743 1.1 ad #ifdef MALLOC_STATS
2744 1.1 ad huge_nmalloc++;
2745 1.1 ad huge_allocated += chunk_size;
2746 1.1 ad #endif
2747 1.1 ad malloc_mutex_unlock(&chunks_mtx);
2748 1.1 ad
2749 1.1 ad if (opt_junk)
2750 1.1 ad memset(ret, 0xa5, chunk_size);
2751 1.1 ad else if (opt_zero)
2752 1.1 ad memset(ret, 0, chunk_size);
2753 1.1 ad
2754 1.1 ad return (ret);
2755 1.1 ad }
2756 1.1 ad
2757 1.1 ad static void *
2758 1.1 ad huge_ralloc(void *ptr, size_t size, size_t oldsize)
2759 1.1 ad {
2760 1.1 ad void *ret;
2761 1.1 ad
2762 1.1 ad /* Avoid moving the allocation if the size class would not change. */
2763 1.1 ad if (oldsize > arena_maxclass &&
2764 1.1 ad CHUNK_CEILING(size) == CHUNK_CEILING(oldsize)) {
2765 1.1 ad if (opt_junk && size < oldsize) {
2766 1.1 ad memset((void *)((uintptr_t)ptr + size), 0x5a, oldsize
2767 1.1 ad - size);
2768 1.1 ad } else if (opt_zero && size > oldsize) {
2769 1.1 ad memset((void *)((uintptr_t)ptr + oldsize), 0, size
2770 1.1 ad - oldsize);
2771 1.1 ad }
2772 1.1 ad return (ptr);
2773 1.1 ad }
2774 1.1 ad
2775 1.1 ad /*
2776 1.1 ad * If we get here, then size and oldsize are different enough that we
2777 1.1 ad * need to use a different size class. In that case, fall back to
2778 1.1 ad * allocating new space and copying.
2779 1.1 ad */
2780 1.1 ad ret = huge_malloc(size);
2781 1.1 ad if (ret == NULL)
2782 1.1 ad return (NULL);
2783 1.1 ad
2784 1.1 ad if (CHUNK_ADDR2BASE(ptr) == ptr) {
2785 1.1 ad /* The old allocation is a chunk. */
2786 1.1 ad if (size < oldsize)
2787 1.1 ad memcpy(ret, ptr, size);
2788 1.1 ad else
2789 1.1 ad memcpy(ret, ptr, oldsize);
2790 1.1 ad } else {
2791 1.1 ad /* The old allocation is a region. */
2792 1.1 ad assert(oldsize < size);
2793 1.1 ad memcpy(ret, ptr, oldsize);
2794 1.1 ad }
2795 1.1 ad idalloc(ptr);
2796 1.1 ad return (ret);
2797 1.1 ad }
2798 1.1 ad
2799 1.1 ad static void
2800 1.1 ad huge_dalloc(void *ptr)
2801 1.1 ad {
2802 1.1 ad chunk_node_t key;
2803 1.1 ad chunk_node_t *node;
2804 1.1 ad
2805 1.1 ad malloc_mutex_lock(&chunks_mtx);
2806 1.1 ad
2807 1.1 ad /* Extract from tree of huge allocations. */
2808 1.1 ad key.chunk = ptr;
2809 1.1 ad node = RB_FIND(chunk_tree_s, &huge, &key);
2810 1.1 ad assert(node != NULL);
2811 1.1 ad assert(node->chunk == ptr);
2812 1.1 ad RB_REMOVE(chunk_tree_s, &huge, node);
2813 1.1 ad
2814 1.1 ad #ifdef MALLOC_STATS
2815 1.1 ad huge_ndalloc++;
2816 1.1 ad huge_allocated -= node->size;
2817 1.1 ad #endif
2818 1.1 ad
2819 1.1 ad malloc_mutex_unlock(&chunks_mtx);
2820 1.1 ad
2821 1.1 ad /* Unmap chunk. */
2822 1.1 ad #ifdef USE_BRK
2823 1.1 ad if (opt_junk)
2824 1.1 ad memset(node->chunk, 0x5a, node->size);
2825 1.1 ad #endif
2826 1.1 ad chunk_dealloc(node->chunk, node->size);
2827 1.1 ad
2828 1.1 ad base_chunk_node_dealloc(node);
2829 1.1 ad }
2830 1.1 ad
2831 1.1 ad static void *
2832 1.1 ad imalloc(size_t size)
2833 1.1 ad {
2834 1.1 ad void *ret;
2835 1.1 ad
2836 1.1 ad assert(size != 0);
2837 1.1 ad
2838 1.1 ad if (size <= arena_maxclass)
2839 1.1 ad ret = arena_malloc(choose_arena(), size);
2840 1.1 ad else
2841 1.1 ad ret = huge_malloc(size);
2842 1.1 ad
2843 1.1 ad return (ret);
2844 1.1 ad }
2845 1.1 ad
2846 1.1 ad static void *
2847 1.1 ad ipalloc(size_t alignment, size_t size)
2848 1.1 ad {
2849 1.1 ad void *ret;
2850 1.1 ad size_t ceil_size;
2851 1.1 ad
2852 1.1 ad /*
2853 1.1 ad * Round size up to the nearest multiple of alignment.
2854 1.1 ad *
2855 1.1 ad * This done, we can take advantage of the fact that for each small
2856 1.1 ad * size class, every object is aligned at the smallest power of two
2857 1.1 ad * that is non-zero in the base two representation of the size. For
2858 1.1 ad * example:
2859 1.1 ad *
2860 1.1 ad * Size | Base 2 | Minimum alignment
2861 1.1 ad * -----+----------+------------------
2862 1.1 ad * 96 | 1100000 | 32
2863 1.1 ad * 144 | 10100000 | 32
2864 1.1 ad * 192 | 11000000 | 64
2865 1.1 ad *
2866 1.1 ad * Depending on runtime settings, it is possible that arena_malloc()
2867 1.1 ad * will further round up to a power of two, but that never causes
2868 1.1 ad * correctness issues.
2869 1.1 ad */
2870 1.1 ad ceil_size = (size + (alignment - 1)) & (-alignment);
2871 1.1 ad /*
2872 1.1 ad * (ceil_size < size) protects against the combination of maximal
2873 1.1 ad * alignment and size greater than maximal alignment.
2874 1.1 ad */
2875 1.1 ad if (ceil_size < size) {
2876 1.1 ad /* size_t overflow. */
2877 1.1 ad return (NULL);
2878 1.1 ad }
2879 1.1 ad
2880 1.1 ad if (ceil_size <= pagesize || (alignment <= pagesize
2881 1.1 ad && ceil_size <= arena_maxclass))
2882 1.1 ad ret = arena_malloc(choose_arena(), ceil_size);
2883 1.1 ad else {
2884 1.1 ad size_t run_size;
2885 1.1 ad
2886 1.1 ad /*
2887 1.1 ad * We can't achieve sub-page alignment, so round up alignment
2888 1.1 ad * permanently; it makes later calculations simpler.
2889 1.1 ad */
2890 1.1 ad alignment = PAGE_CEILING(alignment);
2891 1.1 ad ceil_size = PAGE_CEILING(size);
2892 1.1 ad /*
2893 1.1 ad * (ceil_size < size) protects against very large sizes within
2894 1.1 ad * pagesize of SIZE_T_MAX.
2895 1.1 ad *
2896 1.1 ad * (ceil_size + alignment < ceil_size) protects against the
2897 1.1 ad * combination of maximal alignment and ceil_size large enough
2898 1.1 ad * to cause overflow. This is similar to the first overflow
2899 1.1 ad * check above, but it needs to be repeated due to the new
2900 1.1 ad * ceil_size value, which may now be *equal* to maximal
2901 1.1 ad * alignment, whereas before we only detected overflow if the
2902 1.1 ad * original size was *greater* than maximal alignment.
2903 1.1 ad */
2904 1.1 ad if (ceil_size < size || ceil_size + alignment < ceil_size) {
2905 1.1 ad /* size_t overflow. */
2906 1.1 ad return (NULL);
2907 1.1 ad }
2908 1.1 ad
2909 1.1 ad /*
2910 1.1 ad * Calculate the size of the over-size run that arena_palloc()
2911 1.1 ad * would need to allocate in order to guarantee the alignment.
2912 1.1 ad */
2913 1.1 ad if (ceil_size >= alignment)
2914 1.1 ad run_size = ceil_size + alignment - pagesize;
2915 1.1 ad else {
2916 1.1 ad /*
2917 1.1 ad * It is possible that (alignment << 1) will cause
2918 1.1 ad * overflow, but it doesn't matter because we also
2919 1.1 ad * subtract pagesize, which in the case of overflow
2920 1.1 ad * leaves us with a very large run_size. That causes
2921 1.1 ad * the first conditional below to fail, which means
2922 1.1 ad * that the bogus run_size value never gets used for
2923 1.1 ad * anything important.
2924 1.1 ad */
2925 1.1 ad run_size = (alignment << 1) - pagesize;
2926 1.1 ad }
2927 1.1 ad
2928 1.1 ad if (run_size <= arena_maxclass) {
2929 1.1 ad ret = arena_palloc(choose_arena(), alignment, ceil_size,
2930 1.1 ad run_size);
2931 1.1 ad } else if (alignment <= chunksize)
2932 1.1 ad ret = huge_malloc(ceil_size);
2933 1.1 ad else
2934 1.1 ad ret = huge_palloc(alignment, ceil_size);
2935 1.1 ad }
2936 1.1 ad
2937 1.1 ad assert(((uintptr_t)ret & (alignment - 1)) == 0);
2938 1.1 ad return (ret);
2939 1.1 ad }
2940 1.1 ad
2941 1.1 ad static void *
2942 1.1 ad icalloc(size_t size)
2943 1.1 ad {
2944 1.1 ad void *ret;
2945 1.1 ad
2946 1.1 ad if (size <= arena_maxclass) {
2947 1.1 ad ret = arena_malloc(choose_arena(), size);
2948 1.1 ad if (ret == NULL)
2949 1.1 ad return (NULL);
2950 1.1 ad memset(ret, 0, size);
2951 1.1 ad } else {
2952 1.1 ad /*
2953 1.1 ad * The virtual memory system provides zero-filled pages, so
2954 1.1 ad * there is no need to do so manually, unless opt_junk is
2955 1.1 ad * enabled, in which case huge_malloc() fills huge allocations
2956 1.1 ad * with junk.
2957 1.1 ad */
2958 1.1 ad ret = huge_malloc(size);
2959 1.1 ad if (ret == NULL)
2960 1.1 ad return (NULL);
2961 1.1 ad
2962 1.1 ad if (opt_junk)
2963 1.1 ad memset(ret, 0, size);
2964 1.1 ad #ifdef USE_BRK
2965 1.1 ad else if ((uintptr_t)ret >= (uintptr_t)brk_base
2966 1.1 ad && (uintptr_t)ret < (uintptr_t)brk_max) {
2967 1.1 ad /*
2968 1.1 ad * This may be a re-used brk chunk. Therefore, zero
2969 1.1 ad * the memory.
2970 1.1 ad */
2971 1.1 ad memset(ret, 0, size);
2972 1.1 ad }
2973 1.1 ad #endif
2974 1.1 ad }
2975 1.1 ad
2976 1.1 ad return (ret);
2977 1.1 ad }
2978 1.1 ad
2979 1.1 ad static size_t
2980 1.1 ad isalloc(const void *ptr)
2981 1.1 ad {
2982 1.1 ad size_t ret;
2983 1.1 ad arena_chunk_t *chunk;
2984 1.1 ad
2985 1.1 ad assert(ptr != NULL);
2986 1.1 ad
2987 1.1 ad chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
2988 1.1 ad if (chunk != ptr) {
2989 1.1 ad /* Region. */
2990 1.1 ad assert(chunk->arena->magic == ARENA_MAGIC);
2991 1.1 ad
2992 1.1 ad ret = arena_salloc(ptr);
2993 1.1 ad } else {
2994 1.1 ad chunk_node_t *node, key;
2995 1.1 ad
2996 1.1 ad /* Chunk (huge allocation). */
2997 1.1 ad
2998 1.1 ad malloc_mutex_lock(&chunks_mtx);
2999 1.1 ad
3000 1.1 ad /* Extract from tree of huge allocations. */
3001 1.1 ad key.chunk = __DECONST(void *, ptr);
3002 1.1 ad node = RB_FIND(chunk_tree_s, &huge, &key);
3003 1.1 ad assert(node != NULL);
3004 1.1 ad
3005 1.1 ad ret = node->size;
3006 1.1 ad
3007 1.1 ad malloc_mutex_unlock(&chunks_mtx);
3008 1.1 ad }
3009 1.1 ad
3010 1.1 ad return (ret);
3011 1.1 ad }
3012 1.1 ad
3013 1.1 ad static void *
3014 1.1 ad iralloc(void *ptr, size_t size)
3015 1.1 ad {
3016 1.1 ad void *ret;
3017 1.1 ad size_t oldsize;
3018 1.1 ad
3019 1.1 ad assert(ptr != NULL);
3020 1.1 ad assert(size != 0);
3021 1.1 ad
3022 1.1 ad oldsize = isalloc(ptr);
3023 1.1 ad
3024 1.1 ad if (size <= arena_maxclass)
3025 1.1 ad ret = arena_ralloc(ptr, size, oldsize);
3026 1.1 ad else
3027 1.1 ad ret = huge_ralloc(ptr, size, oldsize);
3028 1.1 ad
3029 1.1 ad return (ret);
3030 1.1 ad }
3031 1.1 ad
3032 1.1 ad static void
3033 1.1 ad idalloc(void *ptr)
3034 1.1 ad {
3035 1.1 ad arena_chunk_t *chunk;
3036 1.1 ad
3037 1.1 ad assert(ptr != NULL);
3038 1.1 ad
3039 1.1 ad chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
3040 1.1 ad if (chunk != ptr) {
3041 1.1 ad /* Region. */
3042 1.1 ad arena_dalloc(chunk->arena, chunk, ptr);
3043 1.1 ad } else
3044 1.1 ad huge_dalloc(ptr);
3045 1.1 ad }
3046 1.1 ad
3047 1.1 ad static void
3048 1.1 ad malloc_print_stats(void)
3049 1.1 ad {
3050 1.1 ad
3051 1.1 ad if (opt_print_stats) {
3052 1.1 ad char s[UMAX2S_BUFSIZE];
3053 1.1 ad _malloc_message("___ Begin malloc statistics ___\n", "", "",
3054 1.1 ad "");
3055 1.1 ad _malloc_message("Assertions ",
3056 1.1 ad #ifdef NDEBUG
3057 1.1 ad "disabled",
3058 1.1 ad #else
3059 1.1 ad "enabled",
3060 1.1 ad #endif
3061 1.1 ad "\n", "");
3062 1.1 ad _malloc_message("Boolean MALLOC_OPTIONS: ",
3063 1.1 ad opt_abort ? "A" : "a",
3064 1.1 ad opt_junk ? "J" : "j",
3065 1.1 ad opt_hint ? "H" : "h");
3066 1.1 ad _malloc_message(opt_utrace ? "PU" : "Pu",
3067 1.1 ad opt_sysv ? "V" : "v",
3068 1.1 ad opt_xmalloc ? "X" : "x",
3069 1.1 ad opt_zero ? "Z\n" : "z\n");
3070 1.1 ad
3071 1.1 ad _malloc_message("CPUs: ", umax2s(ncpus, s), "\n", "");
3072 1.1 ad _malloc_message("Max arenas: ", umax2s(narenas, s), "\n", "");
3073 1.1 ad _malloc_message("Pointer size: ", umax2s(sizeof(void *), s),
3074 1.1 ad "\n", "");
3075 1.1 ad _malloc_message("Quantum size: ", umax2s(quantum, s), "\n", "");
3076 1.1 ad _malloc_message("Max small size: ", umax2s(small_max, s), "\n",
3077 1.1 ad "");
3078 1.1 ad
3079 1.1 ad _malloc_message("Chunk size: ", umax2s(chunksize, s), "", "");
3080 1.1 ad _malloc_message(" (2^", umax2s(opt_chunk_2pow, s), ")\n", "");
3081 1.1 ad
3082 1.1 ad #ifdef MALLOC_STATS
3083 1.1 ad {
3084 1.1 ad size_t allocated, mapped;
3085 1.1 ad unsigned i;
3086 1.1 ad arena_t *arena;
3087 1.1 ad
3088 1.1 ad /* Calculate and print allocated/mapped stats. */
3089 1.1 ad
3090 1.1 ad /* arenas. */
3091 1.1 ad for (i = 0, allocated = 0; i < narenas; i++) {
3092 1.1 ad if (arenas[i] != NULL) {
3093 1.1 ad malloc_mutex_lock(&arenas[i]->mtx);
3094 1.1 ad allocated +=
3095 1.1 ad arenas[i]->stats.allocated_small;
3096 1.1 ad allocated +=
3097 1.1 ad arenas[i]->stats.allocated_large;
3098 1.1 ad malloc_mutex_unlock(&arenas[i]->mtx);
3099 1.1 ad }
3100 1.1 ad }
3101 1.1 ad
3102 1.1 ad /* huge/base. */
3103 1.1 ad malloc_mutex_lock(&chunks_mtx);
3104 1.1 ad allocated += huge_allocated;
3105 1.1 ad mapped = stats_chunks.curchunks * chunksize;
3106 1.1 ad malloc_mutex_unlock(&chunks_mtx);
3107 1.1 ad
3108 1.1 ad malloc_mutex_lock(&base_mtx);
3109 1.1 ad mapped += base_mapped;
3110 1.1 ad malloc_mutex_unlock(&base_mtx);
3111 1.1 ad
3112 1.1 ad malloc_printf("Allocated: %zu, mapped: %zu\n",
3113 1.1 ad allocated, mapped);
3114 1.1 ad
3115 1.1 ad /* Print chunk stats. */
3116 1.1 ad {
3117 1.1 ad chunk_stats_t chunks_stats;
3118 1.1 ad
3119 1.1 ad malloc_mutex_lock(&chunks_mtx);
3120 1.1 ad chunks_stats = stats_chunks;
3121 1.1 ad malloc_mutex_unlock(&chunks_mtx);
3122 1.1 ad
3123 1.1 ad malloc_printf("chunks: nchunks "
3124 1.1 ad "highchunks curchunks\n");
3125 1.1 ad malloc_printf(" %13llu%13lu%13lu\n",
3126 1.1 ad chunks_stats.nchunks,
3127 1.1 ad chunks_stats.highchunks,
3128 1.1 ad chunks_stats.curchunks);
3129 1.1 ad }
3130 1.1 ad
3131 1.1 ad /* Print chunk stats. */
3132 1.1 ad malloc_printf(
3133 1.1 ad "huge: nmalloc ndalloc allocated\n");
3134 1.1 ad malloc_printf(" %12llu %12llu %12zu\n",
3135 1.1 ad huge_nmalloc, huge_ndalloc, huge_allocated
3136 1.1 ad * chunksize);
3137 1.1 ad
3138 1.1 ad /* Print stats for each arena. */
3139 1.1 ad for (i = 0; i < narenas; i++) {
3140 1.1 ad arena = arenas[i];
3141 1.1 ad if (arena != NULL) {
3142 1.1 ad malloc_printf(
3143 1.1 ad "\narenas[%u]:\n", i);
3144 1.1 ad malloc_mutex_lock(&arena->mtx);
3145 1.1 ad stats_print(arena);
3146 1.1 ad malloc_mutex_unlock(&arena->mtx);
3147 1.1 ad }
3148 1.1 ad }
3149 1.1 ad }
3150 1.1 ad #endif /* #ifdef MALLOC_STATS */
3151 1.1 ad _malloc_message("--- End malloc statistics ---\n", "", "", "");
3152 1.1 ad }
3153 1.1 ad }
3154 1.1 ad
3155 1.1 ad /*
3156 1.1 ad * FreeBSD's pthreads implementation calls malloc(3), so the malloc
3157 1.1 ad * implementation has to take pains to avoid infinite recursion during
3158 1.1 ad * initialization.
3159 1.1 ad */
3160 1.1 ad static inline bool
3161 1.1 ad malloc_init(void)
3162 1.1 ad {
3163 1.1 ad
3164 1.1 ad if (malloc_initialized == false)
3165 1.1 ad return (malloc_init_hard());
3166 1.1 ad
3167 1.1 ad return (false);
3168 1.1 ad }
3169 1.1 ad
3170 1.1 ad static bool
3171 1.1 ad malloc_init_hard(void)
3172 1.1 ad {
3173 1.1 ad unsigned i, j;
3174 1.1 ad int linklen;
3175 1.1 ad char buf[PATH_MAX + 1];
3176 1.1 ad const char *opts;
3177 1.1 ad
3178 1.1 ad malloc_mutex_lock(&init_lock);
3179 1.1 ad if (malloc_initialized) {
3180 1.1 ad /*
3181 1.1 ad * Another thread initialized the allocator before this one
3182 1.1 ad * acquired init_lock.
3183 1.1 ad */
3184 1.1 ad malloc_mutex_unlock(&init_lock);
3185 1.1 ad return (false);
3186 1.1 ad }
3187 1.1 ad
3188 1.1 ad /* Get number of CPUs. */
3189 1.1 ad {
3190 1.1 ad int mib[2];
3191 1.1 ad size_t len;
3192 1.1 ad
3193 1.1 ad mib[0] = CTL_HW;
3194 1.1 ad mib[1] = HW_NCPU;
3195 1.1 ad len = sizeof(ncpus);
3196 1.1 ad if (sysctl(mib, 2, &ncpus, &len, (void *) 0, 0) == -1) {
3197 1.1 ad /* Error. */
3198 1.1 ad ncpus = 1;
3199 1.1 ad }
3200 1.1 ad }
3201 1.1 ad
3202 1.1 ad /* Get page size. */
3203 1.1 ad {
3204 1.1 ad long result;
3205 1.1 ad
3206 1.1 ad result = sysconf(_SC_PAGESIZE);
3207 1.1 ad assert(result != -1);
3208 1.1 ad pagesize = (unsigned) result;
3209 1.1 ad
3210 1.1 ad /*
3211 1.1 ad * We assume that pagesize is a power of 2 when calculating
3212 1.1 ad * pagesize_mask and pagesize_2pow.
3213 1.1 ad */
3214 1.1 ad assert(((result - 1) & result) == 0);
3215 1.1 ad pagesize_mask = result - 1;
3216 1.1 ad pagesize_2pow = ffs((int)result) - 1;
3217 1.1 ad }
3218 1.1 ad
3219 1.1 ad for (i = 0; i < 3; i++) {
3220 1.1 ad /* Get runtime configuration. */
3221 1.1 ad switch (i) {
3222 1.1 ad case 0:
3223 1.1 ad if ((linklen = readlink("/etc/malloc.conf", buf,
3224 1.1 ad sizeof(buf) - 1)) != -1) {
3225 1.1 ad /*
3226 1.1 ad * Use the contents of the "/etc/malloc.conf"
3227 1.1 ad * symbolic link's name.
3228 1.1 ad */
3229 1.1 ad buf[linklen] = '\0';
3230 1.1 ad opts = buf;
3231 1.1 ad } else {
3232 1.1 ad /* No configuration specified. */
3233 1.1 ad buf[0] = '\0';
3234 1.1 ad opts = buf;
3235 1.1 ad }
3236 1.1 ad break;
3237 1.1 ad case 1:
3238 1.1 ad if (issetugid() == 0 && (opts =
3239 1.1 ad getenv("MALLOC_OPTIONS")) != NULL) {
3240 1.1 ad /*
3241 1.1 ad * Do nothing; opts is already initialized to
3242 1.1 ad * the value of the MALLOC_OPTIONS environment
3243 1.1 ad * variable.
3244 1.1 ad */
3245 1.1 ad } else {
3246 1.1 ad /* No configuration specified. */
3247 1.1 ad buf[0] = '\0';
3248 1.1 ad opts = buf;
3249 1.1 ad }
3250 1.1 ad break;
3251 1.1 ad case 2:
3252 1.1 ad if (_malloc_options != NULL) {
3253 1.1 ad /*
3254 1.1 ad * Use options that were compiled into the program.
3255 1.1 ad */
3256 1.1 ad opts = _malloc_options;
3257 1.1 ad } else {
3258 1.1 ad /* No configuration specified. */
3259 1.1 ad buf[0] = '\0';
3260 1.1 ad opts = buf;
3261 1.1 ad }
3262 1.1 ad break;
3263 1.1 ad default:
3264 1.1 ad /* NOTREACHED */
3265 1.1 ad assert(false);
3266 1.1 ad }
3267 1.1 ad
3268 1.1 ad for (j = 0; opts[j] != '\0'; j++) {
3269 1.1 ad switch (opts[j]) {
3270 1.1 ad case 'a':
3271 1.1 ad opt_abort = false;
3272 1.1 ad break;
3273 1.1 ad case 'A':
3274 1.1 ad opt_abort = true;
3275 1.1 ad break;
3276 1.1 ad case 'h':
3277 1.1 ad opt_hint = false;
3278 1.1 ad break;
3279 1.1 ad case 'H':
3280 1.1 ad opt_hint = true;
3281 1.1 ad break;
3282 1.1 ad case 'j':
3283 1.1 ad opt_junk = false;
3284 1.1 ad break;
3285 1.1 ad case 'J':
3286 1.1 ad opt_junk = true;
3287 1.1 ad break;
3288 1.1 ad case 'k':
3289 1.1 ad /*
3290 1.1 ad * Chunks always require at least one header
3291 1.1 ad * page, so chunks can never be smaller than
3292 1.1 ad * two pages.
3293 1.1 ad */
3294 1.1 ad if (opt_chunk_2pow > pagesize_2pow + 1)
3295 1.1 ad opt_chunk_2pow--;
3296 1.1 ad break;
3297 1.1 ad case 'K':
3298 1.1 ad /*
3299 1.1 ad * There must be fewer pages in a chunk than
3300 1.1 ad * can be recorded by the pos field of
3301 1.1 ad * arena_chunk_map_t, in order to make POS_FREE
3302 1.1 ad * special.
3303 1.1 ad */
3304 1.1 ad if (opt_chunk_2pow - pagesize_2pow
3305 1.1 ad < (sizeof(uint32_t) << 3) - 1)
3306 1.1 ad opt_chunk_2pow++;
3307 1.1 ad break;
3308 1.1 ad case 'n':
3309 1.1 ad opt_narenas_lshift--;
3310 1.1 ad break;
3311 1.1 ad case 'N':
3312 1.1 ad opt_narenas_lshift++;
3313 1.1 ad break;
3314 1.1 ad case 'p':
3315 1.1 ad opt_print_stats = false;
3316 1.1 ad break;
3317 1.1 ad case 'P':
3318 1.1 ad opt_print_stats = true;
3319 1.1 ad break;
3320 1.1 ad case 'q':
3321 1.1 ad if (opt_quantum_2pow > QUANTUM_2POW_MIN)
3322 1.1 ad opt_quantum_2pow--;
3323 1.1 ad break;
3324 1.1 ad case 'Q':
3325 1.1 ad if (opt_quantum_2pow < pagesize_2pow - 1)
3326 1.1 ad opt_quantum_2pow++;
3327 1.1 ad break;
3328 1.1 ad case 's':
3329 1.1 ad if (opt_small_max_2pow > QUANTUM_2POW_MIN)
3330 1.1 ad opt_small_max_2pow--;
3331 1.1 ad break;
3332 1.1 ad case 'S':
3333 1.1 ad if (opt_small_max_2pow < pagesize_2pow - 1)
3334 1.1 ad opt_small_max_2pow++;
3335 1.1 ad break;
3336 1.1 ad case 'u':
3337 1.1 ad opt_utrace = false;
3338 1.1 ad break;
3339 1.1 ad case 'U':
3340 1.1 ad opt_utrace = true;
3341 1.1 ad break;
3342 1.1 ad case 'v':
3343 1.1 ad opt_sysv = false;
3344 1.1 ad break;
3345 1.1 ad case 'V':
3346 1.1 ad opt_sysv = true;
3347 1.1 ad break;
3348 1.1 ad case 'x':
3349 1.1 ad opt_xmalloc = false;
3350 1.1 ad break;
3351 1.1 ad case 'X':
3352 1.1 ad opt_xmalloc = true;
3353 1.1 ad break;
3354 1.1 ad case 'z':
3355 1.1 ad opt_zero = false;
3356 1.1 ad break;
3357 1.1 ad case 'Z':
3358 1.1 ad opt_zero = true;
3359 1.1 ad break;
3360 1.1 ad default: {
3361 1.1 ad char cbuf[2];
3362 1.1 ad
3363 1.1 ad cbuf[0] = opts[j];
3364 1.1 ad cbuf[1] = '\0';
3365 1.1 ad _malloc_message(_getprogname(),
3366 1.1 ad ": (malloc) Unsupported character in "
3367 1.1 ad "malloc options: '", cbuf, "'\n");
3368 1.1 ad }
3369 1.1 ad }
3370 1.1 ad }
3371 1.1 ad }
3372 1.1 ad
3373 1.1 ad /* Take care to call atexit() only once. */
3374 1.1 ad if (opt_print_stats) {
3375 1.1 ad /* Print statistics at exit. */
3376 1.1 ad atexit(malloc_print_stats);
3377 1.1 ad }
3378 1.1 ad
3379 1.1 ad /* Set variables according to the value of opt_small_max_2pow. */
3380 1.1 ad if (opt_small_max_2pow < opt_quantum_2pow)
3381 1.1 ad opt_small_max_2pow = opt_quantum_2pow;
3382 1.1 ad small_max = (1 << opt_small_max_2pow);
3383 1.1 ad
3384 1.1 ad /* Set bin-related variables. */
3385 1.1 ad bin_maxclass = (pagesize >> 1);
3386 1.1 ad assert(opt_quantum_2pow >= TINY_MIN_2POW);
3387 1.1 ad ntbins = opt_quantum_2pow - TINY_MIN_2POW;
3388 1.1 ad assert(ntbins <= opt_quantum_2pow);
3389 1.1 ad nqbins = (small_max >> opt_quantum_2pow);
3390 1.1 ad nsbins = pagesize_2pow - opt_small_max_2pow - 1;
3391 1.1 ad
3392 1.1 ad /* Set variables according to the value of opt_quantum_2pow. */
3393 1.1 ad quantum = (1 << opt_quantum_2pow);
3394 1.1 ad quantum_mask = quantum - 1;
3395 1.1 ad if (ntbins > 0)
3396 1.1 ad small_min = (quantum >> 1) + 1;
3397 1.1 ad else
3398 1.1 ad small_min = 1;
3399 1.1 ad assert(small_min <= quantum);
3400 1.1 ad
3401 1.1 ad /* Set variables according to the value of opt_chunk_2pow. */
3402 1.1 ad chunksize = (1LU << opt_chunk_2pow);
3403 1.1 ad chunksize_mask = chunksize - 1;
3404 1.1 ad chunk_npages = (chunksize >> pagesize_2pow);
3405 1.1 ad {
3406 1.1 ad unsigned header_size;
3407 1.1 ad
3408 1.1 ad header_size = sizeof(arena_chunk_t) + (sizeof(arena_chunk_map_t)
3409 1.1 ad * (chunk_npages - 1));
3410 1.1 ad arena_chunk_header_npages = (header_size >> pagesize_2pow);
3411 1.1 ad if ((header_size & pagesize_mask) != 0)
3412 1.1 ad arena_chunk_header_npages++;
3413 1.1 ad }
3414 1.1 ad arena_maxclass = chunksize - (arena_chunk_header_npages <<
3415 1.1 ad pagesize_2pow);
3416 1.1 ad
3417 1.1 ad UTRACE(0, 0, 0);
3418 1.1 ad
3419 1.1 ad #ifdef MALLOC_STATS
3420 1.1 ad memset(&stats_chunks, 0, sizeof(chunk_stats_t));
3421 1.1 ad #endif
3422 1.1 ad
3423 1.1 ad /* Various sanity checks that regard configuration. */
3424 1.1 ad assert(quantum >= sizeof(void *));
3425 1.1 ad assert(quantum <= pagesize);
3426 1.1 ad assert(chunksize >= pagesize);
3427 1.1 ad assert(quantum * 4 <= chunksize);
3428 1.1 ad
3429 1.1 ad /* Initialize chunks data. */
3430 1.1 ad malloc_mutex_init(&chunks_mtx);
3431 1.1 ad RB_INIT(&huge);
3432 1.1 ad #ifdef USE_BRK
3433 1.1 ad malloc_mutex_init(&brk_mtx);
3434 1.1 ad brk_base = sbrk(0);
3435 1.1 ad brk_prev = brk_base;
3436 1.1 ad brk_max = brk_base;
3437 1.1 ad #endif
3438 1.1 ad #ifdef MALLOC_STATS
3439 1.1 ad huge_nmalloc = 0;
3440 1.1 ad huge_ndalloc = 0;
3441 1.1 ad huge_allocated = 0;
3442 1.1 ad #endif
3443 1.1 ad RB_INIT(&old_chunks);
3444 1.1 ad
3445 1.1 ad /* Initialize base allocation data structures. */
3446 1.1 ad #ifdef MALLOC_STATS
3447 1.1 ad base_mapped = 0;
3448 1.1 ad #endif
3449 1.1 ad #ifdef USE_BRK
3450 1.1 ad /*
3451 1.1 ad * Allocate a base chunk here, since it doesn't actually have to be
3452 1.1 ad * chunk-aligned. Doing this before allocating any other chunks allows
3453 1.1 ad * the use of space that would otherwise be wasted.
3454 1.1 ad */
3455 1.1 ad base_pages_alloc(0);
3456 1.1 ad #endif
3457 1.1 ad base_chunk_nodes = NULL;
3458 1.1 ad malloc_mutex_init(&base_mtx);
3459 1.1 ad
3460 1.1 ad if (ncpus > 1) {
3461 1.1 ad /*
3462 1.1 ad * For SMP systems, create four times as many arenas as there
3463 1.1 ad * are CPUs by default.
3464 1.1 ad */
3465 1.1 ad opt_narenas_lshift += 2;
3466 1.1 ad }
3467 1.1 ad
3468 1.1 ad /* Determine how many arenas to use. */
3469 1.1 ad narenas = ncpus;
3470 1.1 ad if (opt_narenas_lshift > 0) {
3471 1.1 ad if ((narenas << opt_narenas_lshift) > narenas)
3472 1.1 ad narenas <<= opt_narenas_lshift;
3473 1.1 ad /*
3474 1.1 ad * Make sure not to exceed the limits of what base_malloc()
3475 1.1 ad * can handle.
3476 1.1 ad */
3477 1.1 ad if (narenas * sizeof(arena_t *) > chunksize)
3478 1.1 ad narenas = chunksize / sizeof(arena_t *);
3479 1.1 ad } else if (opt_narenas_lshift < 0) {
3480 1.1 ad if ((narenas << opt_narenas_lshift) < narenas)
3481 1.1 ad narenas <<= opt_narenas_lshift;
3482 1.1 ad /* Make sure there is at least one arena. */
3483 1.1 ad if (narenas == 0)
3484 1.1 ad narenas = 1;
3485 1.1 ad }
3486 1.1 ad
3487 1.1 ad #ifdef NO_TLS
3488 1.1 ad if (narenas > 1) {
3489 1.1 ad static const unsigned primes[] = {1, 3, 5, 7, 11, 13, 17, 19,
3490 1.1 ad 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83,
3491 1.1 ad 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149,
3492 1.1 ad 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211,
3493 1.1 ad 223, 227, 229, 233, 239, 241, 251, 257, 263};
3494 1.1 ad unsigned nprimes, parenas;
3495 1.1 ad
3496 1.1 ad /*
3497 1.1 ad * Pick a prime number of hash arenas that is more than narenas
3498 1.1 ad * so that direct hashing of pthread_self() pointers tends to
3499 1.1 ad * spread allocations evenly among the arenas.
3500 1.1 ad */
3501 1.1 ad assert((narenas & 1) == 0); /* narenas must be even. */
3502 1.1 ad nprimes = (sizeof(primes) >> SIZEOF_INT_2POW);
3503 1.1 ad parenas = primes[nprimes - 1]; /* In case not enough primes. */
3504 1.1 ad for (i = 1; i < nprimes; i++) {
3505 1.1 ad if (primes[i] > narenas) {
3506 1.1 ad parenas = primes[i];
3507 1.1 ad break;
3508 1.1 ad }
3509 1.1 ad }
3510 1.1 ad narenas = parenas;
3511 1.1 ad }
3512 1.1 ad #endif
3513 1.1 ad
3514 1.1 ad #ifndef NO_TLS
3515 1.1 ad next_arena = 0;
3516 1.1 ad #endif
3517 1.1 ad
3518 1.1 ad /* Allocate and initialize arenas. */
3519 1.1 ad arenas = (arena_t **)base_alloc(sizeof(arena_t *) * narenas);
3520 1.1 ad if (arenas == NULL) {
3521 1.1 ad malloc_mutex_unlock(&init_lock);
3522 1.1 ad return (true);
3523 1.1 ad }
3524 1.1 ad /*
3525 1.1 ad * Zero the array. In practice, this should always be pre-zeroed,
3526 1.1 ad * since it was just mmap()ed, but let's be sure.
3527 1.1 ad */
3528 1.1 ad memset(arenas, 0, sizeof(arena_t *) * narenas);
3529 1.1 ad
3530 1.1 ad /*
3531 1.1 ad * Initialize one arena here. The rest are lazily created in
3532 1.1 ad * arena_choose_hard().
3533 1.1 ad */
3534 1.1 ad arenas_extend(0);
3535 1.1 ad if (arenas[0] == NULL) {
3536 1.1 ad malloc_mutex_unlock(&init_lock);
3537 1.1 ad return (true);
3538 1.1 ad }
3539 1.1 ad
3540 1.1 ad malloc_mutex_init(&arenas_mtx);
3541 1.1 ad
3542 1.1 ad malloc_initialized = true;
3543 1.1 ad malloc_mutex_unlock(&init_lock);
3544 1.1 ad return (false);
3545 1.1 ad }
3546 1.1 ad
3547 1.1 ad /*
3548 1.1 ad * End general internal functions.
3549 1.1 ad */
3550 1.1 ad /******************************************************************************/
3551 1.1 ad /*
3552 1.1 ad * Begin malloc(3)-compatible functions.
3553 1.1 ad */
3554 1.1 ad
3555 1.1 ad void *
3556 1.1 ad malloc(size_t size)
3557 1.1 ad {
3558 1.1 ad void *ret;
3559 1.1 ad
3560 1.1 ad if (malloc_init()) {
3561 1.1 ad ret = NULL;
3562 1.1 ad goto RETURN;
3563 1.1 ad }
3564 1.1 ad
3565 1.1 ad if (size == 0) {
3566 1.1 ad if (opt_sysv == false)
3567 1.1 ad size = 1;
3568 1.1 ad else {
3569 1.1 ad ret = NULL;
3570 1.1 ad goto RETURN;
3571 1.1 ad }
3572 1.1 ad }
3573 1.1 ad
3574 1.1 ad ret = imalloc(size);
3575 1.1 ad
3576 1.1 ad RETURN:
3577 1.1 ad if (ret == NULL) {
3578 1.1 ad if (opt_xmalloc) {
3579 1.1 ad _malloc_message(_getprogname(),
3580 1.1 ad ": (malloc) Error in malloc(): out of memory\n", "",
3581 1.1 ad "");
3582 1.1 ad abort();
3583 1.1 ad }
3584 1.1 ad errno = ENOMEM;
3585 1.1 ad }
3586 1.1 ad
3587 1.1 ad UTRACE(0, size, ret);
3588 1.1 ad return (ret);
3589 1.1 ad }
3590 1.1 ad
3591 1.1 ad int
3592 1.1 ad posix_memalign(void **memptr, size_t alignment, size_t size)
3593 1.1 ad {
3594 1.1 ad int ret;
3595 1.1 ad void *result;
3596 1.1 ad
3597 1.1 ad if (malloc_init())
3598 1.1 ad result = NULL;
3599 1.1 ad else {
3600 1.1 ad /* Make sure that alignment is a large enough power of 2. */
3601 1.1 ad if (((alignment - 1) & alignment) != 0
3602 1.1 ad || alignment < sizeof(void *)) {
3603 1.1 ad if (opt_xmalloc) {
3604 1.1 ad _malloc_message(_getprogname(),
3605 1.1 ad ": (malloc) Error in posix_memalign(): "
3606 1.1 ad "invalid alignment\n", "", "");
3607 1.1 ad abort();
3608 1.1 ad }
3609 1.1 ad result = NULL;
3610 1.1 ad ret = EINVAL;
3611 1.1 ad goto RETURN;
3612 1.1 ad }
3613 1.1 ad
3614 1.1 ad result = ipalloc(alignment, size);
3615 1.1 ad }
3616 1.1 ad
3617 1.1 ad if (result == NULL) {
3618 1.1 ad if (opt_xmalloc) {
3619 1.1 ad _malloc_message(_getprogname(),
3620 1.1 ad ": (malloc) Error in posix_memalign(): out of memory\n",
3621 1.1 ad "", "");
3622 1.1 ad abort();
3623 1.1 ad }
3624 1.1 ad ret = ENOMEM;
3625 1.1 ad goto RETURN;
3626 1.1 ad }
3627 1.1 ad
3628 1.1 ad *memptr = result;
3629 1.1 ad ret = 0;
3630 1.1 ad
3631 1.1 ad RETURN:
3632 1.1 ad UTRACE(0, size, result);
3633 1.1 ad return (ret);
3634 1.1 ad }
3635 1.1 ad
3636 1.1 ad void *
3637 1.1 ad calloc(size_t num, size_t size)
3638 1.1 ad {
3639 1.1 ad void *ret;
3640 1.1 ad size_t num_size;
3641 1.1 ad
3642 1.1 ad if (malloc_init()) {
3643 1.1 ad num_size = 0;
3644 1.1 ad ret = NULL;
3645 1.1 ad goto RETURN;
3646 1.1 ad }
3647 1.1 ad
3648 1.1 ad num_size = num * size;
3649 1.1 ad if (num_size == 0) {
3650 1.1 ad if ((opt_sysv == false) && ((num == 0) || (size == 0)))
3651 1.1 ad num_size = 1;
3652 1.1 ad else {
3653 1.1 ad ret = NULL;
3654 1.1 ad goto RETURN;
3655 1.1 ad }
3656 1.1 ad /*
3657 1.1 ad * Try to avoid division here. We know that it isn't possible to
3658 1.1 ad * overflow during multiplication if neither operand uses any of the
3659 1.1 ad * most significant half of the bits in a size_t.
3660 1.1 ad */
3661 1.1 ad } else if (((num | size) & (SIZE_T_MAX << (sizeof(size_t) << 2)))
3662 1.1 ad && (num_size / size != num)) {
3663 1.1 ad /* size_t overflow. */
3664 1.1 ad ret = NULL;
3665 1.1 ad goto RETURN;
3666 1.1 ad }
3667 1.1 ad
3668 1.1 ad ret = icalloc(num_size);
3669 1.1 ad
3670 1.1 ad RETURN:
3671 1.1 ad if (ret == NULL) {
3672 1.1 ad if (opt_xmalloc) {
3673 1.1 ad _malloc_message(_getprogname(),
3674 1.1 ad ": (malloc) Error in calloc(): out of memory\n", "",
3675 1.1 ad "");
3676 1.1 ad abort();
3677 1.1 ad }
3678 1.1 ad errno = ENOMEM;
3679 1.1 ad }
3680 1.1 ad
3681 1.1 ad UTRACE(0, num_size, ret);
3682 1.1 ad return (ret);
3683 1.1 ad }
3684 1.1 ad
3685 1.1 ad void *
3686 1.1 ad realloc(void *ptr, size_t size)
3687 1.1 ad {
3688 1.1 ad void *ret;
3689 1.1 ad
3690 1.1 ad if (size == 0) {
3691 1.1 ad if (opt_sysv == false)
3692 1.1 ad size = 1;
3693 1.1 ad else {
3694 1.1 ad if (ptr != NULL)
3695 1.1 ad idalloc(ptr);
3696 1.1 ad ret = NULL;
3697 1.1 ad goto RETURN;
3698 1.1 ad }
3699 1.1 ad }
3700 1.1 ad
3701 1.1 ad if (ptr != NULL) {
3702 1.1 ad assert(malloc_initialized);
3703 1.1 ad
3704 1.1 ad ret = iralloc(ptr, size);
3705 1.1 ad
3706 1.1 ad if (ret == NULL) {
3707 1.1 ad if (opt_xmalloc) {
3708 1.1 ad _malloc_message(_getprogname(),
3709 1.1 ad ": (malloc) Error in realloc(): out of "
3710 1.1 ad "memory\n", "", "");
3711 1.1 ad abort();
3712 1.1 ad }
3713 1.1 ad errno = ENOMEM;
3714 1.1 ad }
3715 1.1 ad } else {
3716 1.1 ad if (malloc_init())
3717 1.1 ad ret = NULL;
3718 1.1 ad else
3719 1.1 ad ret = imalloc(size);
3720 1.1 ad
3721 1.1 ad if (ret == NULL) {
3722 1.1 ad if (opt_xmalloc) {
3723 1.1 ad _malloc_message(_getprogname(),
3724 1.1 ad ": (malloc) Error in realloc(): out of "
3725 1.1 ad "memory\n", "", "");
3726 1.1 ad abort();
3727 1.1 ad }
3728 1.1 ad errno = ENOMEM;
3729 1.1 ad }
3730 1.1 ad }
3731 1.1 ad
3732 1.1 ad RETURN:
3733 1.1 ad UTRACE(ptr, size, ret);
3734 1.1 ad return (ret);
3735 1.1 ad }
3736 1.1 ad
3737 1.1 ad void
3738 1.1 ad free(void *ptr)
3739 1.1 ad {
3740 1.1 ad
3741 1.1 ad UTRACE(ptr, 0, 0);
3742 1.1 ad if (ptr != NULL) {
3743 1.1 ad assert(malloc_initialized);
3744 1.1 ad
3745 1.1 ad idalloc(ptr);
3746 1.1 ad }
3747 1.1 ad }
3748 1.1 ad
3749 1.1 ad /*
3750 1.1 ad * End malloc(3)-compatible functions.
3751 1.1 ad */
3752 1.1 ad /******************************************************************************/
3753 1.1 ad /*
3754 1.1 ad * Begin non-standard functions.
3755 1.1 ad */
3756 1.1 ad
3757 1.1 ad size_t
3758 1.1 ad malloc_usable_size(const void *ptr)
3759 1.1 ad {
3760 1.1 ad
3761 1.1 ad assert(ptr != NULL);
3762 1.1 ad
3763 1.1 ad return (isalloc(ptr));
3764 1.1 ad }
3765 1.1 ad
3766 1.1 ad /*
3767 1.1 ad * End non-standard functions.
3768 1.1 ad */
3769 1.1 ad /******************************************************************************/
3770 1.1 ad /*
3771 1.1 ad * Begin library-private functions, used by threading libraries for protection
3772 1.1 ad * of malloc during fork(). These functions are only called if the program is
3773 1.1 ad * running in threaded mode, so there is no need to check whether the program
3774 1.1 ad * is threaded here.
3775 1.1 ad */
3776 1.1 ad
3777 1.1 ad void
3778 1.1 ad _malloc_prefork(void)
3779 1.1 ad {
3780 1.1 ad unsigned i;
3781 1.1 ad
3782 1.1 ad /* Acquire all mutexes in a safe order. */
3783 1.1 ad
3784 1.1 ad malloc_mutex_lock(&arenas_mtx);
3785 1.1 ad for (i = 0; i < narenas; i++) {
3786 1.1 ad if (arenas[i] != NULL)
3787 1.1 ad malloc_mutex_lock(&arenas[i]->mtx);
3788 1.1 ad }
3789 1.1 ad malloc_mutex_unlock(&arenas_mtx);
3790 1.1 ad
3791 1.1 ad malloc_mutex_lock(&base_mtx);
3792 1.1 ad
3793 1.1 ad malloc_mutex_lock(&chunks_mtx);
3794 1.1 ad }
3795 1.1 ad
3796 1.1 ad void
3797 1.1 ad _malloc_postfork(void)
3798 1.1 ad {
3799 1.1 ad unsigned i;
3800 1.1 ad
3801 1.1 ad /* Release all mutexes, now that fork() has completed. */
3802 1.1 ad
3803 1.1 ad malloc_mutex_unlock(&chunks_mtx);
3804 1.1 ad
3805 1.1 ad malloc_mutex_unlock(&base_mtx);
3806 1.1 ad
3807 1.1 ad malloc_mutex_lock(&arenas_mtx);
3808 1.1 ad for (i = 0; i < narenas; i++) {
3809 1.1 ad if (arenas[i] != NULL)
3810 1.1 ad malloc_mutex_unlock(&arenas[i]->mtx);
3811 1.1 ad }
3812 1.1 ad malloc_mutex_unlock(&arenas_mtx);
3813 1.1 ad }
3814 1.1 ad
3815 1.1 ad /*
3816 1.1 ad * End library-private functions.
3817 1.1 ad */
3818 1.1 ad /******************************************************************************/
3819