jemalloc.c revision 1.17 1 1.17 ad /* $NetBSD: jemalloc.c,v 1.17 2008/03/08 13:17:13 ad Exp $ */
2 1.2 ad
3 1.1 ad /*-
4 1.1 ad * Copyright (C) 2006,2007 Jason Evans <jasone (at) FreeBSD.org>.
5 1.1 ad * All rights reserved.
6 1.1 ad *
7 1.1 ad * Redistribution and use in source and binary forms, with or without
8 1.1 ad * modification, are permitted provided that the following conditions
9 1.1 ad * are met:
10 1.1 ad * 1. Redistributions of source code must retain the above copyright
11 1.1 ad * notice(s), this list of conditions and the following disclaimer as
12 1.1 ad * the first lines of this file unmodified other than the possible
13 1.1 ad * addition of one or more copyright notices.
14 1.1 ad * 2. Redistributions in binary form must reproduce the above copyright
15 1.1 ad * notice(s), this list of conditions and the following disclaimer in
16 1.1 ad * the documentation and/or other materials provided with the
17 1.1 ad * distribution.
18 1.1 ad *
19 1.1 ad * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY
20 1.1 ad * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 1.1 ad * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.1 ad * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE
23 1.1 ad * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.1 ad * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.1 ad * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
26 1.1 ad * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
27 1.1 ad * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
28 1.1 ad * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
29 1.1 ad * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 1.1 ad *
31 1.1 ad *******************************************************************************
32 1.1 ad *
33 1.1 ad * This allocator implementation is designed to provide scalable performance
34 1.1 ad * for multi-threaded programs on multi-processor systems. The following
35 1.1 ad * features are included for this purpose:
36 1.1 ad *
37 1.1 ad * + Multiple arenas are used if there are multiple CPUs, which reduces lock
38 1.1 ad * contention and cache sloshing.
39 1.1 ad *
40 1.1 ad * + Cache line sharing between arenas is avoided for internal data
41 1.1 ad * structures.
42 1.1 ad *
43 1.1 ad * + Memory is managed in chunks and runs (chunks can be split into runs),
44 1.1 ad * rather than as individual pages. This provides a constant-time
45 1.1 ad * mechanism for associating allocations with particular arenas.
46 1.1 ad *
47 1.1 ad * Allocation requests are rounded up to the nearest size class, and no record
48 1.1 ad * of the original request size is maintained. Allocations are broken into
49 1.1 ad * categories according to size class. Assuming runtime defaults, 4 kB pages
50 1.1 ad * and a 16 byte quantum, the size classes in each category are as follows:
51 1.1 ad *
52 1.1 ad * |=====================================|
53 1.1 ad * | Category | Subcategory | Size |
54 1.1 ad * |=====================================|
55 1.1 ad * | Small | Tiny | 2 |
56 1.1 ad * | | | 4 |
57 1.1 ad * | | | 8 |
58 1.1 ad * | |----------------+---------|
59 1.1 ad * | | Quantum-spaced | 16 |
60 1.1 ad * | | | 32 |
61 1.1 ad * | | | 48 |
62 1.1 ad * | | | ... |
63 1.1 ad * | | | 480 |
64 1.1 ad * | | | 496 |
65 1.1 ad * | | | 512 |
66 1.1 ad * | |----------------+---------|
67 1.1 ad * | | Sub-page | 1 kB |
68 1.1 ad * | | | 2 kB |
69 1.1 ad * |=====================================|
70 1.1 ad * | Large | 4 kB |
71 1.1 ad * | | 8 kB |
72 1.1 ad * | | 12 kB |
73 1.1 ad * | | ... |
74 1.1 ad * | | 1012 kB |
75 1.1 ad * | | 1016 kB |
76 1.1 ad * | | 1020 kB |
77 1.1 ad * |=====================================|
78 1.1 ad * | Huge | 1 MB |
79 1.1 ad * | | 2 MB |
80 1.1 ad * | | 3 MB |
81 1.1 ad * | | ... |
82 1.1 ad * |=====================================|
83 1.1 ad *
84 1.1 ad * A different mechanism is used for each category:
85 1.1 ad *
86 1.1 ad * Small : Each size class is segregated into its own set of runs. Each run
87 1.1 ad * maintains a bitmap of which regions are free/allocated.
88 1.1 ad *
89 1.1 ad * Large : Each allocation is backed by a dedicated run. Metadata are stored
90 1.1 ad * in the associated arena chunk header maps.
91 1.1 ad *
92 1.1 ad * Huge : Each allocation is backed by a dedicated contiguous set of chunks.
93 1.1 ad * Metadata are stored in a separate red-black tree.
94 1.1 ad *
95 1.1 ad *******************************************************************************
96 1.1 ad */
97 1.1 ad
98 1.2 ad /* LINTLIBRARY */
99 1.2 ad
100 1.2 ad #ifdef __NetBSD__
101 1.2 ad # define xutrace(a, b) utrace("malloc", (a), (b))
102 1.2 ad # define __DECONST(x, y) ((x)__UNCONST(y))
103 1.2 ad # define NO_TLS
104 1.2 ad #else
105 1.2 ad # define xutrace(a, b) utrace((a), (b))
106 1.2 ad #endif /* __NetBSD__ */
107 1.2 ad
108 1.1 ad /*
109 1.1 ad * MALLOC_PRODUCTION disables assertions and statistics gathering. It also
110 1.1 ad * defaults the A and J runtime options to off. These settings are appropriate
111 1.1 ad * for production systems.
112 1.1 ad */
113 1.2 ad #define MALLOC_PRODUCTION
114 1.1 ad
115 1.1 ad #ifndef MALLOC_PRODUCTION
116 1.1 ad # define MALLOC_DEBUG
117 1.1 ad #endif
118 1.1 ad
119 1.1 ad #include <sys/cdefs.h>
120 1.2 ad /* __FBSDID("$FreeBSD: src/lib/libc/stdlib/malloc.c,v 1.147 2007/06/15 22:00:16 jasone Exp $"); */
121 1.17 ad __RCSID("$NetBSD: jemalloc.c,v 1.17 2008/03/08 13:17:13 ad Exp $");
122 1.1 ad
123 1.2 ad #ifdef __FreeBSD__
124 1.1 ad #include "libc_private.h"
125 1.1 ad #ifdef MALLOC_DEBUG
126 1.1 ad # define _LOCK_DEBUG
127 1.1 ad #endif
128 1.1 ad #include "spinlock.h"
129 1.2 ad #endif
130 1.1 ad #include "namespace.h"
131 1.1 ad #include <sys/mman.h>
132 1.1 ad #include <sys/param.h>
133 1.2 ad #ifdef __FreeBSD__
134 1.1 ad #include <sys/stddef.h>
135 1.2 ad #endif
136 1.1 ad #include <sys/time.h>
137 1.1 ad #include <sys/types.h>
138 1.1 ad #include <sys/sysctl.h>
139 1.1 ad #include <sys/tree.h>
140 1.1 ad #include <sys/uio.h>
141 1.1 ad #include <sys/ktrace.h> /* Must come after several other sys/ includes. */
142 1.1 ad
143 1.2 ad #ifdef __FreeBSD__
144 1.1 ad #include <machine/atomic.h>
145 1.1 ad #include <machine/cpufunc.h>
146 1.2 ad #endif
147 1.1 ad #include <machine/vmparam.h>
148 1.1 ad
149 1.1 ad #include <errno.h>
150 1.1 ad #include <limits.h>
151 1.1 ad #include <pthread.h>
152 1.1 ad #include <sched.h>
153 1.1 ad #include <stdarg.h>
154 1.1 ad #include <stdbool.h>
155 1.1 ad #include <stdio.h>
156 1.1 ad #include <stdint.h>
157 1.1 ad #include <stdlib.h>
158 1.1 ad #include <string.h>
159 1.1 ad #include <strings.h>
160 1.1 ad #include <unistd.h>
161 1.1 ad
162 1.2 ad #ifdef __NetBSD__
163 1.2 ad # include <reentrant.h>
164 1.16 christos # include "extern.h"
165 1.16 christos
166 1.16 christos #define STRERROR_R(a, b, c) __strerror_r(a, b, c);
167 1.16 christos /*
168 1.16 christos * A non localized version of strerror, that avoids bringing in
169 1.16 christos * stdio and the locale code. All the malloc messages are in English
170 1.16 christos * so why bother?
171 1.16 christos */
172 1.16 christos static int
173 1.16 christos __strerror_r(int e, char *s, size_t l)
174 1.16 christos {
175 1.16 christos int rval;
176 1.16 christos size_t slen;
177 1.16 christos
178 1.16 christos if (e >= 0 && e < sys_nerr) {
179 1.16 christos slen = strlcpy(s, sys_errlist[e], l);
180 1.16 christos rval = 0;
181 1.16 christos } else {
182 1.16 christos slen = snprintf_ss(s, l, "Unknown error %u", e);
183 1.16 christos rval = EINVAL;
184 1.16 christos }
185 1.16 christos return slen >= l ? ERANGE : rval;
186 1.16 christos }
187 1.2 ad #endif
188 1.2 ad
189 1.2 ad #ifdef __FreeBSD__
190 1.16 christos #define STRERROR_R(a, b, c) strerror_r(a, b, c);
191 1.1 ad #include "un-namespace.h"
192 1.2 ad #endif
193 1.1 ad
194 1.1 ad /* MALLOC_STATS enables statistics calculation. */
195 1.1 ad #ifndef MALLOC_PRODUCTION
196 1.1 ad # define MALLOC_STATS
197 1.1 ad #endif
198 1.1 ad
199 1.1 ad #ifdef MALLOC_DEBUG
200 1.1 ad # ifdef NDEBUG
201 1.1 ad # undef NDEBUG
202 1.1 ad # endif
203 1.1 ad #else
204 1.1 ad # ifndef NDEBUG
205 1.1 ad # define NDEBUG
206 1.1 ad # endif
207 1.1 ad #endif
208 1.1 ad #include <assert.h>
209 1.1 ad
210 1.1 ad #ifdef MALLOC_DEBUG
211 1.1 ad /* Disable inlining to make debugging easier. */
212 1.1 ad # define inline
213 1.1 ad #endif
214 1.1 ad
215 1.1 ad /* Size of stack-allocated buffer passed to strerror_r(). */
216 1.1 ad #define STRERROR_BUF 64
217 1.1 ad
218 1.1 ad /* Minimum alignment of allocations is 2^QUANTUM_2POW_MIN bytes. */
219 1.1 ad #ifdef __i386__
220 1.1 ad # define QUANTUM_2POW_MIN 4
221 1.1 ad # define SIZEOF_PTR_2POW 2
222 1.1 ad # define USE_BRK
223 1.1 ad #endif
224 1.1 ad #ifdef __ia64__
225 1.1 ad # define QUANTUM_2POW_MIN 4
226 1.1 ad # define SIZEOF_PTR_2POW 3
227 1.1 ad #endif
228 1.1 ad #ifdef __alpha__
229 1.1 ad # define QUANTUM_2POW_MIN 4
230 1.1 ad # define SIZEOF_PTR_2POW 3
231 1.1 ad # define NO_TLS
232 1.1 ad #endif
233 1.1 ad #ifdef __sparc64__
234 1.1 ad # define QUANTUM_2POW_MIN 4
235 1.1 ad # define SIZEOF_PTR_2POW 3
236 1.1 ad # define NO_TLS
237 1.1 ad #endif
238 1.1 ad #ifdef __amd64__
239 1.1 ad # define QUANTUM_2POW_MIN 4
240 1.1 ad # define SIZEOF_PTR_2POW 3
241 1.1 ad #endif
242 1.1 ad #ifdef __arm__
243 1.1 ad # define QUANTUM_2POW_MIN 3
244 1.1 ad # define SIZEOF_PTR_2POW 2
245 1.1 ad # define USE_BRK
246 1.1 ad # define NO_TLS
247 1.1 ad #endif
248 1.1 ad #ifdef __powerpc__
249 1.1 ad # define QUANTUM_2POW_MIN 4
250 1.1 ad # define SIZEOF_PTR_2POW 2
251 1.1 ad # define USE_BRK
252 1.1 ad #endif
253 1.3 he #if defined(__sparc__) && !defined(__sparc64__)
254 1.2 ad # define QUANTUM_2POW_MIN 4
255 1.2 ad # define SIZEOF_PTR_2POW 2
256 1.2 ad # define USE_BRK
257 1.2 ad #endif
258 1.2 ad #ifdef __vax__
259 1.2 ad # define QUANTUM_2POW_MIN 4
260 1.2 ad # define SIZEOF_PTR_2POW 2
261 1.2 ad # define USE_BRK
262 1.2 ad #endif
263 1.2 ad #ifdef __sh__
264 1.2 ad # define QUANTUM_2POW_MIN 4
265 1.2 ad # define SIZEOF_PTR_2POW 2
266 1.2 ad # define USE_BRK
267 1.2 ad #endif
268 1.2 ad #ifdef __m68k__
269 1.2 ad # define QUANTUM_2POW_MIN 4
270 1.2 ad # define SIZEOF_PTR_2POW 2
271 1.2 ad # define USE_BRK
272 1.2 ad #endif
273 1.2 ad #ifdef __mips__
274 1.2 ad # define QUANTUM_2POW_MIN 4
275 1.2 ad # define SIZEOF_PTR_2POW 2
276 1.2 ad # define USE_BRK
277 1.2 ad #endif
278 1.4 ad #ifdef __hppa__
279 1.4 ad # define QUANTUM_2POW_MIN 4
280 1.4 ad # define SIZEOF_PTR_2POW 2
281 1.4 ad # define USE_BRK
282 1.4 ad #endif
283 1.1 ad
284 1.1 ad #define SIZEOF_PTR (1 << SIZEOF_PTR_2POW)
285 1.1 ad
286 1.1 ad /* sizeof(int) == (1 << SIZEOF_INT_2POW). */
287 1.1 ad #ifndef SIZEOF_INT_2POW
288 1.1 ad # define SIZEOF_INT_2POW 2
289 1.1 ad #endif
290 1.1 ad
291 1.1 ad /* We can't use TLS in non-PIC programs, since TLS relies on loader magic. */
292 1.1 ad #if (!defined(PIC) && !defined(NO_TLS))
293 1.1 ad # define NO_TLS
294 1.1 ad #endif
295 1.1 ad
296 1.1 ad /*
297 1.1 ad * Size and alignment of memory chunks that are allocated by the OS's virtual
298 1.1 ad * memory system.
299 1.1 ad */
300 1.1 ad #define CHUNK_2POW_DEFAULT 20
301 1.1 ad
302 1.1 ad /*
303 1.1 ad * Maximum size of L1 cache line. This is used to avoid cache line aliasing,
304 1.1 ad * so over-estimates are okay (up to a point), but under-estimates will
305 1.1 ad * negatively affect performance.
306 1.1 ad */
307 1.1 ad #define CACHELINE_2POW 6
308 1.1 ad #define CACHELINE ((size_t)(1 << CACHELINE_2POW))
309 1.1 ad
310 1.1 ad /* Smallest size class to support. */
311 1.1 ad #define TINY_MIN_2POW 1
312 1.1 ad
313 1.1 ad /*
314 1.1 ad * Maximum size class that is a multiple of the quantum, but not (necessarily)
315 1.1 ad * a power of 2. Above this size, allocations are rounded up to the nearest
316 1.1 ad * power of 2.
317 1.1 ad */
318 1.1 ad #define SMALL_MAX_2POW_DEFAULT 9
319 1.1 ad #define SMALL_MAX_DEFAULT (1 << SMALL_MAX_2POW_DEFAULT)
320 1.1 ad
321 1.1 ad /*
322 1.1 ad * Maximum desired run header overhead. Runs are sized as small as possible
323 1.1 ad * such that this setting is still honored, without violating other constraints.
324 1.1 ad * The goal is to make runs as small as possible without exceeding a per run
325 1.1 ad * external fragmentation threshold.
326 1.1 ad *
327 1.1 ad * Note that it is possible to set this low enough that it cannot be honored
328 1.1 ad * for some/all object sizes, since there is one bit of header overhead per
329 1.1 ad * object (plus a constant). In such cases, this constraint is relaxed.
330 1.1 ad *
331 1.1 ad * RUN_MAX_OVRHD_RELAX specifies the maximum number of bits per region of
332 1.1 ad * overhead for which RUN_MAX_OVRHD is relaxed.
333 1.1 ad */
334 1.1 ad #define RUN_MAX_OVRHD 0.015
335 1.1 ad #define RUN_MAX_OVRHD_RELAX 1.5
336 1.1 ad
337 1.1 ad /* Put a cap on small object run size. This overrides RUN_MAX_OVRHD. */
338 1.1 ad #define RUN_MAX_SMALL_2POW 15
339 1.1 ad #define RUN_MAX_SMALL (1 << RUN_MAX_SMALL_2POW)
340 1.1 ad
341 1.1 ad /******************************************************************************/
342 1.1 ad
343 1.2 ad #ifdef __FreeBSD__
344 1.1 ad /*
345 1.1 ad * Mutexes based on spinlocks. We can't use normal pthread mutexes, because
346 1.1 ad * they require malloc()ed memory.
347 1.1 ad */
348 1.1 ad typedef struct {
349 1.1 ad spinlock_t lock;
350 1.1 ad } malloc_mutex_t;
351 1.1 ad
352 1.1 ad /* Set to true once the allocator has been initialized. */
353 1.1 ad static bool malloc_initialized = false;
354 1.1 ad
355 1.1 ad /* Used to avoid initialization races. */
356 1.1 ad static malloc_mutex_t init_lock = {_SPINLOCK_INITIALIZER};
357 1.2 ad #else
358 1.2 ad #define malloc_mutex_t mutex_t
359 1.2 ad
360 1.2 ad /* Set to true once the allocator has been initialized. */
361 1.2 ad static bool malloc_initialized = false;
362 1.2 ad
363 1.2 ad /* Used to avoid initialization races. */
364 1.2 ad static mutex_t init_lock = MUTEX_INITIALIZER;
365 1.2 ad #endif
366 1.1 ad
367 1.1 ad /******************************************************************************/
368 1.1 ad /*
369 1.1 ad * Statistics data structures.
370 1.1 ad */
371 1.1 ad
372 1.1 ad #ifdef MALLOC_STATS
373 1.1 ad
374 1.1 ad typedef struct malloc_bin_stats_s malloc_bin_stats_t;
375 1.1 ad struct malloc_bin_stats_s {
376 1.1 ad /*
377 1.1 ad * Number of allocation requests that corresponded to the size of this
378 1.1 ad * bin.
379 1.1 ad */
380 1.1 ad uint64_t nrequests;
381 1.1 ad
382 1.1 ad /* Total number of runs created for this bin's size class. */
383 1.1 ad uint64_t nruns;
384 1.1 ad
385 1.1 ad /*
386 1.1 ad * Total number of runs reused by extracting them from the runs tree for
387 1.1 ad * this bin's size class.
388 1.1 ad */
389 1.1 ad uint64_t reruns;
390 1.1 ad
391 1.1 ad /* High-water mark for this bin. */
392 1.1 ad unsigned long highruns;
393 1.1 ad
394 1.1 ad /* Current number of runs in this bin. */
395 1.1 ad unsigned long curruns;
396 1.1 ad };
397 1.1 ad
398 1.1 ad typedef struct arena_stats_s arena_stats_t;
399 1.1 ad struct arena_stats_s {
400 1.1 ad /* Number of bytes currently mapped. */
401 1.1 ad size_t mapped;
402 1.1 ad
403 1.1 ad /* Per-size-category statistics. */
404 1.1 ad size_t allocated_small;
405 1.1 ad uint64_t nmalloc_small;
406 1.1 ad uint64_t ndalloc_small;
407 1.1 ad
408 1.1 ad size_t allocated_large;
409 1.1 ad uint64_t nmalloc_large;
410 1.1 ad uint64_t ndalloc_large;
411 1.1 ad };
412 1.1 ad
413 1.1 ad typedef struct chunk_stats_s chunk_stats_t;
414 1.1 ad struct chunk_stats_s {
415 1.1 ad /* Number of chunks that were allocated. */
416 1.1 ad uint64_t nchunks;
417 1.1 ad
418 1.1 ad /* High-water mark for number of chunks allocated. */
419 1.1 ad unsigned long highchunks;
420 1.1 ad
421 1.1 ad /*
422 1.1 ad * Current number of chunks allocated. This value isn't maintained for
423 1.1 ad * any other purpose, so keep track of it in order to be able to set
424 1.1 ad * highchunks.
425 1.1 ad */
426 1.1 ad unsigned long curchunks;
427 1.1 ad };
428 1.1 ad
429 1.1 ad #endif /* #ifdef MALLOC_STATS */
430 1.1 ad
431 1.1 ad /******************************************************************************/
432 1.1 ad /*
433 1.1 ad * Chunk data structures.
434 1.1 ad */
435 1.1 ad
436 1.1 ad /* Tree of chunks. */
437 1.1 ad typedef struct chunk_node_s chunk_node_t;
438 1.1 ad struct chunk_node_s {
439 1.1 ad /* Linkage for the chunk tree. */
440 1.1 ad RB_ENTRY(chunk_node_s) link;
441 1.1 ad
442 1.1 ad /*
443 1.1 ad * Pointer to the chunk that this tree node is responsible for. In some
444 1.1 ad * (but certainly not all) cases, this data structure is placed at the
445 1.1 ad * beginning of the corresponding chunk, so this field may point to this
446 1.1 ad * node.
447 1.1 ad */
448 1.1 ad void *chunk;
449 1.1 ad
450 1.1 ad /* Total chunk size. */
451 1.1 ad size_t size;
452 1.1 ad };
453 1.1 ad typedef struct chunk_tree_s chunk_tree_t;
454 1.1 ad RB_HEAD(chunk_tree_s, chunk_node_s);
455 1.1 ad
456 1.1 ad /******************************************************************************/
457 1.1 ad /*
458 1.1 ad * Arena data structures.
459 1.1 ad */
460 1.1 ad
461 1.1 ad typedef struct arena_s arena_t;
462 1.1 ad typedef struct arena_bin_s arena_bin_t;
463 1.1 ad
464 1.1 ad typedef struct arena_chunk_map_s arena_chunk_map_t;
465 1.1 ad struct arena_chunk_map_s {
466 1.1 ad /* Number of pages in run. */
467 1.1 ad uint32_t npages;
468 1.1 ad /*
469 1.1 ad * Position within run. For a free run, this is POS_FREE for the first
470 1.1 ad * and last pages. The POS_FREE special value makes it possible to
471 1.1 ad * quickly coalesce free runs.
472 1.1 ad *
473 1.1 ad * This is the limiting factor for chunksize; there can be at most 2^31
474 1.1 ad * pages in a run.
475 1.1 ad */
476 1.1 ad #define POS_FREE ((uint32_t)0xffffffffU)
477 1.1 ad uint32_t pos;
478 1.1 ad };
479 1.1 ad
480 1.1 ad /* Arena chunk header. */
481 1.1 ad typedef struct arena_chunk_s arena_chunk_t;
482 1.1 ad struct arena_chunk_s {
483 1.1 ad /* Arena that owns the chunk. */
484 1.1 ad arena_t *arena;
485 1.1 ad
486 1.1 ad /* Linkage for the arena's chunk tree. */
487 1.1 ad RB_ENTRY(arena_chunk_s) link;
488 1.1 ad
489 1.1 ad /*
490 1.1 ad * Number of pages in use. This is maintained in order to make
491 1.1 ad * detection of empty chunks fast.
492 1.1 ad */
493 1.1 ad uint32_t pages_used;
494 1.1 ad
495 1.1 ad /*
496 1.1 ad * Every time a free run larger than this value is created/coalesced,
497 1.1 ad * this value is increased. The only way that the value decreases is if
498 1.1 ad * arena_run_alloc() fails to find a free run as large as advertised by
499 1.1 ad * this value.
500 1.1 ad */
501 1.1 ad uint32_t max_frun_npages;
502 1.1 ad
503 1.1 ad /*
504 1.1 ad * Every time a free run that starts at an earlier page than this value
505 1.1 ad * is created/coalesced, this value is decreased. It is reset in a
506 1.1 ad * similar fashion to max_frun_npages.
507 1.1 ad */
508 1.1 ad uint32_t min_frun_ind;
509 1.1 ad
510 1.1 ad /*
511 1.1 ad * Map of pages within chunk that keeps track of free/large/small. For
512 1.1 ad * free runs, only the map entries for the first and last pages are
513 1.1 ad * kept up to date, so that free runs can be quickly coalesced.
514 1.1 ad */
515 1.1 ad arena_chunk_map_t map[1]; /* Dynamically sized. */
516 1.1 ad };
517 1.1 ad typedef struct arena_chunk_tree_s arena_chunk_tree_t;
518 1.1 ad RB_HEAD(arena_chunk_tree_s, arena_chunk_s);
519 1.1 ad
520 1.1 ad typedef struct arena_run_s arena_run_t;
521 1.1 ad struct arena_run_s {
522 1.1 ad /* Linkage for run trees. */
523 1.1 ad RB_ENTRY(arena_run_s) link;
524 1.1 ad
525 1.1 ad #ifdef MALLOC_DEBUG
526 1.1 ad uint32_t magic;
527 1.1 ad # define ARENA_RUN_MAGIC 0x384adf93
528 1.1 ad #endif
529 1.1 ad
530 1.1 ad /* Bin this run is associated with. */
531 1.1 ad arena_bin_t *bin;
532 1.1 ad
533 1.1 ad /* Index of first element that might have a free region. */
534 1.1 ad unsigned regs_minelm;
535 1.1 ad
536 1.1 ad /* Number of free regions in run. */
537 1.1 ad unsigned nfree;
538 1.1 ad
539 1.1 ad /* Bitmask of in-use regions (0: in use, 1: free). */
540 1.1 ad unsigned regs_mask[1]; /* Dynamically sized. */
541 1.1 ad };
542 1.1 ad typedef struct arena_run_tree_s arena_run_tree_t;
543 1.1 ad RB_HEAD(arena_run_tree_s, arena_run_s);
544 1.1 ad
545 1.1 ad struct arena_bin_s {
546 1.1 ad /*
547 1.1 ad * Current run being used to service allocations of this bin's size
548 1.1 ad * class.
549 1.1 ad */
550 1.1 ad arena_run_t *runcur;
551 1.1 ad
552 1.1 ad /*
553 1.1 ad * Tree of non-full runs. This tree is used when looking for an
554 1.1 ad * existing run when runcur is no longer usable. We choose the
555 1.1 ad * non-full run that is lowest in memory; this policy tends to keep
556 1.1 ad * objects packed well, and it can also help reduce the number of
557 1.1 ad * almost-empty chunks.
558 1.1 ad */
559 1.1 ad arena_run_tree_t runs;
560 1.1 ad
561 1.1 ad /* Size of regions in a run for this bin's size class. */
562 1.1 ad size_t reg_size;
563 1.1 ad
564 1.1 ad /* Total size of a run for this bin's size class. */
565 1.1 ad size_t run_size;
566 1.1 ad
567 1.1 ad /* Total number of regions in a run for this bin's size class. */
568 1.1 ad uint32_t nregs;
569 1.1 ad
570 1.1 ad /* Number of elements in a run's regs_mask for this bin's size class. */
571 1.1 ad uint32_t regs_mask_nelms;
572 1.1 ad
573 1.1 ad /* Offset of first region in a run for this bin's size class. */
574 1.1 ad uint32_t reg0_offset;
575 1.1 ad
576 1.1 ad #ifdef MALLOC_STATS
577 1.1 ad /* Bin statistics. */
578 1.1 ad malloc_bin_stats_t stats;
579 1.1 ad #endif
580 1.1 ad };
581 1.1 ad
582 1.1 ad struct arena_s {
583 1.1 ad #ifdef MALLOC_DEBUG
584 1.1 ad uint32_t magic;
585 1.1 ad # define ARENA_MAGIC 0x947d3d24
586 1.1 ad #endif
587 1.1 ad
588 1.1 ad /* All operations on this arena require that mtx be locked. */
589 1.1 ad malloc_mutex_t mtx;
590 1.1 ad
591 1.1 ad #ifdef MALLOC_STATS
592 1.1 ad arena_stats_t stats;
593 1.1 ad #endif
594 1.1 ad
595 1.1 ad /*
596 1.1 ad * Tree of chunks this arena manages.
597 1.1 ad */
598 1.1 ad arena_chunk_tree_t chunks;
599 1.1 ad
600 1.1 ad /*
601 1.1 ad * In order to avoid rapid chunk allocation/deallocation when an arena
602 1.1 ad * oscillates right on the cusp of needing a new chunk, cache the most
603 1.1 ad * recently freed chunk. This caching is disabled by opt_hint.
604 1.1 ad *
605 1.1 ad * There is one spare chunk per arena, rather than one spare total, in
606 1.1 ad * order to avoid interactions between multiple threads that could make
607 1.1 ad * a single spare inadequate.
608 1.1 ad */
609 1.1 ad arena_chunk_t *spare;
610 1.1 ad
611 1.1 ad /*
612 1.1 ad * bins is used to store rings of free regions of the following sizes,
613 1.1 ad * assuming a 16-byte quantum, 4kB pagesize, and default MALLOC_OPTIONS.
614 1.1 ad *
615 1.1 ad * bins[i] | size |
616 1.1 ad * --------+------+
617 1.1 ad * 0 | 2 |
618 1.1 ad * 1 | 4 |
619 1.1 ad * 2 | 8 |
620 1.1 ad * --------+------+
621 1.1 ad * 3 | 16 |
622 1.1 ad * 4 | 32 |
623 1.1 ad * 5 | 48 |
624 1.1 ad * 6 | 64 |
625 1.1 ad * : :
626 1.1 ad * : :
627 1.1 ad * 33 | 496 |
628 1.1 ad * 34 | 512 |
629 1.1 ad * --------+------+
630 1.1 ad * 35 | 1024 |
631 1.1 ad * 36 | 2048 |
632 1.1 ad * --------+------+
633 1.1 ad */
634 1.1 ad arena_bin_t bins[1]; /* Dynamically sized. */
635 1.1 ad };
636 1.1 ad
637 1.1 ad /******************************************************************************/
638 1.1 ad /*
639 1.1 ad * Data.
640 1.1 ad */
641 1.1 ad
642 1.1 ad /* Number of CPUs. */
643 1.1 ad static unsigned ncpus;
644 1.1 ad
645 1.1 ad /* VM page size. */
646 1.1 ad static size_t pagesize;
647 1.1 ad static size_t pagesize_mask;
648 1.9 christos static int pagesize_2pow;
649 1.1 ad
650 1.1 ad /* Various bin-related settings. */
651 1.1 ad static size_t bin_maxclass; /* Max size class for bins. */
652 1.1 ad static unsigned ntbins; /* Number of (2^n)-spaced tiny bins. */
653 1.1 ad static unsigned nqbins; /* Number of quantum-spaced bins. */
654 1.1 ad static unsigned nsbins; /* Number of (2^n)-spaced sub-page bins. */
655 1.1 ad static size_t small_min;
656 1.1 ad static size_t small_max;
657 1.1 ad
658 1.1 ad /* Various quantum-related settings. */
659 1.1 ad static size_t quantum;
660 1.1 ad static size_t quantum_mask; /* (quantum - 1). */
661 1.1 ad
662 1.1 ad /* Various chunk-related settings. */
663 1.1 ad static size_t chunksize;
664 1.1 ad static size_t chunksize_mask; /* (chunksize - 1). */
665 1.5 yamt static int chunksize_2pow;
666 1.1 ad static unsigned chunk_npages;
667 1.1 ad static unsigned arena_chunk_header_npages;
668 1.1 ad static size_t arena_maxclass; /* Max size class for arenas. */
669 1.1 ad
670 1.1 ad /********/
671 1.1 ad /*
672 1.1 ad * Chunks.
673 1.1 ad */
674 1.1 ad
675 1.1 ad /* Protects chunk-related data structures. */
676 1.1 ad static malloc_mutex_t chunks_mtx;
677 1.1 ad
678 1.1 ad /* Tree of chunks that are stand-alone huge allocations. */
679 1.1 ad static chunk_tree_t huge;
680 1.1 ad
681 1.1 ad #ifdef USE_BRK
682 1.1 ad /*
683 1.1 ad * Try to use brk for chunk-size allocations, due to address space constraints.
684 1.1 ad */
685 1.1 ad /*
686 1.1 ad * Protects sbrk() calls. This must be separate from chunks_mtx, since
687 1.1 ad * base_pages_alloc() also uses sbrk(), but cannot lock chunks_mtx (doing so
688 1.1 ad * could cause recursive lock acquisition).
689 1.1 ad */
690 1.1 ad static malloc_mutex_t brk_mtx;
691 1.1 ad /* Result of first sbrk(0) call. */
692 1.1 ad static void *brk_base;
693 1.1 ad /* Current end of brk, or ((void *)-1) if brk is exhausted. */
694 1.1 ad static void *brk_prev;
695 1.1 ad /* Current upper limit on brk addresses. */
696 1.1 ad static void *brk_max;
697 1.1 ad #endif
698 1.1 ad
699 1.1 ad #ifdef MALLOC_STATS
700 1.1 ad /* Huge allocation statistics. */
701 1.1 ad static uint64_t huge_nmalloc;
702 1.1 ad static uint64_t huge_ndalloc;
703 1.8 yamt static uint64_t huge_nralloc;
704 1.1 ad static size_t huge_allocated;
705 1.1 ad #endif
706 1.1 ad
707 1.1 ad /*
708 1.1 ad * Tree of chunks that were previously allocated. This is used when allocating
709 1.1 ad * chunks, in an attempt to re-use address space.
710 1.1 ad */
711 1.1 ad static chunk_tree_t old_chunks;
712 1.1 ad
713 1.1 ad /****************************/
714 1.1 ad /*
715 1.1 ad * base (internal allocation).
716 1.1 ad */
717 1.1 ad
718 1.1 ad /*
719 1.1 ad * Current pages that are being used for internal memory allocations. These
720 1.1 ad * pages are carved up in cacheline-size quanta, so that there is no chance of
721 1.1 ad * false cache line sharing.
722 1.1 ad */
723 1.1 ad static void *base_pages;
724 1.1 ad static void *base_next_addr;
725 1.1 ad static void *base_past_addr; /* Addr immediately past base_pages. */
726 1.1 ad static chunk_node_t *base_chunk_nodes; /* LIFO cache of chunk nodes. */
727 1.1 ad static malloc_mutex_t base_mtx;
728 1.1 ad #ifdef MALLOC_STATS
729 1.1 ad static size_t base_mapped;
730 1.1 ad #endif
731 1.1 ad
732 1.1 ad /********/
733 1.1 ad /*
734 1.1 ad * Arenas.
735 1.1 ad */
736 1.1 ad
737 1.1 ad /*
738 1.1 ad * Arenas that are used to service external requests. Not all elements of the
739 1.1 ad * arenas array are necessarily used; arenas are created lazily as needed.
740 1.1 ad */
741 1.1 ad static arena_t **arenas;
742 1.1 ad static unsigned narenas;
743 1.1 ad static unsigned next_arena;
744 1.1 ad static malloc_mutex_t arenas_mtx; /* Protects arenas initialization. */
745 1.1 ad
746 1.15 ad #ifndef NO_TLS
747 1.15 ad /*
748 1.15 ad * Map of pthread_self() --> arenas[???], used for selecting an arena to use
749 1.15 ad * for allocations.
750 1.15 ad */
751 1.15 ad static __thread arena_t *arenas_map;
752 1.15 ad #define get_arenas_map() (arenas_map)
753 1.15 ad #define set_arenas_map(x) (arenas_map = x)
754 1.15 ad #else
755 1.2 ad static thread_key_t arenas_map_key;
756 1.15 ad #define get_arenas_map() thr_getspecific(arenas_map_key)
757 1.15 ad #define set_arenas_map(x) thr_setspecific(arenas_map_key, x)
758 1.15 ad #endif
759 1.1 ad
760 1.1 ad #ifdef MALLOC_STATS
761 1.1 ad /* Chunk statistics. */
762 1.1 ad static chunk_stats_t stats_chunks;
763 1.1 ad #endif
764 1.1 ad
765 1.1 ad /*******************************/
766 1.1 ad /*
767 1.1 ad * Runtime configuration options.
768 1.1 ad */
769 1.1 ad const char *_malloc_options;
770 1.1 ad
771 1.1 ad #ifndef MALLOC_PRODUCTION
772 1.1 ad static bool opt_abort = true;
773 1.1 ad static bool opt_junk = true;
774 1.1 ad #else
775 1.1 ad static bool opt_abort = false;
776 1.1 ad static bool opt_junk = false;
777 1.1 ad #endif
778 1.1 ad static bool opt_hint = false;
779 1.1 ad static bool opt_print_stats = false;
780 1.9 christos static int opt_quantum_2pow = QUANTUM_2POW_MIN;
781 1.9 christos static int opt_small_max_2pow = SMALL_MAX_2POW_DEFAULT;
782 1.9 christos static int opt_chunk_2pow = CHUNK_2POW_DEFAULT;
783 1.1 ad static bool opt_utrace = false;
784 1.1 ad static bool opt_sysv = false;
785 1.1 ad static bool opt_xmalloc = false;
786 1.1 ad static bool opt_zero = false;
787 1.1 ad static int32_t opt_narenas_lshift = 0;
788 1.1 ad
789 1.1 ad typedef struct {
790 1.1 ad void *p;
791 1.1 ad size_t s;
792 1.1 ad void *r;
793 1.1 ad } malloc_utrace_t;
794 1.1 ad
795 1.1 ad #define UTRACE(a, b, c) \
796 1.1 ad if (opt_utrace) { \
797 1.2 ad malloc_utrace_t ut; \
798 1.2 ad ut.p = a; \
799 1.2 ad ut.s = b; \
800 1.2 ad ut.r = c; \
801 1.2 ad xutrace(&ut, sizeof(ut)); \
802 1.1 ad }
803 1.1 ad
804 1.1 ad /******************************************************************************/
805 1.1 ad /*
806 1.1 ad * Begin function prototypes for non-inline static functions.
807 1.1 ad */
808 1.1 ad
809 1.1 ad static void wrtmessage(const char *p1, const char *p2, const char *p3,
810 1.1 ad const char *p4);
811 1.1 ad #ifdef MALLOC_STATS
812 1.1 ad static void malloc_printf(const char *format, ...);
813 1.1 ad #endif
814 1.1 ad static char *umax2s(uintmax_t x, char *s);
815 1.1 ad static bool base_pages_alloc(size_t minsize);
816 1.1 ad static void *base_alloc(size_t size);
817 1.1 ad static chunk_node_t *base_chunk_node_alloc(void);
818 1.1 ad static void base_chunk_node_dealloc(chunk_node_t *node);
819 1.1 ad #ifdef MALLOC_STATS
820 1.1 ad static void stats_print(arena_t *arena);
821 1.1 ad #endif
822 1.1 ad static void *pages_map(void *addr, size_t size);
823 1.5 yamt static void *pages_map_align(void *addr, size_t size, int align);
824 1.1 ad static void pages_unmap(void *addr, size_t size);
825 1.1 ad static void *chunk_alloc(size_t size);
826 1.1 ad static void chunk_dealloc(void *chunk, size_t size);
827 1.1 ad static void arena_run_split(arena_t *arena, arena_run_t *run, size_t size);
828 1.1 ad static arena_chunk_t *arena_chunk_alloc(arena_t *arena);
829 1.1 ad static void arena_chunk_dealloc(arena_t *arena, arena_chunk_t *chunk);
830 1.1 ad static arena_run_t *arena_run_alloc(arena_t *arena, size_t size);
831 1.1 ad static void arena_run_dalloc(arena_t *arena, arena_run_t *run, size_t size);
832 1.1 ad static arena_run_t *arena_bin_nonfull_run_get(arena_t *arena, arena_bin_t *bin);
833 1.1 ad static void *arena_bin_malloc_hard(arena_t *arena, arena_bin_t *bin);
834 1.1 ad static size_t arena_bin_run_size_calc(arena_bin_t *bin, size_t min_run_size);
835 1.1 ad static void *arena_malloc(arena_t *arena, size_t size);
836 1.1 ad static void *arena_palloc(arena_t *arena, size_t alignment, size_t size,
837 1.1 ad size_t alloc_size);
838 1.1 ad static size_t arena_salloc(const void *ptr);
839 1.1 ad static void *arena_ralloc(void *ptr, size_t size, size_t oldsize);
840 1.1 ad static void arena_dalloc(arena_t *arena, arena_chunk_t *chunk, void *ptr);
841 1.1 ad static bool arena_new(arena_t *arena);
842 1.1 ad static arena_t *arenas_extend(unsigned ind);
843 1.1 ad static void *huge_malloc(size_t size);
844 1.1 ad static void *huge_palloc(size_t alignment, size_t size);
845 1.1 ad static void *huge_ralloc(void *ptr, size_t size, size_t oldsize);
846 1.1 ad static void huge_dalloc(void *ptr);
847 1.1 ad static void *imalloc(size_t size);
848 1.1 ad static void *ipalloc(size_t alignment, size_t size);
849 1.1 ad static void *icalloc(size_t size);
850 1.1 ad static size_t isalloc(const void *ptr);
851 1.1 ad static void *iralloc(void *ptr, size_t size);
852 1.1 ad static void idalloc(void *ptr);
853 1.1 ad static void malloc_print_stats(void);
854 1.1 ad static bool malloc_init_hard(void);
855 1.1 ad
856 1.1 ad /*
857 1.1 ad * End function prototypes.
858 1.1 ad */
859 1.1 ad /******************************************************************************/
860 1.1 ad /*
861 1.1 ad * Begin mutex.
862 1.1 ad */
863 1.1 ad
864 1.15 ad #ifdef __NetBSD__
865 1.2 ad #define malloc_mutex_init(m) mutex_init(m, NULL)
866 1.2 ad #define malloc_mutex_lock(m) mutex_lock(m)
867 1.2 ad #define malloc_mutex_unlock(m) mutex_unlock(m)
868 1.15 ad #else /* __NetBSD__ */
869 1.15 ad static inline void
870 1.15 ad malloc_mutex_init(malloc_mutex_t *a_mutex)
871 1.15 ad {
872 1.15 ad static const spinlock_t lock = _SPINLOCK_INITIALIZER;
873 1.15 ad
874 1.15 ad a_mutex->lock = lock;
875 1.15 ad }
876 1.15 ad
877 1.15 ad static inline void
878 1.15 ad malloc_mutex_lock(malloc_mutex_t *a_mutex)
879 1.15 ad {
880 1.15 ad
881 1.15 ad if (__isthreaded)
882 1.15 ad _SPINLOCK(&a_mutex->lock);
883 1.15 ad }
884 1.15 ad
885 1.15 ad static inline void
886 1.15 ad malloc_mutex_unlock(malloc_mutex_t *a_mutex)
887 1.15 ad {
888 1.15 ad
889 1.15 ad if (__isthreaded)
890 1.15 ad _SPINUNLOCK(&a_mutex->lock);
891 1.15 ad }
892 1.15 ad #endif /* __NetBSD__ */
893 1.1 ad
894 1.1 ad /*
895 1.1 ad * End mutex.
896 1.1 ad */
897 1.1 ad /******************************************************************************/
898 1.1 ad /*
899 1.1 ad * Begin Utility functions/macros.
900 1.1 ad */
901 1.1 ad
902 1.1 ad /* Return the chunk address for allocation address a. */
903 1.1 ad #define CHUNK_ADDR2BASE(a) \
904 1.1 ad ((void *)((uintptr_t)(a) & ~chunksize_mask))
905 1.1 ad
906 1.1 ad /* Return the chunk offset of address a. */
907 1.1 ad #define CHUNK_ADDR2OFFSET(a) \
908 1.1 ad ((size_t)((uintptr_t)(a) & chunksize_mask))
909 1.1 ad
910 1.1 ad /* Return the smallest chunk multiple that is >= s. */
911 1.1 ad #define CHUNK_CEILING(s) \
912 1.1 ad (((s) + chunksize_mask) & ~chunksize_mask)
913 1.1 ad
914 1.1 ad /* Return the smallest cacheline multiple that is >= s. */
915 1.1 ad #define CACHELINE_CEILING(s) \
916 1.1 ad (((s) + (CACHELINE - 1)) & ~(CACHELINE - 1))
917 1.1 ad
918 1.1 ad /* Return the smallest quantum multiple that is >= a. */
919 1.1 ad #define QUANTUM_CEILING(a) \
920 1.1 ad (((a) + quantum_mask) & ~quantum_mask)
921 1.1 ad
922 1.1 ad /* Return the smallest pagesize multiple that is >= s. */
923 1.1 ad #define PAGE_CEILING(s) \
924 1.1 ad (((s) + pagesize_mask) & ~pagesize_mask)
925 1.1 ad
926 1.1 ad /* Compute the smallest power of 2 that is >= x. */
927 1.1 ad static inline size_t
928 1.1 ad pow2_ceil(size_t x)
929 1.1 ad {
930 1.1 ad
931 1.1 ad x--;
932 1.1 ad x |= x >> 1;
933 1.1 ad x |= x >> 2;
934 1.1 ad x |= x >> 4;
935 1.1 ad x |= x >> 8;
936 1.1 ad x |= x >> 16;
937 1.1 ad #if (SIZEOF_PTR == 8)
938 1.1 ad x |= x >> 32;
939 1.1 ad #endif
940 1.1 ad x++;
941 1.1 ad return (x);
942 1.1 ad }
943 1.1 ad
944 1.1 ad static void
945 1.1 ad wrtmessage(const char *p1, const char *p2, const char *p3, const char *p4)
946 1.1 ad {
947 1.1 ad
948 1.16 christos write(STDERR_FILENO, p1, strlen(p1));
949 1.16 christos write(STDERR_FILENO, p2, strlen(p2));
950 1.16 christos write(STDERR_FILENO, p3, strlen(p3));
951 1.16 christos write(STDERR_FILENO, p4, strlen(p4));
952 1.1 ad }
953 1.1 ad
954 1.1 ad void (*_malloc_message)(const char *p1, const char *p2, const char *p3,
955 1.1 ad const char *p4) = wrtmessage;
956 1.1 ad
957 1.1 ad #ifdef MALLOC_STATS
958 1.1 ad /*
959 1.1 ad * Print to stderr in such a way as to (hopefully) avoid memory allocation.
960 1.1 ad */
961 1.1 ad static void
962 1.1 ad malloc_printf(const char *format, ...)
963 1.1 ad {
964 1.1 ad char buf[4096];
965 1.1 ad va_list ap;
966 1.1 ad
967 1.1 ad va_start(ap, format);
968 1.1 ad vsnprintf(buf, sizeof(buf), format, ap);
969 1.1 ad va_end(ap);
970 1.1 ad _malloc_message(buf, "", "", "");
971 1.1 ad }
972 1.1 ad #endif
973 1.1 ad
974 1.1 ad /*
975 1.1 ad * We don't want to depend on vsnprintf() for production builds, since that can
976 1.1 ad * cause unnecessary bloat for static binaries. umax2s() provides minimal
977 1.1 ad * integer printing functionality, so that malloc_printf() use can be limited to
978 1.1 ad * MALLOC_STATS code.
979 1.1 ad */
980 1.1 ad #define UMAX2S_BUFSIZE 21
981 1.1 ad static char *
982 1.1 ad umax2s(uintmax_t x, char *s)
983 1.1 ad {
984 1.1 ad unsigned i;
985 1.1 ad
986 1.1 ad /* Make sure UMAX2S_BUFSIZE is large enough. */
987 1.7 yamt /* LINTED */
988 1.1 ad assert(sizeof(uintmax_t) <= 8);
989 1.1 ad
990 1.1 ad i = UMAX2S_BUFSIZE - 1;
991 1.1 ad s[i] = '\0';
992 1.1 ad do {
993 1.1 ad i--;
994 1.2 ad s[i] = "0123456789"[(int)x % 10];
995 1.2 ad x /= (uintmax_t)10LL;
996 1.1 ad } while (x > 0);
997 1.1 ad
998 1.1 ad return (&s[i]);
999 1.1 ad }
1000 1.1 ad
1001 1.1 ad /******************************************************************************/
1002 1.1 ad
1003 1.1 ad static bool
1004 1.1 ad base_pages_alloc(size_t minsize)
1005 1.1 ad {
1006 1.2 ad size_t csize = 0;
1007 1.1 ad
1008 1.1 ad #ifdef USE_BRK
1009 1.1 ad /*
1010 1.1 ad * Do special brk allocation here, since base allocations don't need to
1011 1.1 ad * be chunk-aligned.
1012 1.1 ad */
1013 1.1 ad if (brk_prev != (void *)-1) {
1014 1.1 ad void *brk_cur;
1015 1.1 ad intptr_t incr;
1016 1.1 ad
1017 1.1 ad if (minsize != 0)
1018 1.1 ad csize = CHUNK_CEILING(minsize);
1019 1.1 ad
1020 1.1 ad malloc_mutex_lock(&brk_mtx);
1021 1.1 ad do {
1022 1.1 ad /* Get the current end of brk. */
1023 1.1 ad brk_cur = sbrk(0);
1024 1.1 ad
1025 1.1 ad /*
1026 1.1 ad * Calculate how much padding is necessary to
1027 1.1 ad * chunk-align the end of brk. Don't worry about
1028 1.1 ad * brk_cur not being chunk-aligned though.
1029 1.1 ad */
1030 1.1 ad incr = (intptr_t)chunksize
1031 1.1 ad - (intptr_t)CHUNK_ADDR2OFFSET(brk_cur);
1032 1.1 ad if (incr < minsize)
1033 1.1 ad incr += csize;
1034 1.1 ad
1035 1.1 ad brk_prev = sbrk(incr);
1036 1.1 ad if (brk_prev == brk_cur) {
1037 1.1 ad /* Success. */
1038 1.1 ad malloc_mutex_unlock(&brk_mtx);
1039 1.1 ad base_pages = brk_cur;
1040 1.1 ad base_next_addr = base_pages;
1041 1.1 ad base_past_addr = (void *)((uintptr_t)base_pages
1042 1.1 ad + incr);
1043 1.1 ad #ifdef MALLOC_STATS
1044 1.1 ad base_mapped += incr;
1045 1.1 ad #endif
1046 1.1 ad return (false);
1047 1.1 ad }
1048 1.1 ad } while (brk_prev != (void *)-1);
1049 1.1 ad malloc_mutex_unlock(&brk_mtx);
1050 1.1 ad }
1051 1.1 ad if (minsize == 0) {
1052 1.1 ad /*
1053 1.1 ad * Failure during initialization doesn't matter, so avoid
1054 1.1 ad * falling through to the mmap-based page mapping code.
1055 1.1 ad */
1056 1.1 ad return (true);
1057 1.1 ad }
1058 1.1 ad #endif
1059 1.1 ad assert(minsize != 0);
1060 1.1 ad csize = PAGE_CEILING(minsize);
1061 1.1 ad base_pages = pages_map(NULL, csize);
1062 1.1 ad if (base_pages == NULL)
1063 1.1 ad return (true);
1064 1.1 ad base_next_addr = base_pages;
1065 1.1 ad base_past_addr = (void *)((uintptr_t)base_pages + csize);
1066 1.1 ad #ifdef MALLOC_STATS
1067 1.1 ad base_mapped += csize;
1068 1.1 ad #endif
1069 1.1 ad return (false);
1070 1.1 ad }
1071 1.1 ad
1072 1.1 ad static void *
1073 1.1 ad base_alloc(size_t size)
1074 1.1 ad {
1075 1.1 ad void *ret;
1076 1.1 ad size_t csize;
1077 1.1 ad
1078 1.1 ad /* Round size up to nearest multiple of the cacheline size. */
1079 1.1 ad csize = CACHELINE_CEILING(size);
1080 1.1 ad
1081 1.1 ad malloc_mutex_lock(&base_mtx);
1082 1.1 ad
1083 1.1 ad /* Make sure there's enough space for the allocation. */
1084 1.1 ad if ((uintptr_t)base_next_addr + csize > (uintptr_t)base_past_addr) {
1085 1.1 ad if (base_pages_alloc(csize)) {
1086 1.1 ad ret = NULL;
1087 1.1 ad goto RETURN;
1088 1.1 ad }
1089 1.1 ad }
1090 1.1 ad
1091 1.1 ad /* Allocate. */
1092 1.1 ad ret = base_next_addr;
1093 1.1 ad base_next_addr = (void *)((uintptr_t)base_next_addr + csize);
1094 1.1 ad
1095 1.1 ad RETURN:
1096 1.1 ad malloc_mutex_unlock(&base_mtx);
1097 1.1 ad return (ret);
1098 1.1 ad }
1099 1.1 ad
1100 1.1 ad static chunk_node_t *
1101 1.1 ad base_chunk_node_alloc(void)
1102 1.1 ad {
1103 1.1 ad chunk_node_t *ret;
1104 1.1 ad
1105 1.1 ad malloc_mutex_lock(&base_mtx);
1106 1.1 ad if (base_chunk_nodes != NULL) {
1107 1.1 ad ret = base_chunk_nodes;
1108 1.2 ad /* LINTED */
1109 1.1 ad base_chunk_nodes = *(chunk_node_t **)ret;
1110 1.1 ad malloc_mutex_unlock(&base_mtx);
1111 1.1 ad } else {
1112 1.1 ad malloc_mutex_unlock(&base_mtx);
1113 1.1 ad ret = (chunk_node_t *)base_alloc(sizeof(chunk_node_t));
1114 1.1 ad }
1115 1.1 ad
1116 1.1 ad return (ret);
1117 1.1 ad }
1118 1.1 ad
1119 1.1 ad static void
1120 1.1 ad base_chunk_node_dealloc(chunk_node_t *node)
1121 1.1 ad {
1122 1.1 ad
1123 1.1 ad malloc_mutex_lock(&base_mtx);
1124 1.2 ad /* LINTED */
1125 1.1 ad *(chunk_node_t **)node = base_chunk_nodes;
1126 1.1 ad base_chunk_nodes = node;
1127 1.1 ad malloc_mutex_unlock(&base_mtx);
1128 1.1 ad }
1129 1.1 ad
1130 1.1 ad /******************************************************************************/
1131 1.1 ad
1132 1.1 ad #ifdef MALLOC_STATS
1133 1.1 ad static void
1134 1.1 ad stats_print(arena_t *arena)
1135 1.1 ad {
1136 1.1 ad unsigned i;
1137 1.1 ad int gap_start;
1138 1.1 ad
1139 1.1 ad malloc_printf(
1140 1.1 ad " allocated/mapped nmalloc ndalloc\n");
1141 1.2 ad
1142 1.2 ad malloc_printf("small: %12zu %-12s %12llu %12llu\n",
1143 1.1 ad arena->stats.allocated_small, "", arena->stats.nmalloc_small,
1144 1.1 ad arena->stats.ndalloc_small);
1145 1.2 ad malloc_printf("large: %12zu %-12s %12llu %12llu\n",
1146 1.1 ad arena->stats.allocated_large, "", arena->stats.nmalloc_large,
1147 1.1 ad arena->stats.ndalloc_large);
1148 1.2 ad malloc_printf("total: %12zu/%-12zu %12llu %12llu\n",
1149 1.1 ad arena->stats.allocated_small + arena->stats.allocated_large,
1150 1.1 ad arena->stats.mapped,
1151 1.1 ad arena->stats.nmalloc_small + arena->stats.nmalloc_large,
1152 1.1 ad arena->stats.ndalloc_small + arena->stats.ndalloc_large);
1153 1.1 ad
1154 1.1 ad malloc_printf("bins: bin size regs pgs requests newruns"
1155 1.1 ad " reruns maxruns curruns\n");
1156 1.1 ad for (i = 0, gap_start = -1; i < ntbins + nqbins + nsbins; i++) {
1157 1.1 ad if (arena->bins[i].stats.nrequests == 0) {
1158 1.1 ad if (gap_start == -1)
1159 1.1 ad gap_start = i;
1160 1.1 ad } else {
1161 1.1 ad if (gap_start != -1) {
1162 1.1 ad if (i > gap_start + 1) {
1163 1.1 ad /* Gap of more than one size class. */
1164 1.1 ad malloc_printf("[%u..%u]\n",
1165 1.1 ad gap_start, i - 1);
1166 1.1 ad } else {
1167 1.1 ad /* Gap of one size class. */
1168 1.1 ad malloc_printf("[%u]\n", gap_start);
1169 1.1 ad }
1170 1.1 ad gap_start = -1;
1171 1.1 ad }
1172 1.1 ad malloc_printf(
1173 1.1 ad "%13u %1s %4u %4u %3u %9llu %9llu"
1174 1.1 ad " %9llu %7lu %7lu\n",
1175 1.1 ad i,
1176 1.1 ad i < ntbins ? "T" : i < ntbins + nqbins ? "Q" : "S",
1177 1.1 ad arena->bins[i].reg_size,
1178 1.1 ad arena->bins[i].nregs,
1179 1.1 ad arena->bins[i].run_size >> pagesize_2pow,
1180 1.1 ad arena->bins[i].stats.nrequests,
1181 1.1 ad arena->bins[i].stats.nruns,
1182 1.1 ad arena->bins[i].stats.reruns,
1183 1.1 ad arena->bins[i].stats.highruns,
1184 1.1 ad arena->bins[i].stats.curruns);
1185 1.1 ad }
1186 1.1 ad }
1187 1.1 ad if (gap_start != -1) {
1188 1.1 ad if (i > gap_start + 1) {
1189 1.1 ad /* Gap of more than one size class. */
1190 1.1 ad malloc_printf("[%u..%u]\n", gap_start, i - 1);
1191 1.1 ad } else {
1192 1.1 ad /* Gap of one size class. */
1193 1.1 ad malloc_printf("[%u]\n", gap_start);
1194 1.1 ad }
1195 1.1 ad }
1196 1.1 ad }
1197 1.1 ad #endif
1198 1.1 ad
1199 1.1 ad /*
1200 1.1 ad * End Utility functions/macros.
1201 1.1 ad */
1202 1.1 ad /******************************************************************************/
1203 1.1 ad /*
1204 1.1 ad * Begin chunk management functions.
1205 1.1 ad */
1206 1.1 ad
1207 1.7 yamt #ifndef lint
1208 1.1 ad static inline int
1209 1.1 ad chunk_comp(chunk_node_t *a, chunk_node_t *b)
1210 1.1 ad {
1211 1.1 ad
1212 1.1 ad assert(a != NULL);
1213 1.1 ad assert(b != NULL);
1214 1.1 ad
1215 1.1 ad if ((uintptr_t)a->chunk < (uintptr_t)b->chunk)
1216 1.1 ad return (-1);
1217 1.1 ad else if (a->chunk == b->chunk)
1218 1.1 ad return (0);
1219 1.1 ad else
1220 1.1 ad return (1);
1221 1.1 ad }
1222 1.1 ad
1223 1.1 ad /* Generate red-black tree code for chunks. */
1224 1.1 ad RB_GENERATE_STATIC(chunk_tree_s, chunk_node_s, link, chunk_comp);
1225 1.2 ad #endif
1226 1.1 ad
1227 1.1 ad static void *
1228 1.5 yamt pages_map_align(void *addr, size_t size, int align)
1229 1.1 ad {
1230 1.1 ad void *ret;
1231 1.1 ad
1232 1.1 ad /*
1233 1.1 ad * We don't use MAP_FIXED here, because it can cause the *replacement*
1234 1.1 ad * of existing mappings, and we only want to create new mappings.
1235 1.1 ad */
1236 1.5 yamt ret = mmap(addr, size, PROT_READ | PROT_WRITE,
1237 1.5 yamt MAP_PRIVATE | MAP_ANON | MAP_ALIGNED(align), -1, 0);
1238 1.1 ad assert(ret != NULL);
1239 1.1 ad
1240 1.1 ad if (ret == MAP_FAILED)
1241 1.1 ad ret = NULL;
1242 1.1 ad else if (addr != NULL && ret != addr) {
1243 1.1 ad /*
1244 1.1 ad * We succeeded in mapping memory, but not in the right place.
1245 1.1 ad */
1246 1.1 ad if (munmap(ret, size) == -1) {
1247 1.1 ad char buf[STRERROR_BUF];
1248 1.1 ad
1249 1.16 christos STRERROR_R(errno, buf, sizeof(buf));
1250 1.16 christos _malloc_message(getprogname(),
1251 1.1 ad ": (malloc) Error in munmap(): ", buf, "\n");
1252 1.1 ad if (opt_abort)
1253 1.1 ad abort();
1254 1.1 ad }
1255 1.1 ad ret = NULL;
1256 1.1 ad }
1257 1.1 ad
1258 1.1 ad assert(ret == NULL || (addr == NULL && ret != addr)
1259 1.1 ad || (addr != NULL && ret == addr));
1260 1.1 ad return (ret);
1261 1.1 ad }
1262 1.1 ad
1263 1.5 yamt static void *
1264 1.5 yamt pages_map(void *addr, size_t size)
1265 1.5 yamt {
1266 1.5 yamt
1267 1.5 yamt return pages_map_align(addr, size, 0);
1268 1.5 yamt }
1269 1.5 yamt
1270 1.1 ad static void
1271 1.1 ad pages_unmap(void *addr, size_t size)
1272 1.1 ad {
1273 1.1 ad
1274 1.1 ad if (munmap(addr, size) == -1) {
1275 1.1 ad char buf[STRERROR_BUF];
1276 1.1 ad
1277 1.16 christos STRERROR_R(errno, buf, sizeof(buf));
1278 1.16 christos _malloc_message(getprogname(),
1279 1.1 ad ": (malloc) Error in munmap(): ", buf, "\n");
1280 1.1 ad if (opt_abort)
1281 1.1 ad abort();
1282 1.1 ad }
1283 1.1 ad }
1284 1.1 ad
1285 1.1 ad static void *
1286 1.1 ad chunk_alloc(size_t size)
1287 1.1 ad {
1288 1.1 ad void *ret, *chunk;
1289 1.1 ad chunk_node_t *tchunk, *delchunk;
1290 1.1 ad
1291 1.1 ad assert(size != 0);
1292 1.1 ad assert((size & chunksize_mask) == 0);
1293 1.1 ad
1294 1.1 ad malloc_mutex_lock(&chunks_mtx);
1295 1.1 ad
1296 1.1 ad if (size == chunksize) {
1297 1.1 ad /*
1298 1.1 ad * Check for address ranges that were previously chunks and try
1299 1.1 ad * to use them.
1300 1.1 ad */
1301 1.1 ad
1302 1.2 ad /* LINTED */
1303 1.1 ad tchunk = RB_MIN(chunk_tree_s, &old_chunks);
1304 1.1 ad while (tchunk != NULL) {
1305 1.1 ad /* Found an address range. Try to recycle it. */
1306 1.1 ad
1307 1.1 ad chunk = tchunk->chunk;
1308 1.1 ad delchunk = tchunk;
1309 1.2 ad /* LINTED */
1310 1.1 ad tchunk = RB_NEXT(chunk_tree_s, &old_chunks, delchunk);
1311 1.1 ad
1312 1.1 ad /* Remove delchunk from the tree. */
1313 1.2 ad /* LINTED */
1314 1.1 ad RB_REMOVE(chunk_tree_s, &old_chunks, delchunk);
1315 1.1 ad base_chunk_node_dealloc(delchunk);
1316 1.1 ad
1317 1.1 ad #ifdef USE_BRK
1318 1.1 ad if ((uintptr_t)chunk >= (uintptr_t)brk_base
1319 1.1 ad && (uintptr_t)chunk < (uintptr_t)brk_max) {
1320 1.1 ad /* Re-use a previously freed brk chunk. */
1321 1.1 ad ret = chunk;
1322 1.1 ad goto RETURN;
1323 1.1 ad }
1324 1.1 ad #endif
1325 1.1 ad if ((ret = pages_map(chunk, size)) != NULL) {
1326 1.1 ad /* Success. */
1327 1.1 ad goto RETURN;
1328 1.1 ad }
1329 1.1 ad }
1330 1.1 ad }
1331 1.1 ad
1332 1.1 ad /*
1333 1.1 ad * Try to over-allocate, but allow the OS to place the allocation
1334 1.1 ad * anywhere. Beware of size_t wrap-around.
1335 1.1 ad */
1336 1.1 ad if (size + chunksize > size) {
1337 1.5 yamt if ((ret = pages_map_align(NULL, size, chunksize_2pow))
1338 1.5 yamt != NULL) {
1339 1.1 ad goto RETURN;
1340 1.1 ad }
1341 1.1 ad }
1342 1.1 ad
1343 1.1 ad #ifdef USE_BRK
1344 1.1 ad /*
1345 1.1 ad * Try to create allocations in brk, in order to make full use of
1346 1.1 ad * limited address space.
1347 1.1 ad */
1348 1.1 ad if (brk_prev != (void *)-1) {
1349 1.1 ad void *brk_cur;
1350 1.1 ad intptr_t incr;
1351 1.1 ad
1352 1.1 ad /*
1353 1.1 ad * The loop is necessary to recover from races with other
1354 1.1 ad * threads that are using brk for something other than malloc.
1355 1.1 ad */
1356 1.1 ad malloc_mutex_lock(&brk_mtx);
1357 1.1 ad do {
1358 1.1 ad /* Get the current end of brk. */
1359 1.1 ad brk_cur = sbrk(0);
1360 1.1 ad
1361 1.1 ad /*
1362 1.1 ad * Calculate how much padding is necessary to
1363 1.1 ad * chunk-align the end of brk.
1364 1.1 ad */
1365 1.1 ad incr = (intptr_t)size
1366 1.1 ad - (intptr_t)CHUNK_ADDR2OFFSET(brk_cur);
1367 1.1 ad if (incr == size) {
1368 1.1 ad ret = brk_cur;
1369 1.1 ad } else {
1370 1.1 ad ret = (void *)((intptr_t)brk_cur + incr);
1371 1.1 ad incr += size;
1372 1.1 ad }
1373 1.1 ad
1374 1.1 ad brk_prev = sbrk(incr);
1375 1.1 ad if (brk_prev == brk_cur) {
1376 1.1 ad /* Success. */
1377 1.1 ad malloc_mutex_unlock(&brk_mtx);
1378 1.1 ad brk_max = (void *)((intptr_t)ret + size);
1379 1.1 ad goto RETURN;
1380 1.1 ad }
1381 1.1 ad } while (brk_prev != (void *)-1);
1382 1.1 ad malloc_mutex_unlock(&brk_mtx);
1383 1.1 ad }
1384 1.1 ad #endif
1385 1.1 ad
1386 1.1 ad /* All strategies for allocation failed. */
1387 1.1 ad ret = NULL;
1388 1.1 ad RETURN:
1389 1.1 ad if (ret != NULL) {
1390 1.1 ad chunk_node_t key;
1391 1.1 ad /*
1392 1.1 ad * Clean out any entries in old_chunks that overlap with the
1393 1.1 ad * memory we just allocated.
1394 1.1 ad */
1395 1.1 ad key.chunk = ret;
1396 1.2 ad /* LINTED */
1397 1.1 ad tchunk = RB_NFIND(chunk_tree_s, &old_chunks, &key);
1398 1.1 ad while (tchunk != NULL
1399 1.1 ad && (uintptr_t)tchunk->chunk >= (uintptr_t)ret
1400 1.1 ad && (uintptr_t)tchunk->chunk < (uintptr_t)ret + size) {
1401 1.1 ad delchunk = tchunk;
1402 1.2 ad /* LINTED */
1403 1.1 ad tchunk = RB_NEXT(chunk_tree_s, &old_chunks, delchunk);
1404 1.2 ad /* LINTED */
1405 1.1 ad RB_REMOVE(chunk_tree_s, &old_chunks, delchunk);
1406 1.1 ad base_chunk_node_dealloc(delchunk);
1407 1.1 ad }
1408 1.1 ad
1409 1.1 ad }
1410 1.1 ad #ifdef MALLOC_STATS
1411 1.1 ad if (ret != NULL) {
1412 1.1 ad stats_chunks.nchunks += (size / chunksize);
1413 1.1 ad stats_chunks.curchunks += (size / chunksize);
1414 1.1 ad }
1415 1.1 ad if (stats_chunks.curchunks > stats_chunks.highchunks)
1416 1.1 ad stats_chunks.highchunks = stats_chunks.curchunks;
1417 1.1 ad #endif
1418 1.1 ad malloc_mutex_unlock(&chunks_mtx);
1419 1.1 ad
1420 1.1 ad assert(CHUNK_ADDR2BASE(ret) == ret);
1421 1.1 ad return (ret);
1422 1.1 ad }
1423 1.1 ad
1424 1.1 ad static void
1425 1.1 ad chunk_dealloc(void *chunk, size_t size)
1426 1.1 ad {
1427 1.1 ad chunk_node_t *node;
1428 1.1 ad
1429 1.1 ad assert(chunk != NULL);
1430 1.1 ad assert(CHUNK_ADDR2BASE(chunk) == chunk);
1431 1.1 ad assert(size != 0);
1432 1.1 ad assert((size & chunksize_mask) == 0);
1433 1.1 ad
1434 1.1 ad malloc_mutex_lock(&chunks_mtx);
1435 1.1 ad
1436 1.1 ad #ifdef USE_BRK
1437 1.1 ad if ((uintptr_t)chunk >= (uintptr_t)brk_base
1438 1.1 ad && (uintptr_t)chunk < (uintptr_t)brk_max) {
1439 1.1 ad void *brk_cur;
1440 1.1 ad
1441 1.1 ad malloc_mutex_lock(&brk_mtx);
1442 1.1 ad /* Get the current end of brk. */
1443 1.1 ad brk_cur = sbrk(0);
1444 1.1 ad
1445 1.1 ad /*
1446 1.1 ad * Try to shrink the data segment if this chunk is at the end
1447 1.1 ad * of the data segment. The sbrk() call here is subject to a
1448 1.1 ad * race condition with threads that use brk(2) or sbrk(2)
1449 1.1 ad * directly, but the alternative would be to leak memory for
1450 1.1 ad * the sake of poorly designed multi-threaded programs.
1451 1.1 ad */
1452 1.1 ad if (brk_cur == brk_max
1453 1.1 ad && (void *)((uintptr_t)chunk + size) == brk_max
1454 1.1 ad && sbrk(-(intptr_t)size) == brk_max) {
1455 1.1 ad malloc_mutex_unlock(&brk_mtx);
1456 1.1 ad if (brk_prev == brk_max) {
1457 1.1 ad /* Success. */
1458 1.1 ad brk_prev = (void *)((intptr_t)brk_max
1459 1.1 ad - (intptr_t)size);
1460 1.1 ad brk_max = brk_prev;
1461 1.1 ad }
1462 1.1 ad } else {
1463 1.1 ad size_t offset;
1464 1.1 ad
1465 1.1 ad malloc_mutex_unlock(&brk_mtx);
1466 1.1 ad madvise(chunk, size, MADV_FREE);
1467 1.1 ad
1468 1.1 ad /*
1469 1.1 ad * Iteratively create records of each chunk-sized
1470 1.1 ad * memory region that 'chunk' is comprised of, so that
1471 1.1 ad * the address range can be recycled if memory usage
1472 1.1 ad * increases later on.
1473 1.1 ad */
1474 1.1 ad for (offset = 0; offset < size; offset += chunksize) {
1475 1.1 ad node = base_chunk_node_alloc();
1476 1.1 ad if (node == NULL)
1477 1.1 ad break;
1478 1.1 ad
1479 1.1 ad node->chunk = (void *)((uintptr_t)chunk
1480 1.1 ad + (uintptr_t)offset);
1481 1.1 ad node->size = chunksize;
1482 1.2 ad /* LINTED */
1483 1.1 ad RB_INSERT(chunk_tree_s, &old_chunks, node);
1484 1.1 ad }
1485 1.1 ad }
1486 1.1 ad } else {
1487 1.1 ad #endif
1488 1.1 ad pages_unmap(chunk, size);
1489 1.1 ad
1490 1.1 ad /*
1491 1.1 ad * Make a record of the chunk's address, so that the address
1492 1.1 ad * range can be recycled if memory usage increases later on.
1493 1.1 ad * Don't bother to create entries if (size > chunksize), since
1494 1.1 ad * doing so could cause scalability issues for truly gargantuan
1495 1.1 ad * objects (many gigabytes or larger).
1496 1.1 ad */
1497 1.1 ad if (size == chunksize) {
1498 1.1 ad node = base_chunk_node_alloc();
1499 1.1 ad if (node != NULL) {
1500 1.1 ad node->chunk = (void *)(uintptr_t)chunk;
1501 1.1 ad node->size = chunksize;
1502 1.2 ad /* LINTED */
1503 1.1 ad RB_INSERT(chunk_tree_s, &old_chunks, node);
1504 1.1 ad }
1505 1.1 ad }
1506 1.1 ad #ifdef USE_BRK
1507 1.1 ad }
1508 1.1 ad #endif
1509 1.1 ad
1510 1.1 ad #ifdef MALLOC_STATS
1511 1.1 ad stats_chunks.curchunks -= (size / chunksize);
1512 1.1 ad #endif
1513 1.1 ad malloc_mutex_unlock(&chunks_mtx);
1514 1.1 ad }
1515 1.1 ad
1516 1.1 ad /*
1517 1.1 ad * End chunk management functions.
1518 1.1 ad */
1519 1.1 ad /******************************************************************************/
1520 1.1 ad /*
1521 1.1 ad * Begin arena.
1522 1.1 ad */
1523 1.1 ad
1524 1.1 ad /*
1525 1.17 ad * Choose an arena based on a per-thread and (optimistically) per-CPU value.
1526 1.17 ad *
1527 1.17 ad * We maintain at least one block of arenas. Usually there are more.
1528 1.17 ad * The blocks are $ncpu arenas in size. Whole blocks are 'hashed'
1529 1.17 ad * amongst threads. To accomplish this, next_arena advances only in
1530 1.17 ad * ncpu steps.
1531 1.1 ad */
1532 1.1 ad static inline arena_t *
1533 1.1 ad choose_arena(void)
1534 1.1 ad {
1535 1.17 ad unsigned i, curcpu;
1536 1.17 ad arena_t **map;
1537 1.1 ad
1538 1.17 ad map = get_arenas_map();
1539 1.17 ad curcpu = thr_curcpu();
1540 1.17 ad if (__predict_true(map != NULL && map[curcpu] != NULL))
1541 1.17 ad return map[curcpu];
1542 1.1 ad
1543 1.17 ad /* Initialize the current block of arenas and advance to next. */
1544 1.1 ad malloc_mutex_lock(&arenas_mtx);
1545 1.17 ad assert(next_arena % ncpus == 0);
1546 1.17 ad assert(narenas % ncpus == 0);
1547 1.17 ad map = &arenas[next_arena];
1548 1.17 ad set_arenas_map(map);
1549 1.17 ad for (i = 0; i < ncpus; i++) {
1550 1.17 ad if (arenas[next_arena] == NULL)
1551 1.17 ad arenas_extend(next_arena);
1552 1.17 ad next_arena = (next_arena + 1) % narenas;
1553 1.15 ad }
1554 1.1 ad malloc_mutex_unlock(&arenas_mtx);
1555 1.1 ad
1556 1.17 ad /*
1557 1.17 ad * If we were unable to allocate an arena above, then default to
1558 1.17 ad * the first arena, which is always present.
1559 1.17 ad */
1560 1.17 ad curcpu = thr_curcpu();
1561 1.17 ad if (map[curcpu] != NULL)
1562 1.17 ad return map[curcpu];
1563 1.17 ad return arenas[0];
1564 1.1 ad }
1565 1.1 ad
1566 1.7 yamt #ifndef lint
1567 1.1 ad static inline int
1568 1.1 ad arena_chunk_comp(arena_chunk_t *a, arena_chunk_t *b)
1569 1.1 ad {
1570 1.1 ad
1571 1.1 ad assert(a != NULL);
1572 1.1 ad assert(b != NULL);
1573 1.1 ad
1574 1.1 ad if ((uintptr_t)a < (uintptr_t)b)
1575 1.1 ad return (-1);
1576 1.1 ad else if (a == b)
1577 1.1 ad return (0);
1578 1.1 ad else
1579 1.1 ad return (1);
1580 1.1 ad }
1581 1.1 ad
1582 1.1 ad /* Generate red-black tree code for arena chunks. */
1583 1.1 ad RB_GENERATE_STATIC(arena_chunk_tree_s, arena_chunk_s, link, arena_chunk_comp);
1584 1.2 ad #endif
1585 1.1 ad
1586 1.7 yamt #ifndef lint
1587 1.1 ad static inline int
1588 1.1 ad arena_run_comp(arena_run_t *a, arena_run_t *b)
1589 1.1 ad {
1590 1.1 ad
1591 1.1 ad assert(a != NULL);
1592 1.1 ad assert(b != NULL);
1593 1.1 ad
1594 1.1 ad if ((uintptr_t)a < (uintptr_t)b)
1595 1.1 ad return (-1);
1596 1.1 ad else if (a == b)
1597 1.1 ad return (0);
1598 1.1 ad else
1599 1.1 ad return (1);
1600 1.1 ad }
1601 1.1 ad
1602 1.1 ad /* Generate red-black tree code for arena runs. */
1603 1.1 ad RB_GENERATE_STATIC(arena_run_tree_s, arena_run_s, link, arena_run_comp);
1604 1.2 ad #endif
1605 1.1 ad
1606 1.1 ad static inline void *
1607 1.1 ad arena_run_reg_alloc(arena_run_t *run, arena_bin_t *bin)
1608 1.1 ad {
1609 1.1 ad void *ret;
1610 1.1 ad unsigned i, mask, bit, regind;
1611 1.1 ad
1612 1.1 ad assert(run->magic == ARENA_RUN_MAGIC);
1613 1.1 ad assert(run->regs_minelm < bin->regs_mask_nelms);
1614 1.1 ad
1615 1.1 ad /*
1616 1.1 ad * Move the first check outside the loop, so that run->regs_minelm can
1617 1.1 ad * be updated unconditionally, without the possibility of updating it
1618 1.1 ad * multiple times.
1619 1.1 ad */
1620 1.1 ad i = run->regs_minelm;
1621 1.1 ad mask = run->regs_mask[i];
1622 1.1 ad if (mask != 0) {
1623 1.1 ad /* Usable allocation found. */
1624 1.1 ad bit = ffs((int)mask) - 1;
1625 1.1 ad
1626 1.1 ad regind = ((i << (SIZEOF_INT_2POW + 3)) + bit);
1627 1.1 ad ret = (void *)(((uintptr_t)run) + bin->reg0_offset
1628 1.1 ad + (bin->reg_size * regind));
1629 1.1 ad
1630 1.1 ad /* Clear bit. */
1631 1.1 ad mask ^= (1 << bit);
1632 1.1 ad run->regs_mask[i] = mask;
1633 1.1 ad
1634 1.1 ad return (ret);
1635 1.1 ad }
1636 1.1 ad
1637 1.1 ad for (i++; i < bin->regs_mask_nelms; i++) {
1638 1.1 ad mask = run->regs_mask[i];
1639 1.1 ad if (mask != 0) {
1640 1.1 ad /* Usable allocation found. */
1641 1.1 ad bit = ffs((int)mask) - 1;
1642 1.1 ad
1643 1.1 ad regind = ((i << (SIZEOF_INT_2POW + 3)) + bit);
1644 1.1 ad ret = (void *)(((uintptr_t)run) + bin->reg0_offset
1645 1.1 ad + (bin->reg_size * regind));
1646 1.1 ad
1647 1.1 ad /* Clear bit. */
1648 1.1 ad mask ^= (1 << bit);
1649 1.1 ad run->regs_mask[i] = mask;
1650 1.1 ad
1651 1.1 ad /*
1652 1.1 ad * Make a note that nothing before this element
1653 1.1 ad * contains a free region.
1654 1.1 ad */
1655 1.1 ad run->regs_minelm = i; /* Low payoff: + (mask == 0); */
1656 1.1 ad
1657 1.1 ad return (ret);
1658 1.1 ad }
1659 1.1 ad }
1660 1.1 ad /* Not reached. */
1661 1.7 yamt /* LINTED */
1662 1.1 ad assert(0);
1663 1.1 ad return (NULL);
1664 1.1 ad }
1665 1.1 ad
1666 1.1 ad static inline void
1667 1.1 ad arena_run_reg_dalloc(arena_run_t *run, arena_bin_t *bin, void *ptr, size_t size)
1668 1.1 ad {
1669 1.1 ad /*
1670 1.1 ad * To divide by a number D that is not a power of two we multiply
1671 1.1 ad * by (2^21 / D) and then right shift by 21 positions.
1672 1.1 ad *
1673 1.1 ad * X / D
1674 1.1 ad *
1675 1.1 ad * becomes
1676 1.1 ad *
1677 1.1 ad * (X * size_invs[(D >> QUANTUM_2POW_MIN) - 3]) >> SIZE_INV_SHIFT
1678 1.1 ad */
1679 1.1 ad #define SIZE_INV_SHIFT 21
1680 1.1 ad #define SIZE_INV(s) (((1 << SIZE_INV_SHIFT) / (s << QUANTUM_2POW_MIN)) + 1)
1681 1.1 ad static const unsigned size_invs[] = {
1682 1.1 ad SIZE_INV(3),
1683 1.1 ad SIZE_INV(4), SIZE_INV(5), SIZE_INV(6), SIZE_INV(7),
1684 1.1 ad SIZE_INV(8), SIZE_INV(9), SIZE_INV(10), SIZE_INV(11),
1685 1.1 ad SIZE_INV(12),SIZE_INV(13), SIZE_INV(14), SIZE_INV(15),
1686 1.1 ad SIZE_INV(16),SIZE_INV(17), SIZE_INV(18), SIZE_INV(19),
1687 1.1 ad SIZE_INV(20),SIZE_INV(21), SIZE_INV(22), SIZE_INV(23),
1688 1.1 ad SIZE_INV(24),SIZE_INV(25), SIZE_INV(26), SIZE_INV(27),
1689 1.1 ad SIZE_INV(28),SIZE_INV(29), SIZE_INV(30), SIZE_INV(31)
1690 1.1 ad #if (QUANTUM_2POW_MIN < 4)
1691 1.1 ad ,
1692 1.1 ad SIZE_INV(32), SIZE_INV(33), SIZE_INV(34), SIZE_INV(35),
1693 1.1 ad SIZE_INV(36), SIZE_INV(37), SIZE_INV(38), SIZE_INV(39),
1694 1.1 ad SIZE_INV(40), SIZE_INV(41), SIZE_INV(42), SIZE_INV(43),
1695 1.1 ad SIZE_INV(44), SIZE_INV(45), SIZE_INV(46), SIZE_INV(47),
1696 1.1 ad SIZE_INV(48), SIZE_INV(49), SIZE_INV(50), SIZE_INV(51),
1697 1.1 ad SIZE_INV(52), SIZE_INV(53), SIZE_INV(54), SIZE_INV(55),
1698 1.1 ad SIZE_INV(56), SIZE_INV(57), SIZE_INV(58), SIZE_INV(59),
1699 1.1 ad SIZE_INV(60), SIZE_INV(61), SIZE_INV(62), SIZE_INV(63)
1700 1.1 ad #endif
1701 1.1 ad };
1702 1.1 ad unsigned diff, regind, elm, bit;
1703 1.1 ad
1704 1.7 yamt /* LINTED */
1705 1.1 ad assert(run->magic == ARENA_RUN_MAGIC);
1706 1.1 ad assert(((sizeof(size_invs)) / sizeof(unsigned)) + 3
1707 1.1 ad >= (SMALL_MAX_DEFAULT >> QUANTUM_2POW_MIN));
1708 1.1 ad
1709 1.1 ad /*
1710 1.1 ad * Avoid doing division with a variable divisor if possible. Using
1711 1.1 ad * actual division here can reduce allocator throughput by over 20%!
1712 1.1 ad */
1713 1.1 ad diff = (unsigned)((uintptr_t)ptr - (uintptr_t)run - bin->reg0_offset);
1714 1.1 ad if ((size & (size - 1)) == 0) {
1715 1.1 ad /*
1716 1.1 ad * log2_table allows fast division of a power of two in the
1717 1.1 ad * [1..128] range.
1718 1.1 ad *
1719 1.1 ad * (x / divisor) becomes (x >> log2_table[divisor - 1]).
1720 1.1 ad */
1721 1.1 ad static const unsigned char log2_table[] = {
1722 1.1 ad 0, 1, 0, 2, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 4,
1723 1.1 ad 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5,
1724 1.1 ad 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1725 1.1 ad 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6,
1726 1.1 ad 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1727 1.1 ad 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1728 1.1 ad 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1729 1.1 ad 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7
1730 1.1 ad };
1731 1.1 ad
1732 1.1 ad if (size <= 128)
1733 1.1 ad regind = (diff >> log2_table[size - 1]);
1734 1.1 ad else if (size <= 32768)
1735 1.1 ad regind = diff >> (8 + log2_table[(size >> 8) - 1]);
1736 1.1 ad else {
1737 1.1 ad /*
1738 1.1 ad * The page size is too large for us to use the lookup
1739 1.1 ad * table. Use real division.
1740 1.1 ad */
1741 1.9 christos regind = (unsigned)(diff / size);
1742 1.1 ad }
1743 1.1 ad } else if (size <= ((sizeof(size_invs) / sizeof(unsigned))
1744 1.1 ad << QUANTUM_2POW_MIN) + 2) {
1745 1.1 ad regind = size_invs[(size >> QUANTUM_2POW_MIN) - 3] * diff;
1746 1.1 ad regind >>= SIZE_INV_SHIFT;
1747 1.1 ad } else {
1748 1.1 ad /*
1749 1.1 ad * size_invs isn't large enough to handle this size class, so
1750 1.1 ad * calculate regind using actual division. This only happens
1751 1.1 ad * if the user increases small_max via the 'S' runtime
1752 1.1 ad * configuration option.
1753 1.1 ad */
1754 1.9 christos regind = (unsigned)(diff / size);
1755 1.1 ad };
1756 1.1 ad assert(diff == regind * size);
1757 1.1 ad assert(regind < bin->nregs);
1758 1.1 ad
1759 1.1 ad elm = regind >> (SIZEOF_INT_2POW + 3);
1760 1.1 ad if (elm < run->regs_minelm)
1761 1.1 ad run->regs_minelm = elm;
1762 1.1 ad bit = regind - (elm << (SIZEOF_INT_2POW + 3));
1763 1.1 ad assert((run->regs_mask[elm] & (1 << bit)) == 0);
1764 1.1 ad run->regs_mask[elm] |= (1 << bit);
1765 1.1 ad #undef SIZE_INV
1766 1.1 ad #undef SIZE_INV_SHIFT
1767 1.1 ad }
1768 1.1 ad
1769 1.1 ad static void
1770 1.1 ad arena_run_split(arena_t *arena, arena_run_t *run, size_t size)
1771 1.1 ad {
1772 1.1 ad arena_chunk_t *chunk;
1773 1.1 ad unsigned run_ind, map_offset, total_pages, need_pages, rem_pages;
1774 1.1 ad unsigned i;
1775 1.1 ad
1776 1.1 ad chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(run);
1777 1.1 ad run_ind = (unsigned)(((uintptr_t)run - (uintptr_t)chunk)
1778 1.1 ad >> pagesize_2pow);
1779 1.1 ad total_pages = chunk->map[run_ind].npages;
1780 1.9 christos need_pages = (unsigned)(size >> pagesize_2pow);
1781 1.1 ad assert(need_pages <= total_pages);
1782 1.1 ad rem_pages = total_pages - need_pages;
1783 1.1 ad
1784 1.1 ad /* Split enough pages from the front of run to fit allocation size. */
1785 1.1 ad map_offset = run_ind;
1786 1.1 ad for (i = 0; i < need_pages; i++) {
1787 1.1 ad chunk->map[map_offset + i].npages = need_pages;
1788 1.1 ad chunk->map[map_offset + i].pos = i;
1789 1.1 ad }
1790 1.1 ad
1791 1.1 ad /* Keep track of trailing unused pages for later use. */
1792 1.1 ad if (rem_pages > 0) {
1793 1.1 ad /* Update map for trailing pages. */
1794 1.1 ad map_offset += need_pages;
1795 1.1 ad chunk->map[map_offset].npages = rem_pages;
1796 1.1 ad chunk->map[map_offset].pos = POS_FREE;
1797 1.1 ad chunk->map[map_offset + rem_pages - 1].npages = rem_pages;
1798 1.1 ad chunk->map[map_offset + rem_pages - 1].pos = POS_FREE;
1799 1.1 ad }
1800 1.1 ad
1801 1.1 ad chunk->pages_used += need_pages;
1802 1.1 ad }
1803 1.1 ad
1804 1.1 ad static arena_chunk_t *
1805 1.1 ad arena_chunk_alloc(arena_t *arena)
1806 1.1 ad {
1807 1.1 ad arena_chunk_t *chunk;
1808 1.1 ad
1809 1.1 ad if (arena->spare != NULL) {
1810 1.1 ad chunk = arena->spare;
1811 1.1 ad arena->spare = NULL;
1812 1.1 ad
1813 1.2 ad /* LINTED */
1814 1.1 ad RB_INSERT(arena_chunk_tree_s, &arena->chunks, chunk);
1815 1.1 ad } else {
1816 1.1 ad chunk = (arena_chunk_t *)chunk_alloc(chunksize);
1817 1.1 ad if (chunk == NULL)
1818 1.1 ad return (NULL);
1819 1.1 ad #ifdef MALLOC_STATS
1820 1.1 ad arena->stats.mapped += chunksize;
1821 1.1 ad #endif
1822 1.1 ad
1823 1.1 ad chunk->arena = arena;
1824 1.1 ad
1825 1.2 ad /* LINTED */
1826 1.1 ad RB_INSERT(arena_chunk_tree_s, &arena->chunks, chunk);
1827 1.1 ad
1828 1.1 ad /*
1829 1.1 ad * Claim that no pages are in use, since the header is merely
1830 1.1 ad * overhead.
1831 1.1 ad */
1832 1.1 ad chunk->pages_used = 0;
1833 1.1 ad
1834 1.1 ad chunk->max_frun_npages = chunk_npages -
1835 1.1 ad arena_chunk_header_npages;
1836 1.1 ad chunk->min_frun_ind = arena_chunk_header_npages;
1837 1.1 ad
1838 1.1 ad /*
1839 1.1 ad * Initialize enough of the map to support one maximal free run.
1840 1.1 ad */
1841 1.1 ad chunk->map[arena_chunk_header_npages].npages = chunk_npages -
1842 1.1 ad arena_chunk_header_npages;
1843 1.1 ad chunk->map[arena_chunk_header_npages].pos = POS_FREE;
1844 1.1 ad chunk->map[chunk_npages - 1].npages = chunk_npages -
1845 1.1 ad arena_chunk_header_npages;
1846 1.1 ad chunk->map[chunk_npages - 1].pos = POS_FREE;
1847 1.1 ad }
1848 1.1 ad
1849 1.1 ad return (chunk);
1850 1.1 ad }
1851 1.1 ad
1852 1.1 ad static void
1853 1.1 ad arena_chunk_dealloc(arena_t *arena, arena_chunk_t *chunk)
1854 1.1 ad {
1855 1.1 ad
1856 1.1 ad /*
1857 1.1 ad * Remove chunk from the chunk tree, regardless of whether this chunk
1858 1.1 ad * will be cached, so that the arena does not use it.
1859 1.1 ad */
1860 1.2 ad /* LINTED */
1861 1.1 ad RB_REMOVE(arena_chunk_tree_s, &chunk->arena->chunks, chunk);
1862 1.1 ad
1863 1.1 ad if (opt_hint == false) {
1864 1.1 ad if (arena->spare != NULL) {
1865 1.1 ad chunk_dealloc((void *)arena->spare, chunksize);
1866 1.1 ad #ifdef MALLOC_STATS
1867 1.1 ad arena->stats.mapped -= chunksize;
1868 1.1 ad #endif
1869 1.1 ad }
1870 1.1 ad arena->spare = chunk;
1871 1.1 ad } else {
1872 1.1 ad assert(arena->spare == NULL);
1873 1.1 ad chunk_dealloc((void *)chunk, chunksize);
1874 1.1 ad #ifdef MALLOC_STATS
1875 1.1 ad arena->stats.mapped -= chunksize;
1876 1.1 ad #endif
1877 1.1 ad }
1878 1.1 ad }
1879 1.1 ad
1880 1.1 ad static arena_run_t *
1881 1.1 ad arena_run_alloc(arena_t *arena, size_t size)
1882 1.1 ad {
1883 1.1 ad arena_chunk_t *chunk;
1884 1.1 ad arena_run_t *run;
1885 1.1 ad unsigned need_npages, limit_pages, compl_need_npages;
1886 1.1 ad
1887 1.1 ad assert(size <= (chunksize - (arena_chunk_header_npages <<
1888 1.1 ad pagesize_2pow)));
1889 1.1 ad assert((size & pagesize_mask) == 0);
1890 1.1 ad
1891 1.1 ad /*
1892 1.1 ad * Search through arena's chunks in address order for a free run that is
1893 1.1 ad * large enough. Look for the first fit.
1894 1.1 ad */
1895 1.9 christos need_npages = (unsigned)(size >> pagesize_2pow);
1896 1.1 ad limit_pages = chunk_npages - arena_chunk_header_npages;
1897 1.1 ad compl_need_npages = limit_pages - need_npages;
1898 1.2 ad /* LINTED */
1899 1.1 ad RB_FOREACH(chunk, arena_chunk_tree_s, &arena->chunks) {
1900 1.1 ad /*
1901 1.1 ad * Avoid searching this chunk if there are not enough
1902 1.1 ad * contiguous free pages for there to possibly be a large
1903 1.1 ad * enough free run.
1904 1.1 ad */
1905 1.1 ad if (chunk->pages_used <= compl_need_npages &&
1906 1.1 ad need_npages <= chunk->max_frun_npages) {
1907 1.1 ad arena_chunk_map_t *mapelm;
1908 1.1 ad unsigned i;
1909 1.1 ad unsigned max_frun_npages = 0;
1910 1.1 ad unsigned min_frun_ind = chunk_npages;
1911 1.1 ad
1912 1.1 ad assert(chunk->min_frun_ind >=
1913 1.1 ad arena_chunk_header_npages);
1914 1.1 ad for (i = chunk->min_frun_ind; i < chunk_npages;) {
1915 1.1 ad mapelm = &chunk->map[i];
1916 1.1 ad if (mapelm->pos == POS_FREE) {
1917 1.1 ad if (mapelm->npages >= need_npages) {
1918 1.1 ad run = (arena_run_t *)
1919 1.1 ad ((uintptr_t)chunk + (i <<
1920 1.1 ad pagesize_2pow));
1921 1.1 ad /* Update page map. */
1922 1.1 ad arena_run_split(arena, run,
1923 1.1 ad size);
1924 1.1 ad return (run);
1925 1.1 ad }
1926 1.1 ad if (mapelm->npages >
1927 1.1 ad max_frun_npages) {
1928 1.1 ad max_frun_npages =
1929 1.1 ad mapelm->npages;
1930 1.1 ad }
1931 1.1 ad if (i < min_frun_ind) {
1932 1.1 ad min_frun_ind = i;
1933 1.1 ad if (i < chunk->min_frun_ind)
1934 1.1 ad chunk->min_frun_ind = i;
1935 1.1 ad }
1936 1.1 ad }
1937 1.1 ad i += mapelm->npages;
1938 1.1 ad }
1939 1.1 ad /*
1940 1.1 ad * Search failure. Reset cached chunk->max_frun_npages.
1941 1.1 ad * chunk->min_frun_ind was already reset above (if
1942 1.1 ad * necessary).
1943 1.1 ad */
1944 1.1 ad chunk->max_frun_npages = max_frun_npages;
1945 1.1 ad }
1946 1.1 ad }
1947 1.1 ad
1948 1.1 ad /*
1949 1.1 ad * No usable runs. Create a new chunk from which to allocate the run.
1950 1.1 ad */
1951 1.1 ad chunk = arena_chunk_alloc(arena);
1952 1.1 ad if (chunk == NULL)
1953 1.1 ad return (NULL);
1954 1.1 ad run = (arena_run_t *)((uintptr_t)chunk + (arena_chunk_header_npages <<
1955 1.1 ad pagesize_2pow));
1956 1.1 ad /* Update page map. */
1957 1.1 ad arena_run_split(arena, run, size);
1958 1.1 ad return (run);
1959 1.1 ad }
1960 1.1 ad
1961 1.1 ad static void
1962 1.1 ad arena_run_dalloc(arena_t *arena, arena_run_t *run, size_t size)
1963 1.1 ad {
1964 1.1 ad arena_chunk_t *chunk;
1965 1.1 ad unsigned run_ind, run_pages;
1966 1.1 ad
1967 1.1 ad chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(run);
1968 1.1 ad
1969 1.1 ad run_ind = (unsigned)(((uintptr_t)run - (uintptr_t)chunk)
1970 1.1 ad >> pagesize_2pow);
1971 1.1 ad assert(run_ind >= arena_chunk_header_npages);
1972 1.1 ad assert(run_ind < (chunksize >> pagesize_2pow));
1973 1.9 christos run_pages = (unsigned)(size >> pagesize_2pow);
1974 1.1 ad assert(run_pages == chunk->map[run_ind].npages);
1975 1.1 ad
1976 1.1 ad /* Subtract pages from count of pages used in chunk. */
1977 1.1 ad chunk->pages_used -= run_pages;
1978 1.1 ad
1979 1.1 ad /* Mark run as deallocated. */
1980 1.1 ad assert(chunk->map[run_ind].npages == run_pages);
1981 1.1 ad chunk->map[run_ind].pos = POS_FREE;
1982 1.1 ad assert(chunk->map[run_ind + run_pages - 1].npages == run_pages);
1983 1.1 ad chunk->map[run_ind + run_pages - 1].pos = POS_FREE;
1984 1.1 ad
1985 1.1 ad /*
1986 1.1 ad * Tell the kernel that we don't need the data in this run, but only if
1987 1.1 ad * requested via runtime configuration.
1988 1.1 ad */
1989 1.1 ad if (opt_hint)
1990 1.1 ad madvise(run, size, MADV_FREE);
1991 1.1 ad
1992 1.1 ad /* Try to coalesce with neighboring runs. */
1993 1.1 ad if (run_ind > arena_chunk_header_npages &&
1994 1.1 ad chunk->map[run_ind - 1].pos == POS_FREE) {
1995 1.1 ad unsigned prev_npages;
1996 1.1 ad
1997 1.1 ad /* Coalesce with previous run. */
1998 1.1 ad prev_npages = chunk->map[run_ind - 1].npages;
1999 1.1 ad run_ind -= prev_npages;
2000 1.1 ad assert(chunk->map[run_ind].npages == prev_npages);
2001 1.1 ad assert(chunk->map[run_ind].pos == POS_FREE);
2002 1.1 ad run_pages += prev_npages;
2003 1.1 ad
2004 1.1 ad chunk->map[run_ind].npages = run_pages;
2005 1.1 ad assert(chunk->map[run_ind].pos == POS_FREE);
2006 1.1 ad chunk->map[run_ind + run_pages - 1].npages = run_pages;
2007 1.1 ad assert(chunk->map[run_ind + run_pages - 1].pos == POS_FREE);
2008 1.1 ad }
2009 1.1 ad
2010 1.1 ad if (run_ind + run_pages < chunk_npages &&
2011 1.1 ad chunk->map[run_ind + run_pages].pos == POS_FREE) {
2012 1.1 ad unsigned next_npages;
2013 1.1 ad
2014 1.1 ad /* Coalesce with next run. */
2015 1.1 ad next_npages = chunk->map[run_ind + run_pages].npages;
2016 1.1 ad run_pages += next_npages;
2017 1.1 ad assert(chunk->map[run_ind + run_pages - 1].npages ==
2018 1.1 ad next_npages);
2019 1.1 ad assert(chunk->map[run_ind + run_pages - 1].pos == POS_FREE);
2020 1.1 ad
2021 1.1 ad chunk->map[run_ind].npages = run_pages;
2022 1.1 ad chunk->map[run_ind].pos = POS_FREE;
2023 1.1 ad chunk->map[run_ind + run_pages - 1].npages = run_pages;
2024 1.1 ad assert(chunk->map[run_ind + run_pages - 1].pos == POS_FREE);
2025 1.1 ad }
2026 1.1 ad
2027 1.1 ad if (chunk->map[run_ind].npages > chunk->max_frun_npages)
2028 1.1 ad chunk->max_frun_npages = chunk->map[run_ind].npages;
2029 1.1 ad if (run_ind < chunk->min_frun_ind)
2030 1.1 ad chunk->min_frun_ind = run_ind;
2031 1.1 ad
2032 1.1 ad /* Deallocate chunk if it is now completely unused. */
2033 1.1 ad if (chunk->pages_used == 0)
2034 1.1 ad arena_chunk_dealloc(arena, chunk);
2035 1.1 ad }
2036 1.1 ad
2037 1.1 ad static arena_run_t *
2038 1.1 ad arena_bin_nonfull_run_get(arena_t *arena, arena_bin_t *bin)
2039 1.1 ad {
2040 1.1 ad arena_run_t *run;
2041 1.1 ad unsigned i, remainder;
2042 1.1 ad
2043 1.1 ad /* Look for a usable run. */
2044 1.2 ad /* LINTED */
2045 1.1 ad if ((run = RB_MIN(arena_run_tree_s, &bin->runs)) != NULL) {
2046 1.1 ad /* run is guaranteed to have available space. */
2047 1.2 ad /* LINTED */
2048 1.1 ad RB_REMOVE(arena_run_tree_s, &bin->runs, run);
2049 1.1 ad #ifdef MALLOC_STATS
2050 1.1 ad bin->stats.reruns++;
2051 1.1 ad #endif
2052 1.1 ad return (run);
2053 1.1 ad }
2054 1.1 ad /* No existing runs have any space available. */
2055 1.1 ad
2056 1.1 ad /* Allocate a new run. */
2057 1.1 ad run = arena_run_alloc(arena, bin->run_size);
2058 1.1 ad if (run == NULL)
2059 1.1 ad return (NULL);
2060 1.1 ad
2061 1.1 ad /* Initialize run internals. */
2062 1.1 ad run->bin = bin;
2063 1.1 ad
2064 1.1 ad for (i = 0; i < bin->regs_mask_nelms; i++)
2065 1.1 ad run->regs_mask[i] = UINT_MAX;
2066 1.1 ad remainder = bin->nregs & ((1 << (SIZEOF_INT_2POW + 3)) - 1);
2067 1.1 ad if (remainder != 0) {
2068 1.1 ad /* The last element has spare bits that need to be unset. */
2069 1.1 ad run->regs_mask[i] = (UINT_MAX >> ((1 << (SIZEOF_INT_2POW + 3))
2070 1.1 ad - remainder));
2071 1.1 ad }
2072 1.1 ad
2073 1.1 ad run->regs_minelm = 0;
2074 1.1 ad
2075 1.1 ad run->nfree = bin->nregs;
2076 1.1 ad #ifdef MALLOC_DEBUG
2077 1.1 ad run->magic = ARENA_RUN_MAGIC;
2078 1.1 ad #endif
2079 1.1 ad
2080 1.1 ad #ifdef MALLOC_STATS
2081 1.1 ad bin->stats.nruns++;
2082 1.1 ad bin->stats.curruns++;
2083 1.1 ad if (bin->stats.curruns > bin->stats.highruns)
2084 1.1 ad bin->stats.highruns = bin->stats.curruns;
2085 1.1 ad #endif
2086 1.1 ad return (run);
2087 1.1 ad }
2088 1.1 ad
2089 1.1 ad /* bin->runcur must have space available before this function is called. */
2090 1.1 ad static inline void *
2091 1.1 ad arena_bin_malloc_easy(arena_t *arena, arena_bin_t *bin, arena_run_t *run)
2092 1.1 ad {
2093 1.1 ad void *ret;
2094 1.1 ad
2095 1.1 ad assert(run->magic == ARENA_RUN_MAGIC);
2096 1.1 ad assert(run->nfree > 0);
2097 1.1 ad
2098 1.1 ad ret = arena_run_reg_alloc(run, bin);
2099 1.1 ad assert(ret != NULL);
2100 1.1 ad run->nfree--;
2101 1.1 ad
2102 1.1 ad return (ret);
2103 1.1 ad }
2104 1.1 ad
2105 1.1 ad /* Re-fill bin->runcur, then call arena_bin_malloc_easy(). */
2106 1.1 ad static void *
2107 1.1 ad arena_bin_malloc_hard(arena_t *arena, arena_bin_t *bin)
2108 1.1 ad {
2109 1.1 ad
2110 1.1 ad bin->runcur = arena_bin_nonfull_run_get(arena, bin);
2111 1.1 ad if (bin->runcur == NULL)
2112 1.1 ad return (NULL);
2113 1.1 ad assert(bin->runcur->magic == ARENA_RUN_MAGIC);
2114 1.1 ad assert(bin->runcur->nfree > 0);
2115 1.1 ad
2116 1.1 ad return (arena_bin_malloc_easy(arena, bin, bin->runcur));
2117 1.1 ad }
2118 1.1 ad
2119 1.1 ad /*
2120 1.1 ad * Calculate bin->run_size such that it meets the following constraints:
2121 1.1 ad *
2122 1.1 ad * *) bin->run_size >= min_run_size
2123 1.1 ad * *) bin->run_size <= arena_maxclass
2124 1.1 ad * *) bin->run_size <= RUN_MAX_SMALL
2125 1.1 ad * *) run header overhead <= RUN_MAX_OVRHD (or header overhead relaxed).
2126 1.1 ad *
2127 1.1 ad * bin->nregs, bin->regs_mask_nelms, and bin->reg0_offset are
2128 1.1 ad * also calculated here, since these settings are all interdependent.
2129 1.1 ad */
2130 1.1 ad static size_t
2131 1.1 ad arena_bin_run_size_calc(arena_bin_t *bin, size_t min_run_size)
2132 1.1 ad {
2133 1.1 ad size_t try_run_size, good_run_size;
2134 1.1 ad unsigned good_nregs, good_mask_nelms, good_reg0_offset;
2135 1.1 ad unsigned try_nregs, try_mask_nelms, try_reg0_offset;
2136 1.1 ad float max_ovrhd = RUN_MAX_OVRHD;
2137 1.1 ad
2138 1.1 ad assert(min_run_size >= pagesize);
2139 1.1 ad assert(min_run_size <= arena_maxclass);
2140 1.1 ad assert(min_run_size <= RUN_MAX_SMALL);
2141 1.1 ad
2142 1.1 ad /*
2143 1.1 ad * Calculate known-valid settings before entering the run_size
2144 1.1 ad * expansion loop, so that the first part of the loop always copies
2145 1.1 ad * valid settings.
2146 1.1 ad *
2147 1.1 ad * The do..while loop iteratively reduces the number of regions until
2148 1.1 ad * the run header and the regions no longer overlap. A closed formula
2149 1.1 ad * would be quite messy, since there is an interdependency between the
2150 1.1 ad * header's mask length and the number of regions.
2151 1.1 ad */
2152 1.1 ad try_run_size = min_run_size;
2153 1.9 christos try_nregs = (unsigned)(((try_run_size - sizeof(arena_run_t)) /
2154 1.9 christos bin->reg_size) + 1); /* Counter-act the first line of the loop. */
2155 1.1 ad do {
2156 1.1 ad try_nregs--;
2157 1.1 ad try_mask_nelms = (try_nregs >> (SIZEOF_INT_2POW + 3)) +
2158 1.1 ad ((try_nregs & ((1 << (SIZEOF_INT_2POW + 3)) - 1)) ? 1 : 0);
2159 1.9 christos try_reg0_offset = (unsigned)(try_run_size -
2160 1.9 christos (try_nregs * bin->reg_size));
2161 1.1 ad } while (sizeof(arena_run_t) + (sizeof(unsigned) * (try_mask_nelms - 1))
2162 1.1 ad > try_reg0_offset);
2163 1.1 ad
2164 1.1 ad /* run_size expansion loop. */
2165 1.1 ad do {
2166 1.1 ad /*
2167 1.1 ad * Copy valid settings before trying more aggressive settings.
2168 1.1 ad */
2169 1.1 ad good_run_size = try_run_size;
2170 1.1 ad good_nregs = try_nregs;
2171 1.1 ad good_mask_nelms = try_mask_nelms;
2172 1.1 ad good_reg0_offset = try_reg0_offset;
2173 1.1 ad
2174 1.1 ad /* Try more aggressive settings. */
2175 1.1 ad try_run_size += pagesize;
2176 1.9 christos try_nregs = (unsigned)(((try_run_size - sizeof(arena_run_t)) /
2177 1.9 christos bin->reg_size) + 1); /* Counter-act try_nregs-- in loop. */
2178 1.1 ad do {
2179 1.1 ad try_nregs--;
2180 1.1 ad try_mask_nelms = (try_nregs >> (SIZEOF_INT_2POW + 3)) +
2181 1.1 ad ((try_nregs & ((1 << (SIZEOF_INT_2POW + 3)) - 1)) ?
2182 1.1 ad 1 : 0);
2183 1.9 christos try_reg0_offset = (unsigned)(try_run_size - (try_nregs *
2184 1.9 christos bin->reg_size));
2185 1.1 ad } while (sizeof(arena_run_t) + (sizeof(unsigned) *
2186 1.1 ad (try_mask_nelms - 1)) > try_reg0_offset);
2187 1.1 ad } while (try_run_size <= arena_maxclass && try_run_size <= RUN_MAX_SMALL
2188 1.1 ad && max_ovrhd > RUN_MAX_OVRHD_RELAX / ((float)(bin->reg_size << 3))
2189 1.1 ad && ((float)(try_reg0_offset)) / ((float)(try_run_size)) >
2190 1.1 ad max_ovrhd);
2191 1.1 ad
2192 1.1 ad assert(sizeof(arena_run_t) + (sizeof(unsigned) * (good_mask_nelms - 1))
2193 1.1 ad <= good_reg0_offset);
2194 1.1 ad assert((good_mask_nelms << (SIZEOF_INT_2POW + 3)) >= good_nregs);
2195 1.1 ad
2196 1.1 ad /* Copy final settings. */
2197 1.1 ad bin->run_size = good_run_size;
2198 1.1 ad bin->nregs = good_nregs;
2199 1.1 ad bin->regs_mask_nelms = good_mask_nelms;
2200 1.1 ad bin->reg0_offset = good_reg0_offset;
2201 1.1 ad
2202 1.1 ad return (good_run_size);
2203 1.1 ad }
2204 1.1 ad
2205 1.1 ad static void *
2206 1.1 ad arena_malloc(arena_t *arena, size_t size)
2207 1.1 ad {
2208 1.1 ad void *ret;
2209 1.1 ad
2210 1.1 ad assert(arena != NULL);
2211 1.1 ad assert(arena->magic == ARENA_MAGIC);
2212 1.1 ad assert(size != 0);
2213 1.1 ad assert(QUANTUM_CEILING(size) <= arena_maxclass);
2214 1.1 ad
2215 1.1 ad if (size <= bin_maxclass) {
2216 1.1 ad arena_bin_t *bin;
2217 1.1 ad arena_run_t *run;
2218 1.1 ad
2219 1.1 ad /* Small allocation. */
2220 1.1 ad
2221 1.1 ad if (size < small_min) {
2222 1.1 ad /* Tiny. */
2223 1.1 ad size = pow2_ceil(size);
2224 1.1 ad bin = &arena->bins[ffs((int)(size >> (TINY_MIN_2POW +
2225 1.1 ad 1)))];
2226 1.1 ad #if (!defined(NDEBUG) || defined(MALLOC_STATS))
2227 1.1 ad /*
2228 1.1 ad * Bin calculation is always correct, but we may need
2229 1.1 ad * to fix size for the purposes of assertions and/or
2230 1.1 ad * stats accuracy.
2231 1.1 ad */
2232 1.1 ad if (size < (1 << TINY_MIN_2POW))
2233 1.1 ad size = (1 << TINY_MIN_2POW);
2234 1.1 ad #endif
2235 1.1 ad } else if (size <= small_max) {
2236 1.1 ad /* Quantum-spaced. */
2237 1.1 ad size = QUANTUM_CEILING(size);
2238 1.1 ad bin = &arena->bins[ntbins + (size >> opt_quantum_2pow)
2239 1.1 ad - 1];
2240 1.1 ad } else {
2241 1.1 ad /* Sub-page. */
2242 1.1 ad size = pow2_ceil(size);
2243 1.1 ad bin = &arena->bins[ntbins + nqbins
2244 1.1 ad + (ffs((int)(size >> opt_small_max_2pow)) - 2)];
2245 1.1 ad }
2246 1.1 ad assert(size == bin->reg_size);
2247 1.1 ad
2248 1.1 ad malloc_mutex_lock(&arena->mtx);
2249 1.1 ad if ((run = bin->runcur) != NULL && run->nfree > 0)
2250 1.1 ad ret = arena_bin_malloc_easy(arena, bin, run);
2251 1.1 ad else
2252 1.1 ad ret = arena_bin_malloc_hard(arena, bin);
2253 1.1 ad
2254 1.1 ad if (ret == NULL) {
2255 1.1 ad malloc_mutex_unlock(&arena->mtx);
2256 1.1 ad return (NULL);
2257 1.1 ad }
2258 1.1 ad
2259 1.1 ad #ifdef MALLOC_STATS
2260 1.1 ad bin->stats.nrequests++;
2261 1.1 ad arena->stats.nmalloc_small++;
2262 1.1 ad arena->stats.allocated_small += size;
2263 1.1 ad #endif
2264 1.1 ad } else {
2265 1.1 ad /* Large allocation. */
2266 1.1 ad size = PAGE_CEILING(size);
2267 1.1 ad malloc_mutex_lock(&arena->mtx);
2268 1.1 ad ret = (void *)arena_run_alloc(arena, size);
2269 1.1 ad if (ret == NULL) {
2270 1.1 ad malloc_mutex_unlock(&arena->mtx);
2271 1.1 ad return (NULL);
2272 1.1 ad }
2273 1.1 ad #ifdef MALLOC_STATS
2274 1.1 ad arena->stats.nmalloc_large++;
2275 1.1 ad arena->stats.allocated_large += size;
2276 1.1 ad #endif
2277 1.1 ad }
2278 1.1 ad
2279 1.1 ad malloc_mutex_unlock(&arena->mtx);
2280 1.1 ad
2281 1.1 ad if (opt_junk)
2282 1.1 ad memset(ret, 0xa5, size);
2283 1.1 ad else if (opt_zero)
2284 1.1 ad memset(ret, 0, size);
2285 1.1 ad return (ret);
2286 1.1 ad }
2287 1.1 ad
2288 1.1 ad static inline void
2289 1.1 ad arena_palloc_trim(arena_t *arena, arena_chunk_t *chunk, unsigned pageind,
2290 1.1 ad unsigned npages)
2291 1.1 ad {
2292 1.1 ad unsigned i;
2293 1.1 ad
2294 1.1 ad assert(npages > 0);
2295 1.1 ad
2296 1.1 ad /*
2297 1.1 ad * Modifiy the map such that arena_run_dalloc() sees the run as
2298 1.1 ad * separately allocated.
2299 1.1 ad */
2300 1.1 ad for (i = 0; i < npages; i++) {
2301 1.1 ad chunk->map[pageind + i].npages = npages;
2302 1.1 ad chunk->map[pageind + i].pos = i;
2303 1.1 ad }
2304 1.1 ad arena_run_dalloc(arena, (arena_run_t *)((uintptr_t)chunk + (pageind <<
2305 1.1 ad pagesize_2pow)), npages << pagesize_2pow);
2306 1.1 ad }
2307 1.1 ad
2308 1.1 ad /* Only handles large allocations that require more than page alignment. */
2309 1.1 ad static void *
2310 1.1 ad arena_palloc(arena_t *arena, size_t alignment, size_t size, size_t alloc_size)
2311 1.1 ad {
2312 1.1 ad void *ret;
2313 1.1 ad size_t offset;
2314 1.1 ad arena_chunk_t *chunk;
2315 1.1 ad unsigned pageind, i, npages;
2316 1.1 ad
2317 1.1 ad assert((size & pagesize_mask) == 0);
2318 1.1 ad assert((alignment & pagesize_mask) == 0);
2319 1.1 ad
2320 1.9 christos npages = (unsigned)(size >> pagesize_2pow);
2321 1.1 ad
2322 1.1 ad malloc_mutex_lock(&arena->mtx);
2323 1.1 ad ret = (void *)arena_run_alloc(arena, alloc_size);
2324 1.1 ad if (ret == NULL) {
2325 1.1 ad malloc_mutex_unlock(&arena->mtx);
2326 1.1 ad return (NULL);
2327 1.1 ad }
2328 1.1 ad
2329 1.1 ad chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ret);
2330 1.1 ad
2331 1.1 ad offset = (uintptr_t)ret & (alignment - 1);
2332 1.1 ad assert((offset & pagesize_mask) == 0);
2333 1.1 ad assert(offset < alloc_size);
2334 1.1 ad if (offset == 0) {
2335 1.9 christos pageind = (unsigned)(((uintptr_t)ret - (uintptr_t)chunk) >>
2336 1.1 ad pagesize_2pow);
2337 1.1 ad
2338 1.1 ad /* Update the map for the run to be kept. */
2339 1.1 ad for (i = 0; i < npages; i++) {
2340 1.1 ad chunk->map[pageind + i].npages = npages;
2341 1.1 ad assert(chunk->map[pageind + i].pos == i);
2342 1.1 ad }
2343 1.1 ad
2344 1.1 ad /* Trim trailing space. */
2345 1.1 ad arena_palloc_trim(arena, chunk, pageind + npages,
2346 1.9 christos (unsigned)((alloc_size - size) >> pagesize_2pow));
2347 1.1 ad } else {
2348 1.1 ad size_t leadsize, trailsize;
2349 1.1 ad
2350 1.1 ad leadsize = alignment - offset;
2351 1.1 ad ret = (void *)((uintptr_t)ret + leadsize);
2352 1.9 christos pageind = (unsigned)(((uintptr_t)ret - (uintptr_t)chunk) >>
2353 1.1 ad pagesize_2pow);
2354 1.1 ad
2355 1.1 ad /* Update the map for the run to be kept. */
2356 1.1 ad for (i = 0; i < npages; i++) {
2357 1.1 ad chunk->map[pageind + i].npages = npages;
2358 1.1 ad chunk->map[pageind + i].pos = i;
2359 1.1 ad }
2360 1.1 ad
2361 1.1 ad /* Trim leading space. */
2362 1.9 christos arena_palloc_trim(arena, chunk,
2363 1.9 christos (unsigned)(pageind - (leadsize >> pagesize_2pow)),
2364 1.9 christos (unsigned)(leadsize >> pagesize_2pow));
2365 1.1 ad
2366 1.1 ad trailsize = alloc_size - leadsize - size;
2367 1.1 ad if (trailsize != 0) {
2368 1.1 ad /* Trim trailing space. */
2369 1.1 ad assert(trailsize < alloc_size);
2370 1.1 ad arena_palloc_trim(arena, chunk, pageind + npages,
2371 1.9 christos (unsigned)(trailsize >> pagesize_2pow));
2372 1.1 ad }
2373 1.1 ad }
2374 1.1 ad
2375 1.1 ad #ifdef MALLOC_STATS
2376 1.1 ad arena->stats.nmalloc_large++;
2377 1.1 ad arena->stats.allocated_large += size;
2378 1.1 ad #endif
2379 1.1 ad malloc_mutex_unlock(&arena->mtx);
2380 1.1 ad
2381 1.1 ad if (opt_junk)
2382 1.1 ad memset(ret, 0xa5, size);
2383 1.1 ad else if (opt_zero)
2384 1.1 ad memset(ret, 0, size);
2385 1.1 ad return (ret);
2386 1.1 ad }
2387 1.1 ad
2388 1.1 ad /* Return the size of the allocation pointed to by ptr. */
2389 1.1 ad static size_t
2390 1.1 ad arena_salloc(const void *ptr)
2391 1.1 ad {
2392 1.1 ad size_t ret;
2393 1.1 ad arena_chunk_t *chunk;
2394 1.1 ad arena_chunk_map_t *mapelm;
2395 1.1 ad unsigned pageind;
2396 1.1 ad
2397 1.1 ad assert(ptr != NULL);
2398 1.1 ad assert(CHUNK_ADDR2BASE(ptr) != ptr);
2399 1.1 ad
2400 1.1 ad /*
2401 1.1 ad * No arena data structures that we query here can change in a way that
2402 1.1 ad * affects this function, so we don't need to lock.
2403 1.1 ad */
2404 1.1 ad chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
2405 1.9 christos pageind = (unsigned)(((uintptr_t)ptr - (uintptr_t)chunk) >>
2406 1.9 christos pagesize_2pow);
2407 1.1 ad mapelm = &chunk->map[pageind];
2408 1.10 simonb if (mapelm->pos != 0 || ptr != (char *)((uintptr_t)chunk) + (pageind <<
2409 1.10 simonb pagesize_2pow)) {
2410 1.10 simonb arena_run_t *run;
2411 1.1 ad
2412 1.1 ad pageind -= mapelm->pos;
2413 1.1 ad
2414 1.10 simonb run = (arena_run_t *)((uintptr_t)chunk + (pageind <<
2415 1.10 simonb pagesize_2pow));
2416 1.1 ad assert(run->magic == ARENA_RUN_MAGIC);
2417 1.1 ad ret = run->bin->reg_size;
2418 1.1 ad } else
2419 1.1 ad ret = mapelm->npages << pagesize_2pow;
2420 1.1 ad
2421 1.1 ad return (ret);
2422 1.1 ad }
2423 1.1 ad
2424 1.1 ad static void *
2425 1.1 ad arena_ralloc(void *ptr, size_t size, size_t oldsize)
2426 1.1 ad {
2427 1.1 ad void *ret;
2428 1.1 ad
2429 1.1 ad /* Avoid moving the allocation if the size class would not change. */
2430 1.1 ad if (size < small_min) {
2431 1.1 ad if (oldsize < small_min &&
2432 1.1 ad ffs((int)(pow2_ceil(size) >> (TINY_MIN_2POW + 1)))
2433 1.1 ad == ffs((int)(pow2_ceil(oldsize) >> (TINY_MIN_2POW + 1))))
2434 1.1 ad goto IN_PLACE;
2435 1.1 ad } else if (size <= small_max) {
2436 1.1 ad if (oldsize >= small_min && oldsize <= small_max &&
2437 1.1 ad (QUANTUM_CEILING(size) >> opt_quantum_2pow)
2438 1.1 ad == (QUANTUM_CEILING(oldsize) >> opt_quantum_2pow))
2439 1.1 ad goto IN_PLACE;
2440 1.1 ad } else {
2441 1.1 ad /*
2442 1.1 ad * We make no attempt to resize runs here, though it would be
2443 1.1 ad * possible to do so.
2444 1.1 ad */
2445 1.1 ad if (oldsize > small_max && PAGE_CEILING(size) == oldsize)
2446 1.1 ad goto IN_PLACE;
2447 1.1 ad }
2448 1.1 ad
2449 1.1 ad /*
2450 1.1 ad * If we get here, then size and oldsize are different enough that we
2451 1.1 ad * need to use a different size class. In that case, fall back to
2452 1.1 ad * allocating new space and copying.
2453 1.1 ad */
2454 1.1 ad ret = arena_malloc(choose_arena(), size);
2455 1.1 ad if (ret == NULL)
2456 1.1 ad return (NULL);
2457 1.1 ad
2458 1.1 ad /* Junk/zero-filling were already done by arena_malloc(). */
2459 1.1 ad if (size < oldsize)
2460 1.1 ad memcpy(ret, ptr, size);
2461 1.1 ad else
2462 1.1 ad memcpy(ret, ptr, oldsize);
2463 1.1 ad idalloc(ptr);
2464 1.1 ad return (ret);
2465 1.1 ad IN_PLACE:
2466 1.1 ad if (opt_junk && size < oldsize)
2467 1.1 ad memset((void *)((uintptr_t)ptr + size), 0x5a, oldsize - size);
2468 1.1 ad else if (opt_zero && size > oldsize)
2469 1.1 ad memset((void *)((uintptr_t)ptr + oldsize), 0, size - oldsize);
2470 1.1 ad return (ptr);
2471 1.1 ad }
2472 1.1 ad
2473 1.1 ad static void
2474 1.1 ad arena_dalloc(arena_t *arena, arena_chunk_t *chunk, void *ptr)
2475 1.1 ad {
2476 1.1 ad unsigned pageind;
2477 1.1 ad arena_chunk_map_t *mapelm;
2478 1.1 ad size_t size;
2479 1.1 ad
2480 1.1 ad assert(arena != NULL);
2481 1.1 ad assert(arena->magic == ARENA_MAGIC);
2482 1.1 ad assert(chunk->arena == arena);
2483 1.1 ad assert(ptr != NULL);
2484 1.1 ad assert(CHUNK_ADDR2BASE(ptr) != ptr);
2485 1.1 ad
2486 1.9 christos pageind = (unsigned)(((uintptr_t)ptr - (uintptr_t)chunk) >>
2487 1.9 christos pagesize_2pow);
2488 1.1 ad mapelm = &chunk->map[pageind];
2489 1.10 simonb if (mapelm->pos != 0 || ptr != (char *)((uintptr_t)chunk) + (pageind <<
2490 1.10 simonb pagesize_2pow)) {
2491 1.10 simonb arena_run_t *run;
2492 1.1 ad arena_bin_t *bin;
2493 1.1 ad
2494 1.1 ad /* Small allocation. */
2495 1.1 ad
2496 1.1 ad pageind -= mapelm->pos;
2497 1.1 ad
2498 1.10 simonb run = (arena_run_t *)((uintptr_t)chunk + (pageind <<
2499 1.10 simonb pagesize_2pow));
2500 1.1 ad assert(run->magic == ARENA_RUN_MAGIC);
2501 1.1 ad bin = run->bin;
2502 1.1 ad size = bin->reg_size;
2503 1.1 ad
2504 1.1 ad if (opt_junk)
2505 1.1 ad memset(ptr, 0x5a, size);
2506 1.1 ad
2507 1.1 ad malloc_mutex_lock(&arena->mtx);
2508 1.1 ad arena_run_reg_dalloc(run, bin, ptr, size);
2509 1.1 ad run->nfree++;
2510 1.1 ad
2511 1.1 ad if (run->nfree == bin->nregs) {
2512 1.1 ad /* Deallocate run. */
2513 1.1 ad if (run == bin->runcur)
2514 1.1 ad bin->runcur = NULL;
2515 1.1 ad else if (bin->nregs != 1) {
2516 1.1 ad /*
2517 1.1 ad * This block's conditional is necessary because
2518 1.1 ad * if the run only contains one region, then it
2519 1.1 ad * never gets inserted into the non-full runs
2520 1.1 ad * tree.
2521 1.1 ad */
2522 1.2 ad /* LINTED */
2523 1.1 ad RB_REMOVE(arena_run_tree_s, &bin->runs, run);
2524 1.1 ad }
2525 1.1 ad #ifdef MALLOC_DEBUG
2526 1.1 ad run->magic = 0;
2527 1.1 ad #endif
2528 1.1 ad arena_run_dalloc(arena, run, bin->run_size);
2529 1.1 ad #ifdef MALLOC_STATS
2530 1.1 ad bin->stats.curruns--;
2531 1.1 ad #endif
2532 1.1 ad } else if (run->nfree == 1 && run != bin->runcur) {
2533 1.1 ad /*
2534 1.1 ad * Make sure that bin->runcur always refers to the
2535 1.1 ad * lowest non-full run, if one exists.
2536 1.1 ad */
2537 1.1 ad if (bin->runcur == NULL)
2538 1.1 ad bin->runcur = run;
2539 1.1 ad else if ((uintptr_t)run < (uintptr_t)bin->runcur) {
2540 1.1 ad /* Switch runcur. */
2541 1.1 ad if (bin->runcur->nfree > 0) {
2542 1.1 ad /* Insert runcur. */
2543 1.2 ad /* LINTED */
2544 1.1 ad RB_INSERT(arena_run_tree_s, &bin->runs,
2545 1.1 ad bin->runcur);
2546 1.1 ad }
2547 1.1 ad bin->runcur = run;
2548 1.2 ad } else {
2549 1.2 ad /* LINTED */
2550 1.1 ad RB_INSERT(arena_run_tree_s, &bin->runs, run);
2551 1.2 ad }
2552 1.1 ad }
2553 1.1 ad #ifdef MALLOC_STATS
2554 1.1 ad arena->stats.allocated_small -= size;
2555 1.1 ad arena->stats.ndalloc_small++;
2556 1.1 ad #endif
2557 1.1 ad } else {
2558 1.1 ad /* Large allocation. */
2559 1.1 ad
2560 1.1 ad size = mapelm->npages << pagesize_2pow;
2561 1.1 ad assert((((uintptr_t)ptr) & pagesize_mask) == 0);
2562 1.1 ad
2563 1.1 ad if (opt_junk)
2564 1.1 ad memset(ptr, 0x5a, size);
2565 1.1 ad
2566 1.1 ad malloc_mutex_lock(&arena->mtx);
2567 1.1 ad arena_run_dalloc(arena, (arena_run_t *)ptr, size);
2568 1.1 ad #ifdef MALLOC_STATS
2569 1.1 ad arena->stats.allocated_large -= size;
2570 1.1 ad arena->stats.ndalloc_large++;
2571 1.1 ad #endif
2572 1.1 ad }
2573 1.1 ad
2574 1.1 ad malloc_mutex_unlock(&arena->mtx);
2575 1.1 ad }
2576 1.1 ad
2577 1.1 ad static bool
2578 1.1 ad arena_new(arena_t *arena)
2579 1.1 ad {
2580 1.1 ad unsigned i;
2581 1.1 ad arena_bin_t *bin;
2582 1.2 ad size_t prev_run_size;
2583 1.1 ad
2584 1.1 ad malloc_mutex_init(&arena->mtx);
2585 1.1 ad
2586 1.1 ad #ifdef MALLOC_STATS
2587 1.1 ad memset(&arena->stats, 0, sizeof(arena_stats_t));
2588 1.1 ad #endif
2589 1.1 ad
2590 1.1 ad /* Initialize chunks. */
2591 1.1 ad RB_INIT(&arena->chunks);
2592 1.1 ad arena->spare = NULL;
2593 1.1 ad
2594 1.1 ad /* Initialize bins. */
2595 1.1 ad prev_run_size = pagesize;
2596 1.1 ad
2597 1.1 ad /* (2^n)-spaced tiny bins. */
2598 1.1 ad for (i = 0; i < ntbins; i++) {
2599 1.1 ad bin = &arena->bins[i];
2600 1.1 ad bin->runcur = NULL;
2601 1.1 ad RB_INIT(&bin->runs);
2602 1.1 ad
2603 1.1 ad bin->reg_size = (1 << (TINY_MIN_2POW + i));
2604 1.1 ad prev_run_size = arena_bin_run_size_calc(bin, prev_run_size);
2605 1.1 ad
2606 1.1 ad #ifdef MALLOC_STATS
2607 1.1 ad memset(&bin->stats, 0, sizeof(malloc_bin_stats_t));
2608 1.1 ad #endif
2609 1.1 ad }
2610 1.1 ad
2611 1.1 ad /* Quantum-spaced bins. */
2612 1.1 ad for (; i < ntbins + nqbins; i++) {
2613 1.1 ad bin = &arena->bins[i];
2614 1.1 ad bin->runcur = NULL;
2615 1.1 ad RB_INIT(&bin->runs);
2616 1.1 ad
2617 1.1 ad bin->reg_size = quantum * (i - ntbins + 1);
2618 1.2 ad /*
2619 1.1 ad pow2_size = pow2_ceil(quantum * (i - ntbins + 1));
2620 1.2 ad */
2621 1.1 ad prev_run_size = arena_bin_run_size_calc(bin, prev_run_size);
2622 1.1 ad
2623 1.1 ad #ifdef MALLOC_STATS
2624 1.1 ad memset(&bin->stats, 0, sizeof(malloc_bin_stats_t));
2625 1.1 ad #endif
2626 1.1 ad }
2627 1.1 ad
2628 1.1 ad /* (2^n)-spaced sub-page bins. */
2629 1.1 ad for (; i < ntbins + nqbins + nsbins; i++) {
2630 1.1 ad bin = &arena->bins[i];
2631 1.1 ad bin->runcur = NULL;
2632 1.1 ad RB_INIT(&bin->runs);
2633 1.1 ad
2634 1.1 ad bin->reg_size = (small_max << (i - (ntbins + nqbins) + 1));
2635 1.1 ad
2636 1.1 ad prev_run_size = arena_bin_run_size_calc(bin, prev_run_size);
2637 1.1 ad
2638 1.1 ad #ifdef MALLOC_STATS
2639 1.1 ad memset(&bin->stats, 0, sizeof(malloc_bin_stats_t));
2640 1.1 ad #endif
2641 1.1 ad }
2642 1.1 ad
2643 1.1 ad #ifdef MALLOC_DEBUG
2644 1.1 ad arena->magic = ARENA_MAGIC;
2645 1.1 ad #endif
2646 1.1 ad
2647 1.1 ad return (false);
2648 1.1 ad }
2649 1.1 ad
2650 1.1 ad /* Create a new arena and insert it into the arenas array at index ind. */
2651 1.1 ad static arena_t *
2652 1.1 ad arenas_extend(unsigned ind)
2653 1.1 ad {
2654 1.1 ad arena_t *ret;
2655 1.1 ad
2656 1.1 ad /* Allocate enough space for trailing bins. */
2657 1.1 ad ret = (arena_t *)base_alloc(sizeof(arena_t)
2658 1.1 ad + (sizeof(arena_bin_t) * (ntbins + nqbins + nsbins - 1)));
2659 1.1 ad if (ret != NULL && arena_new(ret) == false) {
2660 1.1 ad arenas[ind] = ret;
2661 1.1 ad return (ret);
2662 1.1 ad }
2663 1.1 ad /* Only reached if there is an OOM error. */
2664 1.1 ad
2665 1.1 ad /*
2666 1.1 ad * OOM here is quite inconvenient to propagate, since dealing with it
2667 1.1 ad * would require a check for failure in the fast path. Instead, punt
2668 1.1 ad * by using arenas[0]. In practice, this is an extremely unlikely
2669 1.1 ad * failure.
2670 1.1 ad */
2671 1.16 christos _malloc_message(getprogname(),
2672 1.1 ad ": (malloc) Error initializing arena\n", "", "");
2673 1.1 ad if (opt_abort)
2674 1.1 ad abort();
2675 1.1 ad
2676 1.1 ad return (arenas[0]);
2677 1.1 ad }
2678 1.1 ad
2679 1.1 ad /*
2680 1.1 ad * End arena.
2681 1.1 ad */
2682 1.1 ad /******************************************************************************/
2683 1.1 ad /*
2684 1.1 ad * Begin general internal functions.
2685 1.1 ad */
2686 1.1 ad
2687 1.1 ad static void *
2688 1.1 ad huge_malloc(size_t size)
2689 1.1 ad {
2690 1.1 ad void *ret;
2691 1.1 ad size_t csize;
2692 1.1 ad chunk_node_t *node;
2693 1.1 ad
2694 1.1 ad /* Allocate one or more contiguous chunks for this request. */
2695 1.1 ad
2696 1.1 ad csize = CHUNK_CEILING(size);
2697 1.1 ad if (csize == 0) {
2698 1.1 ad /* size is large enough to cause size_t wrap-around. */
2699 1.1 ad return (NULL);
2700 1.1 ad }
2701 1.1 ad
2702 1.1 ad /* Allocate a chunk node with which to track the chunk. */
2703 1.1 ad node = base_chunk_node_alloc();
2704 1.1 ad if (node == NULL)
2705 1.1 ad return (NULL);
2706 1.1 ad
2707 1.1 ad ret = chunk_alloc(csize);
2708 1.1 ad if (ret == NULL) {
2709 1.1 ad base_chunk_node_dealloc(node);
2710 1.1 ad return (NULL);
2711 1.1 ad }
2712 1.1 ad
2713 1.1 ad /* Insert node into huge. */
2714 1.1 ad node->chunk = ret;
2715 1.1 ad node->size = csize;
2716 1.1 ad
2717 1.1 ad malloc_mutex_lock(&chunks_mtx);
2718 1.1 ad RB_INSERT(chunk_tree_s, &huge, node);
2719 1.1 ad #ifdef MALLOC_STATS
2720 1.1 ad huge_nmalloc++;
2721 1.1 ad huge_allocated += csize;
2722 1.1 ad #endif
2723 1.1 ad malloc_mutex_unlock(&chunks_mtx);
2724 1.1 ad
2725 1.1 ad if (opt_junk)
2726 1.1 ad memset(ret, 0xa5, csize);
2727 1.1 ad else if (opt_zero)
2728 1.1 ad memset(ret, 0, csize);
2729 1.1 ad
2730 1.1 ad return (ret);
2731 1.1 ad }
2732 1.1 ad
2733 1.1 ad /* Only handles large allocations that require more than chunk alignment. */
2734 1.1 ad static void *
2735 1.1 ad huge_palloc(size_t alignment, size_t size)
2736 1.1 ad {
2737 1.1 ad void *ret;
2738 1.1 ad size_t alloc_size, chunk_size, offset;
2739 1.1 ad chunk_node_t *node;
2740 1.1 ad
2741 1.1 ad /*
2742 1.1 ad * This allocation requires alignment that is even larger than chunk
2743 1.1 ad * alignment. This means that huge_malloc() isn't good enough.
2744 1.1 ad *
2745 1.1 ad * Allocate almost twice as many chunks as are demanded by the size or
2746 1.1 ad * alignment, in order to assure the alignment can be achieved, then
2747 1.1 ad * unmap leading and trailing chunks.
2748 1.1 ad */
2749 1.1 ad assert(alignment >= chunksize);
2750 1.1 ad
2751 1.1 ad chunk_size = CHUNK_CEILING(size);
2752 1.1 ad
2753 1.1 ad if (size >= alignment)
2754 1.1 ad alloc_size = chunk_size + alignment - chunksize;
2755 1.1 ad else
2756 1.1 ad alloc_size = (alignment << 1) - chunksize;
2757 1.1 ad
2758 1.1 ad /* Allocate a chunk node with which to track the chunk. */
2759 1.1 ad node = base_chunk_node_alloc();
2760 1.1 ad if (node == NULL)
2761 1.1 ad return (NULL);
2762 1.1 ad
2763 1.1 ad ret = chunk_alloc(alloc_size);
2764 1.1 ad if (ret == NULL) {
2765 1.1 ad base_chunk_node_dealloc(node);
2766 1.1 ad return (NULL);
2767 1.1 ad }
2768 1.1 ad
2769 1.1 ad offset = (uintptr_t)ret & (alignment - 1);
2770 1.1 ad assert((offset & chunksize_mask) == 0);
2771 1.1 ad assert(offset < alloc_size);
2772 1.1 ad if (offset == 0) {
2773 1.1 ad /* Trim trailing space. */
2774 1.1 ad chunk_dealloc((void *)((uintptr_t)ret + chunk_size), alloc_size
2775 1.1 ad - chunk_size);
2776 1.1 ad } else {
2777 1.1 ad size_t trailsize;
2778 1.1 ad
2779 1.1 ad /* Trim leading space. */
2780 1.1 ad chunk_dealloc(ret, alignment - offset);
2781 1.1 ad
2782 1.1 ad ret = (void *)((uintptr_t)ret + (alignment - offset));
2783 1.1 ad
2784 1.1 ad trailsize = alloc_size - (alignment - offset) - chunk_size;
2785 1.1 ad if (trailsize != 0) {
2786 1.1 ad /* Trim trailing space. */
2787 1.1 ad assert(trailsize < alloc_size);
2788 1.1 ad chunk_dealloc((void *)((uintptr_t)ret + chunk_size),
2789 1.1 ad trailsize);
2790 1.1 ad }
2791 1.1 ad }
2792 1.1 ad
2793 1.1 ad /* Insert node into huge. */
2794 1.1 ad node->chunk = ret;
2795 1.1 ad node->size = chunk_size;
2796 1.1 ad
2797 1.1 ad malloc_mutex_lock(&chunks_mtx);
2798 1.1 ad RB_INSERT(chunk_tree_s, &huge, node);
2799 1.1 ad #ifdef MALLOC_STATS
2800 1.1 ad huge_nmalloc++;
2801 1.1 ad huge_allocated += chunk_size;
2802 1.1 ad #endif
2803 1.1 ad malloc_mutex_unlock(&chunks_mtx);
2804 1.1 ad
2805 1.1 ad if (opt_junk)
2806 1.1 ad memset(ret, 0xa5, chunk_size);
2807 1.1 ad else if (opt_zero)
2808 1.1 ad memset(ret, 0, chunk_size);
2809 1.1 ad
2810 1.1 ad return (ret);
2811 1.1 ad }
2812 1.1 ad
2813 1.1 ad static void *
2814 1.1 ad huge_ralloc(void *ptr, size_t size, size_t oldsize)
2815 1.1 ad {
2816 1.1 ad void *ret;
2817 1.1 ad
2818 1.1 ad /* Avoid moving the allocation if the size class would not change. */
2819 1.1 ad if (oldsize > arena_maxclass &&
2820 1.1 ad CHUNK_CEILING(size) == CHUNK_CEILING(oldsize)) {
2821 1.1 ad if (opt_junk && size < oldsize) {
2822 1.1 ad memset((void *)((uintptr_t)ptr + size), 0x5a, oldsize
2823 1.1 ad - size);
2824 1.1 ad } else if (opt_zero && size > oldsize) {
2825 1.1 ad memset((void *)((uintptr_t)ptr + oldsize), 0, size
2826 1.1 ad - oldsize);
2827 1.1 ad }
2828 1.1 ad return (ptr);
2829 1.1 ad }
2830 1.1 ad
2831 1.8 yamt if (CHUNK_ADDR2BASE(ptr) == ptr
2832 1.8 yamt #ifdef USE_BRK
2833 1.8 yamt && ((uintptr_t)ptr < (uintptr_t)brk_base
2834 1.8 yamt || (uintptr_t)ptr >= (uintptr_t)brk_max)
2835 1.8 yamt #endif
2836 1.8 yamt ) {
2837 1.8 yamt chunk_node_t *node, key;
2838 1.8 yamt void *newptr;
2839 1.8 yamt size_t oldcsize;
2840 1.8 yamt size_t newcsize;
2841 1.8 yamt
2842 1.8 yamt newcsize = CHUNK_CEILING(size);
2843 1.8 yamt oldcsize = CHUNK_CEILING(oldsize);
2844 1.8 yamt assert(oldcsize != newcsize);
2845 1.8 yamt if (newcsize == 0) {
2846 1.8 yamt /* size_t wrap-around */
2847 1.8 yamt return (NULL);
2848 1.8 yamt }
2849 1.8 yamt newptr = mremap(ptr, oldcsize, NULL, newcsize,
2850 1.8 yamt MAP_ALIGNED(chunksize_2pow));
2851 1.8 yamt if (newptr != MAP_FAILED) {
2852 1.8 yamt assert(CHUNK_ADDR2BASE(newptr) == newptr);
2853 1.8 yamt
2854 1.8 yamt /* update tree */
2855 1.8 yamt malloc_mutex_lock(&chunks_mtx);
2856 1.8 yamt key.chunk = __DECONST(void *, ptr);
2857 1.8 yamt /* LINTED */
2858 1.8 yamt node = RB_FIND(chunk_tree_s, &huge, &key);
2859 1.8 yamt assert(node != NULL);
2860 1.8 yamt assert(node->chunk == ptr);
2861 1.8 yamt assert(node->size == oldcsize);
2862 1.8 yamt node->size = newcsize;
2863 1.8 yamt if (ptr != newptr) {
2864 1.8 yamt RB_REMOVE(chunk_tree_s, &huge, node);
2865 1.8 yamt node->chunk = newptr;
2866 1.8 yamt RB_INSERT(chunk_tree_s, &huge, node);
2867 1.8 yamt }
2868 1.8 yamt #ifdef MALLOC_STATS
2869 1.8 yamt huge_nralloc++;
2870 1.8 yamt huge_allocated += newcsize - oldcsize;
2871 1.8 yamt if (newcsize > oldcsize) {
2872 1.8 yamt stats_chunks.curchunks +=
2873 1.8 yamt (newcsize - oldcsize) / chunksize;
2874 1.8 yamt if (stats_chunks.curchunks >
2875 1.8 yamt stats_chunks.highchunks)
2876 1.8 yamt stats_chunks.highchunks =
2877 1.8 yamt stats_chunks.curchunks;
2878 1.8 yamt } else {
2879 1.8 yamt stats_chunks.curchunks -=
2880 1.8 yamt (oldcsize - newcsize) / chunksize;
2881 1.8 yamt }
2882 1.8 yamt #endif
2883 1.8 yamt malloc_mutex_unlock(&chunks_mtx);
2884 1.8 yamt
2885 1.8 yamt if (opt_junk && size < oldsize) {
2886 1.8 yamt memset((void *)((uintptr_t)newptr + size), 0x5a,
2887 1.8 yamt newcsize - size);
2888 1.8 yamt } else if (opt_zero && size > oldsize) {
2889 1.8 yamt memset((void *)((uintptr_t)newptr + oldsize), 0,
2890 1.8 yamt size - oldsize);
2891 1.8 yamt }
2892 1.8 yamt return (newptr);
2893 1.8 yamt }
2894 1.8 yamt }
2895 1.8 yamt
2896 1.1 ad /*
2897 1.1 ad * If we get here, then size and oldsize are different enough that we
2898 1.1 ad * need to use a different size class. In that case, fall back to
2899 1.1 ad * allocating new space and copying.
2900 1.1 ad */
2901 1.1 ad ret = huge_malloc(size);
2902 1.1 ad if (ret == NULL)
2903 1.1 ad return (NULL);
2904 1.1 ad
2905 1.1 ad if (CHUNK_ADDR2BASE(ptr) == ptr) {
2906 1.1 ad /* The old allocation is a chunk. */
2907 1.1 ad if (size < oldsize)
2908 1.1 ad memcpy(ret, ptr, size);
2909 1.1 ad else
2910 1.1 ad memcpy(ret, ptr, oldsize);
2911 1.1 ad } else {
2912 1.1 ad /* The old allocation is a region. */
2913 1.1 ad assert(oldsize < size);
2914 1.1 ad memcpy(ret, ptr, oldsize);
2915 1.1 ad }
2916 1.1 ad idalloc(ptr);
2917 1.1 ad return (ret);
2918 1.1 ad }
2919 1.1 ad
2920 1.1 ad static void
2921 1.1 ad huge_dalloc(void *ptr)
2922 1.1 ad {
2923 1.1 ad chunk_node_t key;
2924 1.1 ad chunk_node_t *node;
2925 1.1 ad
2926 1.1 ad malloc_mutex_lock(&chunks_mtx);
2927 1.1 ad
2928 1.1 ad /* Extract from tree of huge allocations. */
2929 1.1 ad key.chunk = ptr;
2930 1.2 ad /* LINTED */
2931 1.1 ad node = RB_FIND(chunk_tree_s, &huge, &key);
2932 1.1 ad assert(node != NULL);
2933 1.1 ad assert(node->chunk == ptr);
2934 1.2 ad /* LINTED */
2935 1.1 ad RB_REMOVE(chunk_tree_s, &huge, node);
2936 1.1 ad
2937 1.1 ad #ifdef MALLOC_STATS
2938 1.1 ad huge_ndalloc++;
2939 1.1 ad huge_allocated -= node->size;
2940 1.1 ad #endif
2941 1.1 ad
2942 1.1 ad malloc_mutex_unlock(&chunks_mtx);
2943 1.1 ad
2944 1.1 ad /* Unmap chunk. */
2945 1.1 ad #ifdef USE_BRK
2946 1.1 ad if (opt_junk)
2947 1.1 ad memset(node->chunk, 0x5a, node->size);
2948 1.1 ad #endif
2949 1.1 ad chunk_dealloc(node->chunk, node->size);
2950 1.1 ad
2951 1.1 ad base_chunk_node_dealloc(node);
2952 1.1 ad }
2953 1.1 ad
2954 1.1 ad static void *
2955 1.1 ad imalloc(size_t size)
2956 1.1 ad {
2957 1.1 ad void *ret;
2958 1.1 ad
2959 1.1 ad assert(size != 0);
2960 1.1 ad
2961 1.1 ad if (size <= arena_maxclass)
2962 1.1 ad ret = arena_malloc(choose_arena(), size);
2963 1.1 ad else
2964 1.1 ad ret = huge_malloc(size);
2965 1.1 ad
2966 1.1 ad return (ret);
2967 1.1 ad }
2968 1.1 ad
2969 1.1 ad static void *
2970 1.1 ad ipalloc(size_t alignment, size_t size)
2971 1.1 ad {
2972 1.1 ad void *ret;
2973 1.1 ad size_t ceil_size;
2974 1.1 ad
2975 1.1 ad /*
2976 1.1 ad * Round size up to the nearest multiple of alignment.
2977 1.1 ad *
2978 1.1 ad * This done, we can take advantage of the fact that for each small
2979 1.1 ad * size class, every object is aligned at the smallest power of two
2980 1.1 ad * that is non-zero in the base two representation of the size. For
2981 1.1 ad * example:
2982 1.1 ad *
2983 1.1 ad * Size | Base 2 | Minimum alignment
2984 1.1 ad * -----+----------+------------------
2985 1.1 ad * 96 | 1100000 | 32
2986 1.1 ad * 144 | 10100000 | 32
2987 1.1 ad * 192 | 11000000 | 64
2988 1.1 ad *
2989 1.1 ad * Depending on runtime settings, it is possible that arena_malloc()
2990 1.1 ad * will further round up to a power of two, but that never causes
2991 1.1 ad * correctness issues.
2992 1.1 ad */
2993 1.1 ad ceil_size = (size + (alignment - 1)) & (-alignment);
2994 1.1 ad /*
2995 1.1 ad * (ceil_size < size) protects against the combination of maximal
2996 1.1 ad * alignment and size greater than maximal alignment.
2997 1.1 ad */
2998 1.1 ad if (ceil_size < size) {
2999 1.1 ad /* size_t overflow. */
3000 1.1 ad return (NULL);
3001 1.1 ad }
3002 1.1 ad
3003 1.1 ad if (ceil_size <= pagesize || (alignment <= pagesize
3004 1.1 ad && ceil_size <= arena_maxclass))
3005 1.1 ad ret = arena_malloc(choose_arena(), ceil_size);
3006 1.1 ad else {
3007 1.1 ad size_t run_size;
3008 1.1 ad
3009 1.1 ad /*
3010 1.1 ad * We can't achieve sub-page alignment, so round up alignment
3011 1.1 ad * permanently; it makes later calculations simpler.
3012 1.1 ad */
3013 1.1 ad alignment = PAGE_CEILING(alignment);
3014 1.1 ad ceil_size = PAGE_CEILING(size);
3015 1.1 ad /*
3016 1.1 ad * (ceil_size < size) protects against very large sizes within
3017 1.1 ad * pagesize of SIZE_T_MAX.
3018 1.1 ad *
3019 1.1 ad * (ceil_size + alignment < ceil_size) protects against the
3020 1.1 ad * combination of maximal alignment and ceil_size large enough
3021 1.1 ad * to cause overflow. This is similar to the first overflow
3022 1.1 ad * check above, but it needs to be repeated due to the new
3023 1.1 ad * ceil_size value, which may now be *equal* to maximal
3024 1.1 ad * alignment, whereas before we only detected overflow if the
3025 1.1 ad * original size was *greater* than maximal alignment.
3026 1.1 ad */
3027 1.1 ad if (ceil_size < size || ceil_size + alignment < ceil_size) {
3028 1.1 ad /* size_t overflow. */
3029 1.1 ad return (NULL);
3030 1.1 ad }
3031 1.1 ad
3032 1.1 ad /*
3033 1.1 ad * Calculate the size of the over-size run that arena_palloc()
3034 1.1 ad * would need to allocate in order to guarantee the alignment.
3035 1.1 ad */
3036 1.1 ad if (ceil_size >= alignment)
3037 1.1 ad run_size = ceil_size + alignment - pagesize;
3038 1.1 ad else {
3039 1.1 ad /*
3040 1.1 ad * It is possible that (alignment << 1) will cause
3041 1.1 ad * overflow, but it doesn't matter because we also
3042 1.1 ad * subtract pagesize, which in the case of overflow
3043 1.1 ad * leaves us with a very large run_size. That causes
3044 1.1 ad * the first conditional below to fail, which means
3045 1.1 ad * that the bogus run_size value never gets used for
3046 1.1 ad * anything important.
3047 1.1 ad */
3048 1.1 ad run_size = (alignment << 1) - pagesize;
3049 1.1 ad }
3050 1.1 ad
3051 1.1 ad if (run_size <= arena_maxclass) {
3052 1.1 ad ret = arena_palloc(choose_arena(), alignment, ceil_size,
3053 1.1 ad run_size);
3054 1.1 ad } else if (alignment <= chunksize)
3055 1.1 ad ret = huge_malloc(ceil_size);
3056 1.1 ad else
3057 1.1 ad ret = huge_palloc(alignment, ceil_size);
3058 1.1 ad }
3059 1.1 ad
3060 1.1 ad assert(((uintptr_t)ret & (alignment - 1)) == 0);
3061 1.1 ad return (ret);
3062 1.1 ad }
3063 1.1 ad
3064 1.1 ad static void *
3065 1.1 ad icalloc(size_t size)
3066 1.1 ad {
3067 1.1 ad void *ret;
3068 1.1 ad
3069 1.1 ad if (size <= arena_maxclass) {
3070 1.1 ad ret = arena_malloc(choose_arena(), size);
3071 1.1 ad if (ret == NULL)
3072 1.1 ad return (NULL);
3073 1.1 ad memset(ret, 0, size);
3074 1.1 ad } else {
3075 1.1 ad /*
3076 1.1 ad * The virtual memory system provides zero-filled pages, so
3077 1.1 ad * there is no need to do so manually, unless opt_junk is
3078 1.1 ad * enabled, in which case huge_malloc() fills huge allocations
3079 1.1 ad * with junk.
3080 1.1 ad */
3081 1.1 ad ret = huge_malloc(size);
3082 1.1 ad if (ret == NULL)
3083 1.1 ad return (NULL);
3084 1.1 ad
3085 1.1 ad if (opt_junk)
3086 1.1 ad memset(ret, 0, size);
3087 1.1 ad #ifdef USE_BRK
3088 1.1 ad else if ((uintptr_t)ret >= (uintptr_t)brk_base
3089 1.1 ad && (uintptr_t)ret < (uintptr_t)brk_max) {
3090 1.1 ad /*
3091 1.1 ad * This may be a re-used brk chunk. Therefore, zero
3092 1.1 ad * the memory.
3093 1.1 ad */
3094 1.1 ad memset(ret, 0, size);
3095 1.1 ad }
3096 1.1 ad #endif
3097 1.1 ad }
3098 1.1 ad
3099 1.1 ad return (ret);
3100 1.1 ad }
3101 1.1 ad
3102 1.1 ad static size_t
3103 1.1 ad isalloc(const void *ptr)
3104 1.1 ad {
3105 1.1 ad size_t ret;
3106 1.1 ad arena_chunk_t *chunk;
3107 1.1 ad
3108 1.1 ad assert(ptr != NULL);
3109 1.1 ad
3110 1.1 ad chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
3111 1.1 ad if (chunk != ptr) {
3112 1.1 ad /* Region. */
3113 1.1 ad assert(chunk->arena->magic == ARENA_MAGIC);
3114 1.1 ad
3115 1.1 ad ret = arena_salloc(ptr);
3116 1.1 ad } else {
3117 1.1 ad chunk_node_t *node, key;
3118 1.1 ad
3119 1.1 ad /* Chunk (huge allocation). */
3120 1.1 ad
3121 1.1 ad malloc_mutex_lock(&chunks_mtx);
3122 1.1 ad
3123 1.1 ad /* Extract from tree of huge allocations. */
3124 1.1 ad key.chunk = __DECONST(void *, ptr);
3125 1.2 ad /* LINTED */
3126 1.1 ad node = RB_FIND(chunk_tree_s, &huge, &key);
3127 1.1 ad assert(node != NULL);
3128 1.1 ad
3129 1.1 ad ret = node->size;
3130 1.1 ad
3131 1.1 ad malloc_mutex_unlock(&chunks_mtx);
3132 1.1 ad }
3133 1.1 ad
3134 1.1 ad return (ret);
3135 1.1 ad }
3136 1.1 ad
3137 1.1 ad static void *
3138 1.1 ad iralloc(void *ptr, size_t size)
3139 1.1 ad {
3140 1.1 ad void *ret;
3141 1.1 ad size_t oldsize;
3142 1.1 ad
3143 1.1 ad assert(ptr != NULL);
3144 1.1 ad assert(size != 0);
3145 1.1 ad
3146 1.1 ad oldsize = isalloc(ptr);
3147 1.1 ad
3148 1.1 ad if (size <= arena_maxclass)
3149 1.1 ad ret = arena_ralloc(ptr, size, oldsize);
3150 1.1 ad else
3151 1.1 ad ret = huge_ralloc(ptr, size, oldsize);
3152 1.1 ad
3153 1.1 ad return (ret);
3154 1.1 ad }
3155 1.1 ad
3156 1.1 ad static void
3157 1.1 ad idalloc(void *ptr)
3158 1.1 ad {
3159 1.1 ad arena_chunk_t *chunk;
3160 1.1 ad
3161 1.1 ad assert(ptr != NULL);
3162 1.1 ad
3163 1.1 ad chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
3164 1.1 ad if (chunk != ptr) {
3165 1.1 ad /* Region. */
3166 1.1 ad arena_dalloc(chunk->arena, chunk, ptr);
3167 1.1 ad } else
3168 1.1 ad huge_dalloc(ptr);
3169 1.1 ad }
3170 1.1 ad
3171 1.1 ad static void
3172 1.1 ad malloc_print_stats(void)
3173 1.1 ad {
3174 1.1 ad
3175 1.1 ad if (opt_print_stats) {
3176 1.1 ad char s[UMAX2S_BUFSIZE];
3177 1.1 ad _malloc_message("___ Begin malloc statistics ___\n", "", "",
3178 1.1 ad "");
3179 1.1 ad _malloc_message("Assertions ",
3180 1.1 ad #ifdef NDEBUG
3181 1.1 ad "disabled",
3182 1.1 ad #else
3183 1.1 ad "enabled",
3184 1.1 ad #endif
3185 1.1 ad "\n", "");
3186 1.1 ad _malloc_message("Boolean MALLOC_OPTIONS: ",
3187 1.1 ad opt_abort ? "A" : "a",
3188 1.1 ad opt_junk ? "J" : "j",
3189 1.1 ad opt_hint ? "H" : "h");
3190 1.1 ad _malloc_message(opt_utrace ? "PU" : "Pu",
3191 1.1 ad opt_sysv ? "V" : "v",
3192 1.1 ad opt_xmalloc ? "X" : "x",
3193 1.1 ad opt_zero ? "Z\n" : "z\n");
3194 1.1 ad
3195 1.1 ad _malloc_message("CPUs: ", umax2s(ncpus, s), "\n", "");
3196 1.1 ad _malloc_message("Max arenas: ", umax2s(narenas, s), "\n", "");
3197 1.1 ad _malloc_message("Pointer size: ", umax2s(sizeof(void *), s),
3198 1.1 ad "\n", "");
3199 1.1 ad _malloc_message("Quantum size: ", umax2s(quantum, s), "\n", "");
3200 1.1 ad _malloc_message("Max small size: ", umax2s(small_max, s), "\n",
3201 1.1 ad "");
3202 1.1 ad
3203 1.1 ad _malloc_message("Chunk size: ", umax2s(chunksize, s), "", "");
3204 1.1 ad _malloc_message(" (2^", umax2s(opt_chunk_2pow, s), ")\n", "");
3205 1.1 ad
3206 1.1 ad #ifdef MALLOC_STATS
3207 1.1 ad {
3208 1.1 ad size_t allocated, mapped;
3209 1.1 ad unsigned i;
3210 1.1 ad arena_t *arena;
3211 1.1 ad
3212 1.1 ad /* Calculate and print allocated/mapped stats. */
3213 1.1 ad
3214 1.1 ad /* arenas. */
3215 1.1 ad for (i = 0, allocated = 0; i < narenas; i++) {
3216 1.1 ad if (arenas[i] != NULL) {
3217 1.1 ad malloc_mutex_lock(&arenas[i]->mtx);
3218 1.1 ad allocated +=
3219 1.1 ad arenas[i]->stats.allocated_small;
3220 1.1 ad allocated +=
3221 1.1 ad arenas[i]->stats.allocated_large;
3222 1.1 ad malloc_mutex_unlock(&arenas[i]->mtx);
3223 1.1 ad }
3224 1.1 ad }
3225 1.1 ad
3226 1.1 ad /* huge/base. */
3227 1.1 ad malloc_mutex_lock(&chunks_mtx);
3228 1.1 ad allocated += huge_allocated;
3229 1.1 ad mapped = stats_chunks.curchunks * chunksize;
3230 1.1 ad malloc_mutex_unlock(&chunks_mtx);
3231 1.1 ad
3232 1.1 ad malloc_mutex_lock(&base_mtx);
3233 1.1 ad mapped += base_mapped;
3234 1.1 ad malloc_mutex_unlock(&base_mtx);
3235 1.1 ad
3236 1.1 ad malloc_printf("Allocated: %zu, mapped: %zu\n",
3237 1.1 ad allocated, mapped);
3238 1.1 ad
3239 1.1 ad /* Print chunk stats. */
3240 1.1 ad {
3241 1.1 ad chunk_stats_t chunks_stats;
3242 1.1 ad
3243 1.1 ad malloc_mutex_lock(&chunks_mtx);
3244 1.1 ad chunks_stats = stats_chunks;
3245 1.1 ad malloc_mutex_unlock(&chunks_mtx);
3246 1.1 ad
3247 1.1 ad malloc_printf("chunks: nchunks "
3248 1.1 ad "highchunks curchunks\n");
3249 1.1 ad malloc_printf(" %13llu%13lu%13lu\n",
3250 1.1 ad chunks_stats.nchunks,
3251 1.1 ad chunks_stats.highchunks,
3252 1.1 ad chunks_stats.curchunks);
3253 1.1 ad }
3254 1.1 ad
3255 1.1 ad /* Print chunk stats. */
3256 1.1 ad malloc_printf(
3257 1.8 yamt "huge: nmalloc ndalloc "
3258 1.8 yamt "nralloc allocated\n");
3259 1.8 yamt malloc_printf(" %12llu %12llu %12llu %12zu\n",
3260 1.8 yamt huge_nmalloc, huge_ndalloc, huge_nralloc,
3261 1.8 yamt huge_allocated);
3262 1.1 ad
3263 1.1 ad /* Print stats for each arena. */
3264 1.1 ad for (i = 0; i < narenas; i++) {
3265 1.1 ad arena = arenas[i];
3266 1.1 ad if (arena != NULL) {
3267 1.1 ad malloc_printf(
3268 1.2 ad "\narenas[%u] @ %p\n", i, arena);
3269 1.1 ad malloc_mutex_lock(&arena->mtx);
3270 1.1 ad stats_print(arena);
3271 1.1 ad malloc_mutex_unlock(&arena->mtx);
3272 1.1 ad }
3273 1.1 ad }
3274 1.1 ad }
3275 1.1 ad #endif /* #ifdef MALLOC_STATS */
3276 1.1 ad _malloc_message("--- End malloc statistics ---\n", "", "", "");
3277 1.1 ad }
3278 1.1 ad }
3279 1.1 ad
3280 1.1 ad /*
3281 1.1 ad * FreeBSD's pthreads implementation calls malloc(3), so the malloc
3282 1.1 ad * implementation has to take pains to avoid infinite recursion during
3283 1.1 ad * initialization.
3284 1.1 ad */
3285 1.1 ad static inline bool
3286 1.1 ad malloc_init(void)
3287 1.1 ad {
3288 1.1 ad
3289 1.1 ad if (malloc_initialized == false)
3290 1.1 ad return (malloc_init_hard());
3291 1.1 ad
3292 1.1 ad return (false);
3293 1.1 ad }
3294 1.1 ad
3295 1.1 ad static bool
3296 1.1 ad malloc_init_hard(void)
3297 1.1 ad {
3298 1.1 ad unsigned i, j;
3299 1.9 christos ssize_t linklen;
3300 1.1 ad char buf[PATH_MAX + 1];
3301 1.2 ad const char *opts = "";
3302 1.1 ad
3303 1.1 ad malloc_mutex_lock(&init_lock);
3304 1.1 ad if (malloc_initialized) {
3305 1.1 ad /*
3306 1.1 ad * Another thread initialized the allocator before this one
3307 1.1 ad * acquired init_lock.
3308 1.1 ad */
3309 1.1 ad malloc_mutex_unlock(&init_lock);
3310 1.1 ad return (false);
3311 1.1 ad }
3312 1.1 ad
3313 1.1 ad /* Get number of CPUs. */
3314 1.1 ad {
3315 1.1 ad int mib[2];
3316 1.1 ad size_t len;
3317 1.1 ad
3318 1.1 ad mib[0] = CTL_HW;
3319 1.1 ad mib[1] = HW_NCPU;
3320 1.1 ad len = sizeof(ncpus);
3321 1.1 ad if (sysctl(mib, 2, &ncpus, &len, (void *) 0, 0) == -1) {
3322 1.1 ad /* Error. */
3323 1.1 ad ncpus = 1;
3324 1.1 ad }
3325 1.1 ad }
3326 1.1 ad
3327 1.1 ad /* Get page size. */
3328 1.1 ad {
3329 1.1 ad long result;
3330 1.1 ad
3331 1.1 ad result = sysconf(_SC_PAGESIZE);
3332 1.1 ad assert(result != -1);
3333 1.1 ad pagesize = (unsigned) result;
3334 1.1 ad
3335 1.1 ad /*
3336 1.1 ad * We assume that pagesize is a power of 2 when calculating
3337 1.1 ad * pagesize_mask and pagesize_2pow.
3338 1.1 ad */
3339 1.1 ad assert(((result - 1) & result) == 0);
3340 1.1 ad pagesize_mask = result - 1;
3341 1.1 ad pagesize_2pow = ffs((int)result) - 1;
3342 1.1 ad }
3343 1.1 ad
3344 1.1 ad for (i = 0; i < 3; i++) {
3345 1.1 ad /* Get runtime configuration. */
3346 1.1 ad switch (i) {
3347 1.1 ad case 0:
3348 1.1 ad if ((linklen = readlink("/etc/malloc.conf", buf,
3349 1.1 ad sizeof(buf) - 1)) != -1) {
3350 1.1 ad /*
3351 1.1 ad * Use the contents of the "/etc/malloc.conf"
3352 1.1 ad * symbolic link's name.
3353 1.1 ad */
3354 1.1 ad buf[linklen] = '\0';
3355 1.1 ad opts = buf;
3356 1.1 ad } else {
3357 1.1 ad /* No configuration specified. */
3358 1.1 ad buf[0] = '\0';
3359 1.1 ad opts = buf;
3360 1.1 ad }
3361 1.1 ad break;
3362 1.1 ad case 1:
3363 1.1 ad if (issetugid() == 0 && (opts =
3364 1.1 ad getenv("MALLOC_OPTIONS")) != NULL) {
3365 1.1 ad /*
3366 1.1 ad * Do nothing; opts is already initialized to
3367 1.1 ad * the value of the MALLOC_OPTIONS environment
3368 1.1 ad * variable.
3369 1.1 ad */
3370 1.1 ad } else {
3371 1.1 ad /* No configuration specified. */
3372 1.1 ad buf[0] = '\0';
3373 1.1 ad opts = buf;
3374 1.1 ad }
3375 1.1 ad break;
3376 1.1 ad case 2:
3377 1.1 ad if (_malloc_options != NULL) {
3378 1.1 ad /*
3379 1.1 ad * Use options that were compiled into the program.
3380 1.1 ad */
3381 1.1 ad opts = _malloc_options;
3382 1.1 ad } else {
3383 1.1 ad /* No configuration specified. */
3384 1.1 ad buf[0] = '\0';
3385 1.1 ad opts = buf;
3386 1.1 ad }
3387 1.1 ad break;
3388 1.1 ad default:
3389 1.1 ad /* NOTREACHED */
3390 1.7 yamt /* LINTED */
3391 1.1 ad assert(false);
3392 1.1 ad }
3393 1.1 ad
3394 1.1 ad for (j = 0; opts[j] != '\0'; j++) {
3395 1.1 ad switch (opts[j]) {
3396 1.1 ad case 'a':
3397 1.1 ad opt_abort = false;
3398 1.1 ad break;
3399 1.1 ad case 'A':
3400 1.1 ad opt_abort = true;
3401 1.1 ad break;
3402 1.1 ad case 'h':
3403 1.1 ad opt_hint = false;
3404 1.1 ad break;
3405 1.1 ad case 'H':
3406 1.1 ad opt_hint = true;
3407 1.1 ad break;
3408 1.1 ad case 'j':
3409 1.1 ad opt_junk = false;
3410 1.1 ad break;
3411 1.1 ad case 'J':
3412 1.1 ad opt_junk = true;
3413 1.1 ad break;
3414 1.1 ad case 'k':
3415 1.1 ad /*
3416 1.1 ad * Chunks always require at least one header
3417 1.1 ad * page, so chunks can never be smaller than
3418 1.1 ad * two pages.
3419 1.1 ad */
3420 1.1 ad if (opt_chunk_2pow > pagesize_2pow + 1)
3421 1.1 ad opt_chunk_2pow--;
3422 1.1 ad break;
3423 1.1 ad case 'K':
3424 1.1 ad /*
3425 1.1 ad * There must be fewer pages in a chunk than
3426 1.1 ad * can be recorded by the pos field of
3427 1.1 ad * arena_chunk_map_t, in order to make POS_FREE
3428 1.1 ad * special.
3429 1.1 ad */
3430 1.1 ad if (opt_chunk_2pow - pagesize_2pow
3431 1.1 ad < (sizeof(uint32_t) << 3) - 1)
3432 1.1 ad opt_chunk_2pow++;
3433 1.1 ad break;
3434 1.1 ad case 'n':
3435 1.1 ad opt_narenas_lshift--;
3436 1.1 ad break;
3437 1.1 ad case 'N':
3438 1.1 ad opt_narenas_lshift++;
3439 1.1 ad break;
3440 1.1 ad case 'p':
3441 1.1 ad opt_print_stats = false;
3442 1.1 ad break;
3443 1.1 ad case 'P':
3444 1.1 ad opt_print_stats = true;
3445 1.1 ad break;
3446 1.1 ad case 'q':
3447 1.1 ad if (opt_quantum_2pow > QUANTUM_2POW_MIN)
3448 1.1 ad opt_quantum_2pow--;
3449 1.1 ad break;
3450 1.1 ad case 'Q':
3451 1.1 ad if (opt_quantum_2pow < pagesize_2pow - 1)
3452 1.1 ad opt_quantum_2pow++;
3453 1.1 ad break;
3454 1.1 ad case 's':
3455 1.1 ad if (opt_small_max_2pow > QUANTUM_2POW_MIN)
3456 1.1 ad opt_small_max_2pow--;
3457 1.1 ad break;
3458 1.1 ad case 'S':
3459 1.1 ad if (opt_small_max_2pow < pagesize_2pow - 1)
3460 1.1 ad opt_small_max_2pow++;
3461 1.1 ad break;
3462 1.1 ad case 'u':
3463 1.1 ad opt_utrace = false;
3464 1.1 ad break;
3465 1.1 ad case 'U':
3466 1.1 ad opt_utrace = true;
3467 1.1 ad break;
3468 1.1 ad case 'v':
3469 1.1 ad opt_sysv = false;
3470 1.1 ad break;
3471 1.1 ad case 'V':
3472 1.1 ad opt_sysv = true;
3473 1.1 ad break;
3474 1.1 ad case 'x':
3475 1.1 ad opt_xmalloc = false;
3476 1.1 ad break;
3477 1.1 ad case 'X':
3478 1.1 ad opt_xmalloc = true;
3479 1.1 ad break;
3480 1.1 ad case 'z':
3481 1.1 ad opt_zero = false;
3482 1.1 ad break;
3483 1.1 ad case 'Z':
3484 1.1 ad opt_zero = true;
3485 1.1 ad break;
3486 1.1 ad default: {
3487 1.1 ad char cbuf[2];
3488 1.1 ad
3489 1.1 ad cbuf[0] = opts[j];
3490 1.1 ad cbuf[1] = '\0';
3491 1.16 christos _malloc_message(getprogname(),
3492 1.1 ad ": (malloc) Unsupported character in "
3493 1.1 ad "malloc options: '", cbuf, "'\n");
3494 1.1 ad }
3495 1.1 ad }
3496 1.1 ad }
3497 1.1 ad }
3498 1.1 ad
3499 1.1 ad /* Take care to call atexit() only once. */
3500 1.1 ad if (opt_print_stats) {
3501 1.1 ad /* Print statistics at exit. */
3502 1.1 ad atexit(malloc_print_stats);
3503 1.1 ad }
3504 1.1 ad
3505 1.1 ad /* Set variables according to the value of opt_small_max_2pow. */
3506 1.1 ad if (opt_small_max_2pow < opt_quantum_2pow)
3507 1.1 ad opt_small_max_2pow = opt_quantum_2pow;
3508 1.1 ad small_max = (1 << opt_small_max_2pow);
3509 1.1 ad
3510 1.1 ad /* Set bin-related variables. */
3511 1.1 ad bin_maxclass = (pagesize >> 1);
3512 1.1 ad assert(opt_quantum_2pow >= TINY_MIN_2POW);
3513 1.9 christos ntbins = (unsigned)(opt_quantum_2pow - TINY_MIN_2POW);
3514 1.1 ad assert(ntbins <= opt_quantum_2pow);
3515 1.9 christos nqbins = (unsigned)(small_max >> opt_quantum_2pow);
3516 1.9 christos nsbins = (unsigned)(pagesize_2pow - opt_small_max_2pow - 1);
3517 1.1 ad
3518 1.1 ad /* Set variables according to the value of opt_quantum_2pow. */
3519 1.1 ad quantum = (1 << opt_quantum_2pow);
3520 1.1 ad quantum_mask = quantum - 1;
3521 1.1 ad if (ntbins > 0)
3522 1.1 ad small_min = (quantum >> 1) + 1;
3523 1.1 ad else
3524 1.1 ad small_min = 1;
3525 1.1 ad assert(small_min <= quantum);
3526 1.1 ad
3527 1.1 ad /* Set variables according to the value of opt_chunk_2pow. */
3528 1.1 ad chunksize = (1LU << opt_chunk_2pow);
3529 1.1 ad chunksize_mask = chunksize - 1;
3530 1.9 christos chunksize_2pow = (unsigned)opt_chunk_2pow;
3531 1.9 christos chunk_npages = (unsigned)(chunksize >> pagesize_2pow);
3532 1.1 ad {
3533 1.1 ad unsigned header_size;
3534 1.1 ad
3535 1.9 christos header_size = (unsigned)(sizeof(arena_chunk_t) +
3536 1.9 christos (sizeof(arena_chunk_map_t) * (chunk_npages - 1)));
3537 1.1 ad arena_chunk_header_npages = (header_size >> pagesize_2pow);
3538 1.1 ad if ((header_size & pagesize_mask) != 0)
3539 1.1 ad arena_chunk_header_npages++;
3540 1.1 ad }
3541 1.1 ad arena_maxclass = chunksize - (arena_chunk_header_npages <<
3542 1.1 ad pagesize_2pow);
3543 1.1 ad
3544 1.1 ad UTRACE(0, 0, 0);
3545 1.1 ad
3546 1.1 ad #ifdef MALLOC_STATS
3547 1.1 ad memset(&stats_chunks, 0, sizeof(chunk_stats_t));
3548 1.1 ad #endif
3549 1.1 ad
3550 1.1 ad /* Various sanity checks that regard configuration. */
3551 1.1 ad assert(quantum >= sizeof(void *));
3552 1.1 ad assert(quantum <= pagesize);
3553 1.1 ad assert(chunksize >= pagesize);
3554 1.1 ad assert(quantum * 4 <= chunksize);
3555 1.1 ad
3556 1.1 ad /* Initialize chunks data. */
3557 1.1 ad malloc_mutex_init(&chunks_mtx);
3558 1.1 ad RB_INIT(&huge);
3559 1.1 ad #ifdef USE_BRK
3560 1.1 ad malloc_mutex_init(&brk_mtx);
3561 1.1 ad brk_base = sbrk(0);
3562 1.1 ad brk_prev = brk_base;
3563 1.1 ad brk_max = brk_base;
3564 1.1 ad #endif
3565 1.1 ad #ifdef MALLOC_STATS
3566 1.1 ad huge_nmalloc = 0;
3567 1.1 ad huge_ndalloc = 0;
3568 1.8 yamt huge_nralloc = 0;
3569 1.1 ad huge_allocated = 0;
3570 1.1 ad #endif
3571 1.1 ad RB_INIT(&old_chunks);
3572 1.1 ad
3573 1.1 ad /* Initialize base allocation data structures. */
3574 1.1 ad #ifdef MALLOC_STATS
3575 1.1 ad base_mapped = 0;
3576 1.1 ad #endif
3577 1.1 ad #ifdef USE_BRK
3578 1.1 ad /*
3579 1.1 ad * Allocate a base chunk here, since it doesn't actually have to be
3580 1.1 ad * chunk-aligned. Doing this before allocating any other chunks allows
3581 1.1 ad * the use of space that would otherwise be wasted.
3582 1.1 ad */
3583 1.1 ad base_pages_alloc(0);
3584 1.1 ad #endif
3585 1.1 ad base_chunk_nodes = NULL;
3586 1.1 ad malloc_mutex_init(&base_mtx);
3587 1.1 ad
3588 1.1 ad if (ncpus > 1) {
3589 1.1 ad /*
3590 1.1 ad * For SMP systems, create four times as many arenas as there
3591 1.1 ad * are CPUs by default.
3592 1.1 ad */
3593 1.1 ad opt_narenas_lshift += 2;
3594 1.1 ad }
3595 1.1 ad
3596 1.2 ad #ifdef NO_TLS
3597 1.2 ad /* Initialize arena key. */
3598 1.2 ad (void)thr_keycreate(&arenas_map_key, NULL);
3599 1.2 ad #endif
3600 1.2 ad
3601 1.1 ad /* Determine how many arenas to use. */
3602 1.1 ad narenas = ncpus;
3603 1.1 ad if (opt_narenas_lshift > 0) {
3604 1.1 ad if ((narenas << opt_narenas_lshift) > narenas)
3605 1.1 ad narenas <<= opt_narenas_lshift;
3606 1.1 ad /*
3607 1.1 ad * Make sure not to exceed the limits of what base_malloc()
3608 1.1 ad * can handle.
3609 1.1 ad */
3610 1.1 ad if (narenas * sizeof(arena_t *) > chunksize)
3611 1.9 christos narenas = (unsigned)(chunksize / sizeof(arena_t *));
3612 1.1 ad } else if (opt_narenas_lshift < 0) {
3613 1.1 ad if ((narenas << opt_narenas_lshift) < narenas)
3614 1.1 ad narenas <<= opt_narenas_lshift;
3615 1.15 ad /* Make sure there is at least one arena. */
3616 1.15 ad if (narenas == 0)
3617 1.15 ad narenas = 1;
3618 1.1 ad }
3619 1.1 ad
3620 1.1 ad next_arena = 0;
3621 1.1 ad
3622 1.1 ad /* Allocate and initialize arenas. */
3623 1.1 ad arenas = (arena_t **)base_alloc(sizeof(arena_t *) * narenas);
3624 1.1 ad if (arenas == NULL) {
3625 1.1 ad malloc_mutex_unlock(&init_lock);
3626 1.1 ad return (true);
3627 1.1 ad }
3628 1.1 ad /*
3629 1.1 ad * Zero the array. In practice, this should always be pre-zeroed,
3630 1.1 ad * since it was just mmap()ed, but let's be sure.
3631 1.1 ad */
3632 1.1 ad memset(arenas, 0, sizeof(arena_t *) * narenas);
3633 1.1 ad
3634 1.1 ad /*
3635 1.1 ad * Initialize one arena here. The rest are lazily created in
3636 1.1 ad * arena_choose_hard().
3637 1.1 ad */
3638 1.1 ad arenas_extend(0);
3639 1.1 ad if (arenas[0] == NULL) {
3640 1.1 ad malloc_mutex_unlock(&init_lock);
3641 1.1 ad return (true);
3642 1.1 ad }
3643 1.1 ad
3644 1.1 ad malloc_mutex_init(&arenas_mtx);
3645 1.1 ad
3646 1.1 ad malloc_initialized = true;
3647 1.1 ad malloc_mutex_unlock(&init_lock);
3648 1.1 ad return (false);
3649 1.1 ad }
3650 1.1 ad
3651 1.1 ad /*
3652 1.1 ad * End general internal functions.
3653 1.1 ad */
3654 1.1 ad /******************************************************************************/
3655 1.1 ad /*
3656 1.1 ad * Begin malloc(3)-compatible functions.
3657 1.1 ad */
3658 1.1 ad
3659 1.1 ad void *
3660 1.1 ad malloc(size_t size)
3661 1.1 ad {
3662 1.1 ad void *ret;
3663 1.1 ad
3664 1.1 ad if (malloc_init()) {
3665 1.1 ad ret = NULL;
3666 1.1 ad goto RETURN;
3667 1.1 ad }
3668 1.1 ad
3669 1.1 ad if (size == 0) {
3670 1.1 ad if (opt_sysv == false)
3671 1.1 ad size = 1;
3672 1.1 ad else {
3673 1.1 ad ret = NULL;
3674 1.1 ad goto RETURN;
3675 1.1 ad }
3676 1.1 ad }
3677 1.1 ad
3678 1.1 ad ret = imalloc(size);
3679 1.1 ad
3680 1.1 ad RETURN:
3681 1.1 ad if (ret == NULL) {
3682 1.1 ad if (opt_xmalloc) {
3683 1.16 christos _malloc_message(getprogname(),
3684 1.1 ad ": (malloc) Error in malloc(): out of memory\n", "",
3685 1.1 ad "");
3686 1.1 ad abort();
3687 1.1 ad }
3688 1.1 ad errno = ENOMEM;
3689 1.1 ad }
3690 1.1 ad
3691 1.1 ad UTRACE(0, size, ret);
3692 1.1 ad return (ret);
3693 1.1 ad }
3694 1.1 ad
3695 1.1 ad int
3696 1.1 ad posix_memalign(void **memptr, size_t alignment, size_t size)
3697 1.1 ad {
3698 1.1 ad int ret;
3699 1.1 ad void *result;
3700 1.1 ad
3701 1.1 ad if (malloc_init())
3702 1.1 ad result = NULL;
3703 1.1 ad else {
3704 1.1 ad /* Make sure that alignment is a large enough power of 2. */
3705 1.1 ad if (((alignment - 1) & alignment) != 0
3706 1.1 ad || alignment < sizeof(void *)) {
3707 1.1 ad if (opt_xmalloc) {
3708 1.16 christos _malloc_message(getprogname(),
3709 1.1 ad ": (malloc) Error in posix_memalign(): "
3710 1.1 ad "invalid alignment\n", "", "");
3711 1.1 ad abort();
3712 1.1 ad }
3713 1.1 ad result = NULL;
3714 1.1 ad ret = EINVAL;
3715 1.1 ad goto RETURN;
3716 1.1 ad }
3717 1.1 ad
3718 1.1 ad result = ipalloc(alignment, size);
3719 1.1 ad }
3720 1.1 ad
3721 1.1 ad if (result == NULL) {
3722 1.1 ad if (opt_xmalloc) {
3723 1.16 christos _malloc_message(getprogname(),
3724 1.1 ad ": (malloc) Error in posix_memalign(): out of memory\n",
3725 1.1 ad "", "");
3726 1.1 ad abort();
3727 1.1 ad }
3728 1.1 ad ret = ENOMEM;
3729 1.1 ad goto RETURN;
3730 1.1 ad }
3731 1.1 ad
3732 1.1 ad *memptr = result;
3733 1.1 ad ret = 0;
3734 1.1 ad
3735 1.1 ad RETURN:
3736 1.1 ad UTRACE(0, size, result);
3737 1.1 ad return (ret);
3738 1.1 ad }
3739 1.1 ad
3740 1.1 ad void *
3741 1.1 ad calloc(size_t num, size_t size)
3742 1.1 ad {
3743 1.1 ad void *ret;
3744 1.1 ad size_t num_size;
3745 1.1 ad
3746 1.1 ad if (malloc_init()) {
3747 1.1 ad num_size = 0;
3748 1.1 ad ret = NULL;
3749 1.1 ad goto RETURN;
3750 1.1 ad }
3751 1.1 ad
3752 1.1 ad num_size = num * size;
3753 1.1 ad if (num_size == 0) {
3754 1.1 ad if ((opt_sysv == false) && ((num == 0) || (size == 0)))
3755 1.1 ad num_size = 1;
3756 1.1 ad else {
3757 1.1 ad ret = NULL;
3758 1.1 ad goto RETURN;
3759 1.1 ad }
3760 1.1 ad /*
3761 1.1 ad * Try to avoid division here. We know that it isn't possible to
3762 1.1 ad * overflow during multiplication if neither operand uses any of the
3763 1.1 ad * most significant half of the bits in a size_t.
3764 1.1 ad */
3765 1.2 ad } else if ((unsigned long long)((num | size) &
3766 1.2 ad ((unsigned long long)SIZE_T_MAX << (sizeof(size_t) << 2))) &&
3767 1.2 ad (num_size / size != num)) {
3768 1.1 ad /* size_t overflow. */
3769 1.1 ad ret = NULL;
3770 1.1 ad goto RETURN;
3771 1.1 ad }
3772 1.1 ad
3773 1.1 ad ret = icalloc(num_size);
3774 1.1 ad
3775 1.1 ad RETURN:
3776 1.1 ad if (ret == NULL) {
3777 1.1 ad if (opt_xmalloc) {
3778 1.16 christos _malloc_message(getprogname(),
3779 1.1 ad ": (malloc) Error in calloc(): out of memory\n", "",
3780 1.1 ad "");
3781 1.1 ad abort();
3782 1.1 ad }
3783 1.1 ad errno = ENOMEM;
3784 1.1 ad }
3785 1.1 ad
3786 1.1 ad UTRACE(0, num_size, ret);
3787 1.1 ad return (ret);
3788 1.1 ad }
3789 1.1 ad
3790 1.1 ad void *
3791 1.1 ad realloc(void *ptr, size_t size)
3792 1.1 ad {
3793 1.1 ad void *ret;
3794 1.1 ad
3795 1.1 ad if (size == 0) {
3796 1.1 ad if (opt_sysv == false)
3797 1.1 ad size = 1;
3798 1.1 ad else {
3799 1.1 ad if (ptr != NULL)
3800 1.1 ad idalloc(ptr);
3801 1.1 ad ret = NULL;
3802 1.1 ad goto RETURN;
3803 1.1 ad }
3804 1.1 ad }
3805 1.1 ad
3806 1.1 ad if (ptr != NULL) {
3807 1.1 ad assert(malloc_initialized);
3808 1.1 ad
3809 1.1 ad ret = iralloc(ptr, size);
3810 1.1 ad
3811 1.1 ad if (ret == NULL) {
3812 1.1 ad if (opt_xmalloc) {
3813 1.16 christos _malloc_message(getprogname(),
3814 1.1 ad ": (malloc) Error in realloc(): out of "
3815 1.1 ad "memory\n", "", "");
3816 1.1 ad abort();
3817 1.1 ad }
3818 1.1 ad errno = ENOMEM;
3819 1.1 ad }
3820 1.1 ad } else {
3821 1.1 ad if (malloc_init())
3822 1.1 ad ret = NULL;
3823 1.1 ad else
3824 1.1 ad ret = imalloc(size);
3825 1.1 ad
3826 1.1 ad if (ret == NULL) {
3827 1.1 ad if (opt_xmalloc) {
3828 1.16 christos _malloc_message(getprogname(),
3829 1.1 ad ": (malloc) Error in realloc(): out of "
3830 1.1 ad "memory\n", "", "");
3831 1.1 ad abort();
3832 1.1 ad }
3833 1.1 ad errno = ENOMEM;
3834 1.1 ad }
3835 1.1 ad }
3836 1.1 ad
3837 1.1 ad RETURN:
3838 1.1 ad UTRACE(ptr, size, ret);
3839 1.1 ad return (ret);
3840 1.1 ad }
3841 1.1 ad
3842 1.1 ad void
3843 1.1 ad free(void *ptr)
3844 1.1 ad {
3845 1.1 ad
3846 1.1 ad UTRACE(ptr, 0, 0);
3847 1.1 ad if (ptr != NULL) {
3848 1.1 ad assert(malloc_initialized);
3849 1.1 ad
3850 1.1 ad idalloc(ptr);
3851 1.1 ad }
3852 1.1 ad }
3853 1.1 ad
3854 1.1 ad /*
3855 1.1 ad * End malloc(3)-compatible functions.
3856 1.1 ad */
3857 1.1 ad /******************************************************************************/
3858 1.1 ad /*
3859 1.1 ad * Begin non-standard functions.
3860 1.1 ad */
3861 1.2 ad #ifndef __NetBSD__
3862 1.1 ad size_t
3863 1.1 ad malloc_usable_size(const void *ptr)
3864 1.1 ad {
3865 1.1 ad
3866 1.1 ad assert(ptr != NULL);
3867 1.1 ad
3868 1.1 ad return (isalloc(ptr));
3869 1.1 ad }
3870 1.2 ad #endif
3871 1.1 ad
3872 1.1 ad /*
3873 1.1 ad * End non-standard functions.
3874 1.1 ad */
3875 1.1 ad /******************************************************************************/
3876 1.1 ad /*
3877 1.1 ad * Begin library-private functions, used by threading libraries for protection
3878 1.1 ad * of malloc during fork(). These functions are only called if the program is
3879 1.1 ad * running in threaded mode, so there is no need to check whether the program
3880 1.1 ad * is threaded here.
3881 1.1 ad */
3882 1.1 ad
3883 1.1 ad void
3884 1.1 ad _malloc_prefork(void)
3885 1.1 ad {
3886 1.1 ad unsigned i;
3887 1.1 ad
3888 1.1 ad /* Acquire all mutexes in a safe order. */
3889 1.1 ad
3890 1.1 ad malloc_mutex_lock(&arenas_mtx);
3891 1.1 ad for (i = 0; i < narenas; i++) {
3892 1.1 ad if (arenas[i] != NULL)
3893 1.1 ad malloc_mutex_lock(&arenas[i]->mtx);
3894 1.1 ad }
3895 1.1 ad malloc_mutex_unlock(&arenas_mtx);
3896 1.1 ad
3897 1.1 ad malloc_mutex_lock(&base_mtx);
3898 1.1 ad
3899 1.1 ad malloc_mutex_lock(&chunks_mtx);
3900 1.1 ad }
3901 1.1 ad
3902 1.1 ad void
3903 1.1 ad _malloc_postfork(void)
3904 1.1 ad {
3905 1.1 ad unsigned i;
3906 1.1 ad
3907 1.1 ad /* Release all mutexes, now that fork() has completed. */
3908 1.1 ad
3909 1.1 ad malloc_mutex_unlock(&chunks_mtx);
3910 1.1 ad
3911 1.1 ad malloc_mutex_unlock(&base_mtx);
3912 1.1 ad
3913 1.1 ad malloc_mutex_lock(&arenas_mtx);
3914 1.1 ad for (i = 0; i < narenas; i++) {
3915 1.1 ad if (arenas[i] != NULL)
3916 1.1 ad malloc_mutex_unlock(&arenas[i]->mtx);
3917 1.1 ad }
3918 1.1 ad malloc_mutex_unlock(&arenas_mtx);
3919 1.1 ad }
3920 1.1 ad
3921 1.1 ad /*
3922 1.1 ad * End library-private functions.
3923 1.1 ad */
3924 1.1 ad /******************************************************************************/
3925