Home | History | Annotate | Line # | Download | only in stdlib
jemalloc.c revision 1.21
      1  1.21     enami /*	$NetBSD: jemalloc.c,v 1.21 2010/03/04 22:48:31 enami Exp $	*/
      2   1.2        ad 
      3   1.1        ad /*-
      4   1.1        ad  * Copyright (C) 2006,2007 Jason Evans <jasone (at) FreeBSD.org>.
      5   1.1        ad  * All rights reserved.
      6   1.1        ad  *
      7   1.1        ad  * Redistribution and use in source and binary forms, with or without
      8   1.1        ad  * modification, are permitted provided that the following conditions
      9   1.1        ad  * are met:
     10   1.1        ad  * 1. Redistributions of source code must retain the above copyright
     11   1.1        ad  *    notice(s), this list of conditions and the following disclaimer as
     12   1.1        ad  *    the first lines of this file unmodified other than the possible
     13   1.1        ad  *    addition of one or more copyright notices.
     14   1.1        ad  * 2. Redistributions in binary form must reproduce the above copyright
     15   1.1        ad  *    notice(s), this list of conditions and the following disclaimer in
     16   1.1        ad  *    the documentation and/or other materials provided with the
     17   1.1        ad  *    distribution.
     18   1.1        ad  *
     19   1.1        ad  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY
     20   1.1        ad  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21   1.1        ad  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22   1.1        ad  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE
     23   1.1        ad  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24   1.1        ad  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25   1.1        ad  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
     26   1.1        ad  * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
     27   1.1        ad  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
     28   1.1        ad  * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
     29   1.1        ad  * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     30   1.1        ad  *
     31   1.1        ad  *******************************************************************************
     32   1.1        ad  *
     33   1.1        ad  * This allocator implementation is designed to provide scalable performance
     34   1.1        ad  * for multi-threaded programs on multi-processor systems.  The following
     35   1.1        ad  * features are included for this purpose:
     36   1.1        ad  *
     37   1.1        ad  *   + Multiple arenas are used if there are multiple CPUs, which reduces lock
     38   1.1        ad  *     contention and cache sloshing.
     39   1.1        ad  *
     40   1.1        ad  *   + Cache line sharing between arenas is avoided for internal data
     41   1.1        ad  *     structures.
     42   1.1        ad  *
     43   1.1        ad  *   + Memory is managed in chunks and runs (chunks can be split into runs),
     44   1.1        ad  *     rather than as individual pages.  This provides a constant-time
     45   1.1        ad  *     mechanism for associating allocations with particular arenas.
     46   1.1        ad  *
     47   1.1        ad  * Allocation requests are rounded up to the nearest size class, and no record
     48   1.1        ad  * of the original request size is maintained.  Allocations are broken into
     49   1.1        ad  * categories according to size class.  Assuming runtime defaults, 4 kB pages
     50   1.1        ad  * and a 16 byte quantum, the size classes in each category are as follows:
     51   1.1        ad  *
     52   1.1        ad  *   |=====================================|
     53   1.1        ad  *   | Category | Subcategory    |    Size |
     54   1.1        ad  *   |=====================================|
     55   1.1        ad  *   | Small    | Tiny           |       2 |
     56   1.1        ad  *   |          |                |       4 |
     57   1.1        ad  *   |          |                |       8 |
     58   1.1        ad  *   |          |----------------+---------|
     59   1.1        ad  *   |          | Quantum-spaced |      16 |
     60   1.1        ad  *   |          |                |      32 |
     61   1.1        ad  *   |          |                |      48 |
     62   1.1        ad  *   |          |                |     ... |
     63   1.1        ad  *   |          |                |     480 |
     64   1.1        ad  *   |          |                |     496 |
     65   1.1        ad  *   |          |                |     512 |
     66   1.1        ad  *   |          |----------------+---------|
     67   1.1        ad  *   |          | Sub-page       |    1 kB |
     68   1.1        ad  *   |          |                |    2 kB |
     69   1.1        ad  *   |=====================================|
     70   1.1        ad  *   | Large                     |    4 kB |
     71   1.1        ad  *   |                           |    8 kB |
     72   1.1        ad  *   |                           |   12 kB |
     73   1.1        ad  *   |                           |     ... |
     74   1.1        ad  *   |                           | 1012 kB |
     75   1.1        ad  *   |                           | 1016 kB |
     76   1.1        ad  *   |                           | 1020 kB |
     77   1.1        ad  *   |=====================================|
     78   1.1        ad  *   | Huge                      |    1 MB |
     79   1.1        ad  *   |                           |    2 MB |
     80   1.1        ad  *   |                           |    3 MB |
     81   1.1        ad  *   |                           |     ... |
     82   1.1        ad  *   |=====================================|
     83   1.1        ad  *
     84   1.1        ad  * A different mechanism is used for each category:
     85   1.1        ad  *
     86   1.1        ad  *   Small : Each size class is segregated into its own set of runs.  Each run
     87   1.1        ad  *           maintains a bitmap of which regions are free/allocated.
     88   1.1        ad  *
     89   1.1        ad  *   Large : Each allocation is backed by a dedicated run.  Metadata are stored
     90   1.1        ad  *           in the associated arena chunk header maps.
     91   1.1        ad  *
     92   1.1        ad  *   Huge : Each allocation is backed by a dedicated contiguous set of chunks.
     93   1.1        ad  *          Metadata are stored in a separate red-black tree.
     94   1.1        ad  *
     95   1.1        ad  *******************************************************************************
     96   1.1        ad  */
     97   1.1        ad 
     98   1.2        ad /* LINTLIBRARY */
     99   1.2        ad 
    100   1.2        ad #ifdef __NetBSD__
    101   1.2        ad #  define xutrace(a, b)		utrace("malloc", (a), (b))
    102   1.2        ad #  define __DECONST(x, y)	((x)__UNCONST(y))
    103   1.2        ad #  define NO_TLS
    104   1.2        ad #else
    105   1.2        ad #  define xutrace(a, b)		utrace((a), (b))
    106   1.2        ad #endif	/* __NetBSD__ */
    107   1.2        ad 
    108   1.1        ad /*
    109   1.1        ad  * MALLOC_PRODUCTION disables assertions and statistics gathering.  It also
    110   1.1        ad  * defaults the A and J runtime options to off.  These settings are appropriate
    111   1.1        ad  * for production systems.
    112   1.1        ad  */
    113   1.2        ad #define MALLOC_PRODUCTION
    114   1.1        ad 
    115   1.1        ad #ifndef MALLOC_PRODUCTION
    116   1.1        ad #  define MALLOC_DEBUG
    117   1.1        ad #endif
    118   1.1        ad 
    119   1.1        ad #include <sys/cdefs.h>
    120   1.2        ad /* __FBSDID("$FreeBSD: src/lib/libc/stdlib/malloc.c,v 1.147 2007/06/15 22:00:16 jasone Exp $"); */
    121  1.21     enami __RCSID("$NetBSD: jemalloc.c,v 1.21 2010/03/04 22:48:31 enami Exp $");
    122   1.1        ad 
    123   1.2        ad #ifdef __FreeBSD__
    124   1.1        ad #include "libc_private.h"
    125   1.1        ad #ifdef MALLOC_DEBUG
    126   1.1        ad #  define _LOCK_DEBUG
    127   1.1        ad #endif
    128   1.1        ad #include "spinlock.h"
    129   1.2        ad #endif
    130   1.1        ad #include "namespace.h"
    131   1.1        ad #include <sys/mman.h>
    132   1.1        ad #include <sys/param.h>
    133   1.2        ad #ifdef __FreeBSD__
    134   1.1        ad #include <sys/stddef.h>
    135   1.2        ad #endif
    136   1.1        ad #include <sys/time.h>
    137   1.1        ad #include <sys/types.h>
    138   1.1        ad #include <sys/sysctl.h>
    139   1.1        ad #include <sys/tree.h>
    140   1.1        ad #include <sys/uio.h>
    141   1.1        ad #include <sys/ktrace.h> /* Must come after several other sys/ includes. */
    142   1.1        ad 
    143   1.2        ad #ifdef __FreeBSD__
    144   1.1        ad #include <machine/atomic.h>
    145   1.1        ad #include <machine/cpufunc.h>
    146   1.2        ad #endif
    147   1.1        ad #include <machine/vmparam.h>
    148   1.1        ad 
    149   1.1        ad #include <errno.h>
    150   1.1        ad #include <limits.h>
    151   1.1        ad #include <pthread.h>
    152   1.1        ad #include <sched.h>
    153   1.1        ad #include <stdarg.h>
    154   1.1        ad #include <stdbool.h>
    155   1.1        ad #include <stdio.h>
    156   1.1        ad #include <stdint.h>
    157   1.1        ad #include <stdlib.h>
    158   1.1        ad #include <string.h>
    159   1.1        ad #include <strings.h>
    160   1.1        ad #include <unistd.h>
    161   1.1        ad 
    162   1.2        ad #ifdef __NetBSD__
    163   1.2        ad #  include <reentrant.h>
    164  1.16  christos #  include "extern.h"
    165  1.16  christos 
    166  1.16  christos #define STRERROR_R(a, b, c)	__strerror_r(a, b, c);
    167  1.16  christos /*
    168  1.16  christos  * A non localized version of strerror, that avoids bringing in
    169  1.16  christos  * stdio and the locale code. All the malloc messages are in English
    170  1.16  christos  * so why bother?
    171  1.16  christos  */
    172  1.16  christos static int
    173  1.16  christos __strerror_r(int e, char *s, size_t l)
    174  1.16  christos {
    175  1.16  christos 	int rval;
    176  1.16  christos 	size_t slen;
    177  1.16  christos 
    178  1.16  christos 	if (e >= 0 && e < sys_nerr) {
    179  1.16  christos 		slen = strlcpy(s, sys_errlist[e], l);
    180  1.16  christos 		rval = 0;
    181  1.16  christos 	} else {
    182  1.16  christos 		slen = snprintf_ss(s, l, "Unknown error %u", e);
    183  1.16  christos 		rval = EINVAL;
    184  1.16  christos 	}
    185  1.16  christos 	return slen >= l ? ERANGE : rval;
    186  1.16  christos }
    187   1.2        ad #endif
    188   1.2        ad 
    189   1.2        ad #ifdef __FreeBSD__
    190  1.16  christos #define STRERROR_R(a, b, c)	strerror_r(a, b, c);
    191   1.1        ad #include "un-namespace.h"
    192   1.2        ad #endif
    193   1.1        ad 
    194   1.1        ad /* MALLOC_STATS enables statistics calculation. */
    195   1.1        ad #ifndef MALLOC_PRODUCTION
    196   1.1        ad #  define MALLOC_STATS
    197   1.1        ad #endif
    198   1.1        ad 
    199   1.1        ad #ifdef MALLOC_DEBUG
    200   1.1        ad #  ifdef NDEBUG
    201   1.1        ad #    undef NDEBUG
    202   1.1        ad #  endif
    203   1.1        ad #else
    204   1.1        ad #  ifndef NDEBUG
    205   1.1        ad #    define NDEBUG
    206   1.1        ad #  endif
    207   1.1        ad #endif
    208   1.1        ad #include <assert.h>
    209   1.1        ad 
    210   1.1        ad #ifdef MALLOC_DEBUG
    211   1.1        ad    /* Disable inlining to make debugging easier. */
    212   1.1        ad #  define inline
    213   1.1        ad #endif
    214   1.1        ad 
    215   1.1        ad /* Size of stack-allocated buffer passed to strerror_r(). */
    216   1.1        ad #define	STRERROR_BUF		64
    217   1.1        ad 
    218   1.1        ad /* Minimum alignment of allocations is 2^QUANTUM_2POW_MIN bytes. */
    219   1.1        ad #ifdef __i386__
    220   1.1        ad #  define QUANTUM_2POW_MIN	4
    221   1.1        ad #  define SIZEOF_PTR_2POW	2
    222   1.1        ad #  define USE_BRK
    223   1.1        ad #endif
    224   1.1        ad #ifdef __ia64__
    225   1.1        ad #  define QUANTUM_2POW_MIN	4
    226   1.1        ad #  define SIZEOF_PTR_2POW	3
    227   1.1        ad #endif
    228   1.1        ad #ifdef __alpha__
    229   1.1        ad #  define QUANTUM_2POW_MIN	4
    230   1.1        ad #  define SIZEOF_PTR_2POW	3
    231   1.1        ad #  define NO_TLS
    232   1.1        ad #endif
    233   1.1        ad #ifdef __sparc64__
    234   1.1        ad #  define QUANTUM_2POW_MIN	4
    235   1.1        ad #  define SIZEOF_PTR_2POW	3
    236   1.1        ad #  define NO_TLS
    237   1.1        ad #endif
    238   1.1        ad #ifdef __amd64__
    239   1.1        ad #  define QUANTUM_2POW_MIN	4
    240   1.1        ad #  define SIZEOF_PTR_2POW	3
    241   1.1        ad #endif
    242   1.1        ad #ifdef __arm__
    243   1.1        ad #  define QUANTUM_2POW_MIN	3
    244   1.1        ad #  define SIZEOF_PTR_2POW	2
    245   1.1        ad #  define USE_BRK
    246   1.1        ad #  define NO_TLS
    247   1.1        ad #endif
    248   1.1        ad #ifdef __powerpc__
    249   1.1        ad #  define QUANTUM_2POW_MIN	4
    250   1.1        ad #  define SIZEOF_PTR_2POW	2
    251   1.1        ad #  define USE_BRK
    252   1.1        ad #endif
    253   1.3        he #if defined(__sparc__) && !defined(__sparc64__)
    254   1.2        ad #  define QUANTUM_2POW_MIN	4
    255   1.2        ad #  define SIZEOF_PTR_2POW	2
    256   1.2        ad #  define USE_BRK
    257   1.2        ad #endif
    258   1.2        ad #ifdef __vax__
    259   1.2        ad #  define QUANTUM_2POW_MIN	4
    260   1.2        ad #  define SIZEOF_PTR_2POW	2
    261   1.2        ad #  define USE_BRK
    262   1.2        ad #endif
    263   1.2        ad #ifdef __sh__
    264   1.2        ad #  define QUANTUM_2POW_MIN	4
    265   1.2        ad #  define SIZEOF_PTR_2POW	2
    266   1.2        ad #  define USE_BRK
    267   1.2        ad #endif
    268   1.2        ad #ifdef __m68k__
    269   1.2        ad #  define QUANTUM_2POW_MIN	4
    270   1.2        ad #  define SIZEOF_PTR_2POW	2
    271   1.2        ad #  define USE_BRK
    272   1.2        ad #endif
    273   1.2        ad #ifdef __mips__
    274   1.2        ad #  define QUANTUM_2POW_MIN	4
    275   1.2        ad #  define SIZEOF_PTR_2POW	2
    276   1.2        ad #  define USE_BRK
    277   1.2        ad #endif
    278   1.4        ad #ifdef __hppa__
    279   1.4        ad #  define QUANTUM_2POW_MIN     4
    280   1.4        ad #  define SIZEOF_PTR_2POW      2
    281   1.4        ad #  define USE_BRK
    282   1.4        ad #endif
    283   1.1        ad 
    284   1.1        ad #define	SIZEOF_PTR		(1 << SIZEOF_PTR_2POW)
    285   1.1        ad 
    286   1.1        ad /* sizeof(int) == (1 << SIZEOF_INT_2POW). */
    287   1.1        ad #ifndef SIZEOF_INT_2POW
    288   1.1        ad #  define SIZEOF_INT_2POW	2
    289   1.1        ad #endif
    290   1.1        ad 
    291   1.1        ad /* We can't use TLS in non-PIC programs, since TLS relies on loader magic. */
    292   1.1        ad #if (!defined(PIC) && !defined(NO_TLS))
    293   1.1        ad #  define NO_TLS
    294   1.1        ad #endif
    295   1.1        ad 
    296   1.1        ad /*
    297   1.1        ad  * Size and alignment of memory chunks that are allocated by the OS's virtual
    298   1.1        ad  * memory system.
    299   1.1        ad  */
    300   1.1        ad #define	CHUNK_2POW_DEFAULT	20
    301   1.1        ad 
    302   1.1        ad /*
    303   1.1        ad  * Maximum size of L1 cache line.  This is used to avoid cache line aliasing,
    304   1.1        ad  * so over-estimates are okay (up to a point), but under-estimates will
    305   1.1        ad  * negatively affect performance.
    306   1.1        ad  */
    307   1.1        ad #define	CACHELINE_2POW		6
    308   1.1        ad #define	CACHELINE		((size_t)(1 << CACHELINE_2POW))
    309   1.1        ad 
    310   1.1        ad /* Smallest size class to support. */
    311   1.1        ad #define	TINY_MIN_2POW		1
    312   1.1        ad 
    313   1.1        ad /*
    314   1.1        ad  * Maximum size class that is a multiple of the quantum, but not (necessarily)
    315   1.1        ad  * a power of 2.  Above this size, allocations are rounded up to the nearest
    316   1.1        ad  * power of 2.
    317   1.1        ad  */
    318   1.1        ad #define	SMALL_MAX_2POW_DEFAULT	9
    319   1.1        ad #define	SMALL_MAX_DEFAULT	(1 << SMALL_MAX_2POW_DEFAULT)
    320   1.1        ad 
    321   1.1        ad /*
    322   1.1        ad  * Maximum desired run header overhead.  Runs are sized as small as possible
    323   1.1        ad  * such that this setting is still honored, without violating other constraints.
    324   1.1        ad  * The goal is to make runs as small as possible without exceeding a per run
    325   1.1        ad  * external fragmentation threshold.
    326   1.1        ad  *
    327   1.1        ad  * Note that it is possible to set this low enough that it cannot be honored
    328   1.1        ad  * for some/all object sizes, since there is one bit of header overhead per
    329   1.1        ad  * object (plus a constant).  In such cases, this constraint is relaxed.
    330   1.1        ad  *
    331   1.1        ad  * RUN_MAX_OVRHD_RELAX specifies the maximum number of bits per region of
    332   1.1        ad  * overhead for which RUN_MAX_OVRHD is relaxed.
    333   1.1        ad  */
    334   1.1        ad #define RUN_MAX_OVRHD		0.015
    335   1.1        ad #define RUN_MAX_OVRHD_RELAX	1.5
    336   1.1        ad 
    337   1.1        ad /* Put a cap on small object run size.  This overrides RUN_MAX_OVRHD. */
    338   1.1        ad #define RUN_MAX_SMALL_2POW	15
    339   1.1        ad #define RUN_MAX_SMALL		(1 << RUN_MAX_SMALL_2POW)
    340   1.1        ad 
    341   1.1        ad /******************************************************************************/
    342   1.1        ad 
    343   1.2        ad #ifdef __FreeBSD__
    344   1.1        ad /*
    345   1.1        ad  * Mutexes based on spinlocks.  We can't use normal pthread mutexes, because
    346   1.1        ad  * they require malloc()ed memory.
    347   1.1        ad  */
    348   1.1        ad typedef struct {
    349   1.1        ad 	spinlock_t	lock;
    350   1.1        ad } malloc_mutex_t;
    351   1.1        ad 
    352   1.1        ad /* Set to true once the allocator has been initialized. */
    353   1.1        ad static bool malloc_initialized = false;
    354   1.1        ad 
    355   1.1        ad /* Used to avoid initialization races. */
    356   1.1        ad static malloc_mutex_t init_lock = {_SPINLOCK_INITIALIZER};
    357   1.2        ad #else
    358   1.2        ad #define	malloc_mutex_t	mutex_t
    359   1.2        ad 
    360   1.2        ad /* Set to true once the allocator has been initialized. */
    361   1.2        ad static bool malloc_initialized = false;
    362   1.2        ad 
    363   1.2        ad /* Used to avoid initialization races. */
    364   1.2        ad static mutex_t init_lock = MUTEX_INITIALIZER;
    365   1.2        ad #endif
    366   1.1        ad 
    367   1.1        ad /******************************************************************************/
    368   1.1        ad /*
    369   1.1        ad  * Statistics data structures.
    370   1.1        ad  */
    371   1.1        ad 
    372   1.1        ad #ifdef MALLOC_STATS
    373   1.1        ad 
    374   1.1        ad typedef struct malloc_bin_stats_s malloc_bin_stats_t;
    375   1.1        ad struct malloc_bin_stats_s {
    376   1.1        ad 	/*
    377   1.1        ad 	 * Number of allocation requests that corresponded to the size of this
    378   1.1        ad 	 * bin.
    379   1.1        ad 	 */
    380   1.1        ad 	uint64_t	nrequests;
    381   1.1        ad 
    382   1.1        ad 	/* Total number of runs created for this bin's size class. */
    383   1.1        ad 	uint64_t	nruns;
    384   1.1        ad 
    385   1.1        ad 	/*
    386   1.1        ad 	 * Total number of runs reused by extracting them from the runs tree for
    387   1.1        ad 	 * this bin's size class.
    388   1.1        ad 	 */
    389   1.1        ad 	uint64_t	reruns;
    390   1.1        ad 
    391   1.1        ad 	/* High-water mark for this bin. */
    392   1.1        ad 	unsigned long	highruns;
    393   1.1        ad 
    394   1.1        ad 	/* Current number of runs in this bin. */
    395   1.1        ad 	unsigned long	curruns;
    396   1.1        ad };
    397   1.1        ad 
    398   1.1        ad typedef struct arena_stats_s arena_stats_t;
    399   1.1        ad struct arena_stats_s {
    400   1.1        ad 	/* Number of bytes currently mapped. */
    401   1.1        ad 	size_t		mapped;
    402   1.1        ad 
    403   1.1        ad 	/* Per-size-category statistics. */
    404   1.1        ad 	size_t		allocated_small;
    405   1.1        ad 	uint64_t	nmalloc_small;
    406   1.1        ad 	uint64_t	ndalloc_small;
    407   1.1        ad 
    408   1.1        ad 	size_t		allocated_large;
    409   1.1        ad 	uint64_t	nmalloc_large;
    410   1.1        ad 	uint64_t	ndalloc_large;
    411   1.1        ad };
    412   1.1        ad 
    413   1.1        ad typedef struct chunk_stats_s chunk_stats_t;
    414   1.1        ad struct chunk_stats_s {
    415   1.1        ad 	/* Number of chunks that were allocated. */
    416   1.1        ad 	uint64_t	nchunks;
    417   1.1        ad 
    418   1.1        ad 	/* High-water mark for number of chunks allocated. */
    419   1.1        ad 	unsigned long	highchunks;
    420   1.1        ad 
    421   1.1        ad 	/*
    422   1.1        ad 	 * Current number of chunks allocated.  This value isn't maintained for
    423   1.1        ad 	 * any other purpose, so keep track of it in order to be able to set
    424   1.1        ad 	 * highchunks.
    425   1.1        ad 	 */
    426   1.1        ad 	unsigned long	curchunks;
    427   1.1        ad };
    428   1.1        ad 
    429   1.1        ad #endif /* #ifdef MALLOC_STATS */
    430   1.1        ad 
    431   1.1        ad /******************************************************************************/
    432   1.1        ad /*
    433   1.1        ad  * Chunk data structures.
    434   1.1        ad  */
    435   1.1        ad 
    436   1.1        ad /* Tree of chunks. */
    437   1.1        ad typedef struct chunk_node_s chunk_node_t;
    438   1.1        ad struct chunk_node_s {
    439   1.1        ad 	/* Linkage for the chunk tree. */
    440   1.1        ad 	RB_ENTRY(chunk_node_s) link;
    441   1.1        ad 
    442   1.1        ad 	/*
    443   1.1        ad 	 * Pointer to the chunk that this tree node is responsible for.  In some
    444   1.1        ad 	 * (but certainly not all) cases, this data structure is placed at the
    445   1.1        ad 	 * beginning of the corresponding chunk, so this field may point to this
    446   1.1        ad 	 * node.
    447   1.1        ad 	 */
    448   1.1        ad 	void	*chunk;
    449   1.1        ad 
    450   1.1        ad 	/* Total chunk size. */
    451   1.1        ad 	size_t	size;
    452   1.1        ad };
    453   1.1        ad typedef struct chunk_tree_s chunk_tree_t;
    454   1.1        ad RB_HEAD(chunk_tree_s, chunk_node_s);
    455   1.1        ad 
    456   1.1        ad /******************************************************************************/
    457   1.1        ad /*
    458   1.1        ad  * Arena data structures.
    459   1.1        ad  */
    460   1.1        ad 
    461   1.1        ad typedef struct arena_s arena_t;
    462   1.1        ad typedef struct arena_bin_s arena_bin_t;
    463   1.1        ad 
    464   1.1        ad typedef struct arena_chunk_map_s arena_chunk_map_t;
    465   1.1        ad struct arena_chunk_map_s {
    466   1.1        ad 	/* Number of pages in run. */
    467   1.1        ad 	uint32_t	npages;
    468   1.1        ad 	/*
    469   1.1        ad 	 * Position within run.  For a free run, this is POS_FREE for the first
    470   1.1        ad 	 * and last pages.  The POS_FREE special value makes it possible to
    471   1.1        ad 	 * quickly coalesce free runs.
    472   1.1        ad 	 *
    473   1.1        ad 	 * This is the limiting factor for chunksize; there can be at most 2^31
    474   1.1        ad 	 * pages in a run.
    475   1.1        ad 	 */
    476   1.1        ad #define POS_FREE ((uint32_t)0xffffffffU)
    477   1.1        ad 	uint32_t	pos;
    478   1.1        ad };
    479   1.1        ad 
    480   1.1        ad /* Arena chunk header. */
    481   1.1        ad typedef struct arena_chunk_s arena_chunk_t;
    482   1.1        ad struct arena_chunk_s {
    483   1.1        ad 	/* Arena that owns the chunk. */
    484   1.1        ad 	arena_t *arena;
    485   1.1        ad 
    486   1.1        ad 	/* Linkage for the arena's chunk tree. */
    487   1.1        ad 	RB_ENTRY(arena_chunk_s) link;
    488   1.1        ad 
    489   1.1        ad 	/*
    490   1.1        ad 	 * Number of pages in use.  This is maintained in order to make
    491   1.1        ad 	 * detection of empty chunks fast.
    492   1.1        ad 	 */
    493   1.1        ad 	uint32_t pages_used;
    494   1.1        ad 
    495   1.1        ad 	/*
    496   1.1        ad 	 * Every time a free run larger than this value is created/coalesced,
    497   1.1        ad 	 * this value is increased.  The only way that the value decreases is if
    498   1.1        ad 	 * arena_run_alloc() fails to find a free run as large as advertised by
    499   1.1        ad 	 * this value.
    500   1.1        ad 	 */
    501   1.1        ad 	uint32_t max_frun_npages;
    502   1.1        ad 
    503   1.1        ad 	/*
    504   1.1        ad 	 * Every time a free run that starts at an earlier page than this value
    505   1.1        ad 	 * is created/coalesced, this value is decreased.  It is reset in a
    506   1.1        ad 	 * similar fashion to max_frun_npages.
    507   1.1        ad 	 */
    508   1.1        ad 	uint32_t min_frun_ind;
    509   1.1        ad 
    510   1.1        ad 	/*
    511   1.1        ad 	 * Map of pages within chunk that keeps track of free/large/small.  For
    512   1.1        ad 	 * free runs, only the map entries for the first and last pages are
    513   1.1        ad 	 * kept up to date, so that free runs can be quickly coalesced.
    514   1.1        ad 	 */
    515   1.1        ad 	arena_chunk_map_t map[1]; /* Dynamically sized. */
    516   1.1        ad };
    517   1.1        ad typedef struct arena_chunk_tree_s arena_chunk_tree_t;
    518   1.1        ad RB_HEAD(arena_chunk_tree_s, arena_chunk_s);
    519   1.1        ad 
    520   1.1        ad typedef struct arena_run_s arena_run_t;
    521   1.1        ad struct arena_run_s {
    522   1.1        ad 	/* Linkage for run trees. */
    523   1.1        ad 	RB_ENTRY(arena_run_s) link;
    524   1.1        ad 
    525   1.1        ad #ifdef MALLOC_DEBUG
    526   1.1        ad 	uint32_t	magic;
    527   1.1        ad #  define ARENA_RUN_MAGIC 0x384adf93
    528   1.1        ad #endif
    529   1.1        ad 
    530   1.1        ad 	/* Bin this run is associated with. */
    531   1.1        ad 	arena_bin_t	*bin;
    532   1.1        ad 
    533   1.1        ad 	/* Index of first element that might have a free region. */
    534   1.1        ad 	unsigned	regs_minelm;
    535   1.1        ad 
    536   1.1        ad 	/* Number of free regions in run. */
    537   1.1        ad 	unsigned	nfree;
    538   1.1        ad 
    539   1.1        ad 	/* Bitmask of in-use regions (0: in use, 1: free). */
    540   1.1        ad 	unsigned	regs_mask[1]; /* Dynamically sized. */
    541   1.1        ad };
    542   1.1        ad typedef struct arena_run_tree_s arena_run_tree_t;
    543   1.1        ad RB_HEAD(arena_run_tree_s, arena_run_s);
    544   1.1        ad 
    545   1.1        ad struct arena_bin_s {
    546   1.1        ad 	/*
    547   1.1        ad 	 * Current run being used to service allocations of this bin's size
    548   1.1        ad 	 * class.
    549   1.1        ad 	 */
    550   1.1        ad 	arena_run_t	*runcur;
    551   1.1        ad 
    552   1.1        ad 	/*
    553   1.1        ad 	 * Tree of non-full runs.  This tree is used when looking for an
    554   1.1        ad 	 * existing run when runcur is no longer usable.  We choose the
    555   1.1        ad 	 * non-full run that is lowest in memory; this policy tends to keep
    556   1.1        ad 	 * objects packed well, and it can also help reduce the number of
    557   1.1        ad 	 * almost-empty chunks.
    558   1.1        ad 	 */
    559   1.1        ad 	arena_run_tree_t runs;
    560   1.1        ad 
    561   1.1        ad 	/* Size of regions in a run for this bin's size class. */
    562   1.1        ad 	size_t		reg_size;
    563   1.1        ad 
    564   1.1        ad 	/* Total size of a run for this bin's size class. */
    565   1.1        ad 	size_t		run_size;
    566   1.1        ad 
    567   1.1        ad 	/* Total number of regions in a run for this bin's size class. */
    568   1.1        ad 	uint32_t	nregs;
    569   1.1        ad 
    570   1.1        ad 	/* Number of elements in a run's regs_mask for this bin's size class. */
    571   1.1        ad 	uint32_t	regs_mask_nelms;
    572   1.1        ad 
    573   1.1        ad 	/* Offset of first region in a run for this bin's size class. */
    574   1.1        ad 	uint32_t	reg0_offset;
    575   1.1        ad 
    576   1.1        ad #ifdef MALLOC_STATS
    577   1.1        ad 	/* Bin statistics. */
    578   1.1        ad 	malloc_bin_stats_t stats;
    579   1.1        ad #endif
    580   1.1        ad };
    581   1.1        ad 
    582   1.1        ad struct arena_s {
    583   1.1        ad #ifdef MALLOC_DEBUG
    584   1.1        ad 	uint32_t		magic;
    585   1.1        ad #  define ARENA_MAGIC 0x947d3d24
    586   1.1        ad #endif
    587   1.1        ad 
    588   1.1        ad 	/* All operations on this arena require that mtx be locked. */
    589   1.1        ad 	malloc_mutex_t		mtx;
    590   1.1        ad 
    591   1.1        ad #ifdef MALLOC_STATS
    592   1.1        ad 	arena_stats_t		stats;
    593   1.1        ad #endif
    594   1.1        ad 
    595   1.1        ad 	/*
    596   1.1        ad 	 * Tree of chunks this arena manages.
    597   1.1        ad 	 */
    598   1.1        ad 	arena_chunk_tree_t	chunks;
    599   1.1        ad 
    600   1.1        ad 	/*
    601   1.1        ad 	 * In order to avoid rapid chunk allocation/deallocation when an arena
    602   1.1        ad 	 * oscillates right on the cusp of needing a new chunk, cache the most
    603   1.1        ad 	 * recently freed chunk.  This caching is disabled by opt_hint.
    604   1.1        ad 	 *
    605   1.1        ad 	 * There is one spare chunk per arena, rather than one spare total, in
    606   1.1        ad 	 * order to avoid interactions between multiple threads that could make
    607   1.1        ad 	 * a single spare inadequate.
    608   1.1        ad 	 */
    609   1.1        ad 	arena_chunk_t *spare;
    610   1.1        ad 
    611   1.1        ad 	/*
    612   1.1        ad 	 * bins is used to store rings of free regions of the following sizes,
    613   1.1        ad 	 * assuming a 16-byte quantum, 4kB pagesize, and default MALLOC_OPTIONS.
    614   1.1        ad 	 *
    615   1.1        ad 	 *   bins[i] | size |
    616   1.1        ad 	 *   --------+------+
    617   1.1        ad 	 *        0  |    2 |
    618   1.1        ad 	 *        1  |    4 |
    619   1.1        ad 	 *        2  |    8 |
    620   1.1        ad 	 *   --------+------+
    621   1.1        ad 	 *        3  |   16 |
    622   1.1        ad 	 *        4  |   32 |
    623   1.1        ad 	 *        5  |   48 |
    624   1.1        ad 	 *        6  |   64 |
    625   1.1        ad 	 *           :      :
    626   1.1        ad 	 *           :      :
    627   1.1        ad 	 *       33  |  496 |
    628   1.1        ad 	 *       34  |  512 |
    629   1.1        ad 	 *   --------+------+
    630   1.1        ad 	 *       35  | 1024 |
    631   1.1        ad 	 *       36  | 2048 |
    632   1.1        ad 	 *   --------+------+
    633   1.1        ad 	 */
    634   1.1        ad 	arena_bin_t		bins[1]; /* Dynamically sized. */
    635   1.1        ad };
    636   1.1        ad 
    637   1.1        ad /******************************************************************************/
    638   1.1        ad /*
    639   1.1        ad  * Data.
    640   1.1        ad  */
    641   1.1        ad 
    642   1.1        ad /* Number of CPUs. */
    643   1.1        ad static unsigned		ncpus;
    644   1.1        ad 
    645   1.1        ad /* VM page size. */
    646   1.1        ad static size_t		pagesize;
    647   1.1        ad static size_t		pagesize_mask;
    648   1.9  christos static int		pagesize_2pow;
    649   1.1        ad 
    650   1.1        ad /* Various bin-related settings. */
    651   1.1        ad static size_t		bin_maxclass; /* Max size class for bins. */
    652   1.1        ad static unsigned		ntbins; /* Number of (2^n)-spaced tiny bins. */
    653   1.1        ad static unsigned		nqbins; /* Number of quantum-spaced bins. */
    654   1.1        ad static unsigned		nsbins; /* Number of (2^n)-spaced sub-page bins. */
    655   1.1        ad static size_t		small_min;
    656   1.1        ad static size_t		small_max;
    657   1.1        ad 
    658   1.1        ad /* Various quantum-related settings. */
    659   1.1        ad static size_t		quantum;
    660   1.1        ad static size_t		quantum_mask; /* (quantum - 1). */
    661   1.1        ad 
    662   1.1        ad /* Various chunk-related settings. */
    663   1.1        ad static size_t		chunksize;
    664   1.1        ad static size_t		chunksize_mask; /* (chunksize - 1). */
    665   1.5      yamt static int		chunksize_2pow;
    666   1.1        ad static unsigned		chunk_npages;
    667   1.1        ad static unsigned		arena_chunk_header_npages;
    668   1.1        ad static size_t		arena_maxclass; /* Max size class for arenas. */
    669   1.1        ad 
    670   1.1        ad /********/
    671   1.1        ad /*
    672   1.1        ad  * Chunks.
    673   1.1        ad  */
    674   1.1        ad 
    675   1.1        ad /* Protects chunk-related data structures. */
    676   1.1        ad static malloc_mutex_t	chunks_mtx;
    677   1.1        ad 
    678   1.1        ad /* Tree of chunks that are stand-alone huge allocations. */
    679   1.1        ad static chunk_tree_t	huge;
    680   1.1        ad 
    681   1.1        ad #ifdef USE_BRK
    682   1.1        ad /*
    683   1.1        ad  * Try to use brk for chunk-size allocations, due to address space constraints.
    684   1.1        ad  */
    685   1.1        ad /*
    686   1.1        ad  * Protects sbrk() calls.  This must be separate from chunks_mtx, since
    687   1.1        ad  * base_pages_alloc() also uses sbrk(), but cannot lock chunks_mtx (doing so
    688   1.1        ad  * could cause recursive lock acquisition).
    689   1.1        ad  */
    690   1.1        ad static malloc_mutex_t	brk_mtx;
    691   1.1        ad /* Result of first sbrk(0) call. */
    692   1.1        ad static void		*brk_base;
    693   1.1        ad /* Current end of brk, or ((void *)-1) if brk is exhausted. */
    694   1.1        ad static void		*brk_prev;
    695   1.1        ad /* Current upper limit on brk addresses. */
    696   1.1        ad static void		*brk_max;
    697   1.1        ad #endif
    698   1.1        ad 
    699   1.1        ad #ifdef MALLOC_STATS
    700   1.1        ad /* Huge allocation statistics. */
    701   1.1        ad static uint64_t		huge_nmalloc;
    702   1.1        ad static uint64_t		huge_ndalloc;
    703   1.8      yamt static uint64_t		huge_nralloc;
    704   1.1        ad static size_t		huge_allocated;
    705   1.1        ad #endif
    706   1.1        ad 
    707   1.1        ad /*
    708   1.1        ad  * Tree of chunks that were previously allocated.  This is used when allocating
    709   1.1        ad  * chunks, in an attempt to re-use address space.
    710   1.1        ad  */
    711   1.1        ad static chunk_tree_t	old_chunks;
    712   1.1        ad 
    713   1.1        ad /****************************/
    714   1.1        ad /*
    715   1.1        ad  * base (internal allocation).
    716   1.1        ad  */
    717   1.1        ad 
    718   1.1        ad /*
    719   1.1        ad  * Current pages that are being used for internal memory allocations.  These
    720   1.1        ad  * pages are carved up in cacheline-size quanta, so that there is no chance of
    721   1.1        ad  * false cache line sharing.
    722   1.1        ad  */
    723   1.1        ad static void		*base_pages;
    724   1.1        ad static void		*base_next_addr;
    725   1.1        ad static void		*base_past_addr; /* Addr immediately past base_pages. */
    726   1.1        ad static chunk_node_t	*base_chunk_nodes; /* LIFO cache of chunk nodes. */
    727   1.1        ad static malloc_mutex_t	base_mtx;
    728   1.1        ad #ifdef MALLOC_STATS
    729   1.1        ad static size_t		base_mapped;
    730   1.1        ad #endif
    731   1.1        ad 
    732   1.1        ad /********/
    733   1.1        ad /*
    734   1.1        ad  * Arenas.
    735   1.1        ad  */
    736   1.1        ad 
    737   1.1        ad /*
    738   1.1        ad  * Arenas that are used to service external requests.  Not all elements of the
    739   1.1        ad  * arenas array are necessarily used; arenas are created lazily as needed.
    740   1.1        ad  */
    741   1.1        ad static arena_t		**arenas;
    742   1.1        ad static unsigned		narenas;
    743   1.1        ad static unsigned		next_arena;
    744   1.1        ad static malloc_mutex_t	arenas_mtx; /* Protects arenas initialization. */
    745   1.1        ad 
    746  1.15        ad #ifndef NO_TLS
    747  1.15        ad /*
    748  1.15        ad  * Map of pthread_self() --> arenas[???], used for selecting an arena to use
    749  1.15        ad  * for allocations.
    750  1.15        ad  */
    751  1.15        ad static __thread arena_t	*arenas_map;
    752  1.15        ad #define	get_arenas_map()	(arenas_map)
    753  1.15        ad #define	set_arenas_map(x)	(arenas_map = x)
    754  1.15        ad #else
    755   1.2        ad static thread_key_t arenas_map_key;
    756  1.15        ad #define	get_arenas_map()	thr_getspecific(arenas_map_key)
    757  1.15        ad #define	set_arenas_map(x)	thr_setspecific(arenas_map_key, x)
    758  1.15        ad #endif
    759   1.1        ad 
    760   1.1        ad #ifdef MALLOC_STATS
    761   1.1        ad /* Chunk statistics. */
    762   1.1        ad static chunk_stats_t	stats_chunks;
    763   1.1        ad #endif
    764   1.1        ad 
    765   1.1        ad /*******************************/
    766   1.1        ad /*
    767   1.1        ad  * Runtime configuration options.
    768   1.1        ad  */
    769   1.1        ad const char	*_malloc_options;
    770   1.1        ad 
    771   1.1        ad #ifndef MALLOC_PRODUCTION
    772   1.1        ad static bool	opt_abort = true;
    773   1.1        ad static bool	opt_junk = true;
    774   1.1        ad #else
    775   1.1        ad static bool	opt_abort = false;
    776   1.1        ad static bool	opt_junk = false;
    777   1.1        ad #endif
    778   1.1        ad static bool	opt_hint = false;
    779   1.1        ad static bool	opt_print_stats = false;
    780   1.9  christos static int	opt_quantum_2pow = QUANTUM_2POW_MIN;
    781   1.9  christos static int	opt_small_max_2pow = SMALL_MAX_2POW_DEFAULT;
    782   1.9  christos static int	opt_chunk_2pow = CHUNK_2POW_DEFAULT;
    783   1.1        ad static bool	opt_utrace = false;
    784   1.1        ad static bool	opt_sysv = false;
    785   1.1        ad static bool	opt_xmalloc = false;
    786   1.1        ad static bool	opt_zero = false;
    787   1.1        ad static int32_t	opt_narenas_lshift = 0;
    788   1.1        ad 
    789   1.1        ad typedef struct {
    790   1.1        ad 	void	*p;
    791   1.1        ad 	size_t	s;
    792   1.1        ad 	void	*r;
    793   1.1        ad } malloc_utrace_t;
    794   1.1        ad 
    795   1.1        ad #define	UTRACE(a, b, c)							\
    796   1.1        ad 	if (opt_utrace) {						\
    797   1.2        ad 		malloc_utrace_t ut;					\
    798   1.2        ad 		ut.p = a;						\
    799   1.2        ad 		ut.s = b;						\
    800   1.2        ad 		ut.r = c;						\
    801   1.2        ad 		xutrace(&ut, sizeof(ut));				\
    802   1.1        ad 	}
    803   1.1        ad 
    804   1.1        ad /******************************************************************************/
    805   1.1        ad /*
    806   1.1        ad  * Begin function prototypes for non-inline static functions.
    807   1.1        ad  */
    808   1.1        ad 
    809   1.1        ad static void	wrtmessage(const char *p1, const char *p2, const char *p3,
    810   1.1        ad 		const char *p4);
    811   1.1        ad #ifdef MALLOC_STATS
    812   1.1        ad static void	malloc_printf(const char *format, ...);
    813   1.1        ad #endif
    814   1.1        ad static char	*umax2s(uintmax_t x, char *s);
    815   1.1        ad static bool	base_pages_alloc(size_t minsize);
    816   1.1        ad static void	*base_alloc(size_t size);
    817   1.1        ad static chunk_node_t *base_chunk_node_alloc(void);
    818   1.1        ad static void	base_chunk_node_dealloc(chunk_node_t *node);
    819   1.1        ad #ifdef MALLOC_STATS
    820   1.1        ad static void	stats_print(arena_t *arena);
    821   1.1        ad #endif
    822   1.1        ad static void	*pages_map(void *addr, size_t size);
    823   1.5      yamt static void	*pages_map_align(void *addr, size_t size, int align);
    824   1.1        ad static void	pages_unmap(void *addr, size_t size);
    825   1.1        ad static void	*chunk_alloc(size_t size);
    826   1.1        ad static void	chunk_dealloc(void *chunk, size_t size);
    827   1.1        ad static void	arena_run_split(arena_t *arena, arena_run_t *run, size_t size);
    828   1.1        ad static arena_chunk_t *arena_chunk_alloc(arena_t *arena);
    829   1.1        ad static void	arena_chunk_dealloc(arena_t *arena, arena_chunk_t *chunk);
    830   1.1        ad static arena_run_t *arena_run_alloc(arena_t *arena, size_t size);
    831   1.1        ad static void	arena_run_dalloc(arena_t *arena, arena_run_t *run, size_t size);
    832   1.1        ad static arena_run_t *arena_bin_nonfull_run_get(arena_t *arena, arena_bin_t *bin);
    833   1.1        ad static void *arena_bin_malloc_hard(arena_t *arena, arena_bin_t *bin);
    834   1.1        ad static size_t arena_bin_run_size_calc(arena_bin_t *bin, size_t min_run_size);
    835   1.1        ad static void	*arena_malloc(arena_t *arena, size_t size);
    836   1.1        ad static void	*arena_palloc(arena_t *arena, size_t alignment, size_t size,
    837   1.1        ad     size_t alloc_size);
    838   1.1        ad static size_t	arena_salloc(const void *ptr);
    839   1.1        ad static void	*arena_ralloc(void *ptr, size_t size, size_t oldsize);
    840   1.1        ad static void	arena_dalloc(arena_t *arena, arena_chunk_t *chunk, void *ptr);
    841   1.1        ad static bool	arena_new(arena_t *arena);
    842   1.1        ad static arena_t	*arenas_extend(unsigned ind);
    843   1.1        ad static void	*huge_malloc(size_t size);
    844   1.1        ad static void	*huge_palloc(size_t alignment, size_t size);
    845   1.1        ad static void	*huge_ralloc(void *ptr, size_t size, size_t oldsize);
    846   1.1        ad static void	huge_dalloc(void *ptr);
    847   1.1        ad static void	*imalloc(size_t size);
    848   1.1        ad static void	*ipalloc(size_t alignment, size_t size);
    849   1.1        ad static void	*icalloc(size_t size);
    850   1.1        ad static size_t	isalloc(const void *ptr);
    851   1.1        ad static void	*iralloc(void *ptr, size_t size);
    852   1.1        ad static void	idalloc(void *ptr);
    853   1.1        ad static void	malloc_print_stats(void);
    854   1.1        ad static bool	malloc_init_hard(void);
    855   1.1        ad 
    856   1.1        ad /*
    857   1.1        ad  * End function prototypes.
    858   1.1        ad  */
    859   1.1        ad /******************************************************************************/
    860   1.1        ad /*
    861   1.1        ad  * Begin mutex.
    862   1.1        ad  */
    863   1.1        ad 
    864  1.15        ad #ifdef __NetBSD__
    865   1.2        ad #define	malloc_mutex_init(m)	mutex_init(m, NULL)
    866   1.2        ad #define	malloc_mutex_lock(m)	mutex_lock(m)
    867   1.2        ad #define	malloc_mutex_unlock(m)	mutex_unlock(m)
    868  1.15        ad #else	/* __NetBSD__ */
    869  1.15        ad static inline void
    870  1.15        ad malloc_mutex_init(malloc_mutex_t *a_mutex)
    871  1.15        ad {
    872  1.15        ad 	static const spinlock_t lock = _SPINLOCK_INITIALIZER;
    873  1.15        ad 
    874  1.15        ad 	a_mutex->lock = lock;
    875  1.15        ad }
    876  1.15        ad 
    877  1.15        ad static inline void
    878  1.15        ad malloc_mutex_lock(malloc_mutex_t *a_mutex)
    879  1.15        ad {
    880  1.15        ad 
    881  1.15        ad 	if (__isthreaded)
    882  1.15        ad 		_SPINLOCK(&a_mutex->lock);
    883  1.15        ad }
    884  1.15        ad 
    885  1.15        ad static inline void
    886  1.15        ad malloc_mutex_unlock(malloc_mutex_t *a_mutex)
    887  1.15        ad {
    888  1.15        ad 
    889  1.15        ad 	if (__isthreaded)
    890  1.15        ad 		_SPINUNLOCK(&a_mutex->lock);
    891  1.15        ad }
    892  1.15        ad #endif	/* __NetBSD__ */
    893   1.1        ad 
    894   1.1        ad /*
    895   1.1        ad  * End mutex.
    896   1.1        ad  */
    897   1.1        ad /******************************************************************************/
    898   1.1        ad /*
    899   1.1        ad  * Begin Utility functions/macros.
    900   1.1        ad  */
    901   1.1        ad 
    902   1.1        ad /* Return the chunk address for allocation address a. */
    903   1.1        ad #define	CHUNK_ADDR2BASE(a)						\
    904   1.1        ad 	((void *)((uintptr_t)(a) & ~chunksize_mask))
    905   1.1        ad 
    906   1.1        ad /* Return the chunk offset of address a. */
    907   1.1        ad #define	CHUNK_ADDR2OFFSET(a)						\
    908   1.1        ad 	((size_t)((uintptr_t)(a) & chunksize_mask))
    909   1.1        ad 
    910   1.1        ad /* Return the smallest chunk multiple that is >= s. */
    911   1.1        ad #define	CHUNK_CEILING(s)						\
    912   1.1        ad 	(((s) + chunksize_mask) & ~chunksize_mask)
    913   1.1        ad 
    914   1.1        ad /* Return the smallest cacheline multiple that is >= s. */
    915   1.1        ad #define	CACHELINE_CEILING(s)						\
    916   1.1        ad 	(((s) + (CACHELINE - 1)) & ~(CACHELINE - 1))
    917   1.1        ad 
    918   1.1        ad /* Return the smallest quantum multiple that is >= a. */
    919   1.1        ad #define	QUANTUM_CEILING(a)						\
    920   1.1        ad 	(((a) + quantum_mask) & ~quantum_mask)
    921   1.1        ad 
    922   1.1        ad /* Return the smallest pagesize multiple that is >= s. */
    923   1.1        ad #define	PAGE_CEILING(s)							\
    924   1.1        ad 	(((s) + pagesize_mask) & ~pagesize_mask)
    925   1.1        ad 
    926   1.1        ad /* Compute the smallest power of 2 that is >= x. */
    927   1.1        ad static inline size_t
    928   1.1        ad pow2_ceil(size_t x)
    929   1.1        ad {
    930   1.1        ad 
    931   1.1        ad 	x--;
    932   1.1        ad 	x |= x >> 1;
    933   1.1        ad 	x |= x >> 2;
    934   1.1        ad 	x |= x >> 4;
    935   1.1        ad 	x |= x >> 8;
    936   1.1        ad 	x |= x >> 16;
    937   1.1        ad #if (SIZEOF_PTR == 8)
    938   1.1        ad 	x |= x >> 32;
    939   1.1        ad #endif
    940   1.1        ad 	x++;
    941   1.1        ad 	return (x);
    942   1.1        ad }
    943   1.1        ad 
    944   1.1        ad static void
    945   1.1        ad wrtmessage(const char *p1, const char *p2, const char *p3, const char *p4)
    946   1.1        ad {
    947   1.1        ad 
    948  1.16  christos 	write(STDERR_FILENO, p1, strlen(p1));
    949  1.16  christos 	write(STDERR_FILENO, p2, strlen(p2));
    950  1.16  christos 	write(STDERR_FILENO, p3, strlen(p3));
    951  1.16  christos 	write(STDERR_FILENO, p4, strlen(p4));
    952   1.1        ad }
    953   1.1        ad 
    954   1.1        ad void	(*_malloc_message)(const char *p1, const char *p2, const char *p3,
    955   1.1        ad 	    const char *p4) = wrtmessage;
    956   1.1        ad 
    957   1.1        ad #ifdef MALLOC_STATS
    958   1.1        ad /*
    959   1.1        ad  * Print to stderr in such a way as to (hopefully) avoid memory allocation.
    960   1.1        ad  */
    961   1.1        ad static void
    962   1.1        ad malloc_printf(const char *format, ...)
    963   1.1        ad {
    964   1.1        ad 	char buf[4096];
    965   1.1        ad 	va_list ap;
    966   1.1        ad 
    967   1.1        ad 	va_start(ap, format);
    968   1.1        ad 	vsnprintf(buf, sizeof(buf), format, ap);
    969   1.1        ad 	va_end(ap);
    970   1.1        ad 	_malloc_message(buf, "", "", "");
    971   1.1        ad }
    972   1.1        ad #endif
    973   1.1        ad 
    974   1.1        ad /*
    975   1.1        ad  * We don't want to depend on vsnprintf() for production builds, since that can
    976   1.1        ad  * cause unnecessary bloat for static binaries.  umax2s() provides minimal
    977   1.1        ad  * integer printing functionality, so that malloc_printf() use can be limited to
    978   1.1        ad  * MALLOC_STATS code.
    979   1.1        ad  */
    980   1.1        ad #define UMAX2S_BUFSIZE	21
    981   1.1        ad static char *
    982   1.1        ad umax2s(uintmax_t x, char *s)
    983   1.1        ad {
    984   1.1        ad 	unsigned i;
    985   1.1        ad 
    986   1.1        ad 	/* Make sure UMAX2S_BUFSIZE is large enough. */
    987   1.7      yamt 	/* LINTED */
    988   1.1        ad 	assert(sizeof(uintmax_t) <= 8);
    989   1.1        ad 
    990   1.1        ad 	i = UMAX2S_BUFSIZE - 1;
    991   1.1        ad 	s[i] = '\0';
    992   1.1        ad 	do {
    993   1.1        ad 		i--;
    994   1.2        ad 		s[i] = "0123456789"[(int)x % 10];
    995   1.2        ad 		x /= (uintmax_t)10LL;
    996   1.1        ad 	} while (x > 0);
    997   1.1        ad 
    998   1.1        ad 	return (&s[i]);
    999   1.1        ad }
   1000   1.1        ad 
   1001   1.1        ad /******************************************************************************/
   1002   1.1        ad 
   1003   1.1        ad static bool
   1004   1.1        ad base_pages_alloc(size_t minsize)
   1005   1.1        ad {
   1006   1.2        ad 	size_t csize = 0;
   1007   1.1        ad 
   1008   1.1        ad #ifdef USE_BRK
   1009   1.1        ad 	/*
   1010   1.1        ad 	 * Do special brk allocation here, since base allocations don't need to
   1011   1.1        ad 	 * be chunk-aligned.
   1012   1.1        ad 	 */
   1013   1.1        ad 	if (brk_prev != (void *)-1) {
   1014   1.1        ad 		void *brk_cur;
   1015   1.1        ad 		intptr_t incr;
   1016   1.1        ad 
   1017   1.1        ad 		if (minsize != 0)
   1018   1.1        ad 			csize = CHUNK_CEILING(minsize);
   1019   1.1        ad 
   1020   1.1        ad 		malloc_mutex_lock(&brk_mtx);
   1021   1.1        ad 		do {
   1022   1.1        ad 			/* Get the current end of brk. */
   1023   1.1        ad 			brk_cur = sbrk(0);
   1024   1.1        ad 
   1025   1.1        ad 			/*
   1026   1.1        ad 			 * Calculate how much padding is necessary to
   1027   1.1        ad 			 * chunk-align the end of brk.  Don't worry about
   1028   1.1        ad 			 * brk_cur not being chunk-aligned though.
   1029   1.1        ad 			 */
   1030   1.1        ad 			incr = (intptr_t)chunksize
   1031   1.1        ad 			    - (intptr_t)CHUNK_ADDR2OFFSET(brk_cur);
   1032  1.20     lukem 			assert(incr >= 0);
   1033  1.20     lukem 			if ((size_t)incr < minsize)
   1034   1.1        ad 				incr += csize;
   1035   1.1        ad 
   1036   1.1        ad 			brk_prev = sbrk(incr);
   1037   1.1        ad 			if (brk_prev == brk_cur) {
   1038   1.1        ad 				/* Success. */
   1039   1.1        ad 				malloc_mutex_unlock(&brk_mtx);
   1040   1.1        ad 				base_pages = brk_cur;
   1041   1.1        ad 				base_next_addr = base_pages;
   1042   1.1        ad 				base_past_addr = (void *)((uintptr_t)base_pages
   1043   1.1        ad 				    + incr);
   1044   1.1        ad #ifdef MALLOC_STATS
   1045   1.1        ad 				base_mapped += incr;
   1046   1.1        ad #endif
   1047   1.1        ad 				return (false);
   1048   1.1        ad 			}
   1049   1.1        ad 		} while (brk_prev != (void *)-1);
   1050   1.1        ad 		malloc_mutex_unlock(&brk_mtx);
   1051   1.1        ad 	}
   1052   1.1        ad 	if (minsize == 0) {
   1053   1.1        ad 		/*
   1054   1.1        ad 		 * Failure during initialization doesn't matter, so avoid
   1055   1.1        ad 		 * falling through to the mmap-based page mapping code.
   1056   1.1        ad 		 */
   1057   1.1        ad 		return (true);
   1058   1.1        ad 	}
   1059   1.1        ad #endif
   1060   1.1        ad 	assert(minsize != 0);
   1061   1.1        ad 	csize = PAGE_CEILING(minsize);
   1062   1.1        ad 	base_pages = pages_map(NULL, csize);
   1063   1.1        ad 	if (base_pages == NULL)
   1064   1.1        ad 		return (true);
   1065   1.1        ad 	base_next_addr = base_pages;
   1066   1.1        ad 	base_past_addr = (void *)((uintptr_t)base_pages + csize);
   1067   1.1        ad #ifdef MALLOC_STATS
   1068   1.1        ad 	base_mapped += csize;
   1069   1.1        ad #endif
   1070   1.1        ad 	return (false);
   1071   1.1        ad }
   1072   1.1        ad 
   1073   1.1        ad static void *
   1074   1.1        ad base_alloc(size_t size)
   1075   1.1        ad {
   1076   1.1        ad 	void *ret;
   1077   1.1        ad 	size_t csize;
   1078   1.1        ad 
   1079   1.1        ad 	/* Round size up to nearest multiple of the cacheline size. */
   1080   1.1        ad 	csize = CACHELINE_CEILING(size);
   1081   1.1        ad 
   1082   1.1        ad 	malloc_mutex_lock(&base_mtx);
   1083   1.1        ad 
   1084   1.1        ad 	/* Make sure there's enough space for the allocation. */
   1085   1.1        ad 	if ((uintptr_t)base_next_addr + csize > (uintptr_t)base_past_addr) {
   1086   1.1        ad 		if (base_pages_alloc(csize)) {
   1087   1.1        ad 			ret = NULL;
   1088   1.1        ad 			goto RETURN;
   1089   1.1        ad 		}
   1090   1.1        ad 	}
   1091   1.1        ad 
   1092   1.1        ad 	/* Allocate. */
   1093   1.1        ad 	ret = base_next_addr;
   1094   1.1        ad 	base_next_addr = (void *)((uintptr_t)base_next_addr + csize);
   1095   1.1        ad 
   1096   1.1        ad RETURN:
   1097   1.1        ad 	malloc_mutex_unlock(&base_mtx);
   1098   1.1        ad 	return (ret);
   1099   1.1        ad }
   1100   1.1        ad 
   1101   1.1        ad static chunk_node_t *
   1102   1.1        ad base_chunk_node_alloc(void)
   1103   1.1        ad {
   1104   1.1        ad 	chunk_node_t *ret;
   1105   1.1        ad 
   1106   1.1        ad 	malloc_mutex_lock(&base_mtx);
   1107   1.1        ad 	if (base_chunk_nodes != NULL) {
   1108   1.1        ad 		ret = base_chunk_nodes;
   1109   1.2        ad 		/* LINTED */
   1110   1.1        ad 		base_chunk_nodes = *(chunk_node_t **)ret;
   1111   1.1        ad 		malloc_mutex_unlock(&base_mtx);
   1112   1.1        ad 	} else {
   1113   1.1        ad 		malloc_mutex_unlock(&base_mtx);
   1114   1.1        ad 		ret = (chunk_node_t *)base_alloc(sizeof(chunk_node_t));
   1115   1.1        ad 	}
   1116   1.1        ad 
   1117   1.1        ad 	return (ret);
   1118   1.1        ad }
   1119   1.1        ad 
   1120   1.1        ad static void
   1121   1.1        ad base_chunk_node_dealloc(chunk_node_t *node)
   1122   1.1        ad {
   1123   1.1        ad 
   1124   1.1        ad 	malloc_mutex_lock(&base_mtx);
   1125   1.2        ad 	/* LINTED */
   1126   1.1        ad 	*(chunk_node_t **)node = base_chunk_nodes;
   1127   1.1        ad 	base_chunk_nodes = node;
   1128   1.1        ad 	malloc_mutex_unlock(&base_mtx);
   1129   1.1        ad }
   1130   1.1        ad 
   1131   1.1        ad /******************************************************************************/
   1132   1.1        ad 
   1133   1.1        ad #ifdef MALLOC_STATS
   1134   1.1        ad static void
   1135   1.1        ad stats_print(arena_t *arena)
   1136   1.1        ad {
   1137   1.1        ad 	unsigned i;
   1138   1.1        ad 	int gap_start;
   1139   1.1        ad 
   1140   1.1        ad 	malloc_printf(
   1141   1.1        ad 	    "          allocated/mapped            nmalloc      ndalloc\n");
   1142   1.2        ad 
   1143   1.2        ad 	malloc_printf("small: %12zu %-12s %12llu %12llu\n",
   1144   1.1        ad 	    arena->stats.allocated_small, "", arena->stats.nmalloc_small,
   1145   1.1        ad 	    arena->stats.ndalloc_small);
   1146   1.2        ad 	malloc_printf("large: %12zu %-12s %12llu %12llu\n",
   1147   1.1        ad 	    arena->stats.allocated_large, "", arena->stats.nmalloc_large,
   1148   1.1        ad 	    arena->stats.ndalloc_large);
   1149   1.2        ad 	malloc_printf("total: %12zu/%-12zu %12llu %12llu\n",
   1150   1.1        ad 	    arena->stats.allocated_small + arena->stats.allocated_large,
   1151   1.1        ad 	    arena->stats.mapped,
   1152   1.1        ad 	    arena->stats.nmalloc_small + arena->stats.nmalloc_large,
   1153   1.1        ad 	    arena->stats.ndalloc_small + arena->stats.ndalloc_large);
   1154   1.1        ad 
   1155   1.1        ad 	malloc_printf("bins:     bin   size regs pgs  requests   newruns"
   1156   1.1        ad 	    "    reruns maxruns curruns\n");
   1157   1.1        ad 	for (i = 0, gap_start = -1; i < ntbins + nqbins + nsbins; i++) {
   1158   1.1        ad 		if (arena->bins[i].stats.nrequests == 0) {
   1159   1.1        ad 			if (gap_start == -1)
   1160   1.1        ad 				gap_start = i;
   1161   1.1        ad 		} else {
   1162   1.1        ad 			if (gap_start != -1) {
   1163   1.1        ad 				if (i > gap_start + 1) {
   1164   1.1        ad 					/* Gap of more than one size class. */
   1165   1.1        ad 					malloc_printf("[%u..%u]\n",
   1166   1.1        ad 					    gap_start, i - 1);
   1167   1.1        ad 				} else {
   1168   1.1        ad 					/* Gap of one size class. */
   1169   1.1        ad 					malloc_printf("[%u]\n", gap_start);
   1170   1.1        ad 				}
   1171   1.1        ad 				gap_start = -1;
   1172   1.1        ad 			}
   1173   1.1        ad 			malloc_printf(
   1174   1.1        ad 			    "%13u %1s %4u %4u %3u %9llu %9llu"
   1175   1.1        ad 			    " %9llu %7lu %7lu\n",
   1176   1.1        ad 			    i,
   1177   1.1        ad 			    i < ntbins ? "T" : i < ntbins + nqbins ? "Q" : "S",
   1178   1.1        ad 			    arena->bins[i].reg_size,
   1179   1.1        ad 			    arena->bins[i].nregs,
   1180   1.1        ad 			    arena->bins[i].run_size >> pagesize_2pow,
   1181   1.1        ad 			    arena->bins[i].stats.nrequests,
   1182   1.1        ad 			    arena->bins[i].stats.nruns,
   1183   1.1        ad 			    arena->bins[i].stats.reruns,
   1184   1.1        ad 			    arena->bins[i].stats.highruns,
   1185   1.1        ad 			    arena->bins[i].stats.curruns);
   1186   1.1        ad 		}
   1187   1.1        ad 	}
   1188   1.1        ad 	if (gap_start != -1) {
   1189   1.1        ad 		if (i > gap_start + 1) {
   1190   1.1        ad 			/* Gap of more than one size class. */
   1191   1.1        ad 			malloc_printf("[%u..%u]\n", gap_start, i - 1);
   1192   1.1        ad 		} else {
   1193   1.1        ad 			/* Gap of one size class. */
   1194   1.1        ad 			malloc_printf("[%u]\n", gap_start);
   1195   1.1        ad 		}
   1196   1.1        ad 	}
   1197   1.1        ad }
   1198   1.1        ad #endif
   1199   1.1        ad 
   1200   1.1        ad /*
   1201   1.1        ad  * End Utility functions/macros.
   1202   1.1        ad  */
   1203   1.1        ad /******************************************************************************/
   1204   1.1        ad /*
   1205   1.1        ad  * Begin chunk management functions.
   1206   1.1        ad  */
   1207   1.1        ad 
   1208   1.7      yamt #ifndef lint
   1209   1.1        ad static inline int
   1210   1.1        ad chunk_comp(chunk_node_t *a, chunk_node_t *b)
   1211   1.1        ad {
   1212   1.1        ad 
   1213   1.1        ad 	assert(a != NULL);
   1214   1.1        ad 	assert(b != NULL);
   1215   1.1        ad 
   1216   1.1        ad 	if ((uintptr_t)a->chunk < (uintptr_t)b->chunk)
   1217   1.1        ad 		return (-1);
   1218   1.1        ad 	else if (a->chunk == b->chunk)
   1219   1.1        ad 		return (0);
   1220   1.1        ad 	else
   1221   1.1        ad 		return (1);
   1222   1.1        ad }
   1223   1.1        ad 
   1224   1.1        ad /* Generate red-black tree code for chunks. */
   1225   1.1        ad RB_GENERATE_STATIC(chunk_tree_s, chunk_node_s, link, chunk_comp);
   1226   1.2        ad #endif
   1227   1.1        ad 
   1228   1.1        ad static void *
   1229   1.5      yamt pages_map_align(void *addr, size_t size, int align)
   1230   1.1        ad {
   1231   1.1        ad 	void *ret;
   1232   1.1        ad 
   1233   1.1        ad 	/*
   1234   1.1        ad 	 * We don't use MAP_FIXED here, because it can cause the *replacement*
   1235   1.1        ad 	 * of existing mappings, and we only want to create new mappings.
   1236   1.1        ad 	 */
   1237   1.5      yamt 	ret = mmap(addr, size, PROT_READ | PROT_WRITE,
   1238   1.5      yamt 	    MAP_PRIVATE | MAP_ANON | MAP_ALIGNED(align), -1, 0);
   1239   1.1        ad 	assert(ret != NULL);
   1240   1.1        ad 
   1241   1.1        ad 	if (ret == MAP_FAILED)
   1242   1.1        ad 		ret = NULL;
   1243   1.1        ad 	else if (addr != NULL && ret != addr) {
   1244   1.1        ad 		/*
   1245   1.1        ad 		 * We succeeded in mapping memory, but not in the right place.
   1246   1.1        ad 		 */
   1247   1.1        ad 		if (munmap(ret, size) == -1) {
   1248   1.1        ad 			char buf[STRERROR_BUF];
   1249   1.1        ad 
   1250  1.16  christos 			STRERROR_R(errno, buf, sizeof(buf));
   1251  1.16  christos 			_malloc_message(getprogname(),
   1252   1.1        ad 			    ": (malloc) Error in munmap(): ", buf, "\n");
   1253   1.1        ad 			if (opt_abort)
   1254   1.1        ad 				abort();
   1255   1.1        ad 		}
   1256   1.1        ad 		ret = NULL;
   1257   1.1        ad 	}
   1258   1.1        ad 
   1259   1.1        ad 	assert(ret == NULL || (addr == NULL && ret != addr)
   1260   1.1        ad 	    || (addr != NULL && ret == addr));
   1261   1.1        ad 	return (ret);
   1262   1.1        ad }
   1263   1.1        ad 
   1264   1.5      yamt static void *
   1265   1.5      yamt pages_map(void *addr, size_t size)
   1266   1.5      yamt {
   1267   1.5      yamt 
   1268   1.5      yamt 	return pages_map_align(addr, size, 0);
   1269   1.5      yamt }
   1270   1.5      yamt 
   1271   1.1        ad static void
   1272   1.1        ad pages_unmap(void *addr, size_t size)
   1273   1.1        ad {
   1274   1.1        ad 
   1275   1.1        ad 	if (munmap(addr, size) == -1) {
   1276   1.1        ad 		char buf[STRERROR_BUF];
   1277   1.1        ad 
   1278  1.16  christos 		STRERROR_R(errno, buf, sizeof(buf));
   1279  1.16  christos 		_malloc_message(getprogname(),
   1280   1.1        ad 		    ": (malloc) Error in munmap(): ", buf, "\n");
   1281   1.1        ad 		if (opt_abort)
   1282   1.1        ad 			abort();
   1283   1.1        ad 	}
   1284   1.1        ad }
   1285   1.1        ad 
   1286   1.1        ad static void *
   1287   1.1        ad chunk_alloc(size_t size)
   1288   1.1        ad {
   1289   1.1        ad 	void *ret, *chunk;
   1290   1.1        ad 	chunk_node_t *tchunk, *delchunk;
   1291   1.1        ad 
   1292   1.1        ad 	assert(size != 0);
   1293   1.1        ad 	assert((size & chunksize_mask) == 0);
   1294   1.1        ad 
   1295   1.1        ad 	malloc_mutex_lock(&chunks_mtx);
   1296   1.1        ad 
   1297   1.1        ad 	if (size == chunksize) {
   1298   1.1        ad 		/*
   1299   1.1        ad 		 * Check for address ranges that were previously chunks and try
   1300   1.1        ad 		 * to use them.
   1301   1.1        ad 		 */
   1302   1.1        ad 
   1303   1.2        ad 		/* LINTED */
   1304   1.1        ad 		tchunk = RB_MIN(chunk_tree_s, &old_chunks);
   1305   1.1        ad 		while (tchunk != NULL) {
   1306   1.1        ad 			/* Found an address range.  Try to recycle it. */
   1307   1.1        ad 
   1308   1.1        ad 			chunk = tchunk->chunk;
   1309   1.1        ad 			delchunk = tchunk;
   1310   1.2        ad 			/* LINTED */
   1311   1.1        ad 			tchunk = RB_NEXT(chunk_tree_s, &old_chunks, delchunk);
   1312   1.1        ad 
   1313   1.1        ad 			/* Remove delchunk from the tree. */
   1314   1.2        ad 			/* LINTED */
   1315   1.1        ad 			RB_REMOVE(chunk_tree_s, &old_chunks, delchunk);
   1316   1.1        ad 			base_chunk_node_dealloc(delchunk);
   1317   1.1        ad 
   1318   1.1        ad #ifdef USE_BRK
   1319   1.1        ad 			if ((uintptr_t)chunk >= (uintptr_t)brk_base
   1320   1.1        ad 			    && (uintptr_t)chunk < (uintptr_t)brk_max) {
   1321   1.1        ad 				/* Re-use a previously freed brk chunk. */
   1322   1.1        ad 				ret = chunk;
   1323   1.1        ad 				goto RETURN;
   1324   1.1        ad 			}
   1325   1.1        ad #endif
   1326   1.1        ad 			if ((ret = pages_map(chunk, size)) != NULL) {
   1327   1.1        ad 				/* Success. */
   1328   1.1        ad 				goto RETURN;
   1329   1.1        ad 			}
   1330   1.1        ad 		}
   1331   1.1        ad 	}
   1332   1.1        ad 
   1333   1.1        ad 	/*
   1334   1.1        ad 	 * Try to over-allocate, but allow the OS to place the allocation
   1335   1.1        ad 	 * anywhere.  Beware of size_t wrap-around.
   1336   1.1        ad 	 */
   1337   1.1        ad 	if (size + chunksize > size) {
   1338   1.5      yamt 		if ((ret = pages_map_align(NULL, size, chunksize_2pow))
   1339   1.5      yamt 		    != NULL) {
   1340   1.1        ad 			goto RETURN;
   1341   1.1        ad 		}
   1342   1.1        ad 	}
   1343   1.1        ad 
   1344   1.1        ad #ifdef USE_BRK
   1345   1.1        ad 	/*
   1346   1.1        ad 	 * Try to create allocations in brk, in order to make full use of
   1347   1.1        ad 	 * limited address space.
   1348   1.1        ad 	 */
   1349   1.1        ad 	if (brk_prev != (void *)-1) {
   1350   1.1        ad 		void *brk_cur;
   1351   1.1        ad 		intptr_t incr;
   1352   1.1        ad 
   1353   1.1        ad 		/*
   1354   1.1        ad 		 * The loop is necessary to recover from races with other
   1355   1.1        ad 		 * threads that are using brk for something other than malloc.
   1356   1.1        ad 		 */
   1357   1.1        ad 		malloc_mutex_lock(&brk_mtx);
   1358   1.1        ad 		do {
   1359   1.1        ad 			/* Get the current end of brk. */
   1360   1.1        ad 			brk_cur = sbrk(0);
   1361   1.1        ad 
   1362   1.1        ad 			/*
   1363   1.1        ad 			 * Calculate how much padding is necessary to
   1364   1.1        ad 			 * chunk-align the end of brk.
   1365   1.1        ad 			 */
   1366   1.1        ad 			incr = (intptr_t)size
   1367   1.1        ad 			    - (intptr_t)CHUNK_ADDR2OFFSET(brk_cur);
   1368  1.20     lukem 			if (incr == (intptr_t)size) {
   1369   1.1        ad 				ret = brk_cur;
   1370   1.1        ad 			} else {
   1371   1.1        ad 				ret = (void *)((intptr_t)brk_cur + incr);
   1372   1.1        ad 				incr += size;
   1373   1.1        ad 			}
   1374   1.1        ad 
   1375   1.1        ad 			brk_prev = sbrk(incr);
   1376   1.1        ad 			if (brk_prev == brk_cur) {
   1377   1.1        ad 				/* Success. */
   1378   1.1        ad 				malloc_mutex_unlock(&brk_mtx);
   1379   1.1        ad 				brk_max = (void *)((intptr_t)ret + size);
   1380   1.1        ad 				goto RETURN;
   1381   1.1        ad 			}
   1382   1.1        ad 		} while (brk_prev != (void *)-1);
   1383   1.1        ad 		malloc_mutex_unlock(&brk_mtx);
   1384   1.1        ad 	}
   1385   1.1        ad #endif
   1386   1.1        ad 
   1387   1.1        ad 	/* All strategies for allocation failed. */
   1388   1.1        ad 	ret = NULL;
   1389   1.1        ad RETURN:
   1390   1.1        ad 	if (ret != NULL) {
   1391   1.1        ad 		chunk_node_t key;
   1392   1.1        ad 		/*
   1393   1.1        ad 		 * Clean out any entries in old_chunks that overlap with the
   1394   1.1        ad 		 * memory we just allocated.
   1395   1.1        ad 		 */
   1396   1.1        ad 		key.chunk = ret;
   1397   1.2        ad 		/* LINTED */
   1398   1.1        ad 		tchunk = RB_NFIND(chunk_tree_s, &old_chunks, &key);
   1399   1.1        ad 		while (tchunk != NULL
   1400   1.1        ad 		    && (uintptr_t)tchunk->chunk >= (uintptr_t)ret
   1401   1.1        ad 		    && (uintptr_t)tchunk->chunk < (uintptr_t)ret + size) {
   1402   1.1        ad 			delchunk = tchunk;
   1403   1.2        ad 			/* LINTED */
   1404   1.1        ad 			tchunk = RB_NEXT(chunk_tree_s, &old_chunks, delchunk);
   1405   1.2        ad 			/* LINTED */
   1406   1.1        ad 			RB_REMOVE(chunk_tree_s, &old_chunks, delchunk);
   1407   1.1        ad 			base_chunk_node_dealloc(delchunk);
   1408   1.1        ad 		}
   1409   1.1        ad 
   1410   1.1        ad 	}
   1411   1.1        ad #ifdef MALLOC_STATS
   1412   1.1        ad 	if (ret != NULL) {
   1413   1.1        ad 		stats_chunks.nchunks += (size / chunksize);
   1414   1.1        ad 		stats_chunks.curchunks += (size / chunksize);
   1415   1.1        ad 	}
   1416   1.1        ad 	if (stats_chunks.curchunks > stats_chunks.highchunks)
   1417   1.1        ad 		stats_chunks.highchunks = stats_chunks.curchunks;
   1418   1.1        ad #endif
   1419   1.1        ad 	malloc_mutex_unlock(&chunks_mtx);
   1420   1.1        ad 
   1421   1.1        ad 	assert(CHUNK_ADDR2BASE(ret) == ret);
   1422   1.1        ad 	return (ret);
   1423   1.1        ad }
   1424   1.1        ad 
   1425   1.1        ad static void
   1426   1.1        ad chunk_dealloc(void *chunk, size_t size)
   1427   1.1        ad {
   1428   1.1        ad 	chunk_node_t *node;
   1429   1.1        ad 
   1430   1.1        ad 	assert(chunk != NULL);
   1431   1.1        ad 	assert(CHUNK_ADDR2BASE(chunk) == chunk);
   1432   1.1        ad 	assert(size != 0);
   1433   1.1        ad 	assert((size & chunksize_mask) == 0);
   1434   1.1        ad 
   1435   1.1        ad 	malloc_mutex_lock(&chunks_mtx);
   1436   1.1        ad 
   1437   1.1        ad #ifdef USE_BRK
   1438   1.1        ad 	if ((uintptr_t)chunk >= (uintptr_t)brk_base
   1439   1.1        ad 	    && (uintptr_t)chunk < (uintptr_t)brk_max) {
   1440   1.1        ad 		void *brk_cur;
   1441   1.1        ad 
   1442   1.1        ad 		malloc_mutex_lock(&brk_mtx);
   1443   1.1        ad 		/* Get the current end of brk. */
   1444   1.1        ad 		brk_cur = sbrk(0);
   1445   1.1        ad 
   1446   1.1        ad 		/*
   1447   1.1        ad 		 * Try to shrink the data segment if this chunk is at the end
   1448   1.1        ad 		 * of the data segment.  The sbrk() call here is subject to a
   1449   1.1        ad 		 * race condition with threads that use brk(2) or sbrk(2)
   1450   1.1        ad 		 * directly, but the alternative would be to leak memory for
   1451   1.1        ad 		 * the sake of poorly designed multi-threaded programs.
   1452   1.1        ad 		 */
   1453   1.1        ad 		if (brk_cur == brk_max
   1454   1.1        ad 		    && (void *)((uintptr_t)chunk + size) == brk_max
   1455   1.1        ad 		    && sbrk(-(intptr_t)size) == brk_max) {
   1456   1.1        ad 			malloc_mutex_unlock(&brk_mtx);
   1457   1.1        ad 			if (brk_prev == brk_max) {
   1458   1.1        ad 				/* Success. */
   1459   1.1        ad 				brk_prev = (void *)((intptr_t)brk_max
   1460   1.1        ad 				    - (intptr_t)size);
   1461   1.1        ad 				brk_max = brk_prev;
   1462   1.1        ad 			}
   1463   1.1        ad 		} else {
   1464   1.1        ad 			size_t offset;
   1465   1.1        ad 
   1466   1.1        ad 			malloc_mutex_unlock(&brk_mtx);
   1467   1.1        ad 			madvise(chunk, size, MADV_FREE);
   1468   1.1        ad 
   1469   1.1        ad 			/*
   1470   1.1        ad 			 * Iteratively create records of each chunk-sized
   1471   1.1        ad 			 * memory region that 'chunk' is comprised of, so that
   1472   1.1        ad 			 * the address range can be recycled if memory usage
   1473   1.1        ad 			 * increases later on.
   1474   1.1        ad 			 */
   1475   1.1        ad 			for (offset = 0; offset < size; offset += chunksize) {
   1476   1.1        ad 				node = base_chunk_node_alloc();
   1477   1.1        ad 				if (node == NULL)
   1478   1.1        ad 					break;
   1479   1.1        ad 
   1480   1.1        ad 				node->chunk = (void *)((uintptr_t)chunk
   1481   1.1        ad 				    + (uintptr_t)offset);
   1482   1.1        ad 				node->size = chunksize;
   1483   1.2        ad 				/* LINTED */
   1484   1.1        ad 				RB_INSERT(chunk_tree_s, &old_chunks, node);
   1485   1.1        ad 			}
   1486   1.1        ad 		}
   1487   1.1        ad 	} else {
   1488   1.1        ad #endif
   1489   1.1        ad 		pages_unmap(chunk, size);
   1490   1.1        ad 
   1491   1.1        ad 		/*
   1492   1.1        ad 		 * Make a record of the chunk's address, so that the address
   1493   1.1        ad 		 * range can be recycled if memory usage increases later on.
   1494   1.1        ad 		 * Don't bother to create entries if (size > chunksize), since
   1495   1.1        ad 		 * doing so could cause scalability issues for truly gargantuan
   1496   1.1        ad 		 * objects (many gigabytes or larger).
   1497   1.1        ad 		 */
   1498   1.1        ad 		if (size == chunksize) {
   1499   1.1        ad 			node = base_chunk_node_alloc();
   1500   1.1        ad 			if (node != NULL) {
   1501   1.1        ad 				node->chunk = (void *)(uintptr_t)chunk;
   1502   1.1        ad 				node->size = chunksize;
   1503   1.2        ad 				/* LINTED */
   1504   1.1        ad 				RB_INSERT(chunk_tree_s, &old_chunks, node);
   1505   1.1        ad 			}
   1506   1.1        ad 		}
   1507   1.1        ad #ifdef USE_BRK
   1508   1.1        ad 	}
   1509   1.1        ad #endif
   1510   1.1        ad 
   1511   1.1        ad #ifdef MALLOC_STATS
   1512   1.1        ad 	stats_chunks.curchunks -= (size / chunksize);
   1513   1.1        ad #endif
   1514   1.1        ad 	malloc_mutex_unlock(&chunks_mtx);
   1515   1.1        ad }
   1516   1.1        ad 
   1517   1.1        ad /*
   1518   1.1        ad  * End chunk management functions.
   1519   1.1        ad  */
   1520   1.1        ad /******************************************************************************/
   1521   1.1        ad /*
   1522   1.1        ad  * Begin arena.
   1523   1.1        ad  */
   1524   1.1        ad 
   1525   1.1        ad /*
   1526  1.17        ad  * Choose an arena based on a per-thread and (optimistically) per-CPU value.
   1527  1.17        ad  *
   1528  1.17        ad  * We maintain at least one block of arenas.  Usually there are more.
   1529  1.17        ad  * The blocks are $ncpu arenas in size.  Whole blocks are 'hashed'
   1530  1.17        ad  * amongst threads.  To accomplish this, next_arena advances only in
   1531  1.17        ad  * ncpu steps.
   1532   1.1        ad  */
   1533  1.19        ad static __noinline arena_t *
   1534  1.19        ad choose_arena_hard(void)
   1535   1.1        ad {
   1536  1.17        ad 	unsigned i, curcpu;
   1537  1.17        ad 	arena_t **map;
   1538   1.1        ad 
   1539  1.17        ad 	/* Initialize the current block of arenas and advance to next. */
   1540   1.1        ad 	malloc_mutex_lock(&arenas_mtx);
   1541  1.17        ad 	assert(next_arena % ncpus == 0);
   1542  1.17        ad 	assert(narenas % ncpus == 0);
   1543  1.17        ad 	map = &arenas[next_arena];
   1544  1.17        ad 	set_arenas_map(map);
   1545  1.17        ad 	for (i = 0; i < ncpus; i++) {
   1546  1.17        ad 		if (arenas[next_arena] == NULL)
   1547  1.17        ad 			arenas_extend(next_arena);
   1548  1.17        ad 		next_arena = (next_arena + 1) % narenas;
   1549  1.15        ad 	}
   1550   1.1        ad 	malloc_mutex_unlock(&arenas_mtx);
   1551   1.1        ad 
   1552  1.17        ad 	/*
   1553  1.17        ad 	 * If we were unable to allocate an arena above, then default to
   1554  1.17        ad 	 * the first arena, which is always present.
   1555  1.17        ad 	 */
   1556  1.17        ad 	curcpu = thr_curcpu();
   1557  1.17        ad 	if (map[curcpu] != NULL)
   1558  1.17        ad 		return map[curcpu];
   1559  1.17        ad 	return arenas[0];
   1560   1.1        ad }
   1561   1.1        ad 
   1562  1.19        ad static inline arena_t *
   1563  1.19        ad choose_arena(void)
   1564  1.19        ad {
   1565  1.19        ad 	unsigned curcpu;
   1566  1.19        ad 	arena_t **map;
   1567  1.19        ad 
   1568  1.19        ad 	map = get_arenas_map();
   1569  1.19        ad 	curcpu = thr_curcpu();
   1570  1.19        ad 	if (__predict_true(map != NULL && map[curcpu] != NULL))
   1571  1.19        ad 		return map[curcpu];
   1572  1.19        ad 
   1573  1.19        ad         return choose_arena_hard();
   1574  1.19        ad }
   1575  1.19        ad 
   1576   1.7      yamt #ifndef lint
   1577   1.1        ad static inline int
   1578   1.1        ad arena_chunk_comp(arena_chunk_t *a, arena_chunk_t *b)
   1579   1.1        ad {
   1580   1.1        ad 
   1581   1.1        ad 	assert(a != NULL);
   1582   1.1        ad 	assert(b != NULL);
   1583   1.1        ad 
   1584   1.1        ad 	if ((uintptr_t)a < (uintptr_t)b)
   1585   1.1        ad 		return (-1);
   1586   1.1        ad 	else if (a == b)
   1587   1.1        ad 		return (0);
   1588   1.1        ad 	else
   1589   1.1        ad 		return (1);
   1590   1.1        ad }
   1591   1.1        ad 
   1592   1.1        ad /* Generate red-black tree code for arena chunks. */
   1593   1.1        ad RB_GENERATE_STATIC(arena_chunk_tree_s, arena_chunk_s, link, arena_chunk_comp);
   1594   1.2        ad #endif
   1595   1.1        ad 
   1596   1.7      yamt #ifndef lint
   1597   1.1        ad static inline int
   1598   1.1        ad arena_run_comp(arena_run_t *a, arena_run_t *b)
   1599   1.1        ad {
   1600   1.1        ad 
   1601   1.1        ad 	assert(a != NULL);
   1602   1.1        ad 	assert(b != NULL);
   1603   1.1        ad 
   1604   1.1        ad 	if ((uintptr_t)a < (uintptr_t)b)
   1605   1.1        ad 		return (-1);
   1606   1.1        ad 	else if (a == b)
   1607   1.1        ad 		return (0);
   1608   1.1        ad 	else
   1609   1.1        ad 		return (1);
   1610   1.1        ad }
   1611   1.1        ad 
   1612   1.1        ad /* Generate red-black tree code for arena runs. */
   1613   1.1        ad RB_GENERATE_STATIC(arena_run_tree_s, arena_run_s, link, arena_run_comp);
   1614   1.2        ad #endif
   1615   1.1        ad 
   1616   1.1        ad static inline void *
   1617   1.1        ad arena_run_reg_alloc(arena_run_t *run, arena_bin_t *bin)
   1618   1.1        ad {
   1619   1.1        ad 	void *ret;
   1620   1.1        ad 	unsigned i, mask, bit, regind;
   1621   1.1        ad 
   1622   1.1        ad 	assert(run->magic == ARENA_RUN_MAGIC);
   1623   1.1        ad 	assert(run->regs_minelm < bin->regs_mask_nelms);
   1624   1.1        ad 
   1625   1.1        ad 	/*
   1626   1.1        ad 	 * Move the first check outside the loop, so that run->regs_minelm can
   1627   1.1        ad 	 * be updated unconditionally, without the possibility of updating it
   1628   1.1        ad 	 * multiple times.
   1629   1.1        ad 	 */
   1630   1.1        ad 	i = run->regs_minelm;
   1631   1.1        ad 	mask = run->regs_mask[i];
   1632   1.1        ad 	if (mask != 0) {
   1633   1.1        ad 		/* Usable allocation found. */
   1634   1.1        ad 		bit = ffs((int)mask) - 1;
   1635   1.1        ad 
   1636   1.1        ad 		regind = ((i << (SIZEOF_INT_2POW + 3)) + bit);
   1637   1.1        ad 		ret = (void *)(((uintptr_t)run) + bin->reg0_offset
   1638   1.1        ad 		    + (bin->reg_size * regind));
   1639   1.1        ad 
   1640   1.1        ad 		/* Clear bit. */
   1641   1.1        ad 		mask ^= (1 << bit);
   1642   1.1        ad 		run->regs_mask[i] = mask;
   1643   1.1        ad 
   1644   1.1        ad 		return (ret);
   1645   1.1        ad 	}
   1646   1.1        ad 
   1647   1.1        ad 	for (i++; i < bin->regs_mask_nelms; i++) {
   1648   1.1        ad 		mask = run->regs_mask[i];
   1649   1.1        ad 		if (mask != 0) {
   1650   1.1        ad 			/* Usable allocation found. */
   1651   1.1        ad 			bit = ffs((int)mask) - 1;
   1652   1.1        ad 
   1653   1.1        ad 			regind = ((i << (SIZEOF_INT_2POW + 3)) + bit);
   1654   1.1        ad 			ret = (void *)(((uintptr_t)run) + bin->reg0_offset
   1655   1.1        ad 			    + (bin->reg_size * regind));
   1656   1.1        ad 
   1657   1.1        ad 			/* Clear bit. */
   1658   1.1        ad 			mask ^= (1 << bit);
   1659   1.1        ad 			run->regs_mask[i] = mask;
   1660   1.1        ad 
   1661   1.1        ad 			/*
   1662   1.1        ad 			 * Make a note that nothing before this element
   1663   1.1        ad 			 * contains a free region.
   1664   1.1        ad 			 */
   1665   1.1        ad 			run->regs_minelm = i; /* Low payoff: + (mask == 0); */
   1666   1.1        ad 
   1667   1.1        ad 			return (ret);
   1668   1.1        ad 		}
   1669   1.1        ad 	}
   1670   1.1        ad 	/* Not reached. */
   1671   1.7      yamt 	/* LINTED */
   1672   1.1        ad 	assert(0);
   1673   1.1        ad 	return (NULL);
   1674   1.1        ad }
   1675   1.1        ad 
   1676   1.1        ad static inline void
   1677   1.1        ad arena_run_reg_dalloc(arena_run_t *run, arena_bin_t *bin, void *ptr, size_t size)
   1678   1.1        ad {
   1679   1.1        ad 	/*
   1680   1.1        ad 	 * To divide by a number D that is not a power of two we multiply
   1681   1.1        ad 	 * by (2^21 / D) and then right shift by 21 positions.
   1682   1.1        ad 	 *
   1683   1.1        ad 	 *   X / D
   1684   1.1        ad 	 *
   1685   1.1        ad 	 * becomes
   1686   1.1        ad 	 *
   1687   1.1        ad 	 *   (X * size_invs[(D >> QUANTUM_2POW_MIN) - 3]) >> SIZE_INV_SHIFT
   1688   1.1        ad 	 */
   1689   1.1        ad #define SIZE_INV_SHIFT 21
   1690   1.1        ad #define SIZE_INV(s) (((1 << SIZE_INV_SHIFT) / (s << QUANTUM_2POW_MIN)) + 1)
   1691   1.1        ad 	static const unsigned size_invs[] = {
   1692   1.1        ad 	    SIZE_INV(3),
   1693   1.1        ad 	    SIZE_INV(4), SIZE_INV(5), SIZE_INV(6), SIZE_INV(7),
   1694   1.1        ad 	    SIZE_INV(8), SIZE_INV(9), SIZE_INV(10), SIZE_INV(11),
   1695   1.1        ad 	    SIZE_INV(12),SIZE_INV(13), SIZE_INV(14), SIZE_INV(15),
   1696   1.1        ad 	    SIZE_INV(16),SIZE_INV(17), SIZE_INV(18), SIZE_INV(19),
   1697   1.1        ad 	    SIZE_INV(20),SIZE_INV(21), SIZE_INV(22), SIZE_INV(23),
   1698   1.1        ad 	    SIZE_INV(24),SIZE_INV(25), SIZE_INV(26), SIZE_INV(27),
   1699   1.1        ad 	    SIZE_INV(28),SIZE_INV(29), SIZE_INV(30), SIZE_INV(31)
   1700   1.1        ad #if (QUANTUM_2POW_MIN < 4)
   1701   1.1        ad 	    ,
   1702   1.1        ad 	    SIZE_INV(32), SIZE_INV(33), SIZE_INV(34), SIZE_INV(35),
   1703   1.1        ad 	    SIZE_INV(36), SIZE_INV(37), SIZE_INV(38), SIZE_INV(39),
   1704   1.1        ad 	    SIZE_INV(40), SIZE_INV(41), SIZE_INV(42), SIZE_INV(43),
   1705   1.1        ad 	    SIZE_INV(44), SIZE_INV(45), SIZE_INV(46), SIZE_INV(47),
   1706   1.1        ad 	    SIZE_INV(48), SIZE_INV(49), SIZE_INV(50), SIZE_INV(51),
   1707   1.1        ad 	    SIZE_INV(52), SIZE_INV(53), SIZE_INV(54), SIZE_INV(55),
   1708   1.1        ad 	    SIZE_INV(56), SIZE_INV(57), SIZE_INV(58), SIZE_INV(59),
   1709   1.1        ad 	    SIZE_INV(60), SIZE_INV(61), SIZE_INV(62), SIZE_INV(63)
   1710   1.1        ad #endif
   1711   1.1        ad 	};
   1712   1.1        ad 	unsigned diff, regind, elm, bit;
   1713   1.1        ad 
   1714   1.7      yamt 	/* LINTED */
   1715   1.1        ad 	assert(run->magic == ARENA_RUN_MAGIC);
   1716   1.1        ad 	assert(((sizeof(size_invs)) / sizeof(unsigned)) + 3
   1717   1.1        ad 	    >= (SMALL_MAX_DEFAULT >> QUANTUM_2POW_MIN));
   1718   1.1        ad 
   1719   1.1        ad 	/*
   1720   1.1        ad 	 * Avoid doing division with a variable divisor if possible.  Using
   1721   1.1        ad 	 * actual division here can reduce allocator throughput by over 20%!
   1722   1.1        ad 	 */
   1723   1.1        ad 	diff = (unsigned)((uintptr_t)ptr - (uintptr_t)run - bin->reg0_offset);
   1724   1.1        ad 	if ((size & (size - 1)) == 0) {
   1725   1.1        ad 		/*
   1726   1.1        ad 		 * log2_table allows fast division of a power of two in the
   1727   1.1        ad 		 * [1..128] range.
   1728   1.1        ad 		 *
   1729   1.1        ad 		 * (x / divisor) becomes (x >> log2_table[divisor - 1]).
   1730   1.1        ad 		 */
   1731   1.1        ad 		static const unsigned char log2_table[] = {
   1732   1.1        ad 		    0, 1, 0, 2, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 4,
   1733   1.1        ad 		    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5,
   1734   1.1        ad 		    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
   1735   1.1        ad 		    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6,
   1736   1.1        ad 		    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
   1737   1.1        ad 		    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
   1738   1.1        ad 		    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
   1739   1.1        ad 		    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7
   1740   1.1        ad 		};
   1741   1.1        ad 
   1742   1.1        ad 		if (size <= 128)
   1743   1.1        ad 			regind = (diff >> log2_table[size - 1]);
   1744   1.1        ad 		else if (size <= 32768)
   1745   1.1        ad 			regind = diff >> (8 + log2_table[(size >> 8) - 1]);
   1746   1.1        ad 		else {
   1747   1.1        ad 			/*
   1748   1.1        ad 			 * The page size is too large for us to use the lookup
   1749   1.1        ad 			 * table.  Use real division.
   1750   1.1        ad 			 */
   1751   1.9  christos 			regind = (unsigned)(diff / size);
   1752   1.1        ad 		}
   1753   1.1        ad 	} else if (size <= ((sizeof(size_invs) / sizeof(unsigned))
   1754   1.1        ad 	    << QUANTUM_2POW_MIN) + 2) {
   1755   1.1        ad 		regind = size_invs[(size >> QUANTUM_2POW_MIN) - 3] * diff;
   1756   1.1        ad 		regind >>= SIZE_INV_SHIFT;
   1757   1.1        ad 	} else {
   1758   1.1        ad 		/*
   1759   1.1        ad 		 * size_invs isn't large enough to handle this size class, so
   1760   1.1        ad 		 * calculate regind using actual division.  This only happens
   1761   1.1        ad 		 * if the user increases small_max via the 'S' runtime
   1762   1.1        ad 		 * configuration option.
   1763   1.1        ad 		 */
   1764   1.9  christos 		regind = (unsigned)(diff / size);
   1765   1.1        ad 	};
   1766   1.1        ad 	assert(diff == regind * size);
   1767   1.1        ad 	assert(regind < bin->nregs);
   1768   1.1        ad 
   1769   1.1        ad 	elm = regind >> (SIZEOF_INT_2POW + 3);
   1770   1.1        ad 	if (elm < run->regs_minelm)
   1771   1.1        ad 		run->regs_minelm = elm;
   1772   1.1        ad 	bit = regind - (elm << (SIZEOF_INT_2POW + 3));
   1773   1.1        ad 	assert((run->regs_mask[elm] & (1 << bit)) == 0);
   1774   1.1        ad 	run->regs_mask[elm] |= (1 << bit);
   1775   1.1        ad #undef SIZE_INV
   1776   1.1        ad #undef SIZE_INV_SHIFT
   1777   1.1        ad }
   1778   1.1        ad 
   1779   1.1        ad static void
   1780   1.1        ad arena_run_split(arena_t *arena, arena_run_t *run, size_t size)
   1781   1.1        ad {
   1782   1.1        ad 	arena_chunk_t *chunk;
   1783   1.1        ad 	unsigned run_ind, map_offset, total_pages, need_pages, rem_pages;
   1784   1.1        ad 	unsigned i;
   1785   1.1        ad 
   1786   1.1        ad 	chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(run);
   1787   1.1        ad 	run_ind = (unsigned)(((uintptr_t)run - (uintptr_t)chunk)
   1788   1.1        ad 	    >> pagesize_2pow);
   1789   1.1        ad 	total_pages = chunk->map[run_ind].npages;
   1790   1.9  christos 	need_pages = (unsigned)(size >> pagesize_2pow);
   1791   1.1        ad 	assert(need_pages <= total_pages);
   1792   1.1        ad 	rem_pages = total_pages - need_pages;
   1793   1.1        ad 
   1794   1.1        ad 	/* Split enough pages from the front of run to fit allocation size. */
   1795   1.1        ad 	map_offset = run_ind;
   1796   1.1        ad 	for (i = 0; i < need_pages; i++) {
   1797   1.1        ad 		chunk->map[map_offset + i].npages = need_pages;
   1798   1.1        ad 		chunk->map[map_offset + i].pos = i;
   1799   1.1        ad 	}
   1800   1.1        ad 
   1801   1.1        ad 	/* Keep track of trailing unused pages for later use. */
   1802   1.1        ad 	if (rem_pages > 0) {
   1803   1.1        ad 		/* Update map for trailing pages. */
   1804   1.1        ad 		map_offset += need_pages;
   1805   1.1        ad 		chunk->map[map_offset].npages = rem_pages;
   1806   1.1        ad 		chunk->map[map_offset].pos = POS_FREE;
   1807   1.1        ad 		chunk->map[map_offset + rem_pages - 1].npages = rem_pages;
   1808   1.1        ad 		chunk->map[map_offset + rem_pages - 1].pos = POS_FREE;
   1809   1.1        ad 	}
   1810   1.1        ad 
   1811   1.1        ad 	chunk->pages_used += need_pages;
   1812   1.1        ad }
   1813   1.1        ad 
   1814   1.1        ad static arena_chunk_t *
   1815   1.1        ad arena_chunk_alloc(arena_t *arena)
   1816   1.1        ad {
   1817   1.1        ad 	arena_chunk_t *chunk;
   1818   1.1        ad 
   1819   1.1        ad 	if (arena->spare != NULL) {
   1820   1.1        ad 		chunk = arena->spare;
   1821   1.1        ad 		arena->spare = NULL;
   1822   1.1        ad 
   1823   1.2        ad 		/* LINTED */
   1824   1.1        ad 		RB_INSERT(arena_chunk_tree_s, &arena->chunks, chunk);
   1825   1.1        ad 	} else {
   1826   1.1        ad 		chunk = (arena_chunk_t *)chunk_alloc(chunksize);
   1827   1.1        ad 		if (chunk == NULL)
   1828   1.1        ad 			return (NULL);
   1829   1.1        ad #ifdef MALLOC_STATS
   1830   1.1        ad 		arena->stats.mapped += chunksize;
   1831   1.1        ad #endif
   1832   1.1        ad 
   1833   1.1        ad 		chunk->arena = arena;
   1834   1.1        ad 
   1835   1.2        ad 		/* LINTED */
   1836   1.1        ad 		RB_INSERT(arena_chunk_tree_s, &arena->chunks, chunk);
   1837   1.1        ad 
   1838   1.1        ad 		/*
   1839   1.1        ad 		 * Claim that no pages are in use, since the header is merely
   1840   1.1        ad 		 * overhead.
   1841   1.1        ad 		 */
   1842   1.1        ad 		chunk->pages_used = 0;
   1843   1.1        ad 
   1844   1.1        ad 		chunk->max_frun_npages = chunk_npages -
   1845   1.1        ad 		    arena_chunk_header_npages;
   1846   1.1        ad 		chunk->min_frun_ind = arena_chunk_header_npages;
   1847   1.1        ad 
   1848   1.1        ad 		/*
   1849   1.1        ad 		 * Initialize enough of the map to support one maximal free run.
   1850   1.1        ad 		 */
   1851   1.1        ad 		chunk->map[arena_chunk_header_npages].npages = chunk_npages -
   1852   1.1        ad 		    arena_chunk_header_npages;
   1853   1.1        ad 		chunk->map[arena_chunk_header_npages].pos = POS_FREE;
   1854   1.1        ad 		chunk->map[chunk_npages - 1].npages = chunk_npages -
   1855   1.1        ad 		    arena_chunk_header_npages;
   1856   1.1        ad 		chunk->map[chunk_npages - 1].pos = POS_FREE;
   1857   1.1        ad 	}
   1858   1.1        ad 
   1859   1.1        ad 	return (chunk);
   1860   1.1        ad }
   1861   1.1        ad 
   1862   1.1        ad static void
   1863   1.1        ad arena_chunk_dealloc(arena_t *arena, arena_chunk_t *chunk)
   1864   1.1        ad {
   1865   1.1        ad 
   1866   1.1        ad 	/*
   1867   1.1        ad 	 * Remove chunk from the chunk tree, regardless of whether this chunk
   1868   1.1        ad 	 * will be cached, so that the arena does not use it.
   1869   1.1        ad 	 */
   1870   1.2        ad 	/* LINTED */
   1871   1.1        ad 	RB_REMOVE(arena_chunk_tree_s, &chunk->arena->chunks, chunk);
   1872   1.1        ad 
   1873   1.1        ad 	if (opt_hint == false) {
   1874   1.1        ad 		if (arena->spare != NULL) {
   1875   1.1        ad 			chunk_dealloc((void *)arena->spare, chunksize);
   1876   1.1        ad #ifdef MALLOC_STATS
   1877   1.1        ad 			arena->stats.mapped -= chunksize;
   1878   1.1        ad #endif
   1879   1.1        ad 		}
   1880   1.1        ad 		arena->spare = chunk;
   1881   1.1        ad 	} else {
   1882   1.1        ad 		assert(arena->spare == NULL);
   1883   1.1        ad 		chunk_dealloc((void *)chunk, chunksize);
   1884   1.1        ad #ifdef MALLOC_STATS
   1885   1.1        ad 		arena->stats.mapped -= chunksize;
   1886   1.1        ad #endif
   1887   1.1        ad 	}
   1888   1.1        ad }
   1889   1.1        ad 
   1890   1.1        ad static arena_run_t *
   1891   1.1        ad arena_run_alloc(arena_t *arena, size_t size)
   1892   1.1        ad {
   1893   1.1        ad 	arena_chunk_t *chunk;
   1894   1.1        ad 	arena_run_t *run;
   1895   1.1        ad 	unsigned need_npages, limit_pages, compl_need_npages;
   1896   1.1        ad 
   1897   1.1        ad 	assert(size <= (chunksize - (arena_chunk_header_npages <<
   1898   1.1        ad 	    pagesize_2pow)));
   1899   1.1        ad 	assert((size & pagesize_mask) == 0);
   1900   1.1        ad 
   1901   1.1        ad 	/*
   1902   1.1        ad 	 * Search through arena's chunks in address order for a free run that is
   1903   1.1        ad 	 * large enough.  Look for the first fit.
   1904   1.1        ad 	 */
   1905   1.9  christos 	need_npages = (unsigned)(size >> pagesize_2pow);
   1906   1.1        ad 	limit_pages = chunk_npages - arena_chunk_header_npages;
   1907   1.1        ad 	compl_need_npages = limit_pages - need_npages;
   1908   1.2        ad 	/* LINTED */
   1909   1.1        ad 	RB_FOREACH(chunk, arena_chunk_tree_s, &arena->chunks) {
   1910   1.1        ad 		/*
   1911   1.1        ad 		 * Avoid searching this chunk if there are not enough
   1912   1.1        ad 		 * contiguous free pages for there to possibly be a large
   1913   1.1        ad 		 * enough free run.
   1914   1.1        ad 		 */
   1915   1.1        ad 		if (chunk->pages_used <= compl_need_npages &&
   1916   1.1        ad 		    need_npages <= chunk->max_frun_npages) {
   1917   1.1        ad 			arena_chunk_map_t *mapelm;
   1918   1.1        ad 			unsigned i;
   1919   1.1        ad 			unsigned max_frun_npages = 0;
   1920   1.1        ad 			unsigned min_frun_ind = chunk_npages;
   1921   1.1        ad 
   1922   1.1        ad 			assert(chunk->min_frun_ind >=
   1923   1.1        ad 			    arena_chunk_header_npages);
   1924   1.1        ad 			for (i = chunk->min_frun_ind; i < chunk_npages;) {
   1925   1.1        ad 				mapelm = &chunk->map[i];
   1926   1.1        ad 				if (mapelm->pos == POS_FREE) {
   1927   1.1        ad 					if (mapelm->npages >= need_npages) {
   1928   1.1        ad 						run = (arena_run_t *)
   1929   1.1        ad 						    ((uintptr_t)chunk + (i <<
   1930   1.1        ad 						    pagesize_2pow));
   1931   1.1        ad 						/* Update page map. */
   1932   1.1        ad 						arena_run_split(arena, run,
   1933   1.1        ad 						    size);
   1934   1.1        ad 						return (run);
   1935   1.1        ad 					}
   1936   1.1        ad 					if (mapelm->npages >
   1937   1.1        ad 					    max_frun_npages) {
   1938   1.1        ad 						max_frun_npages =
   1939   1.1        ad 						    mapelm->npages;
   1940   1.1        ad 					}
   1941   1.1        ad 					if (i < min_frun_ind) {
   1942   1.1        ad 						min_frun_ind = i;
   1943   1.1        ad 						if (i < chunk->min_frun_ind)
   1944   1.1        ad 							chunk->min_frun_ind = i;
   1945   1.1        ad 					}
   1946   1.1        ad 				}
   1947   1.1        ad 				i += mapelm->npages;
   1948   1.1        ad 			}
   1949   1.1        ad 			/*
   1950   1.1        ad 			 * Search failure.  Reset cached chunk->max_frun_npages.
   1951   1.1        ad 			 * chunk->min_frun_ind was already reset above (if
   1952   1.1        ad 			 * necessary).
   1953   1.1        ad 			 */
   1954   1.1        ad 			chunk->max_frun_npages = max_frun_npages;
   1955   1.1        ad 		}
   1956   1.1        ad 	}
   1957   1.1        ad 
   1958   1.1        ad 	/*
   1959   1.1        ad 	 * No usable runs.  Create a new chunk from which to allocate the run.
   1960   1.1        ad 	 */
   1961   1.1        ad 	chunk = arena_chunk_alloc(arena);
   1962   1.1        ad 	if (chunk == NULL)
   1963   1.1        ad 		return (NULL);
   1964   1.1        ad 	run = (arena_run_t *)((uintptr_t)chunk + (arena_chunk_header_npages <<
   1965   1.1        ad 	    pagesize_2pow));
   1966   1.1        ad 	/* Update page map. */
   1967   1.1        ad 	arena_run_split(arena, run, size);
   1968   1.1        ad 	return (run);
   1969   1.1        ad }
   1970   1.1        ad 
   1971   1.1        ad static void
   1972   1.1        ad arena_run_dalloc(arena_t *arena, arena_run_t *run, size_t size)
   1973   1.1        ad {
   1974   1.1        ad 	arena_chunk_t *chunk;
   1975   1.1        ad 	unsigned run_ind, run_pages;
   1976   1.1        ad 
   1977   1.1        ad 	chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(run);
   1978   1.1        ad 
   1979   1.1        ad 	run_ind = (unsigned)(((uintptr_t)run - (uintptr_t)chunk)
   1980   1.1        ad 	    >> pagesize_2pow);
   1981   1.1        ad 	assert(run_ind >= arena_chunk_header_npages);
   1982   1.1        ad 	assert(run_ind < (chunksize >> pagesize_2pow));
   1983   1.9  christos 	run_pages = (unsigned)(size >> pagesize_2pow);
   1984   1.1        ad 	assert(run_pages == chunk->map[run_ind].npages);
   1985   1.1        ad 
   1986   1.1        ad 	/* Subtract pages from count of pages used in chunk. */
   1987   1.1        ad 	chunk->pages_used -= run_pages;
   1988   1.1        ad 
   1989   1.1        ad 	/* Mark run as deallocated. */
   1990   1.1        ad 	assert(chunk->map[run_ind].npages == run_pages);
   1991   1.1        ad 	chunk->map[run_ind].pos = POS_FREE;
   1992   1.1        ad 	assert(chunk->map[run_ind + run_pages - 1].npages == run_pages);
   1993   1.1        ad 	chunk->map[run_ind + run_pages - 1].pos = POS_FREE;
   1994   1.1        ad 
   1995   1.1        ad 	/*
   1996   1.1        ad 	 * Tell the kernel that we don't need the data in this run, but only if
   1997   1.1        ad 	 * requested via runtime configuration.
   1998   1.1        ad 	 */
   1999   1.1        ad 	if (opt_hint)
   2000   1.1        ad 		madvise(run, size, MADV_FREE);
   2001   1.1        ad 
   2002   1.1        ad 	/* Try to coalesce with neighboring runs. */
   2003   1.1        ad 	if (run_ind > arena_chunk_header_npages &&
   2004   1.1        ad 	    chunk->map[run_ind - 1].pos == POS_FREE) {
   2005   1.1        ad 		unsigned prev_npages;
   2006   1.1        ad 
   2007   1.1        ad 		/* Coalesce with previous run. */
   2008   1.1        ad 		prev_npages = chunk->map[run_ind - 1].npages;
   2009   1.1        ad 		run_ind -= prev_npages;
   2010   1.1        ad 		assert(chunk->map[run_ind].npages == prev_npages);
   2011   1.1        ad 		assert(chunk->map[run_ind].pos == POS_FREE);
   2012   1.1        ad 		run_pages += prev_npages;
   2013   1.1        ad 
   2014   1.1        ad 		chunk->map[run_ind].npages = run_pages;
   2015   1.1        ad 		assert(chunk->map[run_ind].pos == POS_FREE);
   2016   1.1        ad 		chunk->map[run_ind + run_pages - 1].npages = run_pages;
   2017   1.1        ad 		assert(chunk->map[run_ind + run_pages - 1].pos == POS_FREE);
   2018   1.1        ad 	}
   2019   1.1        ad 
   2020   1.1        ad 	if (run_ind + run_pages < chunk_npages &&
   2021   1.1        ad 	    chunk->map[run_ind + run_pages].pos == POS_FREE) {
   2022   1.1        ad 		unsigned next_npages;
   2023   1.1        ad 
   2024   1.1        ad 		/* Coalesce with next run. */
   2025   1.1        ad 		next_npages = chunk->map[run_ind + run_pages].npages;
   2026   1.1        ad 		run_pages += next_npages;
   2027   1.1        ad 		assert(chunk->map[run_ind + run_pages - 1].npages ==
   2028   1.1        ad 		    next_npages);
   2029   1.1        ad 		assert(chunk->map[run_ind + run_pages - 1].pos == POS_FREE);
   2030   1.1        ad 
   2031   1.1        ad 		chunk->map[run_ind].npages = run_pages;
   2032   1.1        ad 		chunk->map[run_ind].pos = POS_FREE;
   2033   1.1        ad 		chunk->map[run_ind + run_pages - 1].npages = run_pages;
   2034   1.1        ad 		assert(chunk->map[run_ind + run_pages - 1].pos == POS_FREE);
   2035   1.1        ad 	}
   2036   1.1        ad 
   2037   1.1        ad 	if (chunk->map[run_ind].npages > chunk->max_frun_npages)
   2038   1.1        ad 		chunk->max_frun_npages = chunk->map[run_ind].npages;
   2039   1.1        ad 	if (run_ind < chunk->min_frun_ind)
   2040   1.1        ad 		chunk->min_frun_ind = run_ind;
   2041   1.1        ad 
   2042   1.1        ad 	/* Deallocate chunk if it is now completely unused. */
   2043   1.1        ad 	if (chunk->pages_used == 0)
   2044   1.1        ad 		arena_chunk_dealloc(arena, chunk);
   2045   1.1        ad }
   2046   1.1        ad 
   2047   1.1        ad static arena_run_t *
   2048   1.1        ad arena_bin_nonfull_run_get(arena_t *arena, arena_bin_t *bin)
   2049   1.1        ad {
   2050   1.1        ad 	arena_run_t *run;
   2051   1.1        ad 	unsigned i, remainder;
   2052   1.1        ad 
   2053   1.1        ad 	/* Look for a usable run. */
   2054   1.2        ad 	/* LINTED */
   2055   1.1        ad 	if ((run = RB_MIN(arena_run_tree_s, &bin->runs)) != NULL) {
   2056   1.1        ad 		/* run is guaranteed to have available space. */
   2057   1.2        ad 		/* LINTED */
   2058   1.1        ad 		RB_REMOVE(arena_run_tree_s, &bin->runs, run);
   2059   1.1        ad #ifdef MALLOC_STATS
   2060   1.1        ad 		bin->stats.reruns++;
   2061   1.1        ad #endif
   2062   1.1        ad 		return (run);
   2063   1.1        ad 	}
   2064   1.1        ad 	/* No existing runs have any space available. */
   2065   1.1        ad 
   2066   1.1        ad 	/* Allocate a new run. */
   2067   1.1        ad 	run = arena_run_alloc(arena, bin->run_size);
   2068   1.1        ad 	if (run == NULL)
   2069   1.1        ad 		return (NULL);
   2070   1.1        ad 
   2071   1.1        ad 	/* Initialize run internals. */
   2072   1.1        ad 	run->bin = bin;
   2073   1.1        ad 
   2074   1.1        ad 	for (i = 0; i < bin->regs_mask_nelms; i++)
   2075   1.1        ad 		run->regs_mask[i] = UINT_MAX;
   2076   1.1        ad 	remainder = bin->nregs & ((1 << (SIZEOF_INT_2POW + 3)) - 1);
   2077   1.1        ad 	if (remainder != 0) {
   2078   1.1        ad 		/* The last element has spare bits that need to be unset. */
   2079   1.1        ad 		run->regs_mask[i] = (UINT_MAX >> ((1 << (SIZEOF_INT_2POW + 3))
   2080   1.1        ad 		    - remainder));
   2081   1.1        ad 	}
   2082   1.1        ad 
   2083   1.1        ad 	run->regs_minelm = 0;
   2084   1.1        ad 
   2085   1.1        ad 	run->nfree = bin->nregs;
   2086   1.1        ad #ifdef MALLOC_DEBUG
   2087   1.1        ad 	run->magic = ARENA_RUN_MAGIC;
   2088   1.1        ad #endif
   2089   1.1        ad 
   2090   1.1        ad #ifdef MALLOC_STATS
   2091   1.1        ad 	bin->stats.nruns++;
   2092   1.1        ad 	bin->stats.curruns++;
   2093   1.1        ad 	if (bin->stats.curruns > bin->stats.highruns)
   2094   1.1        ad 		bin->stats.highruns = bin->stats.curruns;
   2095   1.1        ad #endif
   2096   1.1        ad 	return (run);
   2097   1.1        ad }
   2098   1.1        ad 
   2099   1.1        ad /* bin->runcur must have space available before this function is called. */
   2100   1.1        ad static inline void *
   2101   1.1        ad arena_bin_malloc_easy(arena_t *arena, arena_bin_t *bin, arena_run_t *run)
   2102   1.1        ad {
   2103   1.1        ad 	void *ret;
   2104   1.1        ad 
   2105   1.1        ad 	assert(run->magic == ARENA_RUN_MAGIC);
   2106   1.1        ad 	assert(run->nfree > 0);
   2107   1.1        ad 
   2108   1.1        ad 	ret = arena_run_reg_alloc(run, bin);
   2109   1.1        ad 	assert(ret != NULL);
   2110   1.1        ad 	run->nfree--;
   2111   1.1        ad 
   2112   1.1        ad 	return (ret);
   2113   1.1        ad }
   2114   1.1        ad 
   2115   1.1        ad /* Re-fill bin->runcur, then call arena_bin_malloc_easy(). */
   2116   1.1        ad static void *
   2117   1.1        ad arena_bin_malloc_hard(arena_t *arena, arena_bin_t *bin)
   2118   1.1        ad {
   2119   1.1        ad 
   2120   1.1        ad 	bin->runcur = arena_bin_nonfull_run_get(arena, bin);
   2121   1.1        ad 	if (bin->runcur == NULL)
   2122   1.1        ad 		return (NULL);
   2123   1.1        ad 	assert(bin->runcur->magic == ARENA_RUN_MAGIC);
   2124   1.1        ad 	assert(bin->runcur->nfree > 0);
   2125   1.1        ad 
   2126   1.1        ad 	return (arena_bin_malloc_easy(arena, bin, bin->runcur));
   2127   1.1        ad }
   2128   1.1        ad 
   2129   1.1        ad /*
   2130   1.1        ad  * Calculate bin->run_size such that it meets the following constraints:
   2131   1.1        ad  *
   2132   1.1        ad  *   *) bin->run_size >= min_run_size
   2133   1.1        ad  *   *) bin->run_size <= arena_maxclass
   2134   1.1        ad  *   *) bin->run_size <= RUN_MAX_SMALL
   2135   1.1        ad  *   *) run header overhead <= RUN_MAX_OVRHD (or header overhead relaxed).
   2136   1.1        ad  *
   2137   1.1        ad  * bin->nregs, bin->regs_mask_nelms, and bin->reg0_offset are
   2138   1.1        ad  * also calculated here, since these settings are all interdependent.
   2139   1.1        ad  */
   2140   1.1        ad static size_t
   2141   1.1        ad arena_bin_run_size_calc(arena_bin_t *bin, size_t min_run_size)
   2142   1.1        ad {
   2143   1.1        ad 	size_t try_run_size, good_run_size;
   2144   1.1        ad 	unsigned good_nregs, good_mask_nelms, good_reg0_offset;
   2145   1.1        ad 	unsigned try_nregs, try_mask_nelms, try_reg0_offset;
   2146   1.1        ad 	float max_ovrhd = RUN_MAX_OVRHD;
   2147   1.1        ad 
   2148   1.1        ad 	assert(min_run_size >= pagesize);
   2149   1.1        ad 	assert(min_run_size <= arena_maxclass);
   2150   1.1        ad 	assert(min_run_size <= RUN_MAX_SMALL);
   2151   1.1        ad 
   2152   1.1        ad 	/*
   2153   1.1        ad 	 * Calculate known-valid settings before entering the run_size
   2154   1.1        ad 	 * expansion loop, so that the first part of the loop always copies
   2155   1.1        ad 	 * valid settings.
   2156   1.1        ad 	 *
   2157   1.1        ad 	 * The do..while loop iteratively reduces the number of regions until
   2158   1.1        ad 	 * the run header and the regions no longer overlap.  A closed formula
   2159   1.1        ad 	 * would be quite messy, since there is an interdependency between the
   2160   1.1        ad 	 * header's mask length and the number of regions.
   2161   1.1        ad 	 */
   2162   1.1        ad 	try_run_size = min_run_size;
   2163   1.9  christos 	try_nregs = (unsigned)(((try_run_size - sizeof(arena_run_t)) /
   2164   1.9  christos 	    bin->reg_size) + 1); /* Counter-act the first line of the loop. */
   2165   1.1        ad 	do {
   2166   1.1        ad 		try_nregs--;
   2167   1.1        ad 		try_mask_nelms = (try_nregs >> (SIZEOF_INT_2POW + 3)) +
   2168   1.1        ad 		    ((try_nregs & ((1 << (SIZEOF_INT_2POW + 3)) - 1)) ? 1 : 0);
   2169   1.9  christos 		try_reg0_offset = (unsigned)(try_run_size -
   2170   1.9  christos 		    (try_nregs * bin->reg_size));
   2171   1.1        ad 	} while (sizeof(arena_run_t) + (sizeof(unsigned) * (try_mask_nelms - 1))
   2172   1.1        ad 	    > try_reg0_offset);
   2173   1.1        ad 
   2174   1.1        ad 	/* run_size expansion loop. */
   2175   1.1        ad 	do {
   2176   1.1        ad 		/*
   2177   1.1        ad 		 * Copy valid settings before trying more aggressive settings.
   2178   1.1        ad 		 */
   2179   1.1        ad 		good_run_size = try_run_size;
   2180   1.1        ad 		good_nregs = try_nregs;
   2181   1.1        ad 		good_mask_nelms = try_mask_nelms;
   2182   1.1        ad 		good_reg0_offset = try_reg0_offset;
   2183   1.1        ad 
   2184   1.1        ad 		/* Try more aggressive settings. */
   2185   1.1        ad 		try_run_size += pagesize;
   2186   1.9  christos 		try_nregs = (unsigned)(((try_run_size - sizeof(arena_run_t)) /
   2187   1.9  christos 		    bin->reg_size) + 1); /* Counter-act try_nregs-- in loop. */
   2188   1.1        ad 		do {
   2189   1.1        ad 			try_nregs--;
   2190   1.1        ad 			try_mask_nelms = (try_nregs >> (SIZEOF_INT_2POW + 3)) +
   2191   1.1        ad 			    ((try_nregs & ((1 << (SIZEOF_INT_2POW + 3)) - 1)) ?
   2192   1.1        ad 			    1 : 0);
   2193   1.9  christos 			try_reg0_offset = (unsigned)(try_run_size - (try_nregs *
   2194   1.9  christos 			    bin->reg_size));
   2195   1.1        ad 		} while (sizeof(arena_run_t) + (sizeof(unsigned) *
   2196   1.1        ad 		    (try_mask_nelms - 1)) > try_reg0_offset);
   2197   1.1        ad 	} while (try_run_size <= arena_maxclass && try_run_size <= RUN_MAX_SMALL
   2198   1.1        ad 	    && max_ovrhd > RUN_MAX_OVRHD_RELAX / ((float)(bin->reg_size << 3))
   2199   1.1        ad 	    && ((float)(try_reg0_offset)) / ((float)(try_run_size)) >
   2200   1.1        ad 	    max_ovrhd);
   2201   1.1        ad 
   2202   1.1        ad 	assert(sizeof(arena_run_t) + (sizeof(unsigned) * (good_mask_nelms - 1))
   2203   1.1        ad 	    <= good_reg0_offset);
   2204   1.1        ad 	assert((good_mask_nelms << (SIZEOF_INT_2POW + 3)) >= good_nregs);
   2205   1.1        ad 
   2206   1.1        ad 	/* Copy final settings. */
   2207   1.1        ad 	bin->run_size = good_run_size;
   2208   1.1        ad 	bin->nregs = good_nregs;
   2209   1.1        ad 	bin->regs_mask_nelms = good_mask_nelms;
   2210   1.1        ad 	bin->reg0_offset = good_reg0_offset;
   2211   1.1        ad 
   2212   1.1        ad 	return (good_run_size);
   2213   1.1        ad }
   2214   1.1        ad 
   2215   1.1        ad static void *
   2216   1.1        ad arena_malloc(arena_t *arena, size_t size)
   2217   1.1        ad {
   2218   1.1        ad 	void *ret;
   2219   1.1        ad 
   2220   1.1        ad 	assert(arena != NULL);
   2221   1.1        ad 	assert(arena->magic == ARENA_MAGIC);
   2222   1.1        ad 	assert(size != 0);
   2223   1.1        ad 	assert(QUANTUM_CEILING(size) <= arena_maxclass);
   2224   1.1        ad 
   2225   1.1        ad 	if (size <= bin_maxclass) {
   2226   1.1        ad 		arena_bin_t *bin;
   2227   1.1        ad 		arena_run_t *run;
   2228   1.1        ad 
   2229   1.1        ad 		/* Small allocation. */
   2230   1.1        ad 
   2231   1.1        ad 		if (size < small_min) {
   2232   1.1        ad 			/* Tiny. */
   2233   1.1        ad 			size = pow2_ceil(size);
   2234   1.1        ad 			bin = &arena->bins[ffs((int)(size >> (TINY_MIN_2POW +
   2235   1.1        ad 			    1)))];
   2236   1.1        ad #if (!defined(NDEBUG) || defined(MALLOC_STATS))
   2237   1.1        ad 			/*
   2238   1.1        ad 			 * Bin calculation is always correct, but we may need
   2239   1.1        ad 			 * to fix size for the purposes of assertions and/or
   2240   1.1        ad 			 * stats accuracy.
   2241   1.1        ad 			 */
   2242   1.1        ad 			if (size < (1 << TINY_MIN_2POW))
   2243   1.1        ad 				size = (1 << TINY_MIN_2POW);
   2244   1.1        ad #endif
   2245   1.1        ad 		} else if (size <= small_max) {
   2246   1.1        ad 			/* Quantum-spaced. */
   2247   1.1        ad 			size = QUANTUM_CEILING(size);
   2248   1.1        ad 			bin = &arena->bins[ntbins + (size >> opt_quantum_2pow)
   2249   1.1        ad 			    - 1];
   2250   1.1        ad 		} else {
   2251   1.1        ad 			/* Sub-page. */
   2252   1.1        ad 			size = pow2_ceil(size);
   2253   1.1        ad 			bin = &arena->bins[ntbins + nqbins
   2254   1.1        ad 			    + (ffs((int)(size >> opt_small_max_2pow)) - 2)];
   2255   1.1        ad 		}
   2256   1.1        ad 		assert(size == bin->reg_size);
   2257   1.1        ad 
   2258   1.1        ad 		malloc_mutex_lock(&arena->mtx);
   2259   1.1        ad 		if ((run = bin->runcur) != NULL && run->nfree > 0)
   2260   1.1        ad 			ret = arena_bin_malloc_easy(arena, bin, run);
   2261   1.1        ad 		else
   2262   1.1        ad 			ret = arena_bin_malloc_hard(arena, bin);
   2263   1.1        ad 
   2264   1.1        ad 		if (ret == NULL) {
   2265   1.1        ad 			malloc_mutex_unlock(&arena->mtx);
   2266   1.1        ad 			return (NULL);
   2267   1.1        ad 		}
   2268   1.1        ad 
   2269   1.1        ad #ifdef MALLOC_STATS
   2270   1.1        ad 		bin->stats.nrequests++;
   2271   1.1        ad 		arena->stats.nmalloc_small++;
   2272   1.1        ad 		arena->stats.allocated_small += size;
   2273   1.1        ad #endif
   2274   1.1        ad 	} else {
   2275   1.1        ad 		/* Large allocation. */
   2276   1.1        ad 		size = PAGE_CEILING(size);
   2277   1.1        ad 		malloc_mutex_lock(&arena->mtx);
   2278   1.1        ad 		ret = (void *)arena_run_alloc(arena, size);
   2279   1.1        ad 		if (ret == NULL) {
   2280   1.1        ad 			malloc_mutex_unlock(&arena->mtx);
   2281   1.1        ad 			return (NULL);
   2282   1.1        ad 		}
   2283   1.1        ad #ifdef MALLOC_STATS
   2284   1.1        ad 		arena->stats.nmalloc_large++;
   2285   1.1        ad 		arena->stats.allocated_large += size;
   2286   1.1        ad #endif
   2287   1.1        ad 	}
   2288   1.1        ad 
   2289   1.1        ad 	malloc_mutex_unlock(&arena->mtx);
   2290   1.1        ad 
   2291   1.1        ad 	if (opt_junk)
   2292   1.1        ad 		memset(ret, 0xa5, size);
   2293   1.1        ad 	else if (opt_zero)
   2294   1.1        ad 		memset(ret, 0, size);
   2295   1.1        ad 	return (ret);
   2296   1.1        ad }
   2297   1.1        ad 
   2298   1.1        ad static inline void
   2299   1.1        ad arena_palloc_trim(arena_t *arena, arena_chunk_t *chunk, unsigned pageind,
   2300   1.1        ad     unsigned npages)
   2301   1.1        ad {
   2302   1.1        ad 	unsigned i;
   2303   1.1        ad 
   2304   1.1        ad 	assert(npages > 0);
   2305   1.1        ad 
   2306   1.1        ad 	/*
   2307   1.1        ad 	 * Modifiy the map such that arena_run_dalloc() sees the run as
   2308   1.1        ad 	 * separately allocated.
   2309   1.1        ad 	 */
   2310   1.1        ad 	for (i = 0; i < npages; i++) {
   2311   1.1        ad 		chunk->map[pageind + i].npages = npages;
   2312   1.1        ad 		chunk->map[pageind + i].pos = i;
   2313   1.1        ad 	}
   2314   1.1        ad 	arena_run_dalloc(arena, (arena_run_t *)((uintptr_t)chunk + (pageind <<
   2315   1.1        ad 	    pagesize_2pow)), npages << pagesize_2pow);
   2316   1.1        ad }
   2317   1.1        ad 
   2318   1.1        ad /* Only handles large allocations that require more than page alignment. */
   2319   1.1        ad static void *
   2320   1.1        ad arena_palloc(arena_t *arena, size_t alignment, size_t size, size_t alloc_size)
   2321   1.1        ad {
   2322   1.1        ad 	void *ret;
   2323   1.1        ad 	size_t offset;
   2324   1.1        ad 	arena_chunk_t *chunk;
   2325   1.1        ad 	unsigned pageind, i, npages;
   2326   1.1        ad 
   2327   1.1        ad 	assert((size & pagesize_mask) == 0);
   2328   1.1        ad 	assert((alignment & pagesize_mask) == 0);
   2329   1.1        ad 
   2330   1.9  christos 	npages = (unsigned)(size >> pagesize_2pow);
   2331   1.1        ad 
   2332   1.1        ad 	malloc_mutex_lock(&arena->mtx);
   2333   1.1        ad 	ret = (void *)arena_run_alloc(arena, alloc_size);
   2334   1.1        ad 	if (ret == NULL) {
   2335   1.1        ad 		malloc_mutex_unlock(&arena->mtx);
   2336   1.1        ad 		return (NULL);
   2337   1.1        ad 	}
   2338   1.1        ad 
   2339   1.1        ad 	chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ret);
   2340   1.1        ad 
   2341   1.1        ad 	offset = (uintptr_t)ret & (alignment - 1);
   2342   1.1        ad 	assert((offset & pagesize_mask) == 0);
   2343   1.1        ad 	assert(offset < alloc_size);
   2344   1.1        ad 	if (offset == 0) {
   2345   1.9  christos 		pageind = (unsigned)(((uintptr_t)ret - (uintptr_t)chunk) >>
   2346   1.1        ad 		    pagesize_2pow);
   2347   1.1        ad 
   2348   1.1        ad 		/* Update the map for the run to be kept. */
   2349   1.1        ad 		for (i = 0; i < npages; i++) {
   2350   1.1        ad 			chunk->map[pageind + i].npages = npages;
   2351   1.1        ad 			assert(chunk->map[pageind + i].pos == i);
   2352   1.1        ad 		}
   2353   1.1        ad 
   2354   1.1        ad 		/* Trim trailing space. */
   2355   1.1        ad 		arena_palloc_trim(arena, chunk, pageind + npages,
   2356   1.9  christos 		    (unsigned)((alloc_size - size) >> pagesize_2pow));
   2357   1.1        ad 	} else {
   2358   1.1        ad 		size_t leadsize, trailsize;
   2359   1.1        ad 
   2360   1.1        ad 		leadsize = alignment - offset;
   2361   1.1        ad 		ret = (void *)((uintptr_t)ret + leadsize);
   2362   1.9  christos 		pageind = (unsigned)(((uintptr_t)ret - (uintptr_t)chunk) >>
   2363   1.1        ad 		    pagesize_2pow);
   2364   1.1        ad 
   2365   1.1        ad 		/* Update the map for the run to be kept. */
   2366   1.1        ad 		for (i = 0; i < npages; i++) {
   2367   1.1        ad 			chunk->map[pageind + i].npages = npages;
   2368   1.1        ad 			chunk->map[pageind + i].pos = i;
   2369   1.1        ad 		}
   2370   1.1        ad 
   2371   1.1        ad 		/* Trim leading space. */
   2372   1.9  christos 		arena_palloc_trim(arena, chunk,
   2373   1.9  christos 		    (unsigned)(pageind - (leadsize >> pagesize_2pow)),
   2374   1.9  christos 		    (unsigned)(leadsize >> pagesize_2pow));
   2375   1.1        ad 
   2376   1.1        ad 		trailsize = alloc_size - leadsize - size;
   2377   1.1        ad 		if (trailsize != 0) {
   2378   1.1        ad 			/* Trim trailing space. */
   2379   1.1        ad 			assert(trailsize < alloc_size);
   2380   1.1        ad 			arena_palloc_trim(arena, chunk, pageind + npages,
   2381   1.9  christos 			    (unsigned)(trailsize >> pagesize_2pow));
   2382   1.1        ad 		}
   2383   1.1        ad 	}
   2384   1.1        ad 
   2385   1.1        ad #ifdef MALLOC_STATS
   2386   1.1        ad 	arena->stats.nmalloc_large++;
   2387   1.1        ad 	arena->stats.allocated_large += size;
   2388   1.1        ad #endif
   2389   1.1        ad 	malloc_mutex_unlock(&arena->mtx);
   2390   1.1        ad 
   2391   1.1        ad 	if (opt_junk)
   2392   1.1        ad 		memset(ret, 0xa5, size);
   2393   1.1        ad 	else if (opt_zero)
   2394   1.1        ad 		memset(ret, 0, size);
   2395   1.1        ad 	return (ret);
   2396   1.1        ad }
   2397   1.1        ad 
   2398   1.1        ad /* Return the size of the allocation pointed to by ptr. */
   2399   1.1        ad static size_t
   2400   1.1        ad arena_salloc(const void *ptr)
   2401   1.1        ad {
   2402   1.1        ad 	size_t ret;
   2403   1.1        ad 	arena_chunk_t *chunk;
   2404   1.1        ad 	arena_chunk_map_t *mapelm;
   2405   1.1        ad 	unsigned pageind;
   2406   1.1        ad 
   2407   1.1        ad 	assert(ptr != NULL);
   2408   1.1        ad 	assert(CHUNK_ADDR2BASE(ptr) != ptr);
   2409   1.1        ad 
   2410   1.1        ad 	/*
   2411   1.1        ad 	 * No arena data structures that we query here can change in a way that
   2412   1.1        ad 	 * affects this function, so we don't need to lock.
   2413   1.1        ad 	 */
   2414   1.1        ad 	chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
   2415   1.9  christos 	pageind = (unsigned)(((uintptr_t)ptr - (uintptr_t)chunk) >>
   2416   1.9  christos 	    pagesize_2pow);
   2417   1.1        ad 	mapelm = &chunk->map[pageind];
   2418  1.10    simonb 	if (mapelm->pos != 0 || ptr != (char *)((uintptr_t)chunk) + (pageind <<
   2419  1.10    simonb 	    pagesize_2pow)) {
   2420  1.10    simonb 		arena_run_t *run;
   2421   1.1        ad 
   2422   1.1        ad 		pageind -= mapelm->pos;
   2423   1.1        ad 
   2424  1.10    simonb 		run = (arena_run_t *)((uintptr_t)chunk + (pageind <<
   2425  1.10    simonb 		    pagesize_2pow));
   2426   1.1        ad 		assert(run->magic == ARENA_RUN_MAGIC);
   2427   1.1        ad 		ret = run->bin->reg_size;
   2428   1.1        ad 	} else
   2429   1.1        ad 		ret = mapelm->npages << pagesize_2pow;
   2430   1.1        ad 
   2431   1.1        ad 	return (ret);
   2432   1.1        ad }
   2433   1.1        ad 
   2434   1.1        ad static void *
   2435   1.1        ad arena_ralloc(void *ptr, size_t size, size_t oldsize)
   2436   1.1        ad {
   2437   1.1        ad 	void *ret;
   2438   1.1        ad 
   2439   1.1        ad 	/* Avoid moving the allocation if the size class would not change. */
   2440   1.1        ad 	if (size < small_min) {
   2441   1.1        ad 		if (oldsize < small_min &&
   2442   1.1        ad 		    ffs((int)(pow2_ceil(size) >> (TINY_MIN_2POW + 1)))
   2443   1.1        ad 		    == ffs((int)(pow2_ceil(oldsize) >> (TINY_MIN_2POW + 1))))
   2444   1.1        ad 			goto IN_PLACE;
   2445   1.1        ad 	} else if (size <= small_max) {
   2446   1.1        ad 		if (oldsize >= small_min && oldsize <= small_max &&
   2447   1.1        ad 		    (QUANTUM_CEILING(size) >> opt_quantum_2pow)
   2448   1.1        ad 		    == (QUANTUM_CEILING(oldsize) >> opt_quantum_2pow))
   2449   1.1        ad 			goto IN_PLACE;
   2450   1.1        ad 	} else {
   2451   1.1        ad 		/*
   2452   1.1        ad 		 * We make no attempt to resize runs here, though it would be
   2453   1.1        ad 		 * possible to do so.
   2454   1.1        ad 		 */
   2455   1.1        ad 		if (oldsize > small_max && PAGE_CEILING(size) == oldsize)
   2456   1.1        ad 			goto IN_PLACE;
   2457   1.1        ad 	}
   2458   1.1        ad 
   2459   1.1        ad 	/*
   2460   1.1        ad 	 * If we get here, then size and oldsize are different enough that we
   2461   1.1        ad 	 * need to use a different size class.  In that case, fall back to
   2462   1.1        ad 	 * allocating new space and copying.
   2463   1.1        ad 	 */
   2464   1.1        ad 	ret = arena_malloc(choose_arena(), size);
   2465   1.1        ad 	if (ret == NULL)
   2466   1.1        ad 		return (NULL);
   2467   1.1        ad 
   2468   1.1        ad 	/* Junk/zero-filling were already done by arena_malloc(). */
   2469   1.1        ad 	if (size < oldsize)
   2470   1.1        ad 		memcpy(ret, ptr, size);
   2471   1.1        ad 	else
   2472   1.1        ad 		memcpy(ret, ptr, oldsize);
   2473   1.1        ad 	idalloc(ptr);
   2474   1.1        ad 	return (ret);
   2475   1.1        ad IN_PLACE:
   2476   1.1        ad 	if (opt_junk && size < oldsize)
   2477   1.1        ad 		memset((void *)((uintptr_t)ptr + size), 0x5a, oldsize - size);
   2478   1.1        ad 	else if (opt_zero && size > oldsize)
   2479   1.1        ad 		memset((void *)((uintptr_t)ptr + oldsize), 0, size - oldsize);
   2480   1.1        ad 	return (ptr);
   2481   1.1        ad }
   2482   1.1        ad 
   2483   1.1        ad static void
   2484   1.1        ad arena_dalloc(arena_t *arena, arena_chunk_t *chunk, void *ptr)
   2485   1.1        ad {
   2486   1.1        ad 	unsigned pageind;
   2487   1.1        ad 	arena_chunk_map_t *mapelm;
   2488   1.1        ad 	size_t size;
   2489   1.1        ad 
   2490   1.1        ad 	assert(arena != NULL);
   2491   1.1        ad 	assert(arena->magic == ARENA_MAGIC);
   2492   1.1        ad 	assert(chunk->arena == arena);
   2493   1.1        ad 	assert(ptr != NULL);
   2494   1.1        ad 	assert(CHUNK_ADDR2BASE(ptr) != ptr);
   2495   1.1        ad 
   2496   1.9  christos 	pageind = (unsigned)(((uintptr_t)ptr - (uintptr_t)chunk) >>
   2497   1.9  christos 	    pagesize_2pow);
   2498   1.1        ad 	mapelm = &chunk->map[pageind];
   2499  1.10    simonb 	if (mapelm->pos != 0 || ptr != (char *)((uintptr_t)chunk) + (pageind <<
   2500  1.10    simonb 	    pagesize_2pow)) {
   2501  1.10    simonb 		arena_run_t *run;
   2502   1.1        ad 		arena_bin_t *bin;
   2503   1.1        ad 
   2504   1.1        ad 		/* Small allocation. */
   2505   1.1        ad 
   2506   1.1        ad 		pageind -= mapelm->pos;
   2507   1.1        ad 
   2508  1.10    simonb 		run = (arena_run_t *)((uintptr_t)chunk + (pageind <<
   2509  1.10    simonb 		    pagesize_2pow));
   2510   1.1        ad 		assert(run->magic == ARENA_RUN_MAGIC);
   2511   1.1        ad 		bin = run->bin;
   2512   1.1        ad 		size = bin->reg_size;
   2513   1.1        ad 
   2514   1.1        ad 		if (opt_junk)
   2515   1.1        ad 			memset(ptr, 0x5a, size);
   2516   1.1        ad 
   2517   1.1        ad 		malloc_mutex_lock(&arena->mtx);
   2518   1.1        ad 		arena_run_reg_dalloc(run, bin, ptr, size);
   2519   1.1        ad 		run->nfree++;
   2520   1.1        ad 
   2521   1.1        ad 		if (run->nfree == bin->nregs) {
   2522   1.1        ad 			/* Deallocate run. */
   2523   1.1        ad 			if (run == bin->runcur)
   2524   1.1        ad 				bin->runcur = NULL;
   2525   1.1        ad 			else if (bin->nregs != 1) {
   2526   1.1        ad 				/*
   2527   1.1        ad 				 * This block's conditional is necessary because
   2528   1.1        ad 				 * if the run only contains one region, then it
   2529   1.1        ad 				 * never gets inserted into the non-full runs
   2530   1.1        ad 				 * tree.
   2531   1.1        ad 				 */
   2532   1.2        ad 				/* LINTED */
   2533   1.1        ad 				RB_REMOVE(arena_run_tree_s, &bin->runs, run);
   2534   1.1        ad 			}
   2535   1.1        ad #ifdef MALLOC_DEBUG
   2536   1.1        ad 			run->magic = 0;
   2537   1.1        ad #endif
   2538   1.1        ad 			arena_run_dalloc(arena, run, bin->run_size);
   2539   1.1        ad #ifdef MALLOC_STATS
   2540   1.1        ad 			bin->stats.curruns--;
   2541   1.1        ad #endif
   2542   1.1        ad 		} else if (run->nfree == 1 && run != bin->runcur) {
   2543   1.1        ad 			/*
   2544   1.1        ad 			 * Make sure that bin->runcur always refers to the
   2545   1.1        ad 			 * lowest non-full run, if one exists.
   2546   1.1        ad 			 */
   2547   1.1        ad 			if (bin->runcur == NULL)
   2548   1.1        ad 				bin->runcur = run;
   2549   1.1        ad 			else if ((uintptr_t)run < (uintptr_t)bin->runcur) {
   2550   1.1        ad 				/* Switch runcur. */
   2551   1.1        ad 				if (bin->runcur->nfree > 0) {
   2552   1.1        ad 					/* Insert runcur. */
   2553   1.2        ad 					/* LINTED */
   2554   1.1        ad 					RB_INSERT(arena_run_tree_s, &bin->runs,
   2555   1.1        ad 					    bin->runcur);
   2556   1.1        ad 				}
   2557   1.1        ad 				bin->runcur = run;
   2558   1.2        ad 			} else {
   2559   1.2        ad 				/* LINTED */
   2560   1.1        ad 				RB_INSERT(arena_run_tree_s, &bin->runs, run);
   2561   1.2        ad 			}
   2562   1.1        ad 		}
   2563   1.1        ad #ifdef MALLOC_STATS
   2564   1.1        ad 		arena->stats.allocated_small -= size;
   2565   1.1        ad 		arena->stats.ndalloc_small++;
   2566   1.1        ad #endif
   2567   1.1        ad 	} else {
   2568   1.1        ad 		/* Large allocation. */
   2569   1.1        ad 
   2570   1.1        ad 		size = mapelm->npages << pagesize_2pow;
   2571   1.1        ad 		assert((((uintptr_t)ptr) & pagesize_mask) == 0);
   2572   1.1        ad 
   2573   1.1        ad 		if (opt_junk)
   2574   1.1        ad 			memset(ptr, 0x5a, size);
   2575   1.1        ad 
   2576   1.1        ad 		malloc_mutex_lock(&arena->mtx);
   2577   1.1        ad 		arena_run_dalloc(arena, (arena_run_t *)ptr, size);
   2578   1.1        ad #ifdef MALLOC_STATS
   2579   1.1        ad 		arena->stats.allocated_large -= size;
   2580   1.1        ad 		arena->stats.ndalloc_large++;
   2581   1.1        ad #endif
   2582   1.1        ad 	}
   2583   1.1        ad 
   2584   1.1        ad 	malloc_mutex_unlock(&arena->mtx);
   2585   1.1        ad }
   2586   1.1        ad 
   2587   1.1        ad static bool
   2588   1.1        ad arena_new(arena_t *arena)
   2589   1.1        ad {
   2590   1.1        ad 	unsigned i;
   2591   1.1        ad 	arena_bin_t *bin;
   2592   1.2        ad 	size_t prev_run_size;
   2593   1.1        ad 
   2594   1.1        ad 	malloc_mutex_init(&arena->mtx);
   2595   1.1        ad 
   2596   1.1        ad #ifdef MALLOC_STATS
   2597   1.1        ad 	memset(&arena->stats, 0, sizeof(arena_stats_t));
   2598   1.1        ad #endif
   2599   1.1        ad 
   2600   1.1        ad 	/* Initialize chunks. */
   2601   1.1        ad 	RB_INIT(&arena->chunks);
   2602   1.1        ad 	arena->spare = NULL;
   2603   1.1        ad 
   2604   1.1        ad 	/* Initialize bins. */
   2605   1.1        ad 	prev_run_size = pagesize;
   2606   1.1        ad 
   2607   1.1        ad 	/* (2^n)-spaced tiny bins. */
   2608   1.1        ad 	for (i = 0; i < ntbins; i++) {
   2609   1.1        ad 		bin = &arena->bins[i];
   2610   1.1        ad 		bin->runcur = NULL;
   2611   1.1        ad 		RB_INIT(&bin->runs);
   2612   1.1        ad 
   2613   1.1        ad 		bin->reg_size = (1 << (TINY_MIN_2POW + i));
   2614   1.1        ad 		prev_run_size = arena_bin_run_size_calc(bin, prev_run_size);
   2615   1.1        ad 
   2616   1.1        ad #ifdef MALLOC_STATS
   2617   1.1        ad 		memset(&bin->stats, 0, sizeof(malloc_bin_stats_t));
   2618   1.1        ad #endif
   2619   1.1        ad 	}
   2620   1.1        ad 
   2621   1.1        ad 	/* Quantum-spaced bins. */
   2622   1.1        ad 	for (; i < ntbins + nqbins; i++) {
   2623   1.1        ad 		bin = &arena->bins[i];
   2624   1.1        ad 		bin->runcur = NULL;
   2625   1.1        ad 		RB_INIT(&bin->runs);
   2626   1.1        ad 
   2627   1.1        ad 		bin->reg_size = quantum * (i - ntbins + 1);
   2628   1.2        ad /*
   2629   1.1        ad 		pow2_size = pow2_ceil(quantum * (i - ntbins + 1));
   2630   1.2        ad */
   2631   1.1        ad 		prev_run_size = arena_bin_run_size_calc(bin, prev_run_size);
   2632   1.1        ad 
   2633   1.1        ad #ifdef MALLOC_STATS
   2634   1.1        ad 		memset(&bin->stats, 0, sizeof(malloc_bin_stats_t));
   2635   1.1        ad #endif
   2636   1.1        ad 	}
   2637   1.1        ad 
   2638   1.1        ad 	/* (2^n)-spaced sub-page bins. */
   2639   1.1        ad 	for (; i < ntbins + nqbins + nsbins; i++) {
   2640   1.1        ad 		bin = &arena->bins[i];
   2641   1.1        ad 		bin->runcur = NULL;
   2642   1.1        ad 		RB_INIT(&bin->runs);
   2643   1.1        ad 
   2644   1.1        ad 		bin->reg_size = (small_max << (i - (ntbins + nqbins) + 1));
   2645   1.1        ad 
   2646   1.1        ad 		prev_run_size = arena_bin_run_size_calc(bin, prev_run_size);
   2647   1.1        ad 
   2648   1.1        ad #ifdef MALLOC_STATS
   2649   1.1        ad 		memset(&bin->stats, 0, sizeof(malloc_bin_stats_t));
   2650   1.1        ad #endif
   2651   1.1        ad 	}
   2652   1.1        ad 
   2653   1.1        ad #ifdef MALLOC_DEBUG
   2654   1.1        ad 	arena->magic = ARENA_MAGIC;
   2655   1.1        ad #endif
   2656   1.1        ad 
   2657   1.1        ad 	return (false);
   2658   1.1        ad }
   2659   1.1        ad 
   2660   1.1        ad /* Create a new arena and insert it into the arenas array at index ind. */
   2661   1.1        ad static arena_t *
   2662   1.1        ad arenas_extend(unsigned ind)
   2663   1.1        ad {
   2664   1.1        ad 	arena_t *ret;
   2665   1.1        ad 
   2666   1.1        ad 	/* Allocate enough space for trailing bins. */
   2667   1.1        ad 	ret = (arena_t *)base_alloc(sizeof(arena_t)
   2668   1.1        ad 	    + (sizeof(arena_bin_t) * (ntbins + nqbins + nsbins - 1)));
   2669   1.1        ad 	if (ret != NULL && arena_new(ret) == false) {
   2670   1.1        ad 		arenas[ind] = ret;
   2671   1.1        ad 		return (ret);
   2672   1.1        ad 	}
   2673   1.1        ad 	/* Only reached if there is an OOM error. */
   2674   1.1        ad 
   2675   1.1        ad 	/*
   2676   1.1        ad 	 * OOM here is quite inconvenient to propagate, since dealing with it
   2677   1.1        ad 	 * would require a check for failure in the fast path.  Instead, punt
   2678   1.1        ad 	 * by using arenas[0].  In practice, this is an extremely unlikely
   2679   1.1        ad 	 * failure.
   2680   1.1        ad 	 */
   2681  1.16  christos 	_malloc_message(getprogname(),
   2682   1.1        ad 	    ": (malloc) Error initializing arena\n", "", "");
   2683   1.1        ad 	if (opt_abort)
   2684   1.1        ad 		abort();
   2685   1.1        ad 
   2686   1.1        ad 	return (arenas[0]);
   2687   1.1        ad }
   2688   1.1        ad 
   2689   1.1        ad /*
   2690   1.1        ad  * End arena.
   2691   1.1        ad  */
   2692   1.1        ad /******************************************************************************/
   2693   1.1        ad /*
   2694   1.1        ad  * Begin general internal functions.
   2695   1.1        ad  */
   2696   1.1        ad 
   2697   1.1        ad static void *
   2698   1.1        ad huge_malloc(size_t size)
   2699   1.1        ad {
   2700   1.1        ad 	void *ret;
   2701   1.1        ad 	size_t csize;
   2702   1.1        ad 	chunk_node_t *node;
   2703   1.1        ad 
   2704   1.1        ad 	/* Allocate one or more contiguous chunks for this request. */
   2705   1.1        ad 
   2706   1.1        ad 	csize = CHUNK_CEILING(size);
   2707   1.1        ad 	if (csize == 0) {
   2708   1.1        ad 		/* size is large enough to cause size_t wrap-around. */
   2709   1.1        ad 		return (NULL);
   2710   1.1        ad 	}
   2711   1.1        ad 
   2712   1.1        ad 	/* Allocate a chunk node with which to track the chunk. */
   2713   1.1        ad 	node = base_chunk_node_alloc();
   2714   1.1        ad 	if (node == NULL)
   2715   1.1        ad 		return (NULL);
   2716   1.1        ad 
   2717   1.1        ad 	ret = chunk_alloc(csize);
   2718   1.1        ad 	if (ret == NULL) {
   2719   1.1        ad 		base_chunk_node_dealloc(node);
   2720   1.1        ad 		return (NULL);
   2721   1.1        ad 	}
   2722   1.1        ad 
   2723   1.1        ad 	/* Insert node into huge. */
   2724   1.1        ad 	node->chunk = ret;
   2725   1.1        ad 	node->size = csize;
   2726   1.1        ad 
   2727   1.1        ad 	malloc_mutex_lock(&chunks_mtx);
   2728   1.1        ad 	RB_INSERT(chunk_tree_s, &huge, node);
   2729   1.1        ad #ifdef MALLOC_STATS
   2730   1.1        ad 	huge_nmalloc++;
   2731   1.1        ad 	huge_allocated += csize;
   2732   1.1        ad #endif
   2733   1.1        ad 	malloc_mutex_unlock(&chunks_mtx);
   2734   1.1        ad 
   2735   1.1        ad 	if (opt_junk)
   2736   1.1        ad 		memset(ret, 0xa5, csize);
   2737   1.1        ad 	else if (opt_zero)
   2738   1.1        ad 		memset(ret, 0, csize);
   2739   1.1        ad 
   2740   1.1        ad 	return (ret);
   2741   1.1        ad }
   2742   1.1        ad 
   2743   1.1        ad /* Only handles large allocations that require more than chunk alignment. */
   2744   1.1        ad static void *
   2745   1.1        ad huge_palloc(size_t alignment, size_t size)
   2746   1.1        ad {
   2747   1.1        ad 	void *ret;
   2748   1.1        ad 	size_t alloc_size, chunk_size, offset;
   2749   1.1        ad 	chunk_node_t *node;
   2750   1.1        ad 
   2751   1.1        ad 	/*
   2752   1.1        ad 	 * This allocation requires alignment that is even larger than chunk
   2753   1.1        ad 	 * alignment.  This means that huge_malloc() isn't good enough.
   2754   1.1        ad 	 *
   2755   1.1        ad 	 * Allocate almost twice as many chunks as are demanded by the size or
   2756   1.1        ad 	 * alignment, in order to assure the alignment can be achieved, then
   2757   1.1        ad 	 * unmap leading and trailing chunks.
   2758   1.1        ad 	 */
   2759   1.1        ad 	assert(alignment >= chunksize);
   2760   1.1        ad 
   2761   1.1        ad 	chunk_size = CHUNK_CEILING(size);
   2762   1.1        ad 
   2763   1.1        ad 	if (size >= alignment)
   2764   1.1        ad 		alloc_size = chunk_size + alignment - chunksize;
   2765   1.1        ad 	else
   2766   1.1        ad 		alloc_size = (alignment << 1) - chunksize;
   2767   1.1        ad 
   2768   1.1        ad 	/* Allocate a chunk node with which to track the chunk. */
   2769   1.1        ad 	node = base_chunk_node_alloc();
   2770   1.1        ad 	if (node == NULL)
   2771   1.1        ad 		return (NULL);
   2772   1.1        ad 
   2773   1.1        ad 	ret = chunk_alloc(alloc_size);
   2774   1.1        ad 	if (ret == NULL) {
   2775   1.1        ad 		base_chunk_node_dealloc(node);
   2776   1.1        ad 		return (NULL);
   2777   1.1        ad 	}
   2778   1.1        ad 
   2779   1.1        ad 	offset = (uintptr_t)ret & (alignment - 1);
   2780   1.1        ad 	assert((offset & chunksize_mask) == 0);
   2781   1.1        ad 	assert(offset < alloc_size);
   2782   1.1        ad 	if (offset == 0) {
   2783   1.1        ad 		/* Trim trailing space. */
   2784   1.1        ad 		chunk_dealloc((void *)((uintptr_t)ret + chunk_size), alloc_size
   2785   1.1        ad 		    - chunk_size);
   2786   1.1        ad 	} else {
   2787   1.1        ad 		size_t trailsize;
   2788   1.1        ad 
   2789   1.1        ad 		/* Trim leading space. */
   2790   1.1        ad 		chunk_dealloc(ret, alignment - offset);
   2791   1.1        ad 
   2792   1.1        ad 		ret = (void *)((uintptr_t)ret + (alignment - offset));
   2793   1.1        ad 
   2794   1.1        ad 		trailsize = alloc_size - (alignment - offset) - chunk_size;
   2795   1.1        ad 		if (trailsize != 0) {
   2796   1.1        ad 		    /* Trim trailing space. */
   2797   1.1        ad 		    assert(trailsize < alloc_size);
   2798   1.1        ad 		    chunk_dealloc((void *)((uintptr_t)ret + chunk_size),
   2799   1.1        ad 			trailsize);
   2800   1.1        ad 		}
   2801   1.1        ad 	}
   2802   1.1        ad 
   2803   1.1        ad 	/* Insert node into huge. */
   2804   1.1        ad 	node->chunk = ret;
   2805   1.1        ad 	node->size = chunk_size;
   2806   1.1        ad 
   2807   1.1        ad 	malloc_mutex_lock(&chunks_mtx);
   2808   1.1        ad 	RB_INSERT(chunk_tree_s, &huge, node);
   2809   1.1        ad #ifdef MALLOC_STATS
   2810   1.1        ad 	huge_nmalloc++;
   2811   1.1        ad 	huge_allocated += chunk_size;
   2812   1.1        ad #endif
   2813   1.1        ad 	malloc_mutex_unlock(&chunks_mtx);
   2814   1.1        ad 
   2815   1.1        ad 	if (opt_junk)
   2816   1.1        ad 		memset(ret, 0xa5, chunk_size);
   2817   1.1        ad 	else if (opt_zero)
   2818   1.1        ad 		memset(ret, 0, chunk_size);
   2819   1.1        ad 
   2820   1.1        ad 	return (ret);
   2821   1.1        ad }
   2822   1.1        ad 
   2823   1.1        ad static void *
   2824   1.1        ad huge_ralloc(void *ptr, size_t size, size_t oldsize)
   2825   1.1        ad {
   2826   1.1        ad 	void *ret;
   2827   1.1        ad 
   2828   1.1        ad 	/* Avoid moving the allocation if the size class would not change. */
   2829   1.1        ad 	if (oldsize > arena_maxclass &&
   2830   1.1        ad 	    CHUNK_CEILING(size) == CHUNK_CEILING(oldsize)) {
   2831   1.1        ad 		if (opt_junk && size < oldsize) {
   2832   1.1        ad 			memset((void *)((uintptr_t)ptr + size), 0x5a, oldsize
   2833   1.1        ad 			    - size);
   2834   1.1        ad 		} else if (opt_zero && size > oldsize) {
   2835   1.1        ad 			memset((void *)((uintptr_t)ptr + oldsize), 0, size
   2836   1.1        ad 			    - oldsize);
   2837   1.1        ad 		}
   2838   1.1        ad 		return (ptr);
   2839   1.1        ad 	}
   2840   1.1        ad 
   2841   1.8      yamt 	if (CHUNK_ADDR2BASE(ptr) == ptr
   2842   1.8      yamt #ifdef USE_BRK
   2843   1.8      yamt 	    && ((uintptr_t)ptr < (uintptr_t)brk_base
   2844   1.8      yamt 	    || (uintptr_t)ptr >= (uintptr_t)brk_max)
   2845   1.8      yamt #endif
   2846   1.8      yamt 	    ) {
   2847   1.8      yamt 		chunk_node_t *node, key;
   2848   1.8      yamt 		void *newptr;
   2849   1.8      yamt 		size_t oldcsize;
   2850   1.8      yamt 		size_t newcsize;
   2851   1.8      yamt 
   2852   1.8      yamt 		newcsize = CHUNK_CEILING(size);
   2853   1.8      yamt 		oldcsize = CHUNK_CEILING(oldsize);
   2854   1.8      yamt 		assert(oldcsize != newcsize);
   2855   1.8      yamt 		if (newcsize == 0) {
   2856   1.8      yamt 			/* size_t wrap-around */
   2857   1.8      yamt 			return (NULL);
   2858   1.8      yamt 		}
   2859  1.21     enami 
   2860  1.21     enami 		/*
   2861  1.21     enami 		 * Remove the old region from the tree now.  If mremap()
   2862  1.21     enami 		 * returns the region to the system, other thread may
   2863  1.21     enami 		 * map it for same huge allocation and insert it to the
   2864  1.21     enami 		 * tree before we acquire the mutex lock again.
   2865  1.21     enami 		 */
   2866  1.21     enami 		malloc_mutex_lock(&chunks_mtx);
   2867  1.21     enami 		key.chunk = __DECONST(void *, ptr);
   2868  1.21     enami 		/* LINTED */
   2869  1.21     enami 		node = RB_FIND(chunk_tree_s, &huge, &key);
   2870  1.21     enami 		assert(node != NULL);
   2871  1.21     enami 		assert(node->chunk == ptr);
   2872  1.21     enami 		assert(node->size == oldcsize);
   2873  1.21     enami 		RB_REMOVE(chunk_tree_s, &huge, node);
   2874  1.21     enami 		malloc_mutex_unlock(&chunks_mtx);
   2875  1.21     enami 
   2876   1.8      yamt 		newptr = mremap(ptr, oldcsize, NULL, newcsize,
   2877   1.8      yamt 		    MAP_ALIGNED(chunksize_2pow));
   2878  1.21     enami 		if (newptr == MAP_FAILED) {
   2879  1.21     enami 			/* We still own the old region. */
   2880  1.21     enami 			malloc_mutex_lock(&chunks_mtx);
   2881  1.21     enami 			RB_INSERT(chunk_tree_s, &huge, node);
   2882  1.21     enami 			malloc_mutex_unlock(&chunks_mtx);
   2883  1.21     enami 		} else {
   2884   1.8      yamt 			assert(CHUNK_ADDR2BASE(newptr) == newptr);
   2885   1.8      yamt 
   2886  1.21     enami 			/* Insert new or resized old region. */
   2887   1.8      yamt 			malloc_mutex_lock(&chunks_mtx);
   2888   1.8      yamt 			node->size = newcsize;
   2889  1.21     enami 			node->chunk = newptr;
   2890  1.21     enami 			RB_INSERT(chunk_tree_s, &huge, node);
   2891   1.8      yamt #ifdef MALLOC_STATS
   2892   1.8      yamt 			huge_nralloc++;
   2893   1.8      yamt 			huge_allocated += newcsize - oldcsize;
   2894   1.8      yamt 			if (newcsize > oldcsize) {
   2895   1.8      yamt 				stats_chunks.curchunks +=
   2896   1.8      yamt 				    (newcsize - oldcsize) / chunksize;
   2897   1.8      yamt 				if (stats_chunks.curchunks >
   2898   1.8      yamt 				    stats_chunks.highchunks)
   2899   1.8      yamt 					stats_chunks.highchunks =
   2900   1.8      yamt 					    stats_chunks.curchunks;
   2901   1.8      yamt 			} else {
   2902   1.8      yamt 				stats_chunks.curchunks -=
   2903   1.8      yamt 				    (oldcsize - newcsize) / chunksize;
   2904   1.8      yamt 			}
   2905   1.8      yamt #endif
   2906   1.8      yamt 			malloc_mutex_unlock(&chunks_mtx);
   2907   1.8      yamt 
   2908   1.8      yamt 			if (opt_junk && size < oldsize) {
   2909   1.8      yamt 				memset((void *)((uintptr_t)newptr + size), 0x5a,
   2910   1.8      yamt 				    newcsize - size);
   2911   1.8      yamt 			} else if (opt_zero && size > oldsize) {
   2912   1.8      yamt 				memset((void *)((uintptr_t)newptr + oldsize), 0,
   2913   1.8      yamt 				    size - oldsize);
   2914   1.8      yamt 			}
   2915   1.8      yamt 			return (newptr);
   2916   1.8      yamt 		}
   2917   1.8      yamt 	}
   2918   1.8      yamt 
   2919   1.1        ad 	/*
   2920   1.1        ad 	 * If we get here, then size and oldsize are different enough that we
   2921   1.1        ad 	 * need to use a different size class.  In that case, fall back to
   2922   1.1        ad 	 * allocating new space and copying.
   2923   1.1        ad 	 */
   2924   1.1        ad 	ret = huge_malloc(size);
   2925   1.1        ad 	if (ret == NULL)
   2926   1.1        ad 		return (NULL);
   2927   1.1        ad 
   2928   1.1        ad 	if (CHUNK_ADDR2BASE(ptr) == ptr) {
   2929   1.1        ad 		/* The old allocation is a chunk. */
   2930   1.1        ad 		if (size < oldsize)
   2931   1.1        ad 			memcpy(ret, ptr, size);
   2932   1.1        ad 		else
   2933   1.1        ad 			memcpy(ret, ptr, oldsize);
   2934   1.1        ad 	} else {
   2935   1.1        ad 		/* The old allocation is a region. */
   2936   1.1        ad 		assert(oldsize < size);
   2937   1.1        ad 		memcpy(ret, ptr, oldsize);
   2938   1.1        ad 	}
   2939   1.1        ad 	idalloc(ptr);
   2940   1.1        ad 	return (ret);
   2941   1.1        ad }
   2942   1.1        ad 
   2943   1.1        ad static void
   2944   1.1        ad huge_dalloc(void *ptr)
   2945   1.1        ad {
   2946   1.1        ad 	chunk_node_t key;
   2947   1.1        ad 	chunk_node_t *node;
   2948   1.1        ad 
   2949   1.1        ad 	malloc_mutex_lock(&chunks_mtx);
   2950   1.1        ad 
   2951   1.1        ad 	/* Extract from tree of huge allocations. */
   2952   1.1        ad 	key.chunk = ptr;
   2953   1.2        ad 	/* LINTED */
   2954   1.1        ad 	node = RB_FIND(chunk_tree_s, &huge, &key);
   2955   1.1        ad 	assert(node != NULL);
   2956   1.1        ad 	assert(node->chunk == ptr);
   2957   1.2        ad 	/* LINTED */
   2958   1.1        ad 	RB_REMOVE(chunk_tree_s, &huge, node);
   2959   1.1        ad 
   2960   1.1        ad #ifdef MALLOC_STATS
   2961   1.1        ad 	huge_ndalloc++;
   2962   1.1        ad 	huge_allocated -= node->size;
   2963   1.1        ad #endif
   2964   1.1        ad 
   2965   1.1        ad 	malloc_mutex_unlock(&chunks_mtx);
   2966   1.1        ad 
   2967   1.1        ad 	/* Unmap chunk. */
   2968   1.1        ad #ifdef USE_BRK
   2969   1.1        ad 	if (opt_junk)
   2970   1.1        ad 		memset(node->chunk, 0x5a, node->size);
   2971   1.1        ad #endif
   2972   1.1        ad 	chunk_dealloc(node->chunk, node->size);
   2973   1.1        ad 
   2974   1.1        ad 	base_chunk_node_dealloc(node);
   2975   1.1        ad }
   2976   1.1        ad 
   2977   1.1        ad static void *
   2978   1.1        ad imalloc(size_t size)
   2979   1.1        ad {
   2980   1.1        ad 	void *ret;
   2981   1.1        ad 
   2982   1.1        ad 	assert(size != 0);
   2983   1.1        ad 
   2984   1.1        ad 	if (size <= arena_maxclass)
   2985   1.1        ad 		ret = arena_malloc(choose_arena(), size);
   2986   1.1        ad 	else
   2987   1.1        ad 		ret = huge_malloc(size);
   2988   1.1        ad 
   2989   1.1        ad 	return (ret);
   2990   1.1        ad }
   2991   1.1        ad 
   2992   1.1        ad static void *
   2993   1.1        ad ipalloc(size_t alignment, size_t size)
   2994   1.1        ad {
   2995   1.1        ad 	void *ret;
   2996   1.1        ad 	size_t ceil_size;
   2997   1.1        ad 
   2998   1.1        ad 	/*
   2999   1.1        ad 	 * Round size up to the nearest multiple of alignment.
   3000   1.1        ad 	 *
   3001   1.1        ad 	 * This done, we can take advantage of the fact that for each small
   3002   1.1        ad 	 * size class, every object is aligned at the smallest power of two
   3003   1.1        ad 	 * that is non-zero in the base two representation of the size.  For
   3004   1.1        ad 	 * example:
   3005   1.1        ad 	 *
   3006   1.1        ad 	 *   Size |   Base 2 | Minimum alignment
   3007   1.1        ad 	 *   -----+----------+------------------
   3008   1.1        ad 	 *     96 |  1100000 |  32
   3009   1.1        ad 	 *    144 | 10100000 |  32
   3010   1.1        ad 	 *    192 | 11000000 |  64
   3011   1.1        ad 	 *
   3012   1.1        ad 	 * Depending on runtime settings, it is possible that arena_malloc()
   3013   1.1        ad 	 * will further round up to a power of two, but that never causes
   3014   1.1        ad 	 * correctness issues.
   3015   1.1        ad 	 */
   3016   1.1        ad 	ceil_size = (size + (alignment - 1)) & (-alignment);
   3017   1.1        ad 	/*
   3018   1.1        ad 	 * (ceil_size < size) protects against the combination of maximal
   3019   1.1        ad 	 * alignment and size greater than maximal alignment.
   3020   1.1        ad 	 */
   3021   1.1        ad 	if (ceil_size < size) {
   3022   1.1        ad 		/* size_t overflow. */
   3023   1.1        ad 		return (NULL);
   3024   1.1        ad 	}
   3025   1.1        ad 
   3026   1.1        ad 	if (ceil_size <= pagesize || (alignment <= pagesize
   3027   1.1        ad 	    && ceil_size <= arena_maxclass))
   3028   1.1        ad 		ret = arena_malloc(choose_arena(), ceil_size);
   3029   1.1        ad 	else {
   3030   1.1        ad 		size_t run_size;
   3031   1.1        ad 
   3032   1.1        ad 		/*
   3033   1.1        ad 		 * We can't achieve sub-page alignment, so round up alignment
   3034   1.1        ad 		 * permanently; it makes later calculations simpler.
   3035   1.1        ad 		 */
   3036   1.1        ad 		alignment = PAGE_CEILING(alignment);
   3037   1.1        ad 		ceil_size = PAGE_CEILING(size);
   3038   1.1        ad 		/*
   3039   1.1        ad 		 * (ceil_size < size) protects against very large sizes within
   3040   1.1        ad 		 * pagesize of SIZE_T_MAX.
   3041   1.1        ad 		 *
   3042   1.1        ad 		 * (ceil_size + alignment < ceil_size) protects against the
   3043   1.1        ad 		 * combination of maximal alignment and ceil_size large enough
   3044   1.1        ad 		 * to cause overflow.  This is similar to the first overflow
   3045   1.1        ad 		 * check above, but it needs to be repeated due to the new
   3046   1.1        ad 		 * ceil_size value, which may now be *equal* to maximal
   3047   1.1        ad 		 * alignment, whereas before we only detected overflow if the
   3048   1.1        ad 		 * original size was *greater* than maximal alignment.
   3049   1.1        ad 		 */
   3050   1.1        ad 		if (ceil_size < size || ceil_size + alignment < ceil_size) {
   3051   1.1        ad 			/* size_t overflow. */
   3052   1.1        ad 			return (NULL);
   3053   1.1        ad 		}
   3054   1.1        ad 
   3055   1.1        ad 		/*
   3056   1.1        ad 		 * Calculate the size of the over-size run that arena_palloc()
   3057   1.1        ad 		 * would need to allocate in order to guarantee the alignment.
   3058   1.1        ad 		 */
   3059   1.1        ad 		if (ceil_size >= alignment)
   3060   1.1        ad 			run_size = ceil_size + alignment - pagesize;
   3061   1.1        ad 		else {
   3062   1.1        ad 			/*
   3063   1.1        ad 			 * It is possible that (alignment << 1) will cause
   3064   1.1        ad 			 * overflow, but it doesn't matter because we also
   3065   1.1        ad 			 * subtract pagesize, which in the case of overflow
   3066   1.1        ad 			 * leaves us with a very large run_size.  That causes
   3067   1.1        ad 			 * the first conditional below to fail, which means
   3068   1.1        ad 			 * that the bogus run_size value never gets used for
   3069   1.1        ad 			 * anything important.
   3070   1.1        ad 			 */
   3071   1.1        ad 			run_size = (alignment << 1) - pagesize;
   3072   1.1        ad 		}
   3073   1.1        ad 
   3074   1.1        ad 		if (run_size <= arena_maxclass) {
   3075   1.1        ad 			ret = arena_palloc(choose_arena(), alignment, ceil_size,
   3076   1.1        ad 			    run_size);
   3077   1.1        ad 		} else if (alignment <= chunksize)
   3078   1.1        ad 			ret = huge_malloc(ceil_size);
   3079   1.1        ad 		else
   3080   1.1        ad 			ret = huge_palloc(alignment, ceil_size);
   3081   1.1        ad 	}
   3082   1.1        ad 
   3083   1.1        ad 	assert(((uintptr_t)ret & (alignment - 1)) == 0);
   3084   1.1        ad 	return (ret);
   3085   1.1        ad }
   3086   1.1        ad 
   3087   1.1        ad static void *
   3088   1.1        ad icalloc(size_t size)
   3089   1.1        ad {
   3090   1.1        ad 	void *ret;
   3091   1.1        ad 
   3092   1.1        ad 	if (size <= arena_maxclass) {
   3093   1.1        ad 		ret = arena_malloc(choose_arena(), size);
   3094   1.1        ad 		if (ret == NULL)
   3095   1.1        ad 			return (NULL);
   3096   1.1        ad 		memset(ret, 0, size);
   3097   1.1        ad 	} else {
   3098   1.1        ad 		/*
   3099   1.1        ad 		 * The virtual memory system provides zero-filled pages, so
   3100   1.1        ad 		 * there is no need to do so manually, unless opt_junk is
   3101   1.1        ad 		 * enabled, in which case huge_malloc() fills huge allocations
   3102   1.1        ad 		 * with junk.
   3103   1.1        ad 		 */
   3104   1.1        ad 		ret = huge_malloc(size);
   3105   1.1        ad 		if (ret == NULL)
   3106   1.1        ad 			return (NULL);
   3107   1.1        ad 
   3108   1.1        ad 		if (opt_junk)
   3109   1.1        ad 			memset(ret, 0, size);
   3110   1.1        ad #ifdef USE_BRK
   3111   1.1        ad 		else if ((uintptr_t)ret >= (uintptr_t)brk_base
   3112   1.1        ad 		    && (uintptr_t)ret < (uintptr_t)brk_max) {
   3113   1.1        ad 			/*
   3114   1.1        ad 			 * This may be a re-used brk chunk.  Therefore, zero
   3115   1.1        ad 			 * the memory.
   3116   1.1        ad 			 */
   3117   1.1        ad 			memset(ret, 0, size);
   3118   1.1        ad 		}
   3119   1.1        ad #endif
   3120   1.1        ad 	}
   3121   1.1        ad 
   3122   1.1        ad 	return (ret);
   3123   1.1        ad }
   3124   1.1        ad 
   3125   1.1        ad static size_t
   3126   1.1        ad isalloc(const void *ptr)
   3127   1.1        ad {
   3128   1.1        ad 	size_t ret;
   3129   1.1        ad 	arena_chunk_t *chunk;
   3130   1.1        ad 
   3131   1.1        ad 	assert(ptr != NULL);
   3132   1.1        ad 
   3133   1.1        ad 	chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
   3134   1.1        ad 	if (chunk != ptr) {
   3135   1.1        ad 		/* Region. */
   3136   1.1        ad 		assert(chunk->arena->magic == ARENA_MAGIC);
   3137   1.1        ad 
   3138   1.1        ad 		ret = arena_salloc(ptr);
   3139   1.1        ad 	} else {
   3140   1.1        ad 		chunk_node_t *node, key;
   3141   1.1        ad 
   3142   1.1        ad 		/* Chunk (huge allocation). */
   3143   1.1        ad 
   3144   1.1        ad 		malloc_mutex_lock(&chunks_mtx);
   3145   1.1        ad 
   3146   1.1        ad 		/* Extract from tree of huge allocations. */
   3147   1.1        ad 		key.chunk = __DECONST(void *, ptr);
   3148   1.2        ad 		/* LINTED */
   3149   1.1        ad 		node = RB_FIND(chunk_tree_s, &huge, &key);
   3150   1.1        ad 		assert(node != NULL);
   3151   1.1        ad 
   3152   1.1        ad 		ret = node->size;
   3153   1.1        ad 
   3154   1.1        ad 		malloc_mutex_unlock(&chunks_mtx);
   3155   1.1        ad 	}
   3156   1.1        ad 
   3157   1.1        ad 	return (ret);
   3158   1.1        ad }
   3159   1.1        ad 
   3160   1.1        ad static void *
   3161   1.1        ad iralloc(void *ptr, size_t size)
   3162   1.1        ad {
   3163   1.1        ad 	void *ret;
   3164   1.1        ad 	size_t oldsize;
   3165   1.1        ad 
   3166   1.1        ad 	assert(ptr != NULL);
   3167   1.1        ad 	assert(size != 0);
   3168   1.1        ad 
   3169   1.1        ad 	oldsize = isalloc(ptr);
   3170   1.1        ad 
   3171   1.1        ad 	if (size <= arena_maxclass)
   3172   1.1        ad 		ret = arena_ralloc(ptr, size, oldsize);
   3173   1.1        ad 	else
   3174   1.1        ad 		ret = huge_ralloc(ptr, size, oldsize);
   3175   1.1        ad 
   3176   1.1        ad 	return (ret);
   3177   1.1        ad }
   3178   1.1        ad 
   3179   1.1        ad static void
   3180   1.1        ad idalloc(void *ptr)
   3181   1.1        ad {
   3182   1.1        ad 	arena_chunk_t *chunk;
   3183   1.1        ad 
   3184   1.1        ad 	assert(ptr != NULL);
   3185   1.1        ad 
   3186   1.1        ad 	chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
   3187   1.1        ad 	if (chunk != ptr) {
   3188   1.1        ad 		/* Region. */
   3189   1.1        ad 		arena_dalloc(chunk->arena, chunk, ptr);
   3190   1.1        ad 	} else
   3191   1.1        ad 		huge_dalloc(ptr);
   3192   1.1        ad }
   3193   1.1        ad 
   3194   1.1        ad static void
   3195   1.1        ad malloc_print_stats(void)
   3196   1.1        ad {
   3197   1.1        ad 
   3198   1.1        ad 	if (opt_print_stats) {
   3199   1.1        ad 		char s[UMAX2S_BUFSIZE];
   3200   1.1        ad 		_malloc_message("___ Begin malloc statistics ___\n", "", "",
   3201   1.1        ad 		    "");
   3202   1.1        ad 		_malloc_message("Assertions ",
   3203   1.1        ad #ifdef NDEBUG
   3204   1.1        ad 		    "disabled",
   3205   1.1        ad #else
   3206   1.1        ad 		    "enabled",
   3207   1.1        ad #endif
   3208   1.1        ad 		    "\n", "");
   3209   1.1        ad 		_malloc_message("Boolean MALLOC_OPTIONS: ",
   3210   1.1        ad 		    opt_abort ? "A" : "a",
   3211   1.1        ad 		    opt_junk ? "J" : "j",
   3212   1.1        ad 		    opt_hint ? "H" : "h");
   3213   1.1        ad 		_malloc_message(opt_utrace ? "PU" : "Pu",
   3214   1.1        ad 		    opt_sysv ? "V" : "v",
   3215   1.1        ad 		    opt_xmalloc ? "X" : "x",
   3216   1.1        ad 		    opt_zero ? "Z\n" : "z\n");
   3217   1.1        ad 
   3218   1.1        ad 		_malloc_message("CPUs: ", umax2s(ncpus, s), "\n", "");
   3219   1.1        ad 		_malloc_message("Max arenas: ", umax2s(narenas, s), "\n", "");
   3220   1.1        ad 		_malloc_message("Pointer size: ", umax2s(sizeof(void *), s),
   3221   1.1        ad 		    "\n", "");
   3222   1.1        ad 		_malloc_message("Quantum size: ", umax2s(quantum, s), "\n", "");
   3223   1.1        ad 		_malloc_message("Max small size: ", umax2s(small_max, s), "\n",
   3224   1.1        ad 		    "");
   3225   1.1        ad 
   3226   1.1        ad 		_malloc_message("Chunk size: ", umax2s(chunksize, s), "", "");
   3227   1.1        ad 		_malloc_message(" (2^", umax2s(opt_chunk_2pow, s), ")\n", "");
   3228   1.1        ad 
   3229   1.1        ad #ifdef MALLOC_STATS
   3230   1.1        ad 		{
   3231   1.1        ad 			size_t allocated, mapped;
   3232   1.1        ad 			unsigned i;
   3233   1.1        ad 			arena_t *arena;
   3234   1.1        ad 
   3235   1.1        ad 			/* Calculate and print allocated/mapped stats. */
   3236   1.1        ad 
   3237   1.1        ad 			/* arenas. */
   3238   1.1        ad 			for (i = 0, allocated = 0; i < narenas; i++) {
   3239   1.1        ad 				if (arenas[i] != NULL) {
   3240   1.1        ad 					malloc_mutex_lock(&arenas[i]->mtx);
   3241   1.1        ad 					allocated +=
   3242   1.1        ad 					    arenas[i]->stats.allocated_small;
   3243   1.1        ad 					allocated +=
   3244   1.1        ad 					    arenas[i]->stats.allocated_large;
   3245   1.1        ad 					malloc_mutex_unlock(&arenas[i]->mtx);
   3246   1.1        ad 				}
   3247   1.1        ad 			}
   3248   1.1        ad 
   3249   1.1        ad 			/* huge/base. */
   3250   1.1        ad 			malloc_mutex_lock(&chunks_mtx);
   3251   1.1        ad 			allocated += huge_allocated;
   3252   1.1        ad 			mapped = stats_chunks.curchunks * chunksize;
   3253   1.1        ad 			malloc_mutex_unlock(&chunks_mtx);
   3254   1.1        ad 
   3255   1.1        ad 			malloc_mutex_lock(&base_mtx);
   3256   1.1        ad 			mapped += base_mapped;
   3257   1.1        ad 			malloc_mutex_unlock(&base_mtx);
   3258   1.1        ad 
   3259   1.1        ad 			malloc_printf("Allocated: %zu, mapped: %zu\n",
   3260   1.1        ad 			    allocated, mapped);
   3261   1.1        ad 
   3262   1.1        ad 			/* Print chunk stats. */
   3263   1.1        ad 			{
   3264   1.1        ad 				chunk_stats_t chunks_stats;
   3265   1.1        ad 
   3266   1.1        ad 				malloc_mutex_lock(&chunks_mtx);
   3267   1.1        ad 				chunks_stats = stats_chunks;
   3268   1.1        ad 				malloc_mutex_unlock(&chunks_mtx);
   3269   1.1        ad 
   3270   1.1        ad 				malloc_printf("chunks: nchunks   "
   3271   1.1        ad 				    "highchunks    curchunks\n");
   3272   1.1        ad 				malloc_printf("  %13llu%13lu%13lu\n",
   3273   1.1        ad 				    chunks_stats.nchunks,
   3274   1.1        ad 				    chunks_stats.highchunks,
   3275   1.1        ad 				    chunks_stats.curchunks);
   3276   1.1        ad 			}
   3277   1.1        ad 
   3278   1.1        ad 			/* Print chunk stats. */
   3279   1.1        ad 			malloc_printf(
   3280   1.8      yamt 			    "huge: nmalloc      ndalloc      "
   3281   1.8      yamt 			    "nralloc    allocated\n");
   3282   1.8      yamt 			malloc_printf(" %12llu %12llu %12llu %12zu\n",
   3283   1.8      yamt 			    huge_nmalloc, huge_ndalloc, huge_nralloc,
   3284   1.8      yamt 			    huge_allocated);
   3285   1.1        ad 
   3286   1.1        ad 			/* Print stats for each arena. */
   3287   1.1        ad 			for (i = 0; i < narenas; i++) {
   3288   1.1        ad 				arena = arenas[i];
   3289   1.1        ad 				if (arena != NULL) {
   3290   1.1        ad 					malloc_printf(
   3291   1.2        ad 					    "\narenas[%u] @ %p\n", i, arena);
   3292   1.1        ad 					malloc_mutex_lock(&arena->mtx);
   3293   1.1        ad 					stats_print(arena);
   3294   1.1        ad 					malloc_mutex_unlock(&arena->mtx);
   3295   1.1        ad 				}
   3296   1.1        ad 			}
   3297   1.1        ad 		}
   3298   1.1        ad #endif /* #ifdef MALLOC_STATS */
   3299   1.1        ad 		_malloc_message("--- End malloc statistics ---\n", "", "", "");
   3300   1.1        ad 	}
   3301   1.1        ad }
   3302   1.1        ad 
   3303   1.1        ad /*
   3304   1.1        ad  * FreeBSD's pthreads implementation calls malloc(3), so the malloc
   3305   1.1        ad  * implementation has to take pains to avoid infinite recursion during
   3306   1.1        ad  * initialization.
   3307   1.1        ad  */
   3308   1.1        ad static inline bool
   3309   1.1        ad malloc_init(void)
   3310   1.1        ad {
   3311   1.1        ad 
   3312   1.1        ad 	if (malloc_initialized == false)
   3313   1.1        ad 		return (malloc_init_hard());
   3314   1.1        ad 
   3315   1.1        ad 	return (false);
   3316   1.1        ad }
   3317   1.1        ad 
   3318   1.1        ad static bool
   3319   1.1        ad malloc_init_hard(void)
   3320   1.1        ad {
   3321   1.1        ad 	unsigned i, j;
   3322   1.9  christos 	ssize_t linklen;
   3323   1.1        ad 	char buf[PATH_MAX + 1];
   3324   1.2        ad 	const char *opts = "";
   3325   1.1        ad 
   3326   1.1        ad 	malloc_mutex_lock(&init_lock);
   3327   1.1        ad 	if (malloc_initialized) {
   3328   1.1        ad 		/*
   3329   1.1        ad 		 * Another thread initialized the allocator before this one
   3330   1.1        ad 		 * acquired init_lock.
   3331   1.1        ad 		 */
   3332   1.1        ad 		malloc_mutex_unlock(&init_lock);
   3333   1.1        ad 		return (false);
   3334   1.1        ad 	}
   3335   1.1        ad 
   3336   1.1        ad 	/* Get number of CPUs. */
   3337   1.1        ad 	{
   3338   1.1        ad 		int mib[2];
   3339   1.1        ad 		size_t len;
   3340   1.1        ad 
   3341   1.1        ad 		mib[0] = CTL_HW;
   3342   1.1        ad 		mib[1] = HW_NCPU;
   3343   1.1        ad 		len = sizeof(ncpus);
   3344   1.1        ad 		if (sysctl(mib, 2, &ncpus, &len, (void *) 0, 0) == -1) {
   3345   1.1        ad 			/* Error. */
   3346   1.1        ad 			ncpus = 1;
   3347   1.1        ad 		}
   3348   1.1        ad 	}
   3349   1.1        ad 
   3350   1.1        ad 	/* Get page size. */
   3351   1.1        ad 	{
   3352   1.1        ad 		long result;
   3353   1.1        ad 
   3354   1.1        ad 		result = sysconf(_SC_PAGESIZE);
   3355   1.1        ad 		assert(result != -1);
   3356   1.1        ad 		pagesize = (unsigned) result;
   3357   1.1        ad 
   3358   1.1        ad 		/*
   3359   1.1        ad 		 * We assume that pagesize is a power of 2 when calculating
   3360   1.1        ad 		 * pagesize_mask and pagesize_2pow.
   3361   1.1        ad 		 */
   3362   1.1        ad 		assert(((result - 1) & result) == 0);
   3363   1.1        ad 		pagesize_mask = result - 1;
   3364   1.1        ad 		pagesize_2pow = ffs((int)result) - 1;
   3365   1.1        ad 	}
   3366   1.1        ad 
   3367   1.1        ad 	for (i = 0; i < 3; i++) {
   3368   1.1        ad 		/* Get runtime configuration. */
   3369   1.1        ad 		switch (i) {
   3370   1.1        ad 		case 0:
   3371   1.1        ad 			if ((linklen = readlink("/etc/malloc.conf", buf,
   3372   1.1        ad 						sizeof(buf) - 1)) != -1) {
   3373   1.1        ad 				/*
   3374   1.1        ad 				 * Use the contents of the "/etc/malloc.conf"
   3375   1.1        ad 				 * symbolic link's name.
   3376   1.1        ad 				 */
   3377   1.1        ad 				buf[linklen] = '\0';
   3378   1.1        ad 				opts = buf;
   3379   1.1        ad 			} else {
   3380   1.1        ad 				/* No configuration specified. */
   3381   1.1        ad 				buf[0] = '\0';
   3382   1.1        ad 				opts = buf;
   3383   1.1        ad 			}
   3384   1.1        ad 			break;
   3385   1.1        ad 		case 1:
   3386  1.18        ad 			if ((opts = getenv("MALLOC_OPTIONS")) != NULL &&
   3387  1.18        ad 			    issetugid() == 0) {
   3388   1.1        ad 				/*
   3389   1.1        ad 				 * Do nothing; opts is already initialized to
   3390   1.1        ad 				 * the value of the MALLOC_OPTIONS environment
   3391   1.1        ad 				 * variable.
   3392   1.1        ad 				 */
   3393   1.1        ad 			} else {
   3394   1.1        ad 				/* No configuration specified. */
   3395   1.1        ad 				buf[0] = '\0';
   3396   1.1        ad 				opts = buf;
   3397   1.1        ad 			}
   3398   1.1        ad 			break;
   3399   1.1        ad 		case 2:
   3400   1.1        ad 			if (_malloc_options != NULL) {
   3401   1.1        ad 			    /*
   3402   1.1        ad 			     * Use options that were compiled into the program.
   3403   1.1        ad 			     */
   3404   1.1        ad 			    opts = _malloc_options;
   3405   1.1        ad 			} else {
   3406   1.1        ad 				/* No configuration specified. */
   3407   1.1        ad 				buf[0] = '\0';
   3408   1.1        ad 				opts = buf;
   3409   1.1        ad 			}
   3410   1.1        ad 			break;
   3411   1.1        ad 		default:
   3412   1.1        ad 			/* NOTREACHED */
   3413   1.7      yamt 			/* LINTED */
   3414   1.1        ad 			assert(false);
   3415   1.1        ad 		}
   3416   1.1        ad 
   3417   1.1        ad 		for (j = 0; opts[j] != '\0'; j++) {
   3418   1.1        ad 			switch (opts[j]) {
   3419   1.1        ad 			case 'a':
   3420   1.1        ad 				opt_abort = false;
   3421   1.1        ad 				break;
   3422   1.1        ad 			case 'A':
   3423   1.1        ad 				opt_abort = true;
   3424   1.1        ad 				break;
   3425   1.1        ad 			case 'h':
   3426   1.1        ad 				opt_hint = false;
   3427   1.1        ad 				break;
   3428   1.1        ad 			case 'H':
   3429   1.1        ad 				opt_hint = true;
   3430   1.1        ad 				break;
   3431   1.1        ad 			case 'j':
   3432   1.1        ad 				opt_junk = false;
   3433   1.1        ad 				break;
   3434   1.1        ad 			case 'J':
   3435   1.1        ad 				opt_junk = true;
   3436   1.1        ad 				break;
   3437   1.1        ad 			case 'k':
   3438   1.1        ad 				/*
   3439   1.1        ad 				 * Chunks always require at least one header
   3440   1.1        ad 				 * page, so chunks can never be smaller than
   3441   1.1        ad 				 * two pages.
   3442   1.1        ad 				 */
   3443   1.1        ad 				if (opt_chunk_2pow > pagesize_2pow + 1)
   3444   1.1        ad 					opt_chunk_2pow--;
   3445   1.1        ad 				break;
   3446   1.1        ad 			case 'K':
   3447  1.20     lukem 				if (opt_chunk_2pow + 1 <
   3448  1.20     lukem 				    (int)(sizeof(size_t) << 3))
   3449   1.1        ad 					opt_chunk_2pow++;
   3450   1.1        ad 				break;
   3451   1.1        ad 			case 'n':
   3452   1.1        ad 				opt_narenas_lshift--;
   3453   1.1        ad 				break;
   3454   1.1        ad 			case 'N':
   3455   1.1        ad 				opt_narenas_lshift++;
   3456   1.1        ad 				break;
   3457   1.1        ad 			case 'p':
   3458   1.1        ad 				opt_print_stats = false;
   3459   1.1        ad 				break;
   3460   1.1        ad 			case 'P':
   3461   1.1        ad 				opt_print_stats = true;
   3462   1.1        ad 				break;
   3463   1.1        ad 			case 'q':
   3464   1.1        ad 				if (opt_quantum_2pow > QUANTUM_2POW_MIN)
   3465   1.1        ad 					opt_quantum_2pow--;
   3466   1.1        ad 				break;
   3467   1.1        ad 			case 'Q':
   3468   1.1        ad 				if (opt_quantum_2pow < pagesize_2pow - 1)
   3469   1.1        ad 					opt_quantum_2pow++;
   3470   1.1        ad 				break;
   3471   1.1        ad 			case 's':
   3472   1.1        ad 				if (opt_small_max_2pow > QUANTUM_2POW_MIN)
   3473   1.1        ad 					opt_small_max_2pow--;
   3474   1.1        ad 				break;
   3475   1.1        ad 			case 'S':
   3476   1.1        ad 				if (opt_small_max_2pow < pagesize_2pow - 1)
   3477   1.1        ad 					opt_small_max_2pow++;
   3478   1.1        ad 				break;
   3479   1.1        ad 			case 'u':
   3480   1.1        ad 				opt_utrace = false;
   3481   1.1        ad 				break;
   3482   1.1        ad 			case 'U':
   3483   1.1        ad 				opt_utrace = true;
   3484   1.1        ad 				break;
   3485   1.1        ad 			case 'v':
   3486   1.1        ad 				opt_sysv = false;
   3487   1.1        ad 				break;
   3488   1.1        ad 			case 'V':
   3489   1.1        ad 				opt_sysv = true;
   3490   1.1        ad 				break;
   3491   1.1        ad 			case 'x':
   3492   1.1        ad 				opt_xmalloc = false;
   3493   1.1        ad 				break;
   3494   1.1        ad 			case 'X':
   3495   1.1        ad 				opt_xmalloc = true;
   3496   1.1        ad 				break;
   3497   1.1        ad 			case 'z':
   3498   1.1        ad 				opt_zero = false;
   3499   1.1        ad 				break;
   3500   1.1        ad 			case 'Z':
   3501   1.1        ad 				opt_zero = true;
   3502   1.1        ad 				break;
   3503   1.1        ad 			default: {
   3504   1.1        ad 				char cbuf[2];
   3505   1.1        ad 
   3506   1.1        ad 				cbuf[0] = opts[j];
   3507   1.1        ad 				cbuf[1] = '\0';
   3508  1.16  christos 				_malloc_message(getprogname(),
   3509   1.1        ad 				    ": (malloc) Unsupported character in "
   3510   1.1        ad 				    "malloc options: '", cbuf, "'\n");
   3511   1.1        ad 			}
   3512   1.1        ad 			}
   3513   1.1        ad 		}
   3514   1.1        ad 	}
   3515   1.1        ad 
   3516   1.1        ad 	/* Take care to call atexit() only once. */
   3517   1.1        ad 	if (opt_print_stats) {
   3518   1.1        ad 		/* Print statistics at exit. */
   3519   1.1        ad 		atexit(malloc_print_stats);
   3520   1.1        ad 	}
   3521   1.1        ad 
   3522   1.1        ad 	/* Set variables according to the value of opt_small_max_2pow. */
   3523   1.1        ad 	if (opt_small_max_2pow < opt_quantum_2pow)
   3524   1.1        ad 		opt_small_max_2pow = opt_quantum_2pow;
   3525   1.1        ad 	small_max = (1 << opt_small_max_2pow);
   3526   1.1        ad 
   3527   1.1        ad 	/* Set bin-related variables. */
   3528   1.1        ad 	bin_maxclass = (pagesize >> 1);
   3529   1.1        ad 	assert(opt_quantum_2pow >= TINY_MIN_2POW);
   3530   1.9  christos 	ntbins = (unsigned)(opt_quantum_2pow - TINY_MIN_2POW);
   3531   1.1        ad 	assert(ntbins <= opt_quantum_2pow);
   3532   1.9  christos 	nqbins = (unsigned)(small_max >> opt_quantum_2pow);
   3533   1.9  christos 	nsbins = (unsigned)(pagesize_2pow - opt_small_max_2pow - 1);
   3534   1.1        ad 
   3535   1.1        ad 	/* Set variables according to the value of opt_quantum_2pow. */
   3536   1.1        ad 	quantum = (1 << opt_quantum_2pow);
   3537   1.1        ad 	quantum_mask = quantum - 1;
   3538   1.1        ad 	if (ntbins > 0)
   3539   1.1        ad 		small_min = (quantum >> 1) + 1;
   3540   1.1        ad 	else
   3541   1.1        ad 		small_min = 1;
   3542   1.1        ad 	assert(small_min <= quantum);
   3543   1.1        ad 
   3544   1.1        ad 	/* Set variables according to the value of opt_chunk_2pow. */
   3545   1.1        ad 	chunksize = (1LU << opt_chunk_2pow);
   3546   1.1        ad 	chunksize_mask = chunksize - 1;
   3547   1.9  christos 	chunksize_2pow = (unsigned)opt_chunk_2pow;
   3548   1.9  christos 	chunk_npages = (unsigned)(chunksize >> pagesize_2pow);
   3549   1.1        ad 	{
   3550   1.1        ad 		unsigned header_size;
   3551   1.1        ad 
   3552   1.9  christos 		header_size = (unsigned)(sizeof(arena_chunk_t) +
   3553   1.9  christos 		    (sizeof(arena_chunk_map_t) * (chunk_npages - 1)));
   3554   1.1        ad 		arena_chunk_header_npages = (header_size >> pagesize_2pow);
   3555   1.1        ad 		if ((header_size & pagesize_mask) != 0)
   3556   1.1        ad 			arena_chunk_header_npages++;
   3557   1.1        ad 	}
   3558   1.1        ad 	arena_maxclass = chunksize - (arena_chunk_header_npages <<
   3559   1.1        ad 	    pagesize_2pow);
   3560   1.1        ad 
   3561   1.1        ad 	UTRACE(0, 0, 0);
   3562   1.1        ad 
   3563   1.1        ad #ifdef MALLOC_STATS
   3564   1.1        ad 	memset(&stats_chunks, 0, sizeof(chunk_stats_t));
   3565   1.1        ad #endif
   3566   1.1        ad 
   3567   1.1        ad 	/* Various sanity checks that regard configuration. */
   3568   1.1        ad 	assert(quantum >= sizeof(void *));
   3569   1.1        ad 	assert(quantum <= pagesize);
   3570   1.1        ad 	assert(chunksize >= pagesize);
   3571   1.1        ad 	assert(quantum * 4 <= chunksize);
   3572   1.1        ad 
   3573   1.1        ad 	/* Initialize chunks data. */
   3574   1.1        ad 	malloc_mutex_init(&chunks_mtx);
   3575   1.1        ad 	RB_INIT(&huge);
   3576   1.1        ad #ifdef USE_BRK
   3577   1.1        ad 	malloc_mutex_init(&brk_mtx);
   3578   1.1        ad 	brk_base = sbrk(0);
   3579   1.1        ad 	brk_prev = brk_base;
   3580   1.1        ad 	brk_max = brk_base;
   3581   1.1        ad #endif
   3582   1.1        ad #ifdef MALLOC_STATS
   3583   1.1        ad 	huge_nmalloc = 0;
   3584   1.1        ad 	huge_ndalloc = 0;
   3585   1.8      yamt 	huge_nralloc = 0;
   3586   1.1        ad 	huge_allocated = 0;
   3587   1.1        ad #endif
   3588   1.1        ad 	RB_INIT(&old_chunks);
   3589   1.1        ad 
   3590   1.1        ad 	/* Initialize base allocation data structures. */
   3591   1.1        ad #ifdef MALLOC_STATS
   3592   1.1        ad 	base_mapped = 0;
   3593   1.1        ad #endif
   3594   1.1        ad #ifdef USE_BRK
   3595   1.1        ad 	/*
   3596   1.1        ad 	 * Allocate a base chunk here, since it doesn't actually have to be
   3597   1.1        ad 	 * chunk-aligned.  Doing this before allocating any other chunks allows
   3598   1.1        ad 	 * the use of space that would otherwise be wasted.
   3599   1.1        ad 	 */
   3600   1.1        ad 	base_pages_alloc(0);
   3601   1.1        ad #endif
   3602   1.1        ad 	base_chunk_nodes = NULL;
   3603   1.1        ad 	malloc_mutex_init(&base_mtx);
   3604   1.1        ad 
   3605   1.1        ad 	if (ncpus > 1) {
   3606   1.1        ad 		/*
   3607   1.1        ad 		 * For SMP systems, create four times as many arenas as there
   3608   1.1        ad 		 * are CPUs by default.
   3609   1.1        ad 		 */
   3610   1.1        ad 		opt_narenas_lshift += 2;
   3611   1.1        ad 	}
   3612   1.1        ad 
   3613   1.2        ad #ifdef NO_TLS
   3614   1.2        ad 	/* Initialize arena key. */
   3615   1.2        ad 	(void)thr_keycreate(&arenas_map_key, NULL);
   3616   1.2        ad #endif
   3617   1.2        ad 
   3618   1.1        ad 	/* Determine how many arenas to use. */
   3619   1.1        ad 	narenas = ncpus;
   3620   1.1        ad 	if (opt_narenas_lshift > 0) {
   3621   1.1        ad 		if ((narenas << opt_narenas_lshift) > narenas)
   3622   1.1        ad 			narenas <<= opt_narenas_lshift;
   3623   1.1        ad 		/*
   3624   1.1        ad 		 * Make sure not to exceed the limits of what base_malloc()
   3625   1.1        ad 		 * can handle.
   3626   1.1        ad 		 */
   3627   1.1        ad 		if (narenas * sizeof(arena_t *) > chunksize)
   3628   1.9  christos 			narenas = (unsigned)(chunksize / sizeof(arena_t *));
   3629   1.1        ad 	} else if (opt_narenas_lshift < 0) {
   3630   1.1        ad 		if ((narenas << opt_narenas_lshift) < narenas)
   3631   1.1        ad 			narenas <<= opt_narenas_lshift;
   3632  1.15        ad 		/* Make sure there is at least one arena. */
   3633  1.15        ad 		if (narenas == 0)
   3634  1.15        ad 			narenas = 1;
   3635   1.1        ad 	}
   3636   1.1        ad 
   3637   1.1        ad 	next_arena = 0;
   3638   1.1        ad 
   3639   1.1        ad 	/* Allocate and initialize arenas. */
   3640   1.1        ad 	arenas = (arena_t **)base_alloc(sizeof(arena_t *) * narenas);
   3641   1.1        ad 	if (arenas == NULL) {
   3642   1.1        ad 		malloc_mutex_unlock(&init_lock);
   3643   1.1        ad 		return (true);
   3644   1.1        ad 	}
   3645   1.1        ad 	/*
   3646   1.1        ad 	 * Zero the array.  In practice, this should always be pre-zeroed,
   3647   1.1        ad 	 * since it was just mmap()ed, but let's be sure.
   3648   1.1        ad 	 */
   3649   1.1        ad 	memset(arenas, 0, sizeof(arena_t *) * narenas);
   3650   1.1        ad 
   3651   1.1        ad 	/*
   3652   1.1        ad 	 * Initialize one arena here.  The rest are lazily created in
   3653   1.1        ad 	 * arena_choose_hard().
   3654   1.1        ad 	 */
   3655   1.1        ad 	arenas_extend(0);
   3656   1.1        ad 	if (arenas[0] == NULL) {
   3657   1.1        ad 		malloc_mutex_unlock(&init_lock);
   3658   1.1        ad 		return (true);
   3659   1.1        ad 	}
   3660   1.1        ad 
   3661   1.1        ad 	malloc_mutex_init(&arenas_mtx);
   3662   1.1        ad 
   3663   1.1        ad 	malloc_initialized = true;
   3664   1.1        ad 	malloc_mutex_unlock(&init_lock);
   3665   1.1        ad 	return (false);
   3666   1.1        ad }
   3667   1.1        ad 
   3668   1.1        ad /*
   3669   1.1        ad  * End general internal functions.
   3670   1.1        ad  */
   3671   1.1        ad /******************************************************************************/
   3672   1.1        ad /*
   3673   1.1        ad  * Begin malloc(3)-compatible functions.
   3674   1.1        ad  */
   3675   1.1        ad 
   3676   1.1        ad void *
   3677   1.1        ad malloc(size_t size)
   3678   1.1        ad {
   3679   1.1        ad 	void *ret;
   3680   1.1        ad 
   3681   1.1        ad 	if (malloc_init()) {
   3682   1.1        ad 		ret = NULL;
   3683   1.1        ad 		goto RETURN;
   3684   1.1        ad 	}
   3685   1.1        ad 
   3686   1.1        ad 	if (size == 0) {
   3687   1.1        ad 		if (opt_sysv == false)
   3688   1.1        ad 			size = 1;
   3689   1.1        ad 		else {
   3690   1.1        ad 			ret = NULL;
   3691   1.1        ad 			goto RETURN;
   3692   1.1        ad 		}
   3693   1.1        ad 	}
   3694   1.1        ad 
   3695   1.1        ad 	ret = imalloc(size);
   3696   1.1        ad 
   3697   1.1        ad RETURN:
   3698   1.1        ad 	if (ret == NULL) {
   3699   1.1        ad 		if (opt_xmalloc) {
   3700  1.16  christos 			_malloc_message(getprogname(),
   3701   1.1        ad 			    ": (malloc) Error in malloc(): out of memory\n", "",
   3702   1.1        ad 			    "");
   3703   1.1        ad 			abort();
   3704   1.1        ad 		}
   3705   1.1        ad 		errno = ENOMEM;
   3706   1.1        ad 	}
   3707   1.1        ad 
   3708   1.1        ad 	UTRACE(0, size, ret);
   3709   1.1        ad 	return (ret);
   3710   1.1        ad }
   3711   1.1        ad 
   3712   1.1        ad int
   3713   1.1        ad posix_memalign(void **memptr, size_t alignment, size_t size)
   3714   1.1        ad {
   3715   1.1        ad 	int ret;
   3716   1.1        ad 	void *result;
   3717   1.1        ad 
   3718   1.1        ad 	if (malloc_init())
   3719   1.1        ad 		result = NULL;
   3720   1.1        ad 	else {
   3721   1.1        ad 		/* Make sure that alignment is a large enough power of 2. */
   3722   1.1        ad 		if (((alignment - 1) & alignment) != 0
   3723   1.1        ad 		    || alignment < sizeof(void *)) {
   3724   1.1        ad 			if (opt_xmalloc) {
   3725  1.16  christos 				_malloc_message(getprogname(),
   3726   1.1        ad 				    ": (malloc) Error in posix_memalign(): "
   3727   1.1        ad 				    "invalid alignment\n", "", "");
   3728   1.1        ad 				abort();
   3729   1.1        ad 			}
   3730   1.1        ad 			result = NULL;
   3731   1.1        ad 			ret = EINVAL;
   3732   1.1        ad 			goto RETURN;
   3733   1.1        ad 		}
   3734   1.1        ad 
   3735   1.1        ad 		result = ipalloc(alignment, size);
   3736   1.1        ad 	}
   3737   1.1        ad 
   3738   1.1        ad 	if (result == NULL) {
   3739   1.1        ad 		if (opt_xmalloc) {
   3740  1.16  christos 			_malloc_message(getprogname(),
   3741   1.1        ad 			": (malloc) Error in posix_memalign(): out of memory\n",
   3742   1.1        ad 			"", "");
   3743   1.1        ad 			abort();
   3744   1.1        ad 		}
   3745   1.1        ad 		ret = ENOMEM;
   3746   1.1        ad 		goto RETURN;
   3747   1.1        ad 	}
   3748   1.1        ad 
   3749   1.1        ad 	*memptr = result;
   3750   1.1        ad 	ret = 0;
   3751   1.1        ad 
   3752   1.1        ad RETURN:
   3753   1.1        ad 	UTRACE(0, size, result);
   3754   1.1        ad 	return (ret);
   3755   1.1        ad }
   3756   1.1        ad 
   3757   1.1        ad void *
   3758   1.1        ad calloc(size_t num, size_t size)
   3759   1.1        ad {
   3760   1.1        ad 	void *ret;
   3761   1.1        ad 	size_t num_size;
   3762   1.1        ad 
   3763   1.1        ad 	if (malloc_init()) {
   3764   1.1        ad 		num_size = 0;
   3765   1.1        ad 		ret = NULL;
   3766   1.1        ad 		goto RETURN;
   3767   1.1        ad 	}
   3768   1.1        ad 
   3769   1.1        ad 	num_size = num * size;
   3770   1.1        ad 	if (num_size == 0) {
   3771   1.1        ad 		if ((opt_sysv == false) && ((num == 0) || (size == 0)))
   3772   1.1        ad 			num_size = 1;
   3773   1.1        ad 		else {
   3774   1.1        ad 			ret = NULL;
   3775   1.1        ad 			goto RETURN;
   3776   1.1        ad 		}
   3777   1.1        ad 	/*
   3778   1.1        ad 	 * Try to avoid division here.  We know that it isn't possible to
   3779   1.1        ad 	 * overflow during multiplication if neither operand uses any of the
   3780   1.1        ad 	 * most significant half of the bits in a size_t.
   3781   1.1        ad 	 */
   3782   1.2        ad 	} else if ((unsigned long long)((num | size) &
   3783   1.2        ad 	   ((unsigned long long)SIZE_T_MAX << (sizeof(size_t) << 2))) &&
   3784   1.2        ad 	   (num_size / size != num)) {
   3785   1.1        ad 		/* size_t overflow. */
   3786   1.1        ad 		ret = NULL;
   3787   1.1        ad 		goto RETURN;
   3788   1.1        ad 	}
   3789   1.1        ad 
   3790   1.1        ad 	ret = icalloc(num_size);
   3791   1.1        ad 
   3792   1.1        ad RETURN:
   3793   1.1        ad 	if (ret == NULL) {
   3794   1.1        ad 		if (opt_xmalloc) {
   3795  1.16  christos 			_malloc_message(getprogname(),
   3796   1.1        ad 			    ": (malloc) Error in calloc(): out of memory\n", "",
   3797   1.1        ad 			    "");
   3798   1.1        ad 			abort();
   3799   1.1        ad 		}
   3800   1.1        ad 		errno = ENOMEM;
   3801   1.1        ad 	}
   3802   1.1        ad 
   3803   1.1        ad 	UTRACE(0, num_size, ret);
   3804   1.1        ad 	return (ret);
   3805   1.1        ad }
   3806   1.1        ad 
   3807   1.1        ad void *
   3808   1.1        ad realloc(void *ptr, size_t size)
   3809   1.1        ad {
   3810   1.1        ad 	void *ret;
   3811   1.1        ad 
   3812   1.1        ad 	if (size == 0) {
   3813   1.1        ad 		if (opt_sysv == false)
   3814   1.1        ad 			size = 1;
   3815   1.1        ad 		else {
   3816   1.1        ad 			if (ptr != NULL)
   3817   1.1        ad 				idalloc(ptr);
   3818   1.1        ad 			ret = NULL;
   3819   1.1        ad 			goto RETURN;
   3820   1.1        ad 		}
   3821   1.1        ad 	}
   3822   1.1        ad 
   3823   1.1        ad 	if (ptr != NULL) {
   3824   1.1        ad 		assert(malloc_initialized);
   3825   1.1        ad 
   3826   1.1        ad 		ret = iralloc(ptr, size);
   3827   1.1        ad 
   3828   1.1        ad 		if (ret == NULL) {
   3829   1.1        ad 			if (opt_xmalloc) {
   3830  1.16  christos 				_malloc_message(getprogname(),
   3831   1.1        ad 				    ": (malloc) Error in realloc(): out of "
   3832   1.1        ad 				    "memory\n", "", "");
   3833   1.1        ad 				abort();
   3834   1.1        ad 			}
   3835   1.1        ad 			errno = ENOMEM;
   3836   1.1        ad 		}
   3837   1.1        ad 	} else {
   3838   1.1        ad 		if (malloc_init())
   3839   1.1        ad 			ret = NULL;
   3840   1.1        ad 		else
   3841   1.1        ad 			ret = imalloc(size);
   3842   1.1        ad 
   3843   1.1        ad 		if (ret == NULL) {
   3844   1.1        ad 			if (opt_xmalloc) {
   3845  1.16  christos 				_malloc_message(getprogname(),
   3846   1.1        ad 				    ": (malloc) Error in realloc(): out of "
   3847   1.1        ad 				    "memory\n", "", "");
   3848   1.1        ad 				abort();
   3849   1.1        ad 			}
   3850   1.1        ad 			errno = ENOMEM;
   3851   1.1        ad 		}
   3852   1.1        ad 	}
   3853   1.1        ad 
   3854   1.1        ad RETURN:
   3855   1.1        ad 	UTRACE(ptr, size, ret);
   3856   1.1        ad 	return (ret);
   3857   1.1        ad }
   3858   1.1        ad 
   3859   1.1        ad void
   3860   1.1        ad free(void *ptr)
   3861   1.1        ad {
   3862   1.1        ad 
   3863   1.1        ad 	UTRACE(ptr, 0, 0);
   3864   1.1        ad 	if (ptr != NULL) {
   3865   1.1        ad 		assert(malloc_initialized);
   3866   1.1        ad 
   3867   1.1        ad 		idalloc(ptr);
   3868   1.1        ad 	}
   3869   1.1        ad }
   3870   1.1        ad 
   3871   1.1        ad /*
   3872   1.1        ad  * End malloc(3)-compatible functions.
   3873   1.1        ad  */
   3874   1.1        ad /******************************************************************************/
   3875   1.1        ad /*
   3876   1.1        ad  * Begin non-standard functions.
   3877   1.1        ad  */
   3878   1.2        ad #ifndef __NetBSD__
   3879   1.1        ad size_t
   3880   1.1        ad malloc_usable_size(const void *ptr)
   3881   1.1        ad {
   3882   1.1        ad 
   3883   1.1        ad 	assert(ptr != NULL);
   3884   1.1        ad 
   3885   1.1        ad 	return (isalloc(ptr));
   3886   1.1        ad }
   3887   1.2        ad #endif
   3888   1.1        ad 
   3889   1.1        ad /*
   3890   1.1        ad  * End non-standard functions.
   3891   1.1        ad  */
   3892   1.1        ad /******************************************************************************/
   3893   1.1        ad /*
   3894   1.1        ad  * Begin library-private functions, used by threading libraries for protection
   3895   1.1        ad  * of malloc during fork().  These functions are only called if the program is
   3896   1.1        ad  * running in threaded mode, so there is no need to check whether the program
   3897   1.1        ad  * is threaded here.
   3898   1.1        ad  */
   3899   1.1        ad 
   3900   1.1        ad void
   3901   1.1        ad _malloc_prefork(void)
   3902   1.1        ad {
   3903   1.1        ad 	unsigned i;
   3904   1.1        ad 
   3905   1.1        ad 	/* Acquire all mutexes in a safe order. */
   3906   1.1        ad 
   3907   1.1        ad 	malloc_mutex_lock(&arenas_mtx);
   3908   1.1        ad 	for (i = 0; i < narenas; i++) {
   3909   1.1        ad 		if (arenas[i] != NULL)
   3910   1.1        ad 			malloc_mutex_lock(&arenas[i]->mtx);
   3911   1.1        ad 	}
   3912   1.1        ad 	malloc_mutex_unlock(&arenas_mtx);
   3913   1.1        ad 
   3914   1.1        ad 	malloc_mutex_lock(&base_mtx);
   3915   1.1        ad 
   3916   1.1        ad 	malloc_mutex_lock(&chunks_mtx);
   3917   1.1        ad }
   3918   1.1        ad 
   3919   1.1        ad void
   3920   1.1        ad _malloc_postfork(void)
   3921   1.1        ad {
   3922   1.1        ad 	unsigned i;
   3923   1.1        ad 
   3924   1.1        ad 	/* Release all mutexes, now that fork() has completed. */
   3925   1.1        ad 
   3926   1.1        ad 	malloc_mutex_unlock(&chunks_mtx);
   3927   1.1        ad 
   3928   1.1        ad 	malloc_mutex_unlock(&base_mtx);
   3929   1.1        ad 
   3930   1.1        ad 	malloc_mutex_lock(&arenas_mtx);
   3931   1.1        ad 	for (i = 0; i < narenas; i++) {
   3932   1.1        ad 		if (arenas[i] != NULL)
   3933   1.1        ad 			malloc_mutex_unlock(&arenas[i]->mtx);
   3934   1.1        ad 	}
   3935   1.1        ad 	malloc_mutex_unlock(&arenas_mtx);
   3936   1.1        ad }
   3937   1.1        ad 
   3938   1.1        ad /*
   3939   1.1        ad  * End library-private functions.
   3940   1.1        ad  */
   3941   1.1        ad /******************************************************************************/
   3942