Home | History | Annotate | Line # | Download | only in stdlib
jemalloc.c revision 1.30
      1  1.30     skrll /*	$NetBSD: jemalloc.c,v 1.30 2014/02/05 11:32:15 skrll Exp $	*/
      2   1.2        ad 
      3   1.1        ad /*-
      4   1.1        ad  * Copyright (C) 2006,2007 Jason Evans <jasone (at) FreeBSD.org>.
      5   1.1        ad  * All rights reserved.
      6   1.1        ad  *
      7   1.1        ad  * Redistribution and use in source and binary forms, with or without
      8   1.1        ad  * modification, are permitted provided that the following conditions
      9   1.1        ad  * are met:
     10   1.1        ad  * 1. Redistributions of source code must retain the above copyright
     11   1.1        ad  *    notice(s), this list of conditions and the following disclaimer as
     12   1.1        ad  *    the first lines of this file unmodified other than the possible
     13   1.1        ad  *    addition of one or more copyright notices.
     14   1.1        ad  * 2. Redistributions in binary form must reproduce the above copyright
     15   1.1        ad  *    notice(s), this list of conditions and the following disclaimer in
     16   1.1        ad  *    the documentation and/or other materials provided with the
     17   1.1        ad  *    distribution.
     18   1.1        ad  *
     19   1.1        ad  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY
     20   1.1        ad  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21   1.1        ad  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22   1.1        ad  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE
     23   1.1        ad  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24   1.1        ad  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25   1.1        ad  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
     26   1.1        ad  * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
     27   1.1        ad  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
     28   1.1        ad  * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
     29   1.1        ad  * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     30   1.1        ad  *
     31   1.1        ad  *******************************************************************************
     32   1.1        ad  *
     33   1.1        ad  * This allocator implementation is designed to provide scalable performance
     34   1.1        ad  * for multi-threaded programs on multi-processor systems.  The following
     35   1.1        ad  * features are included for this purpose:
     36   1.1        ad  *
     37   1.1        ad  *   + Multiple arenas are used if there are multiple CPUs, which reduces lock
     38   1.1        ad  *     contention and cache sloshing.
     39   1.1        ad  *
     40   1.1        ad  *   + Cache line sharing between arenas is avoided for internal data
     41   1.1        ad  *     structures.
     42   1.1        ad  *
     43   1.1        ad  *   + Memory is managed in chunks and runs (chunks can be split into runs),
     44   1.1        ad  *     rather than as individual pages.  This provides a constant-time
     45   1.1        ad  *     mechanism for associating allocations with particular arenas.
     46   1.1        ad  *
     47   1.1        ad  * Allocation requests are rounded up to the nearest size class, and no record
     48   1.1        ad  * of the original request size is maintained.  Allocations are broken into
     49   1.1        ad  * categories according to size class.  Assuming runtime defaults, 4 kB pages
     50   1.1        ad  * and a 16 byte quantum, the size classes in each category are as follows:
     51   1.1        ad  *
     52   1.1        ad  *   |=====================================|
     53   1.1        ad  *   | Category | Subcategory    |    Size |
     54   1.1        ad  *   |=====================================|
     55   1.1        ad  *   | Small    | Tiny           |       2 |
     56   1.1        ad  *   |          |                |       4 |
     57   1.1        ad  *   |          |                |       8 |
     58   1.1        ad  *   |          |----------------+---------|
     59   1.1        ad  *   |          | Quantum-spaced |      16 |
     60   1.1        ad  *   |          |                |      32 |
     61   1.1        ad  *   |          |                |      48 |
     62   1.1        ad  *   |          |                |     ... |
     63   1.1        ad  *   |          |                |     480 |
     64   1.1        ad  *   |          |                |     496 |
     65   1.1        ad  *   |          |                |     512 |
     66   1.1        ad  *   |          |----------------+---------|
     67   1.1        ad  *   |          | Sub-page       |    1 kB |
     68   1.1        ad  *   |          |                |    2 kB |
     69   1.1        ad  *   |=====================================|
     70   1.1        ad  *   | Large                     |    4 kB |
     71   1.1        ad  *   |                           |    8 kB |
     72   1.1        ad  *   |                           |   12 kB |
     73   1.1        ad  *   |                           |     ... |
     74   1.1        ad  *   |                           | 1012 kB |
     75   1.1        ad  *   |                           | 1016 kB |
     76   1.1        ad  *   |                           | 1020 kB |
     77   1.1        ad  *   |=====================================|
     78   1.1        ad  *   | Huge                      |    1 MB |
     79   1.1        ad  *   |                           |    2 MB |
     80   1.1        ad  *   |                           |    3 MB |
     81   1.1        ad  *   |                           |     ... |
     82   1.1        ad  *   |=====================================|
     83   1.1        ad  *
     84   1.1        ad  * A different mechanism is used for each category:
     85   1.1        ad  *
     86   1.1        ad  *   Small : Each size class is segregated into its own set of runs.  Each run
     87   1.1        ad  *           maintains a bitmap of which regions are free/allocated.
     88   1.1        ad  *
     89   1.1        ad  *   Large : Each allocation is backed by a dedicated run.  Metadata are stored
     90   1.1        ad  *           in the associated arena chunk header maps.
     91   1.1        ad  *
     92   1.1        ad  *   Huge : Each allocation is backed by a dedicated contiguous set of chunks.
     93   1.1        ad  *          Metadata are stored in a separate red-black tree.
     94   1.1        ad  *
     95   1.1        ad  *******************************************************************************
     96   1.1        ad  */
     97   1.1        ad 
     98   1.2        ad /* LINTLIBRARY */
     99   1.2        ad 
    100   1.2        ad #ifdef __NetBSD__
    101   1.2        ad #  define xutrace(a, b)		utrace("malloc", (a), (b))
    102   1.2        ad #  define __DECONST(x, y)	((x)__UNCONST(y))
    103   1.2        ad #  define NO_TLS
    104   1.2        ad #else
    105   1.2        ad #  define xutrace(a, b)		utrace((a), (b))
    106   1.2        ad #endif	/* __NetBSD__ */
    107   1.2        ad 
    108   1.1        ad /*
    109   1.1        ad  * MALLOC_PRODUCTION disables assertions and statistics gathering.  It also
    110   1.1        ad  * defaults the A and J runtime options to off.  These settings are appropriate
    111   1.1        ad  * for production systems.
    112   1.1        ad  */
    113   1.2        ad #define MALLOC_PRODUCTION
    114   1.1        ad 
    115   1.1        ad #ifndef MALLOC_PRODUCTION
    116   1.1        ad #  define MALLOC_DEBUG
    117   1.1        ad #endif
    118   1.1        ad 
    119   1.1        ad #include <sys/cdefs.h>
    120   1.2        ad /* __FBSDID("$FreeBSD: src/lib/libc/stdlib/malloc.c,v 1.147 2007/06/15 22:00:16 jasone Exp $"); */
    121  1.30     skrll __RCSID("$NetBSD: jemalloc.c,v 1.30 2014/02/05 11:32:15 skrll Exp $");
    122   1.1        ad 
    123   1.2        ad #ifdef __FreeBSD__
    124   1.1        ad #include "libc_private.h"
    125   1.1        ad #ifdef MALLOC_DEBUG
    126   1.1        ad #  define _LOCK_DEBUG
    127   1.1        ad #endif
    128   1.1        ad #include "spinlock.h"
    129   1.2        ad #endif
    130   1.1        ad #include "namespace.h"
    131   1.1        ad #include <sys/mman.h>
    132   1.1        ad #include <sys/param.h>
    133   1.2        ad #ifdef __FreeBSD__
    134   1.1        ad #include <sys/stddef.h>
    135   1.2        ad #endif
    136   1.1        ad #include <sys/time.h>
    137   1.1        ad #include <sys/types.h>
    138   1.1        ad #include <sys/sysctl.h>
    139   1.1        ad #include <sys/tree.h>
    140   1.1        ad #include <sys/uio.h>
    141   1.1        ad #include <sys/ktrace.h> /* Must come after several other sys/ includes. */
    142   1.1        ad 
    143   1.2        ad #ifdef __FreeBSD__
    144   1.1        ad #include <machine/atomic.h>
    145   1.1        ad #include <machine/cpufunc.h>
    146   1.2        ad #endif
    147   1.1        ad #include <machine/vmparam.h>
    148   1.1        ad 
    149   1.1        ad #include <errno.h>
    150   1.1        ad #include <limits.h>
    151   1.1        ad #include <pthread.h>
    152   1.1        ad #include <sched.h>
    153   1.1        ad #include <stdarg.h>
    154   1.1        ad #include <stdbool.h>
    155   1.1        ad #include <stdio.h>
    156   1.1        ad #include <stdint.h>
    157   1.1        ad #include <stdlib.h>
    158   1.1        ad #include <string.h>
    159   1.1        ad #include <strings.h>
    160   1.1        ad #include <unistd.h>
    161   1.1        ad 
    162   1.2        ad #ifdef __NetBSD__
    163   1.2        ad #  include <reentrant.h>
    164  1.16  christos #  include "extern.h"
    165  1.16  christos 
    166  1.16  christos #define STRERROR_R(a, b, c)	__strerror_r(a, b, c);
    167  1.16  christos /*
    168  1.16  christos  * A non localized version of strerror, that avoids bringing in
    169  1.16  christos  * stdio and the locale code. All the malloc messages are in English
    170  1.16  christos  * so why bother?
    171  1.16  christos  */
    172  1.16  christos static int
    173  1.16  christos __strerror_r(int e, char *s, size_t l)
    174  1.16  christos {
    175  1.16  christos 	int rval;
    176  1.16  christos 	size_t slen;
    177  1.16  christos 
    178  1.16  christos 	if (e >= 0 && e < sys_nerr) {
    179  1.16  christos 		slen = strlcpy(s, sys_errlist[e], l);
    180  1.16  christos 		rval = 0;
    181  1.16  christos 	} else {
    182  1.16  christos 		slen = snprintf_ss(s, l, "Unknown error %u", e);
    183  1.16  christos 		rval = EINVAL;
    184  1.16  christos 	}
    185  1.16  christos 	return slen >= l ? ERANGE : rval;
    186  1.16  christos }
    187   1.2        ad #endif
    188   1.2        ad 
    189   1.2        ad #ifdef __FreeBSD__
    190  1.16  christos #define STRERROR_R(a, b, c)	strerror_r(a, b, c);
    191   1.1        ad #include "un-namespace.h"
    192   1.2        ad #endif
    193   1.1        ad 
    194   1.1        ad /* MALLOC_STATS enables statistics calculation. */
    195   1.1        ad #ifndef MALLOC_PRODUCTION
    196   1.1        ad #  define MALLOC_STATS
    197   1.1        ad #endif
    198   1.1        ad 
    199   1.1        ad #ifdef MALLOC_DEBUG
    200   1.1        ad #  ifdef NDEBUG
    201   1.1        ad #    undef NDEBUG
    202   1.1        ad #  endif
    203   1.1        ad #else
    204   1.1        ad #  ifndef NDEBUG
    205   1.1        ad #    define NDEBUG
    206   1.1        ad #  endif
    207   1.1        ad #endif
    208   1.1        ad #include <assert.h>
    209   1.1        ad 
    210   1.1        ad #ifdef MALLOC_DEBUG
    211   1.1        ad    /* Disable inlining to make debugging easier. */
    212   1.1        ad #  define inline
    213   1.1        ad #endif
    214   1.1        ad 
    215   1.1        ad /* Size of stack-allocated buffer passed to strerror_r(). */
    216   1.1        ad #define	STRERROR_BUF		64
    217   1.1        ad 
    218   1.1        ad /* Minimum alignment of allocations is 2^QUANTUM_2POW_MIN bytes. */
    219   1.1        ad #ifdef __i386__
    220   1.1        ad #  define QUANTUM_2POW_MIN	4
    221   1.1        ad #  define SIZEOF_PTR_2POW	2
    222   1.1        ad #  define USE_BRK
    223   1.1        ad #endif
    224   1.1        ad #ifdef __ia64__
    225   1.1        ad #  define QUANTUM_2POW_MIN	4
    226   1.1        ad #  define SIZEOF_PTR_2POW	3
    227   1.1        ad #endif
    228   1.1        ad #ifdef __alpha__
    229   1.1        ad #  define QUANTUM_2POW_MIN	4
    230   1.1        ad #  define SIZEOF_PTR_2POW	3
    231  1.30     skrll #  define TINY_MIN_2POW		3
    232   1.1        ad #  define NO_TLS
    233   1.1        ad #endif
    234   1.1        ad #ifdef __sparc64__
    235   1.1        ad #  define QUANTUM_2POW_MIN	4
    236   1.1        ad #  define SIZEOF_PTR_2POW	3
    237   1.1        ad #  define NO_TLS
    238   1.1        ad #endif
    239   1.1        ad #ifdef __amd64__
    240   1.1        ad #  define QUANTUM_2POW_MIN	4
    241   1.1        ad #  define SIZEOF_PTR_2POW	3
    242   1.1        ad #endif
    243   1.1        ad #ifdef __arm__
    244   1.1        ad #  define QUANTUM_2POW_MIN	3
    245   1.1        ad #  define SIZEOF_PTR_2POW	2
    246   1.1        ad #  define USE_BRK
    247  1.30     skrll #  ifdef __ARM_EABI__
    248  1.30     skrll #    define TINY_MIN_2POW	3
    249  1.30     skrll #  endif
    250   1.1        ad #  define NO_TLS
    251   1.1        ad #endif
    252   1.1        ad #ifdef __powerpc__
    253   1.1        ad #  define QUANTUM_2POW_MIN	4
    254   1.1        ad #  define SIZEOF_PTR_2POW	2
    255   1.1        ad #  define USE_BRK
    256   1.1        ad #endif
    257   1.3        he #if defined(__sparc__) && !defined(__sparc64__)
    258   1.2        ad #  define QUANTUM_2POW_MIN	4
    259   1.2        ad #  define SIZEOF_PTR_2POW	2
    260   1.2        ad #  define USE_BRK
    261   1.2        ad #endif
    262   1.2        ad #ifdef __vax__
    263   1.2        ad #  define QUANTUM_2POW_MIN	4
    264   1.2        ad #  define SIZEOF_PTR_2POW	2
    265   1.2        ad #  define USE_BRK
    266   1.2        ad #endif
    267   1.2        ad #ifdef __sh__
    268   1.2        ad #  define QUANTUM_2POW_MIN	4
    269   1.2        ad #  define SIZEOF_PTR_2POW	2
    270   1.2        ad #  define USE_BRK
    271   1.2        ad #endif
    272   1.2        ad #ifdef __m68k__
    273   1.2        ad #  define QUANTUM_2POW_MIN	4
    274   1.2        ad #  define SIZEOF_PTR_2POW	2
    275   1.2        ad #  define USE_BRK
    276   1.2        ad #endif
    277   1.2        ad #ifdef __mips__
    278   1.2        ad #  define QUANTUM_2POW_MIN	4
    279   1.2        ad #  define SIZEOF_PTR_2POW	2
    280   1.2        ad #  define USE_BRK
    281   1.2        ad #endif
    282   1.4        ad #ifdef __hppa__
    283   1.4        ad #  define QUANTUM_2POW_MIN     4
    284   1.4        ad #  define SIZEOF_PTR_2POW      2
    285   1.4        ad #  define USE_BRK
    286   1.4        ad #endif
    287   1.1        ad 
    288   1.1        ad #define	SIZEOF_PTR		(1 << SIZEOF_PTR_2POW)
    289   1.1        ad 
    290   1.1        ad /* sizeof(int) == (1 << SIZEOF_INT_2POW). */
    291   1.1        ad #ifndef SIZEOF_INT_2POW
    292   1.1        ad #  define SIZEOF_INT_2POW	2
    293   1.1        ad #endif
    294   1.1        ad 
    295   1.1        ad /*
    296   1.1        ad  * Size and alignment of memory chunks that are allocated by the OS's virtual
    297   1.1        ad  * memory system.
    298   1.1        ad  */
    299   1.1        ad #define	CHUNK_2POW_DEFAULT	20
    300   1.1        ad 
    301   1.1        ad /*
    302   1.1        ad  * Maximum size of L1 cache line.  This is used to avoid cache line aliasing,
    303   1.1        ad  * so over-estimates are okay (up to a point), but under-estimates will
    304   1.1        ad  * negatively affect performance.
    305   1.1        ad  */
    306   1.1        ad #define	CACHELINE_2POW		6
    307   1.1        ad #define	CACHELINE		((size_t)(1 << CACHELINE_2POW))
    308   1.1        ad 
    309   1.1        ad /* Smallest size class to support. */
    310  1.30     skrll #ifndef TINY_MIN_2POW
    311  1.30     skrll #define	TINY_MIN_2POW		2
    312  1.30     skrll #endif
    313   1.1        ad 
    314   1.1        ad /*
    315   1.1        ad  * Maximum size class that is a multiple of the quantum, but not (necessarily)
    316   1.1        ad  * a power of 2.  Above this size, allocations are rounded up to the nearest
    317   1.1        ad  * power of 2.
    318   1.1        ad  */
    319   1.1        ad #define	SMALL_MAX_2POW_DEFAULT	9
    320   1.1        ad #define	SMALL_MAX_DEFAULT	(1 << SMALL_MAX_2POW_DEFAULT)
    321   1.1        ad 
    322   1.1        ad /*
    323  1.22     njoly  * RUN_MAX_OVRHD indicates maximum desired run header overhead.  Runs are sized
    324  1.22     njoly  * as small as possible such that this setting is still honored, without
    325  1.22     njoly  * violating other constraints.  The goal is to make runs as small as possible
    326  1.22     njoly  * without exceeding a per run external fragmentation threshold.
    327   1.1        ad  *
    328  1.22     njoly  * We use binary fixed point math for overhead computations, where the binary
    329  1.22     njoly  * point is implicitly RUN_BFP bits to the left.
    330   1.1        ad  *
    331  1.22     njoly  * Note that it is possible to set RUN_MAX_OVRHD low enough that it cannot be
    332  1.22     njoly  * honored for some/all object sizes, since there is one bit of header overhead
    333  1.22     njoly  * per object (plus a constant).  This constraint is relaxed (ignored) for runs
    334  1.22     njoly  * that are so small that the per-region overhead is greater than:
    335  1.22     njoly  *
    336  1.22     njoly  *   (RUN_MAX_OVRHD / (reg_size << (3+RUN_BFP))
    337   1.1        ad  */
    338  1.22     njoly #define RUN_BFP			12
    339  1.22     njoly /*                              \/   Implicit binary fixed point. */
    340  1.22     njoly #define RUN_MAX_OVRHD		0x0000003dU
    341  1.22     njoly #define RUN_MAX_OVRHD_RELAX	0x00001800U
    342   1.1        ad 
    343   1.1        ad /* Put a cap on small object run size.  This overrides RUN_MAX_OVRHD. */
    344   1.1        ad #define RUN_MAX_SMALL_2POW	15
    345   1.1        ad #define RUN_MAX_SMALL		(1 << RUN_MAX_SMALL_2POW)
    346   1.1        ad 
    347   1.1        ad /******************************************************************************/
    348   1.1        ad 
    349   1.2        ad #ifdef __FreeBSD__
    350   1.1        ad /*
    351   1.1        ad  * Mutexes based on spinlocks.  We can't use normal pthread mutexes, because
    352   1.1        ad  * they require malloc()ed memory.
    353   1.1        ad  */
    354   1.1        ad typedef struct {
    355   1.1        ad 	spinlock_t	lock;
    356   1.1        ad } malloc_mutex_t;
    357   1.1        ad 
    358   1.1        ad /* Set to true once the allocator has been initialized. */
    359   1.1        ad static bool malloc_initialized = false;
    360   1.1        ad 
    361   1.1        ad /* Used to avoid initialization races. */
    362   1.1        ad static malloc_mutex_t init_lock = {_SPINLOCK_INITIALIZER};
    363   1.2        ad #else
    364   1.2        ad #define	malloc_mutex_t	mutex_t
    365   1.2        ad 
    366   1.2        ad /* Set to true once the allocator has been initialized. */
    367   1.2        ad static bool malloc_initialized = false;
    368   1.2        ad 
    369   1.2        ad /* Used to avoid initialization races. */
    370   1.2        ad static mutex_t init_lock = MUTEX_INITIALIZER;
    371   1.2        ad #endif
    372   1.1        ad 
    373   1.1        ad /******************************************************************************/
    374   1.1        ad /*
    375   1.1        ad  * Statistics data structures.
    376   1.1        ad  */
    377   1.1        ad 
    378   1.1        ad #ifdef MALLOC_STATS
    379   1.1        ad 
    380   1.1        ad typedef struct malloc_bin_stats_s malloc_bin_stats_t;
    381   1.1        ad struct malloc_bin_stats_s {
    382   1.1        ad 	/*
    383   1.1        ad 	 * Number of allocation requests that corresponded to the size of this
    384   1.1        ad 	 * bin.
    385   1.1        ad 	 */
    386   1.1        ad 	uint64_t	nrequests;
    387   1.1        ad 
    388   1.1        ad 	/* Total number of runs created for this bin's size class. */
    389   1.1        ad 	uint64_t	nruns;
    390   1.1        ad 
    391   1.1        ad 	/*
    392   1.1        ad 	 * Total number of runs reused by extracting them from the runs tree for
    393   1.1        ad 	 * this bin's size class.
    394   1.1        ad 	 */
    395   1.1        ad 	uint64_t	reruns;
    396   1.1        ad 
    397   1.1        ad 	/* High-water mark for this bin. */
    398   1.1        ad 	unsigned long	highruns;
    399   1.1        ad 
    400   1.1        ad 	/* Current number of runs in this bin. */
    401   1.1        ad 	unsigned long	curruns;
    402   1.1        ad };
    403   1.1        ad 
    404   1.1        ad typedef struct arena_stats_s arena_stats_t;
    405   1.1        ad struct arena_stats_s {
    406   1.1        ad 	/* Number of bytes currently mapped. */
    407   1.1        ad 	size_t		mapped;
    408   1.1        ad 
    409   1.1        ad 	/* Per-size-category statistics. */
    410   1.1        ad 	size_t		allocated_small;
    411   1.1        ad 	uint64_t	nmalloc_small;
    412   1.1        ad 	uint64_t	ndalloc_small;
    413   1.1        ad 
    414   1.1        ad 	size_t		allocated_large;
    415   1.1        ad 	uint64_t	nmalloc_large;
    416   1.1        ad 	uint64_t	ndalloc_large;
    417   1.1        ad };
    418   1.1        ad 
    419   1.1        ad typedef struct chunk_stats_s chunk_stats_t;
    420   1.1        ad struct chunk_stats_s {
    421   1.1        ad 	/* Number of chunks that were allocated. */
    422   1.1        ad 	uint64_t	nchunks;
    423   1.1        ad 
    424   1.1        ad 	/* High-water mark for number of chunks allocated. */
    425   1.1        ad 	unsigned long	highchunks;
    426   1.1        ad 
    427   1.1        ad 	/*
    428   1.1        ad 	 * Current number of chunks allocated.  This value isn't maintained for
    429   1.1        ad 	 * any other purpose, so keep track of it in order to be able to set
    430   1.1        ad 	 * highchunks.
    431   1.1        ad 	 */
    432   1.1        ad 	unsigned long	curchunks;
    433   1.1        ad };
    434   1.1        ad 
    435   1.1        ad #endif /* #ifdef MALLOC_STATS */
    436   1.1        ad 
    437   1.1        ad /******************************************************************************/
    438   1.1        ad /*
    439   1.1        ad  * Chunk data structures.
    440   1.1        ad  */
    441   1.1        ad 
    442   1.1        ad /* Tree of chunks. */
    443   1.1        ad typedef struct chunk_node_s chunk_node_t;
    444   1.1        ad struct chunk_node_s {
    445   1.1        ad 	/* Linkage for the chunk tree. */
    446   1.1        ad 	RB_ENTRY(chunk_node_s) link;
    447   1.1        ad 
    448   1.1        ad 	/*
    449   1.1        ad 	 * Pointer to the chunk that this tree node is responsible for.  In some
    450   1.1        ad 	 * (but certainly not all) cases, this data structure is placed at the
    451   1.1        ad 	 * beginning of the corresponding chunk, so this field may point to this
    452   1.1        ad 	 * node.
    453   1.1        ad 	 */
    454   1.1        ad 	void	*chunk;
    455   1.1        ad 
    456   1.1        ad 	/* Total chunk size. */
    457   1.1        ad 	size_t	size;
    458   1.1        ad };
    459   1.1        ad typedef struct chunk_tree_s chunk_tree_t;
    460   1.1        ad RB_HEAD(chunk_tree_s, chunk_node_s);
    461   1.1        ad 
    462   1.1        ad /******************************************************************************/
    463   1.1        ad /*
    464   1.1        ad  * Arena data structures.
    465   1.1        ad  */
    466   1.1        ad 
    467   1.1        ad typedef struct arena_s arena_t;
    468   1.1        ad typedef struct arena_bin_s arena_bin_t;
    469   1.1        ad 
    470   1.1        ad typedef struct arena_chunk_map_s arena_chunk_map_t;
    471   1.1        ad struct arena_chunk_map_s {
    472   1.1        ad 	/* Number of pages in run. */
    473   1.1        ad 	uint32_t	npages;
    474   1.1        ad 	/*
    475   1.1        ad 	 * Position within run.  For a free run, this is POS_FREE for the first
    476   1.1        ad 	 * and last pages.  The POS_FREE special value makes it possible to
    477   1.1        ad 	 * quickly coalesce free runs.
    478   1.1        ad 	 *
    479   1.1        ad 	 * This is the limiting factor for chunksize; there can be at most 2^31
    480   1.1        ad 	 * pages in a run.
    481   1.1        ad 	 */
    482   1.1        ad #define POS_FREE ((uint32_t)0xffffffffU)
    483   1.1        ad 	uint32_t	pos;
    484   1.1        ad };
    485   1.1        ad 
    486   1.1        ad /* Arena chunk header. */
    487   1.1        ad typedef struct arena_chunk_s arena_chunk_t;
    488   1.1        ad struct arena_chunk_s {
    489   1.1        ad 	/* Arena that owns the chunk. */
    490   1.1        ad 	arena_t *arena;
    491   1.1        ad 
    492   1.1        ad 	/* Linkage for the arena's chunk tree. */
    493   1.1        ad 	RB_ENTRY(arena_chunk_s) link;
    494   1.1        ad 
    495   1.1        ad 	/*
    496   1.1        ad 	 * Number of pages in use.  This is maintained in order to make
    497   1.1        ad 	 * detection of empty chunks fast.
    498   1.1        ad 	 */
    499   1.1        ad 	uint32_t pages_used;
    500   1.1        ad 
    501   1.1        ad 	/*
    502   1.1        ad 	 * Every time a free run larger than this value is created/coalesced,
    503   1.1        ad 	 * this value is increased.  The only way that the value decreases is if
    504   1.1        ad 	 * arena_run_alloc() fails to find a free run as large as advertised by
    505   1.1        ad 	 * this value.
    506   1.1        ad 	 */
    507   1.1        ad 	uint32_t max_frun_npages;
    508   1.1        ad 
    509   1.1        ad 	/*
    510   1.1        ad 	 * Every time a free run that starts at an earlier page than this value
    511   1.1        ad 	 * is created/coalesced, this value is decreased.  It is reset in a
    512   1.1        ad 	 * similar fashion to max_frun_npages.
    513   1.1        ad 	 */
    514   1.1        ad 	uint32_t min_frun_ind;
    515   1.1        ad 
    516   1.1        ad 	/*
    517   1.1        ad 	 * Map of pages within chunk that keeps track of free/large/small.  For
    518   1.1        ad 	 * free runs, only the map entries for the first and last pages are
    519   1.1        ad 	 * kept up to date, so that free runs can be quickly coalesced.
    520   1.1        ad 	 */
    521   1.1        ad 	arena_chunk_map_t map[1]; /* Dynamically sized. */
    522   1.1        ad };
    523   1.1        ad typedef struct arena_chunk_tree_s arena_chunk_tree_t;
    524   1.1        ad RB_HEAD(arena_chunk_tree_s, arena_chunk_s);
    525   1.1        ad 
    526   1.1        ad typedef struct arena_run_s arena_run_t;
    527   1.1        ad struct arena_run_s {
    528   1.1        ad 	/* Linkage for run trees. */
    529   1.1        ad 	RB_ENTRY(arena_run_s) link;
    530   1.1        ad 
    531   1.1        ad #ifdef MALLOC_DEBUG
    532   1.1        ad 	uint32_t	magic;
    533   1.1        ad #  define ARENA_RUN_MAGIC 0x384adf93
    534   1.1        ad #endif
    535   1.1        ad 
    536   1.1        ad 	/* Bin this run is associated with. */
    537   1.1        ad 	arena_bin_t	*bin;
    538   1.1        ad 
    539   1.1        ad 	/* Index of first element that might have a free region. */
    540   1.1        ad 	unsigned	regs_minelm;
    541   1.1        ad 
    542   1.1        ad 	/* Number of free regions in run. */
    543   1.1        ad 	unsigned	nfree;
    544   1.1        ad 
    545   1.1        ad 	/* Bitmask of in-use regions (0: in use, 1: free). */
    546   1.1        ad 	unsigned	regs_mask[1]; /* Dynamically sized. */
    547   1.1        ad };
    548   1.1        ad typedef struct arena_run_tree_s arena_run_tree_t;
    549   1.1        ad RB_HEAD(arena_run_tree_s, arena_run_s);
    550   1.1        ad 
    551   1.1        ad struct arena_bin_s {
    552   1.1        ad 	/*
    553   1.1        ad 	 * Current run being used to service allocations of this bin's size
    554   1.1        ad 	 * class.
    555   1.1        ad 	 */
    556   1.1        ad 	arena_run_t	*runcur;
    557   1.1        ad 
    558   1.1        ad 	/*
    559   1.1        ad 	 * Tree of non-full runs.  This tree is used when looking for an
    560   1.1        ad 	 * existing run when runcur is no longer usable.  We choose the
    561   1.1        ad 	 * non-full run that is lowest in memory; this policy tends to keep
    562   1.1        ad 	 * objects packed well, and it can also help reduce the number of
    563   1.1        ad 	 * almost-empty chunks.
    564   1.1        ad 	 */
    565   1.1        ad 	arena_run_tree_t runs;
    566   1.1        ad 
    567   1.1        ad 	/* Size of regions in a run for this bin's size class. */
    568   1.1        ad 	size_t		reg_size;
    569   1.1        ad 
    570   1.1        ad 	/* Total size of a run for this bin's size class. */
    571   1.1        ad 	size_t		run_size;
    572   1.1        ad 
    573   1.1        ad 	/* Total number of regions in a run for this bin's size class. */
    574   1.1        ad 	uint32_t	nregs;
    575   1.1        ad 
    576   1.1        ad 	/* Number of elements in a run's regs_mask for this bin's size class. */
    577   1.1        ad 	uint32_t	regs_mask_nelms;
    578   1.1        ad 
    579   1.1        ad 	/* Offset of first region in a run for this bin's size class. */
    580   1.1        ad 	uint32_t	reg0_offset;
    581   1.1        ad 
    582   1.1        ad #ifdef MALLOC_STATS
    583   1.1        ad 	/* Bin statistics. */
    584   1.1        ad 	malloc_bin_stats_t stats;
    585   1.1        ad #endif
    586   1.1        ad };
    587   1.1        ad 
    588   1.1        ad struct arena_s {
    589   1.1        ad #ifdef MALLOC_DEBUG
    590   1.1        ad 	uint32_t		magic;
    591   1.1        ad #  define ARENA_MAGIC 0x947d3d24
    592   1.1        ad #endif
    593   1.1        ad 
    594   1.1        ad 	/* All operations on this arena require that mtx be locked. */
    595   1.1        ad 	malloc_mutex_t		mtx;
    596   1.1        ad 
    597   1.1        ad #ifdef MALLOC_STATS
    598   1.1        ad 	arena_stats_t		stats;
    599   1.1        ad #endif
    600   1.1        ad 
    601   1.1        ad 	/*
    602   1.1        ad 	 * Tree of chunks this arena manages.
    603   1.1        ad 	 */
    604   1.1        ad 	arena_chunk_tree_t	chunks;
    605   1.1        ad 
    606   1.1        ad 	/*
    607   1.1        ad 	 * In order to avoid rapid chunk allocation/deallocation when an arena
    608   1.1        ad 	 * oscillates right on the cusp of needing a new chunk, cache the most
    609   1.1        ad 	 * recently freed chunk.  This caching is disabled by opt_hint.
    610   1.1        ad 	 *
    611   1.1        ad 	 * There is one spare chunk per arena, rather than one spare total, in
    612   1.1        ad 	 * order to avoid interactions between multiple threads that could make
    613   1.1        ad 	 * a single spare inadequate.
    614   1.1        ad 	 */
    615   1.1        ad 	arena_chunk_t *spare;
    616   1.1        ad 
    617   1.1        ad 	/*
    618   1.1        ad 	 * bins is used to store rings of free regions of the following sizes,
    619   1.1        ad 	 * assuming a 16-byte quantum, 4kB pagesize, and default MALLOC_OPTIONS.
    620   1.1        ad 	 *
    621   1.1        ad 	 *   bins[i] | size |
    622   1.1        ad 	 *   --------+------+
    623   1.1        ad 	 *        0  |    2 |
    624   1.1        ad 	 *        1  |    4 |
    625   1.1        ad 	 *        2  |    8 |
    626   1.1        ad 	 *   --------+------+
    627   1.1        ad 	 *        3  |   16 |
    628   1.1        ad 	 *        4  |   32 |
    629   1.1        ad 	 *        5  |   48 |
    630   1.1        ad 	 *        6  |   64 |
    631   1.1        ad 	 *           :      :
    632   1.1        ad 	 *           :      :
    633   1.1        ad 	 *       33  |  496 |
    634   1.1        ad 	 *       34  |  512 |
    635   1.1        ad 	 *   --------+------+
    636   1.1        ad 	 *       35  | 1024 |
    637   1.1        ad 	 *       36  | 2048 |
    638   1.1        ad 	 *   --------+------+
    639   1.1        ad 	 */
    640   1.1        ad 	arena_bin_t		bins[1]; /* Dynamically sized. */
    641   1.1        ad };
    642   1.1        ad 
    643   1.1        ad /******************************************************************************/
    644   1.1        ad /*
    645   1.1        ad  * Data.
    646   1.1        ad  */
    647   1.1        ad 
    648   1.1        ad /* Number of CPUs. */
    649   1.1        ad static unsigned		ncpus;
    650   1.1        ad 
    651   1.1        ad /* VM page size. */
    652   1.1        ad static size_t		pagesize;
    653   1.1        ad static size_t		pagesize_mask;
    654   1.9  christos static int		pagesize_2pow;
    655   1.1        ad 
    656   1.1        ad /* Various bin-related settings. */
    657   1.1        ad static size_t		bin_maxclass; /* Max size class for bins. */
    658   1.1        ad static unsigned		ntbins; /* Number of (2^n)-spaced tiny bins. */
    659   1.1        ad static unsigned		nqbins; /* Number of quantum-spaced bins. */
    660   1.1        ad static unsigned		nsbins; /* Number of (2^n)-spaced sub-page bins. */
    661   1.1        ad static size_t		small_min;
    662   1.1        ad static size_t		small_max;
    663   1.1        ad 
    664   1.1        ad /* Various quantum-related settings. */
    665   1.1        ad static size_t		quantum;
    666   1.1        ad static size_t		quantum_mask; /* (quantum - 1). */
    667   1.1        ad 
    668   1.1        ad /* Various chunk-related settings. */
    669   1.1        ad static size_t		chunksize;
    670   1.1        ad static size_t		chunksize_mask; /* (chunksize - 1). */
    671   1.5      yamt static int		chunksize_2pow;
    672   1.1        ad static unsigned		chunk_npages;
    673   1.1        ad static unsigned		arena_chunk_header_npages;
    674   1.1        ad static size_t		arena_maxclass; /* Max size class for arenas. */
    675   1.1        ad 
    676   1.1        ad /********/
    677   1.1        ad /*
    678   1.1        ad  * Chunks.
    679   1.1        ad  */
    680   1.1        ad 
    681   1.1        ad /* Protects chunk-related data structures. */
    682   1.1        ad static malloc_mutex_t	chunks_mtx;
    683   1.1        ad 
    684   1.1        ad /* Tree of chunks that are stand-alone huge allocations. */
    685   1.1        ad static chunk_tree_t	huge;
    686   1.1        ad 
    687   1.1        ad #ifdef USE_BRK
    688   1.1        ad /*
    689   1.1        ad  * Try to use brk for chunk-size allocations, due to address space constraints.
    690   1.1        ad  */
    691   1.1        ad /*
    692   1.1        ad  * Protects sbrk() calls.  This must be separate from chunks_mtx, since
    693   1.1        ad  * base_pages_alloc() also uses sbrk(), but cannot lock chunks_mtx (doing so
    694   1.1        ad  * could cause recursive lock acquisition).
    695   1.1        ad  */
    696   1.1        ad static malloc_mutex_t	brk_mtx;
    697   1.1        ad /* Result of first sbrk(0) call. */
    698   1.1        ad static void		*brk_base;
    699   1.1        ad /* Current end of brk, or ((void *)-1) if brk is exhausted. */
    700   1.1        ad static void		*brk_prev;
    701   1.1        ad /* Current upper limit on brk addresses. */
    702   1.1        ad static void		*brk_max;
    703   1.1        ad #endif
    704   1.1        ad 
    705   1.1        ad #ifdef MALLOC_STATS
    706   1.1        ad /* Huge allocation statistics. */
    707   1.1        ad static uint64_t		huge_nmalloc;
    708   1.1        ad static uint64_t		huge_ndalloc;
    709   1.8      yamt static uint64_t		huge_nralloc;
    710   1.1        ad static size_t		huge_allocated;
    711   1.1        ad #endif
    712   1.1        ad 
    713   1.1        ad /*
    714   1.1        ad  * Tree of chunks that were previously allocated.  This is used when allocating
    715   1.1        ad  * chunks, in an attempt to re-use address space.
    716   1.1        ad  */
    717   1.1        ad static chunk_tree_t	old_chunks;
    718   1.1        ad 
    719   1.1        ad /****************************/
    720   1.1        ad /*
    721   1.1        ad  * base (internal allocation).
    722   1.1        ad  */
    723   1.1        ad 
    724   1.1        ad /*
    725   1.1        ad  * Current pages that are being used for internal memory allocations.  These
    726   1.1        ad  * pages are carved up in cacheline-size quanta, so that there is no chance of
    727   1.1        ad  * false cache line sharing.
    728   1.1        ad  */
    729   1.1        ad static void		*base_pages;
    730   1.1        ad static void		*base_next_addr;
    731   1.1        ad static void		*base_past_addr; /* Addr immediately past base_pages. */
    732   1.1        ad static chunk_node_t	*base_chunk_nodes; /* LIFO cache of chunk nodes. */
    733   1.1        ad static malloc_mutex_t	base_mtx;
    734   1.1        ad #ifdef MALLOC_STATS
    735   1.1        ad static size_t		base_mapped;
    736   1.1        ad #endif
    737   1.1        ad 
    738   1.1        ad /********/
    739   1.1        ad /*
    740   1.1        ad  * Arenas.
    741   1.1        ad  */
    742   1.1        ad 
    743   1.1        ad /*
    744   1.1        ad  * Arenas that are used to service external requests.  Not all elements of the
    745   1.1        ad  * arenas array are necessarily used; arenas are created lazily as needed.
    746   1.1        ad  */
    747   1.1        ad static arena_t		**arenas;
    748   1.1        ad static unsigned		narenas;
    749   1.1        ad static unsigned		next_arena;
    750   1.1        ad static malloc_mutex_t	arenas_mtx; /* Protects arenas initialization. */
    751   1.1        ad 
    752  1.15        ad #ifndef NO_TLS
    753  1.15        ad /*
    754  1.15        ad  * Map of pthread_self() --> arenas[???], used for selecting an arena to use
    755  1.15        ad  * for allocations.
    756  1.15        ad  */
    757  1.15        ad static __thread arena_t	*arenas_map;
    758  1.15        ad #define	get_arenas_map()	(arenas_map)
    759  1.15        ad #define	set_arenas_map(x)	(arenas_map = x)
    760  1.15        ad #else
    761   1.2        ad static thread_key_t arenas_map_key;
    762  1.15        ad #define	get_arenas_map()	thr_getspecific(arenas_map_key)
    763  1.15        ad #define	set_arenas_map(x)	thr_setspecific(arenas_map_key, x)
    764  1.15        ad #endif
    765   1.1        ad 
    766   1.1        ad #ifdef MALLOC_STATS
    767   1.1        ad /* Chunk statistics. */
    768   1.1        ad static chunk_stats_t	stats_chunks;
    769   1.1        ad #endif
    770   1.1        ad 
    771   1.1        ad /*******************************/
    772   1.1        ad /*
    773   1.1        ad  * Runtime configuration options.
    774   1.1        ad  */
    775   1.1        ad const char	*_malloc_options;
    776   1.1        ad 
    777   1.1        ad #ifndef MALLOC_PRODUCTION
    778   1.1        ad static bool	opt_abort = true;
    779   1.1        ad static bool	opt_junk = true;
    780   1.1        ad #else
    781   1.1        ad static bool	opt_abort = false;
    782   1.1        ad static bool	opt_junk = false;
    783   1.1        ad #endif
    784   1.1        ad static bool	opt_hint = false;
    785   1.1        ad static bool	opt_print_stats = false;
    786   1.9  christos static int	opt_quantum_2pow = QUANTUM_2POW_MIN;
    787   1.9  christos static int	opt_small_max_2pow = SMALL_MAX_2POW_DEFAULT;
    788   1.9  christos static int	opt_chunk_2pow = CHUNK_2POW_DEFAULT;
    789   1.1        ad static bool	opt_utrace = false;
    790   1.1        ad static bool	opt_sysv = false;
    791   1.1        ad static bool	opt_xmalloc = false;
    792   1.1        ad static bool	opt_zero = false;
    793   1.1        ad static int32_t	opt_narenas_lshift = 0;
    794   1.1        ad 
    795   1.1        ad typedef struct {
    796   1.1        ad 	void	*p;
    797   1.1        ad 	size_t	s;
    798   1.1        ad 	void	*r;
    799   1.1        ad } malloc_utrace_t;
    800   1.1        ad 
    801   1.1        ad #define	UTRACE(a, b, c)							\
    802   1.1        ad 	if (opt_utrace) {						\
    803   1.2        ad 		malloc_utrace_t ut;					\
    804   1.2        ad 		ut.p = a;						\
    805   1.2        ad 		ut.s = b;						\
    806   1.2        ad 		ut.r = c;						\
    807   1.2        ad 		xutrace(&ut, sizeof(ut));				\
    808   1.1        ad 	}
    809   1.1        ad 
    810   1.1        ad /******************************************************************************/
    811   1.1        ad /*
    812   1.1        ad  * Begin function prototypes for non-inline static functions.
    813   1.1        ad  */
    814   1.1        ad 
    815   1.1        ad static void	wrtmessage(const char *p1, const char *p2, const char *p3,
    816   1.1        ad 		const char *p4);
    817   1.1        ad #ifdef MALLOC_STATS
    818   1.1        ad static void	malloc_printf(const char *format, ...);
    819   1.1        ad #endif
    820  1.28  christos static char	*size_t2s(size_t x, char *s);
    821   1.1        ad static bool	base_pages_alloc(size_t minsize);
    822   1.1        ad static void	*base_alloc(size_t size);
    823   1.1        ad static chunk_node_t *base_chunk_node_alloc(void);
    824   1.1        ad static void	base_chunk_node_dealloc(chunk_node_t *node);
    825   1.1        ad #ifdef MALLOC_STATS
    826   1.1        ad static void	stats_print(arena_t *arena);
    827   1.1        ad #endif
    828   1.1        ad static void	*pages_map(void *addr, size_t size);
    829   1.5      yamt static void	*pages_map_align(void *addr, size_t size, int align);
    830   1.1        ad static void	pages_unmap(void *addr, size_t size);
    831   1.1        ad static void	*chunk_alloc(size_t size);
    832   1.1        ad static void	chunk_dealloc(void *chunk, size_t size);
    833   1.1        ad static void	arena_run_split(arena_t *arena, arena_run_t *run, size_t size);
    834   1.1        ad static arena_chunk_t *arena_chunk_alloc(arena_t *arena);
    835   1.1        ad static void	arena_chunk_dealloc(arena_t *arena, arena_chunk_t *chunk);
    836   1.1        ad static arena_run_t *arena_run_alloc(arena_t *arena, size_t size);
    837   1.1        ad static void	arena_run_dalloc(arena_t *arena, arena_run_t *run, size_t size);
    838   1.1        ad static arena_run_t *arena_bin_nonfull_run_get(arena_t *arena, arena_bin_t *bin);
    839   1.1        ad static void *arena_bin_malloc_hard(arena_t *arena, arena_bin_t *bin);
    840   1.1        ad static size_t arena_bin_run_size_calc(arena_bin_t *bin, size_t min_run_size);
    841   1.1        ad static void	*arena_malloc(arena_t *arena, size_t size);
    842   1.1        ad static void	*arena_palloc(arena_t *arena, size_t alignment, size_t size,
    843   1.1        ad     size_t alloc_size);
    844   1.1        ad static size_t	arena_salloc(const void *ptr);
    845   1.1        ad static void	*arena_ralloc(void *ptr, size_t size, size_t oldsize);
    846   1.1        ad static void	arena_dalloc(arena_t *arena, arena_chunk_t *chunk, void *ptr);
    847   1.1        ad static bool	arena_new(arena_t *arena);
    848   1.1        ad static arena_t	*arenas_extend(unsigned ind);
    849   1.1        ad static void	*huge_malloc(size_t size);
    850   1.1        ad static void	*huge_palloc(size_t alignment, size_t size);
    851   1.1        ad static void	*huge_ralloc(void *ptr, size_t size, size_t oldsize);
    852   1.1        ad static void	huge_dalloc(void *ptr);
    853   1.1        ad static void	*imalloc(size_t size);
    854   1.1        ad static void	*ipalloc(size_t alignment, size_t size);
    855   1.1        ad static void	*icalloc(size_t size);
    856   1.1        ad static size_t	isalloc(const void *ptr);
    857   1.1        ad static void	*iralloc(void *ptr, size_t size);
    858   1.1        ad static void	idalloc(void *ptr);
    859   1.1        ad static void	malloc_print_stats(void);
    860   1.1        ad static bool	malloc_init_hard(void);
    861   1.1        ad 
    862   1.1        ad /*
    863   1.1        ad  * End function prototypes.
    864   1.1        ad  */
    865   1.1        ad /******************************************************************************/
    866   1.1        ad /*
    867   1.1        ad  * Begin mutex.
    868   1.1        ad  */
    869   1.1        ad 
    870  1.15        ad #ifdef __NetBSD__
    871   1.2        ad #define	malloc_mutex_init(m)	mutex_init(m, NULL)
    872   1.2        ad #define	malloc_mutex_lock(m)	mutex_lock(m)
    873   1.2        ad #define	malloc_mutex_unlock(m)	mutex_unlock(m)
    874  1.15        ad #else	/* __NetBSD__ */
    875  1.15        ad static inline void
    876  1.15        ad malloc_mutex_init(malloc_mutex_t *a_mutex)
    877  1.15        ad {
    878  1.15        ad 	static const spinlock_t lock = _SPINLOCK_INITIALIZER;
    879  1.15        ad 
    880  1.15        ad 	a_mutex->lock = lock;
    881  1.15        ad }
    882  1.15        ad 
    883  1.15        ad static inline void
    884  1.15        ad malloc_mutex_lock(malloc_mutex_t *a_mutex)
    885  1.15        ad {
    886  1.15        ad 
    887  1.15        ad 	if (__isthreaded)
    888  1.15        ad 		_SPINLOCK(&a_mutex->lock);
    889  1.15        ad }
    890  1.15        ad 
    891  1.15        ad static inline void
    892  1.15        ad malloc_mutex_unlock(malloc_mutex_t *a_mutex)
    893  1.15        ad {
    894  1.15        ad 
    895  1.15        ad 	if (__isthreaded)
    896  1.15        ad 		_SPINUNLOCK(&a_mutex->lock);
    897  1.15        ad }
    898  1.15        ad #endif	/* __NetBSD__ */
    899   1.1        ad 
    900   1.1        ad /*
    901   1.1        ad  * End mutex.
    902   1.1        ad  */
    903   1.1        ad /******************************************************************************/
    904   1.1        ad /*
    905   1.1        ad  * Begin Utility functions/macros.
    906   1.1        ad  */
    907   1.1        ad 
    908   1.1        ad /* Return the chunk address for allocation address a. */
    909   1.1        ad #define	CHUNK_ADDR2BASE(a)						\
    910   1.1        ad 	((void *)((uintptr_t)(a) & ~chunksize_mask))
    911   1.1        ad 
    912   1.1        ad /* Return the chunk offset of address a. */
    913   1.1        ad #define	CHUNK_ADDR2OFFSET(a)						\
    914   1.1        ad 	((size_t)((uintptr_t)(a) & chunksize_mask))
    915   1.1        ad 
    916   1.1        ad /* Return the smallest chunk multiple that is >= s. */
    917   1.1        ad #define	CHUNK_CEILING(s)						\
    918   1.1        ad 	(((s) + chunksize_mask) & ~chunksize_mask)
    919   1.1        ad 
    920   1.1        ad /* Return the smallest cacheline multiple that is >= s. */
    921   1.1        ad #define	CACHELINE_CEILING(s)						\
    922   1.1        ad 	(((s) + (CACHELINE - 1)) & ~(CACHELINE - 1))
    923   1.1        ad 
    924   1.1        ad /* Return the smallest quantum multiple that is >= a. */
    925   1.1        ad #define	QUANTUM_CEILING(a)						\
    926   1.1        ad 	(((a) + quantum_mask) & ~quantum_mask)
    927   1.1        ad 
    928   1.1        ad /* Return the smallest pagesize multiple that is >= s. */
    929   1.1        ad #define	PAGE_CEILING(s)							\
    930   1.1        ad 	(((s) + pagesize_mask) & ~pagesize_mask)
    931   1.1        ad 
    932   1.1        ad /* Compute the smallest power of 2 that is >= x. */
    933   1.1        ad static inline size_t
    934   1.1        ad pow2_ceil(size_t x)
    935   1.1        ad {
    936   1.1        ad 
    937   1.1        ad 	x--;
    938   1.1        ad 	x |= x >> 1;
    939   1.1        ad 	x |= x >> 2;
    940   1.1        ad 	x |= x >> 4;
    941   1.1        ad 	x |= x >> 8;
    942   1.1        ad 	x |= x >> 16;
    943   1.1        ad #if (SIZEOF_PTR == 8)
    944   1.1        ad 	x |= x >> 32;
    945   1.1        ad #endif
    946   1.1        ad 	x++;
    947   1.1        ad 	return (x);
    948   1.1        ad }
    949   1.1        ad 
    950   1.1        ad static void
    951   1.1        ad wrtmessage(const char *p1, const char *p2, const char *p3, const char *p4)
    952   1.1        ad {
    953   1.1        ad 
    954  1.16  christos 	write(STDERR_FILENO, p1, strlen(p1));
    955  1.16  christos 	write(STDERR_FILENO, p2, strlen(p2));
    956  1.16  christos 	write(STDERR_FILENO, p3, strlen(p3));
    957  1.16  christos 	write(STDERR_FILENO, p4, strlen(p4));
    958   1.1        ad }
    959   1.1        ad 
    960   1.1        ad void	(*_malloc_message)(const char *p1, const char *p2, const char *p3,
    961   1.1        ad 	    const char *p4) = wrtmessage;
    962   1.1        ad 
    963   1.1        ad #ifdef MALLOC_STATS
    964   1.1        ad /*
    965   1.1        ad  * Print to stderr in such a way as to (hopefully) avoid memory allocation.
    966   1.1        ad  */
    967   1.1        ad static void
    968   1.1        ad malloc_printf(const char *format, ...)
    969   1.1        ad {
    970   1.1        ad 	char buf[4096];
    971   1.1        ad 	va_list ap;
    972   1.1        ad 
    973   1.1        ad 	va_start(ap, format);
    974   1.1        ad 	vsnprintf(buf, sizeof(buf), format, ap);
    975   1.1        ad 	va_end(ap);
    976   1.1        ad 	_malloc_message(buf, "", "", "");
    977   1.1        ad }
    978   1.1        ad #endif
    979   1.1        ad 
    980   1.1        ad /*
    981   1.1        ad  * We don't want to depend on vsnprintf() for production builds, since that can
    982  1.28  christos  * cause unnecessary bloat for static binaries.  size_t2s() provides minimal
    983   1.1        ad  * integer printing functionality, so that malloc_printf() use can be limited to
    984   1.1        ad  * MALLOC_STATS code.
    985   1.1        ad  */
    986   1.1        ad #define UMAX2S_BUFSIZE	21
    987   1.1        ad static char *
    988  1.28  christos size_t2s(size_t x, char *s)
    989   1.1        ad {
    990   1.1        ad 	unsigned i;
    991   1.1        ad 
    992   1.1        ad 	/* Make sure UMAX2S_BUFSIZE is large enough. */
    993   1.7      yamt 	/* LINTED */
    994  1.25  christos 	assert(sizeof(size_t) <= 8);
    995   1.1        ad 
    996   1.1        ad 	i = UMAX2S_BUFSIZE - 1;
    997   1.1        ad 	s[i] = '\0';
    998   1.1        ad 	do {
    999   1.1        ad 		i--;
   1000   1.2        ad 		s[i] = "0123456789"[(int)x % 10];
   1001   1.2        ad 		x /= (uintmax_t)10LL;
   1002   1.1        ad 	} while (x > 0);
   1003   1.1        ad 
   1004   1.1        ad 	return (&s[i]);
   1005   1.1        ad }
   1006   1.1        ad 
   1007   1.1        ad /******************************************************************************/
   1008   1.1        ad 
   1009   1.1        ad static bool
   1010   1.1        ad base_pages_alloc(size_t minsize)
   1011   1.1        ad {
   1012   1.2        ad 	size_t csize = 0;
   1013   1.1        ad 
   1014   1.1        ad #ifdef USE_BRK
   1015   1.1        ad 	/*
   1016   1.1        ad 	 * Do special brk allocation here, since base allocations don't need to
   1017   1.1        ad 	 * be chunk-aligned.
   1018   1.1        ad 	 */
   1019   1.1        ad 	if (brk_prev != (void *)-1) {
   1020   1.1        ad 		void *brk_cur;
   1021   1.1        ad 		intptr_t incr;
   1022   1.1        ad 
   1023   1.1        ad 		if (minsize != 0)
   1024   1.1        ad 			csize = CHUNK_CEILING(minsize);
   1025   1.1        ad 
   1026   1.1        ad 		malloc_mutex_lock(&brk_mtx);
   1027   1.1        ad 		do {
   1028   1.1        ad 			/* Get the current end of brk. */
   1029   1.1        ad 			brk_cur = sbrk(0);
   1030   1.1        ad 
   1031   1.1        ad 			/*
   1032   1.1        ad 			 * Calculate how much padding is necessary to
   1033   1.1        ad 			 * chunk-align the end of brk.  Don't worry about
   1034   1.1        ad 			 * brk_cur not being chunk-aligned though.
   1035   1.1        ad 			 */
   1036   1.1        ad 			incr = (intptr_t)chunksize
   1037   1.1        ad 			    - (intptr_t)CHUNK_ADDR2OFFSET(brk_cur);
   1038  1.20     lukem 			assert(incr >= 0);
   1039  1.20     lukem 			if ((size_t)incr < minsize)
   1040   1.1        ad 				incr += csize;
   1041   1.1        ad 
   1042   1.1        ad 			brk_prev = sbrk(incr);
   1043   1.1        ad 			if (brk_prev == brk_cur) {
   1044   1.1        ad 				/* Success. */
   1045   1.1        ad 				malloc_mutex_unlock(&brk_mtx);
   1046   1.1        ad 				base_pages = brk_cur;
   1047   1.1        ad 				base_next_addr = base_pages;
   1048   1.1        ad 				base_past_addr = (void *)((uintptr_t)base_pages
   1049   1.1        ad 				    + incr);
   1050   1.1        ad #ifdef MALLOC_STATS
   1051   1.1        ad 				base_mapped += incr;
   1052   1.1        ad #endif
   1053   1.1        ad 				return (false);
   1054   1.1        ad 			}
   1055   1.1        ad 		} while (brk_prev != (void *)-1);
   1056   1.1        ad 		malloc_mutex_unlock(&brk_mtx);
   1057   1.1        ad 	}
   1058   1.1        ad 	if (minsize == 0) {
   1059   1.1        ad 		/*
   1060   1.1        ad 		 * Failure during initialization doesn't matter, so avoid
   1061   1.1        ad 		 * falling through to the mmap-based page mapping code.
   1062   1.1        ad 		 */
   1063   1.1        ad 		return (true);
   1064   1.1        ad 	}
   1065   1.1        ad #endif
   1066   1.1        ad 	assert(minsize != 0);
   1067   1.1        ad 	csize = PAGE_CEILING(minsize);
   1068   1.1        ad 	base_pages = pages_map(NULL, csize);
   1069   1.1        ad 	if (base_pages == NULL)
   1070   1.1        ad 		return (true);
   1071   1.1        ad 	base_next_addr = base_pages;
   1072   1.1        ad 	base_past_addr = (void *)((uintptr_t)base_pages + csize);
   1073   1.1        ad #ifdef MALLOC_STATS
   1074   1.1        ad 	base_mapped += csize;
   1075   1.1        ad #endif
   1076   1.1        ad 	return (false);
   1077   1.1        ad }
   1078   1.1        ad 
   1079   1.1        ad static void *
   1080   1.1        ad base_alloc(size_t size)
   1081   1.1        ad {
   1082   1.1        ad 	void *ret;
   1083   1.1        ad 	size_t csize;
   1084   1.1        ad 
   1085   1.1        ad 	/* Round size up to nearest multiple of the cacheline size. */
   1086   1.1        ad 	csize = CACHELINE_CEILING(size);
   1087   1.1        ad 
   1088   1.1        ad 	malloc_mutex_lock(&base_mtx);
   1089   1.1        ad 
   1090   1.1        ad 	/* Make sure there's enough space for the allocation. */
   1091   1.1        ad 	if ((uintptr_t)base_next_addr + csize > (uintptr_t)base_past_addr) {
   1092   1.1        ad 		if (base_pages_alloc(csize)) {
   1093   1.1        ad 			ret = NULL;
   1094   1.1        ad 			goto RETURN;
   1095   1.1        ad 		}
   1096   1.1        ad 	}
   1097   1.1        ad 
   1098   1.1        ad 	/* Allocate. */
   1099   1.1        ad 	ret = base_next_addr;
   1100   1.1        ad 	base_next_addr = (void *)((uintptr_t)base_next_addr + csize);
   1101   1.1        ad 
   1102   1.1        ad RETURN:
   1103   1.1        ad 	malloc_mutex_unlock(&base_mtx);
   1104   1.1        ad 	return (ret);
   1105   1.1        ad }
   1106   1.1        ad 
   1107   1.1        ad static chunk_node_t *
   1108   1.1        ad base_chunk_node_alloc(void)
   1109   1.1        ad {
   1110   1.1        ad 	chunk_node_t *ret;
   1111   1.1        ad 
   1112   1.1        ad 	malloc_mutex_lock(&base_mtx);
   1113   1.1        ad 	if (base_chunk_nodes != NULL) {
   1114   1.1        ad 		ret = base_chunk_nodes;
   1115   1.2        ad 		/* LINTED */
   1116   1.1        ad 		base_chunk_nodes = *(chunk_node_t **)ret;
   1117   1.1        ad 		malloc_mutex_unlock(&base_mtx);
   1118   1.1        ad 	} else {
   1119   1.1        ad 		malloc_mutex_unlock(&base_mtx);
   1120   1.1        ad 		ret = (chunk_node_t *)base_alloc(sizeof(chunk_node_t));
   1121   1.1        ad 	}
   1122   1.1        ad 
   1123   1.1        ad 	return (ret);
   1124   1.1        ad }
   1125   1.1        ad 
   1126   1.1        ad static void
   1127   1.1        ad base_chunk_node_dealloc(chunk_node_t *node)
   1128   1.1        ad {
   1129   1.1        ad 
   1130   1.1        ad 	malloc_mutex_lock(&base_mtx);
   1131   1.2        ad 	/* LINTED */
   1132   1.1        ad 	*(chunk_node_t **)node = base_chunk_nodes;
   1133   1.1        ad 	base_chunk_nodes = node;
   1134   1.1        ad 	malloc_mutex_unlock(&base_mtx);
   1135   1.1        ad }
   1136   1.1        ad 
   1137   1.1        ad /******************************************************************************/
   1138   1.1        ad 
   1139   1.1        ad #ifdef MALLOC_STATS
   1140   1.1        ad static void
   1141   1.1        ad stats_print(arena_t *arena)
   1142   1.1        ad {
   1143   1.1        ad 	unsigned i;
   1144   1.1        ad 	int gap_start;
   1145   1.1        ad 
   1146   1.1        ad 	malloc_printf(
   1147   1.1        ad 	    "          allocated/mapped            nmalloc      ndalloc\n");
   1148   1.2        ad 
   1149   1.2        ad 	malloc_printf("small: %12zu %-12s %12llu %12llu\n",
   1150   1.1        ad 	    arena->stats.allocated_small, "", arena->stats.nmalloc_small,
   1151   1.1        ad 	    arena->stats.ndalloc_small);
   1152   1.2        ad 	malloc_printf("large: %12zu %-12s %12llu %12llu\n",
   1153   1.1        ad 	    arena->stats.allocated_large, "", arena->stats.nmalloc_large,
   1154   1.1        ad 	    arena->stats.ndalloc_large);
   1155   1.2        ad 	malloc_printf("total: %12zu/%-12zu %12llu %12llu\n",
   1156   1.1        ad 	    arena->stats.allocated_small + arena->stats.allocated_large,
   1157   1.1        ad 	    arena->stats.mapped,
   1158   1.1        ad 	    arena->stats.nmalloc_small + arena->stats.nmalloc_large,
   1159   1.1        ad 	    arena->stats.ndalloc_small + arena->stats.ndalloc_large);
   1160   1.1        ad 
   1161   1.1        ad 	malloc_printf("bins:     bin   size regs pgs  requests   newruns"
   1162   1.1        ad 	    "    reruns maxruns curruns\n");
   1163   1.1        ad 	for (i = 0, gap_start = -1; i < ntbins + nqbins + nsbins; i++) {
   1164   1.1        ad 		if (arena->bins[i].stats.nrequests == 0) {
   1165   1.1        ad 			if (gap_start == -1)
   1166   1.1        ad 				gap_start = i;
   1167   1.1        ad 		} else {
   1168   1.1        ad 			if (gap_start != -1) {
   1169   1.1        ad 				if (i > gap_start + 1) {
   1170   1.1        ad 					/* Gap of more than one size class. */
   1171   1.1        ad 					malloc_printf("[%u..%u]\n",
   1172   1.1        ad 					    gap_start, i - 1);
   1173   1.1        ad 				} else {
   1174   1.1        ad 					/* Gap of one size class. */
   1175   1.1        ad 					malloc_printf("[%u]\n", gap_start);
   1176   1.1        ad 				}
   1177   1.1        ad 				gap_start = -1;
   1178   1.1        ad 			}
   1179   1.1        ad 			malloc_printf(
   1180   1.1        ad 			    "%13u %1s %4u %4u %3u %9llu %9llu"
   1181   1.1        ad 			    " %9llu %7lu %7lu\n",
   1182   1.1        ad 			    i,
   1183   1.1        ad 			    i < ntbins ? "T" : i < ntbins + nqbins ? "Q" : "S",
   1184   1.1        ad 			    arena->bins[i].reg_size,
   1185   1.1        ad 			    arena->bins[i].nregs,
   1186   1.1        ad 			    arena->bins[i].run_size >> pagesize_2pow,
   1187   1.1        ad 			    arena->bins[i].stats.nrequests,
   1188   1.1        ad 			    arena->bins[i].stats.nruns,
   1189   1.1        ad 			    arena->bins[i].stats.reruns,
   1190   1.1        ad 			    arena->bins[i].stats.highruns,
   1191   1.1        ad 			    arena->bins[i].stats.curruns);
   1192   1.1        ad 		}
   1193   1.1        ad 	}
   1194   1.1        ad 	if (gap_start != -1) {
   1195   1.1        ad 		if (i > gap_start + 1) {
   1196   1.1        ad 			/* Gap of more than one size class. */
   1197   1.1        ad 			malloc_printf("[%u..%u]\n", gap_start, i - 1);
   1198   1.1        ad 		} else {
   1199   1.1        ad 			/* Gap of one size class. */
   1200   1.1        ad 			malloc_printf("[%u]\n", gap_start);
   1201   1.1        ad 		}
   1202   1.1        ad 	}
   1203   1.1        ad }
   1204   1.1        ad #endif
   1205   1.1        ad 
   1206   1.1        ad /*
   1207   1.1        ad  * End Utility functions/macros.
   1208   1.1        ad  */
   1209   1.1        ad /******************************************************************************/
   1210   1.1        ad /*
   1211   1.1        ad  * Begin chunk management functions.
   1212   1.1        ad  */
   1213   1.1        ad 
   1214   1.7      yamt #ifndef lint
   1215   1.1        ad static inline int
   1216   1.1        ad chunk_comp(chunk_node_t *a, chunk_node_t *b)
   1217   1.1        ad {
   1218   1.1        ad 
   1219   1.1        ad 	assert(a != NULL);
   1220   1.1        ad 	assert(b != NULL);
   1221   1.1        ad 
   1222   1.1        ad 	if ((uintptr_t)a->chunk < (uintptr_t)b->chunk)
   1223   1.1        ad 		return (-1);
   1224   1.1        ad 	else if (a->chunk == b->chunk)
   1225   1.1        ad 		return (0);
   1226   1.1        ad 	else
   1227   1.1        ad 		return (1);
   1228   1.1        ad }
   1229   1.1        ad 
   1230   1.1        ad /* Generate red-black tree code for chunks. */
   1231   1.1        ad RB_GENERATE_STATIC(chunk_tree_s, chunk_node_s, link, chunk_comp);
   1232   1.2        ad #endif
   1233   1.1        ad 
   1234   1.1        ad static void *
   1235   1.5      yamt pages_map_align(void *addr, size_t size, int align)
   1236   1.1        ad {
   1237   1.1        ad 	void *ret;
   1238   1.1        ad 
   1239   1.1        ad 	/*
   1240   1.1        ad 	 * We don't use MAP_FIXED here, because it can cause the *replacement*
   1241   1.1        ad 	 * of existing mappings, and we only want to create new mappings.
   1242   1.1        ad 	 */
   1243   1.5      yamt 	ret = mmap(addr, size, PROT_READ | PROT_WRITE,
   1244   1.5      yamt 	    MAP_PRIVATE | MAP_ANON | MAP_ALIGNED(align), -1, 0);
   1245   1.1        ad 	assert(ret != NULL);
   1246   1.1        ad 
   1247   1.1        ad 	if (ret == MAP_FAILED)
   1248   1.1        ad 		ret = NULL;
   1249   1.1        ad 	else if (addr != NULL && ret != addr) {
   1250   1.1        ad 		/*
   1251   1.1        ad 		 * We succeeded in mapping memory, but not in the right place.
   1252   1.1        ad 		 */
   1253   1.1        ad 		if (munmap(ret, size) == -1) {
   1254   1.1        ad 			char buf[STRERROR_BUF];
   1255   1.1        ad 
   1256  1.16  christos 			STRERROR_R(errno, buf, sizeof(buf));
   1257  1.16  christos 			_malloc_message(getprogname(),
   1258   1.1        ad 			    ": (malloc) Error in munmap(): ", buf, "\n");
   1259   1.1        ad 			if (opt_abort)
   1260   1.1        ad 				abort();
   1261   1.1        ad 		}
   1262   1.1        ad 		ret = NULL;
   1263   1.1        ad 	}
   1264   1.1        ad 
   1265   1.1        ad 	assert(ret == NULL || (addr == NULL && ret != addr)
   1266   1.1        ad 	    || (addr != NULL && ret == addr));
   1267   1.1        ad 	return (ret);
   1268   1.1        ad }
   1269   1.1        ad 
   1270   1.5      yamt static void *
   1271   1.5      yamt pages_map(void *addr, size_t size)
   1272   1.5      yamt {
   1273   1.5      yamt 
   1274   1.5      yamt 	return pages_map_align(addr, size, 0);
   1275   1.5      yamt }
   1276   1.5      yamt 
   1277   1.1        ad static void
   1278   1.1        ad pages_unmap(void *addr, size_t size)
   1279   1.1        ad {
   1280   1.1        ad 
   1281   1.1        ad 	if (munmap(addr, size) == -1) {
   1282   1.1        ad 		char buf[STRERROR_BUF];
   1283   1.1        ad 
   1284  1.16  christos 		STRERROR_R(errno, buf, sizeof(buf));
   1285  1.16  christos 		_malloc_message(getprogname(),
   1286   1.1        ad 		    ": (malloc) Error in munmap(): ", buf, "\n");
   1287   1.1        ad 		if (opt_abort)
   1288   1.1        ad 			abort();
   1289   1.1        ad 	}
   1290   1.1        ad }
   1291   1.1        ad 
   1292   1.1        ad static void *
   1293   1.1        ad chunk_alloc(size_t size)
   1294   1.1        ad {
   1295   1.1        ad 	void *ret, *chunk;
   1296   1.1        ad 	chunk_node_t *tchunk, *delchunk;
   1297   1.1        ad 
   1298   1.1        ad 	assert(size != 0);
   1299   1.1        ad 	assert((size & chunksize_mask) == 0);
   1300   1.1        ad 
   1301   1.1        ad 	malloc_mutex_lock(&chunks_mtx);
   1302   1.1        ad 
   1303   1.1        ad 	if (size == chunksize) {
   1304   1.1        ad 		/*
   1305   1.1        ad 		 * Check for address ranges that were previously chunks and try
   1306   1.1        ad 		 * to use them.
   1307   1.1        ad 		 */
   1308   1.1        ad 
   1309   1.2        ad 		/* LINTED */
   1310   1.1        ad 		tchunk = RB_MIN(chunk_tree_s, &old_chunks);
   1311   1.1        ad 		while (tchunk != NULL) {
   1312   1.1        ad 			/* Found an address range.  Try to recycle it. */
   1313   1.1        ad 
   1314   1.1        ad 			chunk = tchunk->chunk;
   1315   1.1        ad 			delchunk = tchunk;
   1316   1.2        ad 			/* LINTED */
   1317   1.1        ad 			tchunk = RB_NEXT(chunk_tree_s, &old_chunks, delchunk);
   1318   1.1        ad 
   1319   1.1        ad 			/* Remove delchunk from the tree. */
   1320   1.2        ad 			/* LINTED */
   1321   1.1        ad 			RB_REMOVE(chunk_tree_s, &old_chunks, delchunk);
   1322   1.1        ad 			base_chunk_node_dealloc(delchunk);
   1323   1.1        ad 
   1324   1.1        ad #ifdef USE_BRK
   1325   1.1        ad 			if ((uintptr_t)chunk >= (uintptr_t)brk_base
   1326   1.1        ad 			    && (uintptr_t)chunk < (uintptr_t)brk_max) {
   1327   1.1        ad 				/* Re-use a previously freed brk chunk. */
   1328   1.1        ad 				ret = chunk;
   1329   1.1        ad 				goto RETURN;
   1330   1.1        ad 			}
   1331   1.1        ad #endif
   1332   1.1        ad 			if ((ret = pages_map(chunk, size)) != NULL) {
   1333   1.1        ad 				/* Success. */
   1334   1.1        ad 				goto RETURN;
   1335   1.1        ad 			}
   1336   1.1        ad 		}
   1337   1.1        ad 	}
   1338   1.1        ad 
   1339   1.1        ad 	/*
   1340   1.1        ad 	 * Try to over-allocate, but allow the OS to place the allocation
   1341   1.1        ad 	 * anywhere.  Beware of size_t wrap-around.
   1342   1.1        ad 	 */
   1343   1.1        ad 	if (size + chunksize > size) {
   1344   1.5      yamt 		if ((ret = pages_map_align(NULL, size, chunksize_2pow))
   1345   1.5      yamt 		    != NULL) {
   1346   1.1        ad 			goto RETURN;
   1347   1.1        ad 		}
   1348   1.1        ad 	}
   1349   1.1        ad 
   1350   1.1        ad #ifdef USE_BRK
   1351   1.1        ad 	/*
   1352   1.1        ad 	 * Try to create allocations in brk, in order to make full use of
   1353   1.1        ad 	 * limited address space.
   1354   1.1        ad 	 */
   1355   1.1        ad 	if (brk_prev != (void *)-1) {
   1356   1.1        ad 		void *brk_cur;
   1357   1.1        ad 		intptr_t incr;
   1358   1.1        ad 
   1359   1.1        ad 		/*
   1360   1.1        ad 		 * The loop is necessary to recover from races with other
   1361   1.1        ad 		 * threads that are using brk for something other than malloc.
   1362   1.1        ad 		 */
   1363   1.1        ad 		malloc_mutex_lock(&brk_mtx);
   1364   1.1        ad 		do {
   1365   1.1        ad 			/* Get the current end of brk. */
   1366   1.1        ad 			brk_cur = sbrk(0);
   1367   1.1        ad 
   1368   1.1        ad 			/*
   1369   1.1        ad 			 * Calculate how much padding is necessary to
   1370   1.1        ad 			 * chunk-align the end of brk.
   1371   1.1        ad 			 */
   1372   1.1        ad 			incr = (intptr_t)size
   1373   1.1        ad 			    - (intptr_t)CHUNK_ADDR2OFFSET(brk_cur);
   1374  1.20     lukem 			if (incr == (intptr_t)size) {
   1375   1.1        ad 				ret = brk_cur;
   1376   1.1        ad 			} else {
   1377   1.1        ad 				ret = (void *)((intptr_t)brk_cur + incr);
   1378   1.1        ad 				incr += size;
   1379   1.1        ad 			}
   1380   1.1        ad 
   1381   1.1        ad 			brk_prev = sbrk(incr);
   1382   1.1        ad 			if (brk_prev == brk_cur) {
   1383   1.1        ad 				/* Success. */
   1384   1.1        ad 				malloc_mutex_unlock(&brk_mtx);
   1385   1.1        ad 				brk_max = (void *)((intptr_t)ret + size);
   1386   1.1        ad 				goto RETURN;
   1387   1.1        ad 			}
   1388   1.1        ad 		} while (brk_prev != (void *)-1);
   1389   1.1        ad 		malloc_mutex_unlock(&brk_mtx);
   1390   1.1        ad 	}
   1391   1.1        ad #endif
   1392   1.1        ad 
   1393   1.1        ad 	/* All strategies for allocation failed. */
   1394   1.1        ad 	ret = NULL;
   1395   1.1        ad RETURN:
   1396   1.1        ad 	if (ret != NULL) {
   1397   1.1        ad 		chunk_node_t key;
   1398   1.1        ad 		/*
   1399   1.1        ad 		 * Clean out any entries in old_chunks that overlap with the
   1400   1.1        ad 		 * memory we just allocated.
   1401   1.1        ad 		 */
   1402   1.1        ad 		key.chunk = ret;
   1403   1.2        ad 		/* LINTED */
   1404   1.1        ad 		tchunk = RB_NFIND(chunk_tree_s, &old_chunks, &key);
   1405   1.1        ad 		while (tchunk != NULL
   1406   1.1        ad 		    && (uintptr_t)tchunk->chunk >= (uintptr_t)ret
   1407   1.1        ad 		    && (uintptr_t)tchunk->chunk < (uintptr_t)ret + size) {
   1408   1.1        ad 			delchunk = tchunk;
   1409   1.2        ad 			/* LINTED */
   1410   1.1        ad 			tchunk = RB_NEXT(chunk_tree_s, &old_chunks, delchunk);
   1411   1.2        ad 			/* LINTED */
   1412   1.1        ad 			RB_REMOVE(chunk_tree_s, &old_chunks, delchunk);
   1413   1.1        ad 			base_chunk_node_dealloc(delchunk);
   1414   1.1        ad 		}
   1415   1.1        ad 
   1416   1.1        ad 	}
   1417   1.1        ad #ifdef MALLOC_STATS
   1418   1.1        ad 	if (ret != NULL) {
   1419   1.1        ad 		stats_chunks.nchunks += (size / chunksize);
   1420   1.1        ad 		stats_chunks.curchunks += (size / chunksize);
   1421   1.1        ad 	}
   1422   1.1        ad 	if (stats_chunks.curchunks > stats_chunks.highchunks)
   1423   1.1        ad 		stats_chunks.highchunks = stats_chunks.curchunks;
   1424   1.1        ad #endif
   1425   1.1        ad 	malloc_mutex_unlock(&chunks_mtx);
   1426   1.1        ad 
   1427   1.1        ad 	assert(CHUNK_ADDR2BASE(ret) == ret);
   1428   1.1        ad 	return (ret);
   1429   1.1        ad }
   1430   1.1        ad 
   1431   1.1        ad static void
   1432   1.1        ad chunk_dealloc(void *chunk, size_t size)
   1433   1.1        ad {
   1434   1.1        ad 	chunk_node_t *node;
   1435   1.1        ad 
   1436   1.1        ad 	assert(chunk != NULL);
   1437   1.1        ad 	assert(CHUNK_ADDR2BASE(chunk) == chunk);
   1438   1.1        ad 	assert(size != 0);
   1439   1.1        ad 	assert((size & chunksize_mask) == 0);
   1440   1.1        ad 
   1441   1.1        ad 	malloc_mutex_lock(&chunks_mtx);
   1442   1.1        ad 
   1443   1.1        ad #ifdef USE_BRK
   1444   1.1        ad 	if ((uintptr_t)chunk >= (uintptr_t)brk_base
   1445   1.1        ad 	    && (uintptr_t)chunk < (uintptr_t)brk_max) {
   1446   1.1        ad 		void *brk_cur;
   1447   1.1        ad 
   1448   1.1        ad 		malloc_mutex_lock(&brk_mtx);
   1449   1.1        ad 		/* Get the current end of brk. */
   1450   1.1        ad 		brk_cur = sbrk(0);
   1451   1.1        ad 
   1452   1.1        ad 		/*
   1453   1.1        ad 		 * Try to shrink the data segment if this chunk is at the end
   1454   1.1        ad 		 * of the data segment.  The sbrk() call here is subject to a
   1455   1.1        ad 		 * race condition with threads that use brk(2) or sbrk(2)
   1456   1.1        ad 		 * directly, but the alternative would be to leak memory for
   1457   1.1        ad 		 * the sake of poorly designed multi-threaded programs.
   1458   1.1        ad 		 */
   1459   1.1        ad 		if (brk_cur == brk_max
   1460   1.1        ad 		    && (void *)((uintptr_t)chunk + size) == brk_max
   1461   1.1        ad 		    && sbrk(-(intptr_t)size) == brk_max) {
   1462   1.1        ad 			malloc_mutex_unlock(&brk_mtx);
   1463   1.1        ad 			if (brk_prev == brk_max) {
   1464   1.1        ad 				/* Success. */
   1465   1.1        ad 				brk_prev = (void *)((intptr_t)brk_max
   1466   1.1        ad 				    - (intptr_t)size);
   1467   1.1        ad 				brk_max = brk_prev;
   1468   1.1        ad 			}
   1469   1.1        ad 		} else {
   1470   1.1        ad 			size_t offset;
   1471   1.1        ad 
   1472   1.1        ad 			malloc_mutex_unlock(&brk_mtx);
   1473   1.1        ad 			madvise(chunk, size, MADV_FREE);
   1474   1.1        ad 
   1475   1.1        ad 			/*
   1476   1.1        ad 			 * Iteratively create records of each chunk-sized
   1477   1.1        ad 			 * memory region that 'chunk' is comprised of, so that
   1478   1.1        ad 			 * the address range can be recycled if memory usage
   1479   1.1        ad 			 * increases later on.
   1480   1.1        ad 			 */
   1481   1.1        ad 			for (offset = 0; offset < size; offset += chunksize) {
   1482   1.1        ad 				node = base_chunk_node_alloc();
   1483   1.1        ad 				if (node == NULL)
   1484   1.1        ad 					break;
   1485   1.1        ad 
   1486   1.1        ad 				node->chunk = (void *)((uintptr_t)chunk
   1487   1.1        ad 				    + (uintptr_t)offset);
   1488   1.1        ad 				node->size = chunksize;
   1489   1.2        ad 				/* LINTED */
   1490   1.1        ad 				RB_INSERT(chunk_tree_s, &old_chunks, node);
   1491   1.1        ad 			}
   1492   1.1        ad 		}
   1493   1.1        ad 	} else {
   1494   1.1        ad #endif
   1495   1.1        ad 		pages_unmap(chunk, size);
   1496   1.1        ad 
   1497   1.1        ad 		/*
   1498   1.1        ad 		 * Make a record of the chunk's address, so that the address
   1499   1.1        ad 		 * range can be recycled if memory usage increases later on.
   1500   1.1        ad 		 * Don't bother to create entries if (size > chunksize), since
   1501   1.1        ad 		 * doing so could cause scalability issues for truly gargantuan
   1502   1.1        ad 		 * objects (many gigabytes or larger).
   1503   1.1        ad 		 */
   1504   1.1        ad 		if (size == chunksize) {
   1505   1.1        ad 			node = base_chunk_node_alloc();
   1506   1.1        ad 			if (node != NULL) {
   1507   1.1        ad 				node->chunk = (void *)(uintptr_t)chunk;
   1508   1.1        ad 				node->size = chunksize;
   1509   1.2        ad 				/* LINTED */
   1510   1.1        ad 				RB_INSERT(chunk_tree_s, &old_chunks, node);
   1511   1.1        ad 			}
   1512   1.1        ad 		}
   1513   1.1        ad #ifdef USE_BRK
   1514   1.1        ad 	}
   1515   1.1        ad #endif
   1516   1.1        ad 
   1517   1.1        ad #ifdef MALLOC_STATS
   1518   1.1        ad 	stats_chunks.curchunks -= (size / chunksize);
   1519   1.1        ad #endif
   1520   1.1        ad 	malloc_mutex_unlock(&chunks_mtx);
   1521   1.1        ad }
   1522   1.1        ad 
   1523   1.1        ad /*
   1524   1.1        ad  * End chunk management functions.
   1525   1.1        ad  */
   1526   1.1        ad /******************************************************************************/
   1527   1.1        ad /*
   1528   1.1        ad  * Begin arena.
   1529   1.1        ad  */
   1530   1.1        ad 
   1531   1.1        ad /*
   1532  1.17        ad  * Choose an arena based on a per-thread and (optimistically) per-CPU value.
   1533  1.17        ad  *
   1534  1.17        ad  * We maintain at least one block of arenas.  Usually there are more.
   1535  1.17        ad  * The blocks are $ncpu arenas in size.  Whole blocks are 'hashed'
   1536  1.17        ad  * amongst threads.  To accomplish this, next_arena advances only in
   1537  1.17        ad  * ncpu steps.
   1538   1.1        ad  */
   1539  1.19        ad static __noinline arena_t *
   1540  1.19        ad choose_arena_hard(void)
   1541   1.1        ad {
   1542  1.17        ad 	unsigned i, curcpu;
   1543  1.17        ad 	arena_t **map;
   1544   1.1        ad 
   1545  1.17        ad 	/* Initialize the current block of arenas and advance to next. */
   1546   1.1        ad 	malloc_mutex_lock(&arenas_mtx);
   1547  1.17        ad 	assert(next_arena % ncpus == 0);
   1548  1.17        ad 	assert(narenas % ncpus == 0);
   1549  1.17        ad 	map = &arenas[next_arena];
   1550  1.17        ad 	set_arenas_map(map);
   1551  1.17        ad 	for (i = 0; i < ncpus; i++) {
   1552  1.17        ad 		if (arenas[next_arena] == NULL)
   1553  1.17        ad 			arenas_extend(next_arena);
   1554  1.17        ad 		next_arena = (next_arena + 1) % narenas;
   1555  1.15        ad 	}
   1556   1.1        ad 	malloc_mutex_unlock(&arenas_mtx);
   1557   1.1        ad 
   1558  1.17        ad 	/*
   1559  1.17        ad 	 * If we were unable to allocate an arena above, then default to
   1560  1.17        ad 	 * the first arena, which is always present.
   1561  1.17        ad 	 */
   1562  1.17        ad 	curcpu = thr_curcpu();
   1563  1.17        ad 	if (map[curcpu] != NULL)
   1564  1.17        ad 		return map[curcpu];
   1565  1.17        ad 	return arenas[0];
   1566   1.1        ad }
   1567   1.1        ad 
   1568  1.19        ad static inline arena_t *
   1569  1.19        ad choose_arena(void)
   1570  1.19        ad {
   1571  1.19        ad 	unsigned curcpu;
   1572  1.19        ad 	arena_t **map;
   1573  1.19        ad 
   1574  1.19        ad 	map = get_arenas_map();
   1575  1.19        ad 	curcpu = thr_curcpu();
   1576  1.19        ad 	if (__predict_true(map != NULL && map[curcpu] != NULL))
   1577  1.19        ad 		return map[curcpu];
   1578  1.19        ad 
   1579  1.19        ad         return choose_arena_hard();
   1580  1.19        ad }
   1581  1.19        ad 
   1582   1.7      yamt #ifndef lint
   1583   1.1        ad static inline int
   1584   1.1        ad arena_chunk_comp(arena_chunk_t *a, arena_chunk_t *b)
   1585   1.1        ad {
   1586   1.1        ad 
   1587   1.1        ad 	assert(a != NULL);
   1588   1.1        ad 	assert(b != NULL);
   1589   1.1        ad 
   1590   1.1        ad 	if ((uintptr_t)a < (uintptr_t)b)
   1591   1.1        ad 		return (-1);
   1592   1.1        ad 	else if (a == b)
   1593   1.1        ad 		return (0);
   1594   1.1        ad 	else
   1595   1.1        ad 		return (1);
   1596   1.1        ad }
   1597   1.1        ad 
   1598   1.1        ad /* Generate red-black tree code for arena chunks. */
   1599   1.1        ad RB_GENERATE_STATIC(arena_chunk_tree_s, arena_chunk_s, link, arena_chunk_comp);
   1600   1.2        ad #endif
   1601   1.1        ad 
   1602   1.7      yamt #ifndef lint
   1603   1.1        ad static inline int
   1604   1.1        ad arena_run_comp(arena_run_t *a, arena_run_t *b)
   1605   1.1        ad {
   1606   1.1        ad 
   1607   1.1        ad 	assert(a != NULL);
   1608   1.1        ad 	assert(b != NULL);
   1609   1.1        ad 
   1610   1.1        ad 	if ((uintptr_t)a < (uintptr_t)b)
   1611   1.1        ad 		return (-1);
   1612   1.1        ad 	else if (a == b)
   1613   1.1        ad 		return (0);
   1614   1.1        ad 	else
   1615   1.1        ad 		return (1);
   1616   1.1        ad }
   1617   1.1        ad 
   1618   1.1        ad /* Generate red-black tree code for arena runs. */
   1619   1.1        ad RB_GENERATE_STATIC(arena_run_tree_s, arena_run_s, link, arena_run_comp);
   1620   1.2        ad #endif
   1621   1.1        ad 
   1622   1.1        ad static inline void *
   1623   1.1        ad arena_run_reg_alloc(arena_run_t *run, arena_bin_t *bin)
   1624   1.1        ad {
   1625   1.1        ad 	void *ret;
   1626   1.1        ad 	unsigned i, mask, bit, regind;
   1627   1.1        ad 
   1628   1.1        ad 	assert(run->magic == ARENA_RUN_MAGIC);
   1629   1.1        ad 	assert(run->regs_minelm < bin->regs_mask_nelms);
   1630   1.1        ad 
   1631   1.1        ad 	/*
   1632   1.1        ad 	 * Move the first check outside the loop, so that run->regs_minelm can
   1633   1.1        ad 	 * be updated unconditionally, without the possibility of updating it
   1634   1.1        ad 	 * multiple times.
   1635   1.1        ad 	 */
   1636   1.1        ad 	i = run->regs_minelm;
   1637   1.1        ad 	mask = run->regs_mask[i];
   1638   1.1        ad 	if (mask != 0) {
   1639   1.1        ad 		/* Usable allocation found. */
   1640   1.1        ad 		bit = ffs((int)mask) - 1;
   1641   1.1        ad 
   1642   1.1        ad 		regind = ((i << (SIZEOF_INT_2POW + 3)) + bit);
   1643   1.1        ad 		ret = (void *)(((uintptr_t)run) + bin->reg0_offset
   1644   1.1        ad 		    + (bin->reg_size * regind));
   1645   1.1        ad 
   1646   1.1        ad 		/* Clear bit. */
   1647   1.1        ad 		mask ^= (1 << bit);
   1648   1.1        ad 		run->regs_mask[i] = mask;
   1649   1.1        ad 
   1650   1.1        ad 		return (ret);
   1651   1.1        ad 	}
   1652   1.1        ad 
   1653   1.1        ad 	for (i++; i < bin->regs_mask_nelms; i++) {
   1654   1.1        ad 		mask = run->regs_mask[i];
   1655   1.1        ad 		if (mask != 0) {
   1656   1.1        ad 			/* Usable allocation found. */
   1657   1.1        ad 			bit = ffs((int)mask) - 1;
   1658   1.1        ad 
   1659   1.1        ad 			regind = ((i << (SIZEOF_INT_2POW + 3)) + bit);
   1660   1.1        ad 			ret = (void *)(((uintptr_t)run) + bin->reg0_offset
   1661   1.1        ad 			    + (bin->reg_size * regind));
   1662   1.1        ad 
   1663   1.1        ad 			/* Clear bit. */
   1664   1.1        ad 			mask ^= (1 << bit);
   1665   1.1        ad 			run->regs_mask[i] = mask;
   1666   1.1        ad 
   1667   1.1        ad 			/*
   1668   1.1        ad 			 * Make a note that nothing before this element
   1669   1.1        ad 			 * contains a free region.
   1670   1.1        ad 			 */
   1671   1.1        ad 			run->regs_minelm = i; /* Low payoff: + (mask == 0); */
   1672   1.1        ad 
   1673   1.1        ad 			return (ret);
   1674   1.1        ad 		}
   1675   1.1        ad 	}
   1676   1.1        ad 	/* Not reached. */
   1677   1.7      yamt 	/* LINTED */
   1678   1.1        ad 	assert(0);
   1679   1.1        ad 	return (NULL);
   1680   1.1        ad }
   1681   1.1        ad 
   1682   1.1        ad static inline void
   1683   1.1        ad arena_run_reg_dalloc(arena_run_t *run, arena_bin_t *bin, void *ptr, size_t size)
   1684   1.1        ad {
   1685   1.1        ad 	/*
   1686   1.1        ad 	 * To divide by a number D that is not a power of two we multiply
   1687   1.1        ad 	 * by (2^21 / D) and then right shift by 21 positions.
   1688   1.1        ad 	 *
   1689   1.1        ad 	 *   X / D
   1690   1.1        ad 	 *
   1691   1.1        ad 	 * becomes
   1692   1.1        ad 	 *
   1693   1.1        ad 	 *   (X * size_invs[(D >> QUANTUM_2POW_MIN) - 3]) >> SIZE_INV_SHIFT
   1694   1.1        ad 	 */
   1695   1.1        ad #define SIZE_INV_SHIFT 21
   1696   1.1        ad #define SIZE_INV(s) (((1 << SIZE_INV_SHIFT) / (s << QUANTUM_2POW_MIN)) + 1)
   1697   1.1        ad 	static const unsigned size_invs[] = {
   1698   1.1        ad 	    SIZE_INV(3),
   1699   1.1        ad 	    SIZE_INV(4), SIZE_INV(5), SIZE_INV(6), SIZE_INV(7),
   1700   1.1        ad 	    SIZE_INV(8), SIZE_INV(9), SIZE_INV(10), SIZE_INV(11),
   1701   1.1        ad 	    SIZE_INV(12),SIZE_INV(13), SIZE_INV(14), SIZE_INV(15),
   1702   1.1        ad 	    SIZE_INV(16),SIZE_INV(17), SIZE_INV(18), SIZE_INV(19),
   1703   1.1        ad 	    SIZE_INV(20),SIZE_INV(21), SIZE_INV(22), SIZE_INV(23),
   1704   1.1        ad 	    SIZE_INV(24),SIZE_INV(25), SIZE_INV(26), SIZE_INV(27),
   1705   1.1        ad 	    SIZE_INV(28),SIZE_INV(29), SIZE_INV(30), SIZE_INV(31)
   1706   1.1        ad #if (QUANTUM_2POW_MIN < 4)
   1707   1.1        ad 	    ,
   1708   1.1        ad 	    SIZE_INV(32), SIZE_INV(33), SIZE_INV(34), SIZE_INV(35),
   1709   1.1        ad 	    SIZE_INV(36), SIZE_INV(37), SIZE_INV(38), SIZE_INV(39),
   1710   1.1        ad 	    SIZE_INV(40), SIZE_INV(41), SIZE_INV(42), SIZE_INV(43),
   1711   1.1        ad 	    SIZE_INV(44), SIZE_INV(45), SIZE_INV(46), SIZE_INV(47),
   1712   1.1        ad 	    SIZE_INV(48), SIZE_INV(49), SIZE_INV(50), SIZE_INV(51),
   1713   1.1        ad 	    SIZE_INV(52), SIZE_INV(53), SIZE_INV(54), SIZE_INV(55),
   1714   1.1        ad 	    SIZE_INV(56), SIZE_INV(57), SIZE_INV(58), SIZE_INV(59),
   1715   1.1        ad 	    SIZE_INV(60), SIZE_INV(61), SIZE_INV(62), SIZE_INV(63)
   1716   1.1        ad #endif
   1717   1.1        ad 	};
   1718   1.1        ad 	unsigned diff, regind, elm, bit;
   1719   1.1        ad 
   1720   1.7      yamt 	/* LINTED */
   1721   1.1        ad 	assert(run->magic == ARENA_RUN_MAGIC);
   1722   1.1        ad 	assert(((sizeof(size_invs)) / sizeof(unsigned)) + 3
   1723   1.1        ad 	    >= (SMALL_MAX_DEFAULT >> QUANTUM_2POW_MIN));
   1724   1.1        ad 
   1725   1.1        ad 	/*
   1726   1.1        ad 	 * Avoid doing division with a variable divisor if possible.  Using
   1727   1.1        ad 	 * actual division here can reduce allocator throughput by over 20%!
   1728   1.1        ad 	 */
   1729   1.1        ad 	diff = (unsigned)((uintptr_t)ptr - (uintptr_t)run - bin->reg0_offset);
   1730   1.1        ad 	if ((size & (size - 1)) == 0) {
   1731   1.1        ad 		/*
   1732   1.1        ad 		 * log2_table allows fast division of a power of two in the
   1733   1.1        ad 		 * [1..128] range.
   1734   1.1        ad 		 *
   1735   1.1        ad 		 * (x / divisor) becomes (x >> log2_table[divisor - 1]).
   1736   1.1        ad 		 */
   1737   1.1        ad 		static const unsigned char log2_table[] = {
   1738   1.1        ad 		    0, 1, 0, 2, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 4,
   1739   1.1        ad 		    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5,
   1740   1.1        ad 		    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
   1741   1.1        ad 		    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6,
   1742   1.1        ad 		    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
   1743   1.1        ad 		    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
   1744   1.1        ad 		    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
   1745   1.1        ad 		    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7
   1746   1.1        ad 		};
   1747   1.1        ad 
   1748   1.1        ad 		if (size <= 128)
   1749   1.1        ad 			regind = (diff >> log2_table[size - 1]);
   1750   1.1        ad 		else if (size <= 32768)
   1751   1.1        ad 			regind = diff >> (8 + log2_table[(size >> 8) - 1]);
   1752   1.1        ad 		else {
   1753   1.1        ad 			/*
   1754   1.1        ad 			 * The page size is too large for us to use the lookup
   1755   1.1        ad 			 * table.  Use real division.
   1756   1.1        ad 			 */
   1757   1.9  christos 			regind = (unsigned)(diff / size);
   1758   1.1        ad 		}
   1759   1.1        ad 	} else if (size <= ((sizeof(size_invs) / sizeof(unsigned))
   1760   1.1        ad 	    << QUANTUM_2POW_MIN) + 2) {
   1761   1.1        ad 		regind = size_invs[(size >> QUANTUM_2POW_MIN) - 3] * diff;
   1762   1.1        ad 		regind >>= SIZE_INV_SHIFT;
   1763   1.1        ad 	} else {
   1764   1.1        ad 		/*
   1765   1.1        ad 		 * size_invs isn't large enough to handle this size class, so
   1766   1.1        ad 		 * calculate regind using actual division.  This only happens
   1767   1.1        ad 		 * if the user increases small_max via the 'S' runtime
   1768   1.1        ad 		 * configuration option.
   1769   1.1        ad 		 */
   1770   1.9  christos 		regind = (unsigned)(diff / size);
   1771   1.1        ad 	};
   1772   1.1        ad 	assert(diff == regind * size);
   1773   1.1        ad 	assert(regind < bin->nregs);
   1774   1.1        ad 
   1775   1.1        ad 	elm = regind >> (SIZEOF_INT_2POW + 3);
   1776   1.1        ad 	if (elm < run->regs_minelm)
   1777   1.1        ad 		run->regs_minelm = elm;
   1778   1.1        ad 	bit = regind - (elm << (SIZEOF_INT_2POW + 3));
   1779   1.1        ad 	assert((run->regs_mask[elm] & (1 << bit)) == 0);
   1780   1.1        ad 	run->regs_mask[elm] |= (1 << bit);
   1781   1.1        ad #undef SIZE_INV
   1782   1.1        ad #undef SIZE_INV_SHIFT
   1783   1.1        ad }
   1784   1.1        ad 
   1785   1.1        ad static void
   1786   1.1        ad arena_run_split(arena_t *arena, arena_run_t *run, size_t size)
   1787   1.1        ad {
   1788   1.1        ad 	arena_chunk_t *chunk;
   1789   1.1        ad 	unsigned run_ind, map_offset, total_pages, need_pages, rem_pages;
   1790   1.1        ad 	unsigned i;
   1791   1.1        ad 
   1792   1.1        ad 	chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(run);
   1793   1.1        ad 	run_ind = (unsigned)(((uintptr_t)run - (uintptr_t)chunk)
   1794   1.1        ad 	    >> pagesize_2pow);
   1795   1.1        ad 	total_pages = chunk->map[run_ind].npages;
   1796   1.9  christos 	need_pages = (unsigned)(size >> pagesize_2pow);
   1797   1.1        ad 	assert(need_pages <= total_pages);
   1798   1.1        ad 	rem_pages = total_pages - need_pages;
   1799   1.1        ad 
   1800   1.1        ad 	/* Split enough pages from the front of run to fit allocation size. */
   1801   1.1        ad 	map_offset = run_ind;
   1802   1.1        ad 	for (i = 0; i < need_pages; i++) {
   1803   1.1        ad 		chunk->map[map_offset + i].npages = need_pages;
   1804   1.1        ad 		chunk->map[map_offset + i].pos = i;
   1805   1.1        ad 	}
   1806   1.1        ad 
   1807   1.1        ad 	/* Keep track of trailing unused pages for later use. */
   1808   1.1        ad 	if (rem_pages > 0) {
   1809   1.1        ad 		/* Update map for trailing pages. */
   1810   1.1        ad 		map_offset += need_pages;
   1811   1.1        ad 		chunk->map[map_offset].npages = rem_pages;
   1812   1.1        ad 		chunk->map[map_offset].pos = POS_FREE;
   1813   1.1        ad 		chunk->map[map_offset + rem_pages - 1].npages = rem_pages;
   1814   1.1        ad 		chunk->map[map_offset + rem_pages - 1].pos = POS_FREE;
   1815   1.1        ad 	}
   1816   1.1        ad 
   1817   1.1        ad 	chunk->pages_used += need_pages;
   1818   1.1        ad }
   1819   1.1        ad 
   1820   1.1        ad static arena_chunk_t *
   1821   1.1        ad arena_chunk_alloc(arena_t *arena)
   1822   1.1        ad {
   1823   1.1        ad 	arena_chunk_t *chunk;
   1824   1.1        ad 
   1825   1.1        ad 	if (arena->spare != NULL) {
   1826   1.1        ad 		chunk = arena->spare;
   1827   1.1        ad 		arena->spare = NULL;
   1828   1.1        ad 
   1829   1.2        ad 		/* LINTED */
   1830   1.1        ad 		RB_INSERT(arena_chunk_tree_s, &arena->chunks, chunk);
   1831   1.1        ad 	} else {
   1832   1.1        ad 		chunk = (arena_chunk_t *)chunk_alloc(chunksize);
   1833   1.1        ad 		if (chunk == NULL)
   1834   1.1        ad 			return (NULL);
   1835   1.1        ad #ifdef MALLOC_STATS
   1836   1.1        ad 		arena->stats.mapped += chunksize;
   1837   1.1        ad #endif
   1838   1.1        ad 
   1839   1.1        ad 		chunk->arena = arena;
   1840   1.1        ad 
   1841   1.2        ad 		/* LINTED */
   1842   1.1        ad 		RB_INSERT(arena_chunk_tree_s, &arena->chunks, chunk);
   1843   1.1        ad 
   1844   1.1        ad 		/*
   1845   1.1        ad 		 * Claim that no pages are in use, since the header is merely
   1846   1.1        ad 		 * overhead.
   1847   1.1        ad 		 */
   1848   1.1        ad 		chunk->pages_used = 0;
   1849   1.1        ad 
   1850   1.1        ad 		chunk->max_frun_npages = chunk_npages -
   1851   1.1        ad 		    arena_chunk_header_npages;
   1852   1.1        ad 		chunk->min_frun_ind = arena_chunk_header_npages;
   1853   1.1        ad 
   1854   1.1        ad 		/*
   1855   1.1        ad 		 * Initialize enough of the map to support one maximal free run.
   1856   1.1        ad 		 */
   1857   1.1        ad 		chunk->map[arena_chunk_header_npages].npages = chunk_npages -
   1858   1.1        ad 		    arena_chunk_header_npages;
   1859   1.1        ad 		chunk->map[arena_chunk_header_npages].pos = POS_FREE;
   1860   1.1        ad 		chunk->map[chunk_npages - 1].npages = chunk_npages -
   1861   1.1        ad 		    arena_chunk_header_npages;
   1862   1.1        ad 		chunk->map[chunk_npages - 1].pos = POS_FREE;
   1863   1.1        ad 	}
   1864   1.1        ad 
   1865   1.1        ad 	return (chunk);
   1866   1.1        ad }
   1867   1.1        ad 
   1868   1.1        ad static void
   1869   1.1        ad arena_chunk_dealloc(arena_t *arena, arena_chunk_t *chunk)
   1870   1.1        ad {
   1871   1.1        ad 
   1872   1.1        ad 	/*
   1873   1.1        ad 	 * Remove chunk from the chunk tree, regardless of whether this chunk
   1874   1.1        ad 	 * will be cached, so that the arena does not use it.
   1875   1.1        ad 	 */
   1876   1.2        ad 	/* LINTED */
   1877   1.1        ad 	RB_REMOVE(arena_chunk_tree_s, &chunk->arena->chunks, chunk);
   1878   1.1        ad 
   1879   1.1        ad 	if (opt_hint == false) {
   1880   1.1        ad 		if (arena->spare != NULL) {
   1881   1.1        ad 			chunk_dealloc((void *)arena->spare, chunksize);
   1882   1.1        ad #ifdef MALLOC_STATS
   1883   1.1        ad 			arena->stats.mapped -= chunksize;
   1884   1.1        ad #endif
   1885   1.1        ad 		}
   1886   1.1        ad 		arena->spare = chunk;
   1887   1.1        ad 	} else {
   1888   1.1        ad 		assert(arena->spare == NULL);
   1889   1.1        ad 		chunk_dealloc((void *)chunk, chunksize);
   1890   1.1        ad #ifdef MALLOC_STATS
   1891   1.1        ad 		arena->stats.mapped -= chunksize;
   1892   1.1        ad #endif
   1893   1.1        ad 	}
   1894   1.1        ad }
   1895   1.1        ad 
   1896   1.1        ad static arena_run_t *
   1897   1.1        ad arena_run_alloc(arena_t *arena, size_t size)
   1898   1.1        ad {
   1899   1.1        ad 	arena_chunk_t *chunk;
   1900   1.1        ad 	arena_run_t *run;
   1901   1.1        ad 	unsigned need_npages, limit_pages, compl_need_npages;
   1902   1.1        ad 
   1903   1.1        ad 	assert(size <= (chunksize - (arena_chunk_header_npages <<
   1904   1.1        ad 	    pagesize_2pow)));
   1905   1.1        ad 	assert((size & pagesize_mask) == 0);
   1906   1.1        ad 
   1907   1.1        ad 	/*
   1908   1.1        ad 	 * Search through arena's chunks in address order for a free run that is
   1909   1.1        ad 	 * large enough.  Look for the first fit.
   1910   1.1        ad 	 */
   1911   1.9  christos 	need_npages = (unsigned)(size >> pagesize_2pow);
   1912   1.1        ad 	limit_pages = chunk_npages - arena_chunk_header_npages;
   1913   1.1        ad 	compl_need_npages = limit_pages - need_npages;
   1914   1.2        ad 	/* LINTED */
   1915   1.1        ad 	RB_FOREACH(chunk, arena_chunk_tree_s, &arena->chunks) {
   1916   1.1        ad 		/*
   1917   1.1        ad 		 * Avoid searching this chunk if there are not enough
   1918   1.1        ad 		 * contiguous free pages for there to possibly be a large
   1919   1.1        ad 		 * enough free run.
   1920   1.1        ad 		 */
   1921   1.1        ad 		if (chunk->pages_used <= compl_need_npages &&
   1922   1.1        ad 		    need_npages <= chunk->max_frun_npages) {
   1923   1.1        ad 			arena_chunk_map_t *mapelm;
   1924   1.1        ad 			unsigned i;
   1925   1.1        ad 			unsigned max_frun_npages = 0;
   1926   1.1        ad 			unsigned min_frun_ind = chunk_npages;
   1927   1.1        ad 
   1928   1.1        ad 			assert(chunk->min_frun_ind >=
   1929   1.1        ad 			    arena_chunk_header_npages);
   1930   1.1        ad 			for (i = chunk->min_frun_ind; i < chunk_npages;) {
   1931   1.1        ad 				mapelm = &chunk->map[i];
   1932   1.1        ad 				if (mapelm->pos == POS_FREE) {
   1933   1.1        ad 					if (mapelm->npages >= need_npages) {
   1934   1.1        ad 						run = (arena_run_t *)
   1935   1.1        ad 						    ((uintptr_t)chunk + (i <<
   1936   1.1        ad 						    pagesize_2pow));
   1937   1.1        ad 						/* Update page map. */
   1938   1.1        ad 						arena_run_split(arena, run,
   1939   1.1        ad 						    size);
   1940   1.1        ad 						return (run);
   1941   1.1        ad 					}
   1942   1.1        ad 					if (mapelm->npages >
   1943   1.1        ad 					    max_frun_npages) {
   1944   1.1        ad 						max_frun_npages =
   1945   1.1        ad 						    mapelm->npages;
   1946   1.1        ad 					}
   1947   1.1        ad 					if (i < min_frun_ind) {
   1948   1.1        ad 						min_frun_ind = i;
   1949   1.1        ad 						if (i < chunk->min_frun_ind)
   1950   1.1        ad 							chunk->min_frun_ind = i;
   1951   1.1        ad 					}
   1952   1.1        ad 				}
   1953   1.1        ad 				i += mapelm->npages;
   1954   1.1        ad 			}
   1955   1.1        ad 			/*
   1956   1.1        ad 			 * Search failure.  Reset cached chunk->max_frun_npages.
   1957   1.1        ad 			 * chunk->min_frun_ind was already reset above (if
   1958   1.1        ad 			 * necessary).
   1959   1.1        ad 			 */
   1960   1.1        ad 			chunk->max_frun_npages = max_frun_npages;
   1961   1.1        ad 		}
   1962   1.1        ad 	}
   1963   1.1        ad 
   1964   1.1        ad 	/*
   1965   1.1        ad 	 * No usable runs.  Create a new chunk from which to allocate the run.
   1966   1.1        ad 	 */
   1967   1.1        ad 	chunk = arena_chunk_alloc(arena);
   1968   1.1        ad 	if (chunk == NULL)
   1969   1.1        ad 		return (NULL);
   1970   1.1        ad 	run = (arena_run_t *)((uintptr_t)chunk + (arena_chunk_header_npages <<
   1971   1.1        ad 	    pagesize_2pow));
   1972   1.1        ad 	/* Update page map. */
   1973   1.1        ad 	arena_run_split(arena, run, size);
   1974   1.1        ad 	return (run);
   1975   1.1        ad }
   1976   1.1        ad 
   1977   1.1        ad static void
   1978   1.1        ad arena_run_dalloc(arena_t *arena, arena_run_t *run, size_t size)
   1979   1.1        ad {
   1980   1.1        ad 	arena_chunk_t *chunk;
   1981   1.1        ad 	unsigned run_ind, run_pages;
   1982   1.1        ad 
   1983   1.1        ad 	chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(run);
   1984   1.1        ad 
   1985   1.1        ad 	run_ind = (unsigned)(((uintptr_t)run - (uintptr_t)chunk)
   1986   1.1        ad 	    >> pagesize_2pow);
   1987   1.1        ad 	assert(run_ind >= arena_chunk_header_npages);
   1988   1.1        ad 	assert(run_ind < (chunksize >> pagesize_2pow));
   1989   1.9  christos 	run_pages = (unsigned)(size >> pagesize_2pow);
   1990   1.1        ad 	assert(run_pages == chunk->map[run_ind].npages);
   1991   1.1        ad 
   1992   1.1        ad 	/* Subtract pages from count of pages used in chunk. */
   1993   1.1        ad 	chunk->pages_used -= run_pages;
   1994   1.1        ad 
   1995   1.1        ad 	/* Mark run as deallocated. */
   1996   1.1        ad 	assert(chunk->map[run_ind].npages == run_pages);
   1997   1.1        ad 	chunk->map[run_ind].pos = POS_FREE;
   1998   1.1        ad 	assert(chunk->map[run_ind + run_pages - 1].npages == run_pages);
   1999   1.1        ad 	chunk->map[run_ind + run_pages - 1].pos = POS_FREE;
   2000   1.1        ad 
   2001   1.1        ad 	/*
   2002   1.1        ad 	 * Tell the kernel that we don't need the data in this run, but only if
   2003   1.1        ad 	 * requested via runtime configuration.
   2004   1.1        ad 	 */
   2005   1.1        ad 	if (opt_hint)
   2006   1.1        ad 		madvise(run, size, MADV_FREE);
   2007   1.1        ad 
   2008   1.1        ad 	/* Try to coalesce with neighboring runs. */
   2009   1.1        ad 	if (run_ind > arena_chunk_header_npages &&
   2010   1.1        ad 	    chunk->map[run_ind - 1].pos == POS_FREE) {
   2011   1.1        ad 		unsigned prev_npages;
   2012   1.1        ad 
   2013   1.1        ad 		/* Coalesce with previous run. */
   2014   1.1        ad 		prev_npages = chunk->map[run_ind - 1].npages;
   2015   1.1        ad 		run_ind -= prev_npages;
   2016   1.1        ad 		assert(chunk->map[run_ind].npages == prev_npages);
   2017   1.1        ad 		assert(chunk->map[run_ind].pos == POS_FREE);
   2018   1.1        ad 		run_pages += prev_npages;
   2019   1.1        ad 
   2020   1.1        ad 		chunk->map[run_ind].npages = run_pages;
   2021   1.1        ad 		assert(chunk->map[run_ind].pos == POS_FREE);
   2022   1.1        ad 		chunk->map[run_ind + run_pages - 1].npages = run_pages;
   2023   1.1        ad 		assert(chunk->map[run_ind + run_pages - 1].pos == POS_FREE);
   2024   1.1        ad 	}
   2025   1.1        ad 
   2026   1.1        ad 	if (run_ind + run_pages < chunk_npages &&
   2027   1.1        ad 	    chunk->map[run_ind + run_pages].pos == POS_FREE) {
   2028   1.1        ad 		unsigned next_npages;
   2029   1.1        ad 
   2030   1.1        ad 		/* Coalesce with next run. */
   2031   1.1        ad 		next_npages = chunk->map[run_ind + run_pages].npages;
   2032   1.1        ad 		run_pages += next_npages;
   2033   1.1        ad 		assert(chunk->map[run_ind + run_pages - 1].npages ==
   2034   1.1        ad 		    next_npages);
   2035   1.1        ad 		assert(chunk->map[run_ind + run_pages - 1].pos == POS_FREE);
   2036   1.1        ad 
   2037   1.1        ad 		chunk->map[run_ind].npages = run_pages;
   2038   1.1        ad 		chunk->map[run_ind].pos = POS_FREE;
   2039   1.1        ad 		chunk->map[run_ind + run_pages - 1].npages = run_pages;
   2040   1.1        ad 		assert(chunk->map[run_ind + run_pages - 1].pos == POS_FREE);
   2041   1.1        ad 	}
   2042   1.1        ad 
   2043   1.1        ad 	if (chunk->map[run_ind].npages > chunk->max_frun_npages)
   2044   1.1        ad 		chunk->max_frun_npages = chunk->map[run_ind].npages;
   2045   1.1        ad 	if (run_ind < chunk->min_frun_ind)
   2046   1.1        ad 		chunk->min_frun_ind = run_ind;
   2047   1.1        ad 
   2048   1.1        ad 	/* Deallocate chunk if it is now completely unused. */
   2049   1.1        ad 	if (chunk->pages_used == 0)
   2050   1.1        ad 		arena_chunk_dealloc(arena, chunk);
   2051   1.1        ad }
   2052   1.1        ad 
   2053   1.1        ad static arena_run_t *
   2054   1.1        ad arena_bin_nonfull_run_get(arena_t *arena, arena_bin_t *bin)
   2055   1.1        ad {
   2056   1.1        ad 	arena_run_t *run;
   2057   1.1        ad 	unsigned i, remainder;
   2058   1.1        ad 
   2059   1.1        ad 	/* Look for a usable run. */
   2060   1.2        ad 	/* LINTED */
   2061   1.1        ad 	if ((run = RB_MIN(arena_run_tree_s, &bin->runs)) != NULL) {
   2062   1.1        ad 		/* run is guaranteed to have available space. */
   2063   1.2        ad 		/* LINTED */
   2064   1.1        ad 		RB_REMOVE(arena_run_tree_s, &bin->runs, run);
   2065   1.1        ad #ifdef MALLOC_STATS
   2066   1.1        ad 		bin->stats.reruns++;
   2067   1.1        ad #endif
   2068   1.1        ad 		return (run);
   2069   1.1        ad 	}
   2070   1.1        ad 	/* No existing runs have any space available. */
   2071   1.1        ad 
   2072   1.1        ad 	/* Allocate a new run. */
   2073   1.1        ad 	run = arena_run_alloc(arena, bin->run_size);
   2074   1.1        ad 	if (run == NULL)
   2075   1.1        ad 		return (NULL);
   2076   1.1        ad 
   2077   1.1        ad 	/* Initialize run internals. */
   2078   1.1        ad 	run->bin = bin;
   2079   1.1        ad 
   2080   1.1        ad 	for (i = 0; i < bin->regs_mask_nelms; i++)
   2081   1.1        ad 		run->regs_mask[i] = UINT_MAX;
   2082   1.1        ad 	remainder = bin->nregs & ((1 << (SIZEOF_INT_2POW + 3)) - 1);
   2083   1.1        ad 	if (remainder != 0) {
   2084   1.1        ad 		/* The last element has spare bits that need to be unset. */
   2085   1.1        ad 		run->regs_mask[i] = (UINT_MAX >> ((1 << (SIZEOF_INT_2POW + 3))
   2086   1.1        ad 		    - remainder));
   2087   1.1        ad 	}
   2088   1.1        ad 
   2089   1.1        ad 	run->regs_minelm = 0;
   2090   1.1        ad 
   2091   1.1        ad 	run->nfree = bin->nregs;
   2092   1.1        ad #ifdef MALLOC_DEBUG
   2093   1.1        ad 	run->magic = ARENA_RUN_MAGIC;
   2094   1.1        ad #endif
   2095   1.1        ad 
   2096   1.1        ad #ifdef MALLOC_STATS
   2097   1.1        ad 	bin->stats.nruns++;
   2098   1.1        ad 	bin->stats.curruns++;
   2099   1.1        ad 	if (bin->stats.curruns > bin->stats.highruns)
   2100   1.1        ad 		bin->stats.highruns = bin->stats.curruns;
   2101   1.1        ad #endif
   2102   1.1        ad 	return (run);
   2103   1.1        ad }
   2104   1.1        ad 
   2105   1.1        ad /* bin->runcur must have space available before this function is called. */
   2106   1.1        ad static inline void *
   2107   1.1        ad arena_bin_malloc_easy(arena_t *arena, arena_bin_t *bin, arena_run_t *run)
   2108   1.1        ad {
   2109   1.1        ad 	void *ret;
   2110   1.1        ad 
   2111   1.1        ad 	assert(run->magic == ARENA_RUN_MAGIC);
   2112   1.1        ad 	assert(run->nfree > 0);
   2113   1.1        ad 
   2114   1.1        ad 	ret = arena_run_reg_alloc(run, bin);
   2115   1.1        ad 	assert(ret != NULL);
   2116   1.1        ad 	run->nfree--;
   2117   1.1        ad 
   2118   1.1        ad 	return (ret);
   2119   1.1        ad }
   2120   1.1        ad 
   2121   1.1        ad /* Re-fill bin->runcur, then call arena_bin_malloc_easy(). */
   2122   1.1        ad static void *
   2123   1.1        ad arena_bin_malloc_hard(arena_t *arena, arena_bin_t *bin)
   2124   1.1        ad {
   2125   1.1        ad 
   2126   1.1        ad 	bin->runcur = arena_bin_nonfull_run_get(arena, bin);
   2127   1.1        ad 	if (bin->runcur == NULL)
   2128   1.1        ad 		return (NULL);
   2129   1.1        ad 	assert(bin->runcur->magic == ARENA_RUN_MAGIC);
   2130   1.1        ad 	assert(bin->runcur->nfree > 0);
   2131   1.1        ad 
   2132   1.1        ad 	return (arena_bin_malloc_easy(arena, bin, bin->runcur));
   2133   1.1        ad }
   2134   1.1        ad 
   2135   1.1        ad /*
   2136   1.1        ad  * Calculate bin->run_size such that it meets the following constraints:
   2137   1.1        ad  *
   2138   1.1        ad  *   *) bin->run_size >= min_run_size
   2139   1.1        ad  *   *) bin->run_size <= arena_maxclass
   2140   1.1        ad  *   *) bin->run_size <= RUN_MAX_SMALL
   2141   1.1        ad  *   *) run header overhead <= RUN_MAX_OVRHD (or header overhead relaxed).
   2142   1.1        ad  *
   2143   1.1        ad  * bin->nregs, bin->regs_mask_nelms, and bin->reg0_offset are
   2144   1.1        ad  * also calculated here, since these settings are all interdependent.
   2145   1.1        ad  */
   2146   1.1        ad static size_t
   2147   1.1        ad arena_bin_run_size_calc(arena_bin_t *bin, size_t min_run_size)
   2148   1.1        ad {
   2149   1.1        ad 	size_t try_run_size, good_run_size;
   2150   1.1        ad 	unsigned good_nregs, good_mask_nelms, good_reg0_offset;
   2151   1.1        ad 	unsigned try_nregs, try_mask_nelms, try_reg0_offset;
   2152   1.1        ad 
   2153   1.1        ad 	assert(min_run_size >= pagesize);
   2154   1.1        ad 	assert(min_run_size <= arena_maxclass);
   2155   1.1        ad 	assert(min_run_size <= RUN_MAX_SMALL);
   2156   1.1        ad 
   2157   1.1        ad 	/*
   2158   1.1        ad 	 * Calculate known-valid settings before entering the run_size
   2159   1.1        ad 	 * expansion loop, so that the first part of the loop always copies
   2160   1.1        ad 	 * valid settings.
   2161   1.1        ad 	 *
   2162   1.1        ad 	 * The do..while loop iteratively reduces the number of regions until
   2163   1.1        ad 	 * the run header and the regions no longer overlap.  A closed formula
   2164   1.1        ad 	 * would be quite messy, since there is an interdependency between the
   2165   1.1        ad 	 * header's mask length and the number of regions.
   2166   1.1        ad 	 */
   2167   1.1        ad 	try_run_size = min_run_size;
   2168   1.9  christos 	try_nregs = (unsigned)(((try_run_size - sizeof(arena_run_t)) /
   2169  1.22     njoly 	    bin->reg_size) + 1); /* Counter-act try_nregs-- in loop. */
   2170   1.1        ad 	do {
   2171   1.1        ad 		try_nregs--;
   2172   1.1        ad 		try_mask_nelms = (try_nregs >> (SIZEOF_INT_2POW + 3)) +
   2173   1.1        ad 		    ((try_nregs & ((1 << (SIZEOF_INT_2POW + 3)) - 1)) ? 1 : 0);
   2174   1.9  christos 		try_reg0_offset = (unsigned)(try_run_size -
   2175   1.9  christos 		    (try_nregs * bin->reg_size));
   2176   1.1        ad 	} while (sizeof(arena_run_t) + (sizeof(unsigned) * (try_mask_nelms - 1))
   2177   1.1        ad 	    > try_reg0_offset);
   2178   1.1        ad 
   2179   1.1        ad 	/* run_size expansion loop. */
   2180   1.1        ad 	do {
   2181   1.1        ad 		/*
   2182   1.1        ad 		 * Copy valid settings before trying more aggressive settings.
   2183   1.1        ad 		 */
   2184   1.1        ad 		good_run_size = try_run_size;
   2185   1.1        ad 		good_nregs = try_nregs;
   2186   1.1        ad 		good_mask_nelms = try_mask_nelms;
   2187   1.1        ad 		good_reg0_offset = try_reg0_offset;
   2188   1.1        ad 
   2189   1.1        ad 		/* Try more aggressive settings. */
   2190   1.1        ad 		try_run_size += pagesize;
   2191   1.9  christos 		try_nregs = (unsigned)(((try_run_size - sizeof(arena_run_t)) /
   2192   1.9  christos 		    bin->reg_size) + 1); /* Counter-act try_nregs-- in loop. */
   2193   1.1        ad 		do {
   2194   1.1        ad 			try_nregs--;
   2195   1.1        ad 			try_mask_nelms = (try_nregs >> (SIZEOF_INT_2POW + 3)) +
   2196   1.1        ad 			    ((try_nregs & ((1 << (SIZEOF_INT_2POW + 3)) - 1)) ?
   2197   1.1        ad 			    1 : 0);
   2198   1.9  christos 			try_reg0_offset = (unsigned)(try_run_size - (try_nregs *
   2199   1.9  christos 			    bin->reg_size));
   2200   1.1        ad 		} while (sizeof(arena_run_t) + (sizeof(unsigned) *
   2201   1.1        ad 		    (try_mask_nelms - 1)) > try_reg0_offset);
   2202   1.1        ad 	} while (try_run_size <= arena_maxclass && try_run_size <= RUN_MAX_SMALL
   2203  1.22     njoly 	    && RUN_MAX_OVRHD * (bin->reg_size << 3) > RUN_MAX_OVRHD_RELAX
   2204  1.22     njoly 	    && (try_reg0_offset << RUN_BFP) > RUN_MAX_OVRHD * try_run_size);
   2205   1.1        ad 
   2206   1.1        ad 	assert(sizeof(arena_run_t) + (sizeof(unsigned) * (good_mask_nelms - 1))
   2207   1.1        ad 	    <= good_reg0_offset);
   2208   1.1        ad 	assert((good_mask_nelms << (SIZEOF_INT_2POW + 3)) >= good_nregs);
   2209   1.1        ad 
   2210   1.1        ad 	/* Copy final settings. */
   2211   1.1        ad 	bin->run_size = good_run_size;
   2212   1.1        ad 	bin->nregs = good_nregs;
   2213   1.1        ad 	bin->regs_mask_nelms = good_mask_nelms;
   2214   1.1        ad 	bin->reg0_offset = good_reg0_offset;
   2215   1.1        ad 
   2216   1.1        ad 	return (good_run_size);
   2217   1.1        ad }
   2218   1.1        ad 
   2219   1.1        ad static void *
   2220   1.1        ad arena_malloc(arena_t *arena, size_t size)
   2221   1.1        ad {
   2222   1.1        ad 	void *ret;
   2223   1.1        ad 
   2224   1.1        ad 	assert(arena != NULL);
   2225   1.1        ad 	assert(arena->magic == ARENA_MAGIC);
   2226   1.1        ad 	assert(size != 0);
   2227   1.1        ad 	assert(QUANTUM_CEILING(size) <= arena_maxclass);
   2228   1.1        ad 
   2229   1.1        ad 	if (size <= bin_maxclass) {
   2230   1.1        ad 		arena_bin_t *bin;
   2231   1.1        ad 		arena_run_t *run;
   2232   1.1        ad 
   2233   1.1        ad 		/* Small allocation. */
   2234   1.1        ad 
   2235   1.1        ad 		if (size < small_min) {
   2236   1.1        ad 			/* Tiny. */
   2237   1.1        ad 			size = pow2_ceil(size);
   2238   1.1        ad 			bin = &arena->bins[ffs((int)(size >> (TINY_MIN_2POW +
   2239   1.1        ad 			    1)))];
   2240   1.1        ad #if (!defined(NDEBUG) || defined(MALLOC_STATS))
   2241   1.1        ad 			/*
   2242   1.1        ad 			 * Bin calculation is always correct, but we may need
   2243   1.1        ad 			 * to fix size for the purposes of assertions and/or
   2244   1.1        ad 			 * stats accuracy.
   2245   1.1        ad 			 */
   2246   1.1        ad 			if (size < (1 << TINY_MIN_2POW))
   2247   1.1        ad 				size = (1 << TINY_MIN_2POW);
   2248   1.1        ad #endif
   2249   1.1        ad 		} else if (size <= small_max) {
   2250   1.1        ad 			/* Quantum-spaced. */
   2251   1.1        ad 			size = QUANTUM_CEILING(size);
   2252   1.1        ad 			bin = &arena->bins[ntbins + (size >> opt_quantum_2pow)
   2253   1.1        ad 			    - 1];
   2254   1.1        ad 		} else {
   2255   1.1        ad 			/* Sub-page. */
   2256   1.1        ad 			size = pow2_ceil(size);
   2257   1.1        ad 			bin = &arena->bins[ntbins + nqbins
   2258   1.1        ad 			    + (ffs((int)(size >> opt_small_max_2pow)) - 2)];
   2259   1.1        ad 		}
   2260   1.1        ad 		assert(size == bin->reg_size);
   2261   1.1        ad 
   2262   1.1        ad 		malloc_mutex_lock(&arena->mtx);
   2263   1.1        ad 		if ((run = bin->runcur) != NULL && run->nfree > 0)
   2264   1.1        ad 			ret = arena_bin_malloc_easy(arena, bin, run);
   2265   1.1        ad 		else
   2266   1.1        ad 			ret = arena_bin_malloc_hard(arena, bin);
   2267   1.1        ad 
   2268   1.1        ad 		if (ret == NULL) {
   2269   1.1        ad 			malloc_mutex_unlock(&arena->mtx);
   2270   1.1        ad 			return (NULL);
   2271   1.1        ad 		}
   2272   1.1        ad 
   2273   1.1        ad #ifdef MALLOC_STATS
   2274   1.1        ad 		bin->stats.nrequests++;
   2275   1.1        ad 		arena->stats.nmalloc_small++;
   2276   1.1        ad 		arena->stats.allocated_small += size;
   2277   1.1        ad #endif
   2278   1.1        ad 	} else {
   2279   1.1        ad 		/* Large allocation. */
   2280   1.1        ad 		size = PAGE_CEILING(size);
   2281   1.1        ad 		malloc_mutex_lock(&arena->mtx);
   2282   1.1        ad 		ret = (void *)arena_run_alloc(arena, size);
   2283   1.1        ad 		if (ret == NULL) {
   2284   1.1        ad 			malloc_mutex_unlock(&arena->mtx);
   2285   1.1        ad 			return (NULL);
   2286   1.1        ad 		}
   2287   1.1        ad #ifdef MALLOC_STATS
   2288   1.1        ad 		arena->stats.nmalloc_large++;
   2289   1.1        ad 		arena->stats.allocated_large += size;
   2290   1.1        ad #endif
   2291   1.1        ad 	}
   2292   1.1        ad 
   2293   1.1        ad 	malloc_mutex_unlock(&arena->mtx);
   2294   1.1        ad 
   2295   1.1        ad 	if (opt_junk)
   2296   1.1        ad 		memset(ret, 0xa5, size);
   2297   1.1        ad 	else if (opt_zero)
   2298   1.1        ad 		memset(ret, 0, size);
   2299   1.1        ad 	return (ret);
   2300   1.1        ad }
   2301   1.1        ad 
   2302   1.1        ad static inline void
   2303   1.1        ad arena_palloc_trim(arena_t *arena, arena_chunk_t *chunk, unsigned pageind,
   2304   1.1        ad     unsigned npages)
   2305   1.1        ad {
   2306   1.1        ad 	unsigned i;
   2307   1.1        ad 
   2308   1.1        ad 	assert(npages > 0);
   2309   1.1        ad 
   2310   1.1        ad 	/*
   2311   1.1        ad 	 * Modifiy the map such that arena_run_dalloc() sees the run as
   2312   1.1        ad 	 * separately allocated.
   2313   1.1        ad 	 */
   2314   1.1        ad 	for (i = 0; i < npages; i++) {
   2315   1.1        ad 		chunk->map[pageind + i].npages = npages;
   2316   1.1        ad 		chunk->map[pageind + i].pos = i;
   2317   1.1        ad 	}
   2318   1.1        ad 	arena_run_dalloc(arena, (arena_run_t *)((uintptr_t)chunk + (pageind <<
   2319   1.1        ad 	    pagesize_2pow)), npages << pagesize_2pow);
   2320   1.1        ad }
   2321   1.1        ad 
   2322   1.1        ad /* Only handles large allocations that require more than page alignment. */
   2323   1.1        ad static void *
   2324   1.1        ad arena_palloc(arena_t *arena, size_t alignment, size_t size, size_t alloc_size)
   2325   1.1        ad {
   2326   1.1        ad 	void *ret;
   2327   1.1        ad 	size_t offset;
   2328   1.1        ad 	arena_chunk_t *chunk;
   2329   1.1        ad 	unsigned pageind, i, npages;
   2330   1.1        ad 
   2331   1.1        ad 	assert((size & pagesize_mask) == 0);
   2332   1.1        ad 	assert((alignment & pagesize_mask) == 0);
   2333   1.1        ad 
   2334   1.9  christos 	npages = (unsigned)(size >> pagesize_2pow);
   2335   1.1        ad 
   2336   1.1        ad 	malloc_mutex_lock(&arena->mtx);
   2337   1.1        ad 	ret = (void *)arena_run_alloc(arena, alloc_size);
   2338   1.1        ad 	if (ret == NULL) {
   2339   1.1        ad 		malloc_mutex_unlock(&arena->mtx);
   2340   1.1        ad 		return (NULL);
   2341   1.1        ad 	}
   2342   1.1        ad 
   2343   1.1        ad 	chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ret);
   2344   1.1        ad 
   2345   1.1        ad 	offset = (uintptr_t)ret & (alignment - 1);
   2346   1.1        ad 	assert((offset & pagesize_mask) == 0);
   2347   1.1        ad 	assert(offset < alloc_size);
   2348   1.1        ad 	if (offset == 0) {
   2349   1.9  christos 		pageind = (unsigned)(((uintptr_t)ret - (uintptr_t)chunk) >>
   2350   1.1        ad 		    pagesize_2pow);
   2351   1.1        ad 
   2352   1.1        ad 		/* Update the map for the run to be kept. */
   2353   1.1        ad 		for (i = 0; i < npages; i++) {
   2354   1.1        ad 			chunk->map[pageind + i].npages = npages;
   2355   1.1        ad 			assert(chunk->map[pageind + i].pos == i);
   2356   1.1        ad 		}
   2357   1.1        ad 
   2358   1.1        ad 		/* Trim trailing space. */
   2359   1.1        ad 		arena_palloc_trim(arena, chunk, pageind + npages,
   2360   1.9  christos 		    (unsigned)((alloc_size - size) >> pagesize_2pow));
   2361   1.1        ad 	} else {
   2362   1.1        ad 		size_t leadsize, trailsize;
   2363   1.1        ad 
   2364   1.1        ad 		leadsize = alignment - offset;
   2365   1.1        ad 		ret = (void *)((uintptr_t)ret + leadsize);
   2366   1.9  christos 		pageind = (unsigned)(((uintptr_t)ret - (uintptr_t)chunk) >>
   2367   1.1        ad 		    pagesize_2pow);
   2368   1.1        ad 
   2369   1.1        ad 		/* Update the map for the run to be kept. */
   2370   1.1        ad 		for (i = 0; i < npages; i++) {
   2371   1.1        ad 			chunk->map[pageind + i].npages = npages;
   2372   1.1        ad 			chunk->map[pageind + i].pos = i;
   2373   1.1        ad 		}
   2374   1.1        ad 
   2375   1.1        ad 		/* Trim leading space. */
   2376   1.9  christos 		arena_palloc_trim(arena, chunk,
   2377   1.9  christos 		    (unsigned)(pageind - (leadsize >> pagesize_2pow)),
   2378   1.9  christos 		    (unsigned)(leadsize >> pagesize_2pow));
   2379   1.1        ad 
   2380   1.1        ad 		trailsize = alloc_size - leadsize - size;
   2381   1.1        ad 		if (trailsize != 0) {
   2382   1.1        ad 			/* Trim trailing space. */
   2383   1.1        ad 			assert(trailsize < alloc_size);
   2384   1.1        ad 			arena_palloc_trim(arena, chunk, pageind + npages,
   2385   1.9  christos 			    (unsigned)(trailsize >> pagesize_2pow));
   2386   1.1        ad 		}
   2387   1.1        ad 	}
   2388   1.1        ad 
   2389   1.1        ad #ifdef MALLOC_STATS
   2390   1.1        ad 	arena->stats.nmalloc_large++;
   2391   1.1        ad 	arena->stats.allocated_large += size;
   2392   1.1        ad #endif
   2393   1.1        ad 	malloc_mutex_unlock(&arena->mtx);
   2394   1.1        ad 
   2395   1.1        ad 	if (opt_junk)
   2396   1.1        ad 		memset(ret, 0xa5, size);
   2397   1.1        ad 	else if (opt_zero)
   2398   1.1        ad 		memset(ret, 0, size);
   2399   1.1        ad 	return (ret);
   2400   1.1        ad }
   2401   1.1        ad 
   2402   1.1        ad /* Return the size of the allocation pointed to by ptr. */
   2403   1.1        ad static size_t
   2404   1.1        ad arena_salloc(const void *ptr)
   2405   1.1        ad {
   2406   1.1        ad 	size_t ret;
   2407   1.1        ad 	arena_chunk_t *chunk;
   2408   1.1        ad 	arena_chunk_map_t *mapelm;
   2409   1.1        ad 	unsigned pageind;
   2410   1.1        ad 
   2411   1.1        ad 	assert(ptr != NULL);
   2412   1.1        ad 	assert(CHUNK_ADDR2BASE(ptr) != ptr);
   2413   1.1        ad 
   2414   1.1        ad 	/*
   2415   1.1        ad 	 * No arena data structures that we query here can change in a way that
   2416   1.1        ad 	 * affects this function, so we don't need to lock.
   2417   1.1        ad 	 */
   2418   1.1        ad 	chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
   2419   1.9  christos 	pageind = (unsigned)(((uintptr_t)ptr - (uintptr_t)chunk) >>
   2420   1.9  christos 	    pagesize_2pow);
   2421   1.1        ad 	mapelm = &chunk->map[pageind];
   2422  1.10    simonb 	if (mapelm->pos != 0 || ptr != (char *)((uintptr_t)chunk) + (pageind <<
   2423  1.10    simonb 	    pagesize_2pow)) {
   2424  1.10    simonb 		arena_run_t *run;
   2425   1.1        ad 
   2426   1.1        ad 		pageind -= mapelm->pos;
   2427   1.1        ad 
   2428  1.10    simonb 		run = (arena_run_t *)((uintptr_t)chunk + (pageind <<
   2429  1.10    simonb 		    pagesize_2pow));
   2430   1.1        ad 		assert(run->magic == ARENA_RUN_MAGIC);
   2431   1.1        ad 		ret = run->bin->reg_size;
   2432   1.1        ad 	} else
   2433   1.1        ad 		ret = mapelm->npages << pagesize_2pow;
   2434   1.1        ad 
   2435   1.1        ad 	return (ret);
   2436   1.1        ad }
   2437   1.1        ad 
   2438   1.1        ad static void *
   2439   1.1        ad arena_ralloc(void *ptr, size_t size, size_t oldsize)
   2440   1.1        ad {
   2441   1.1        ad 	void *ret;
   2442   1.1        ad 
   2443   1.1        ad 	/* Avoid moving the allocation if the size class would not change. */
   2444   1.1        ad 	if (size < small_min) {
   2445   1.1        ad 		if (oldsize < small_min &&
   2446   1.1        ad 		    ffs((int)(pow2_ceil(size) >> (TINY_MIN_2POW + 1)))
   2447   1.1        ad 		    == ffs((int)(pow2_ceil(oldsize) >> (TINY_MIN_2POW + 1))))
   2448   1.1        ad 			goto IN_PLACE;
   2449   1.1        ad 	} else if (size <= small_max) {
   2450   1.1        ad 		if (oldsize >= small_min && oldsize <= small_max &&
   2451   1.1        ad 		    (QUANTUM_CEILING(size) >> opt_quantum_2pow)
   2452   1.1        ad 		    == (QUANTUM_CEILING(oldsize) >> opt_quantum_2pow))
   2453   1.1        ad 			goto IN_PLACE;
   2454   1.1        ad 	} else {
   2455   1.1        ad 		/*
   2456   1.1        ad 		 * We make no attempt to resize runs here, though it would be
   2457   1.1        ad 		 * possible to do so.
   2458   1.1        ad 		 */
   2459   1.1        ad 		if (oldsize > small_max && PAGE_CEILING(size) == oldsize)
   2460   1.1        ad 			goto IN_PLACE;
   2461   1.1        ad 	}
   2462   1.1        ad 
   2463   1.1        ad 	/*
   2464   1.1        ad 	 * If we get here, then size and oldsize are different enough that we
   2465   1.1        ad 	 * need to use a different size class.  In that case, fall back to
   2466   1.1        ad 	 * allocating new space and copying.
   2467   1.1        ad 	 */
   2468   1.1        ad 	ret = arena_malloc(choose_arena(), size);
   2469   1.1        ad 	if (ret == NULL)
   2470   1.1        ad 		return (NULL);
   2471   1.1        ad 
   2472   1.1        ad 	/* Junk/zero-filling were already done by arena_malloc(). */
   2473   1.1        ad 	if (size < oldsize)
   2474   1.1        ad 		memcpy(ret, ptr, size);
   2475   1.1        ad 	else
   2476   1.1        ad 		memcpy(ret, ptr, oldsize);
   2477   1.1        ad 	idalloc(ptr);
   2478   1.1        ad 	return (ret);
   2479   1.1        ad IN_PLACE:
   2480   1.1        ad 	if (opt_junk && size < oldsize)
   2481   1.1        ad 		memset((void *)((uintptr_t)ptr + size), 0x5a, oldsize - size);
   2482   1.1        ad 	else if (opt_zero && size > oldsize)
   2483   1.1        ad 		memset((void *)((uintptr_t)ptr + oldsize), 0, size - oldsize);
   2484   1.1        ad 	return (ptr);
   2485   1.1        ad }
   2486   1.1        ad 
   2487   1.1        ad static void
   2488   1.1        ad arena_dalloc(arena_t *arena, arena_chunk_t *chunk, void *ptr)
   2489   1.1        ad {
   2490   1.1        ad 	unsigned pageind;
   2491   1.1        ad 	arena_chunk_map_t *mapelm;
   2492   1.1        ad 	size_t size;
   2493   1.1        ad 
   2494   1.1        ad 	assert(arena != NULL);
   2495   1.1        ad 	assert(arena->magic == ARENA_MAGIC);
   2496   1.1        ad 	assert(chunk->arena == arena);
   2497   1.1        ad 	assert(ptr != NULL);
   2498   1.1        ad 	assert(CHUNK_ADDR2BASE(ptr) != ptr);
   2499   1.1        ad 
   2500   1.9  christos 	pageind = (unsigned)(((uintptr_t)ptr - (uintptr_t)chunk) >>
   2501   1.9  christos 	    pagesize_2pow);
   2502   1.1        ad 	mapelm = &chunk->map[pageind];
   2503  1.10    simonb 	if (mapelm->pos != 0 || ptr != (char *)((uintptr_t)chunk) + (pageind <<
   2504  1.10    simonb 	    pagesize_2pow)) {
   2505  1.10    simonb 		arena_run_t *run;
   2506   1.1        ad 		arena_bin_t *bin;
   2507   1.1        ad 
   2508   1.1        ad 		/* Small allocation. */
   2509   1.1        ad 
   2510   1.1        ad 		pageind -= mapelm->pos;
   2511   1.1        ad 
   2512  1.10    simonb 		run = (arena_run_t *)((uintptr_t)chunk + (pageind <<
   2513  1.10    simonb 		    pagesize_2pow));
   2514   1.1        ad 		assert(run->magic == ARENA_RUN_MAGIC);
   2515   1.1        ad 		bin = run->bin;
   2516   1.1        ad 		size = bin->reg_size;
   2517   1.1        ad 
   2518   1.1        ad 		if (opt_junk)
   2519   1.1        ad 			memset(ptr, 0x5a, size);
   2520   1.1        ad 
   2521   1.1        ad 		malloc_mutex_lock(&arena->mtx);
   2522   1.1        ad 		arena_run_reg_dalloc(run, bin, ptr, size);
   2523   1.1        ad 		run->nfree++;
   2524   1.1        ad 
   2525   1.1        ad 		if (run->nfree == bin->nregs) {
   2526   1.1        ad 			/* Deallocate run. */
   2527   1.1        ad 			if (run == bin->runcur)
   2528   1.1        ad 				bin->runcur = NULL;
   2529   1.1        ad 			else if (bin->nregs != 1) {
   2530   1.1        ad 				/*
   2531   1.1        ad 				 * This block's conditional is necessary because
   2532   1.1        ad 				 * if the run only contains one region, then it
   2533   1.1        ad 				 * never gets inserted into the non-full runs
   2534   1.1        ad 				 * tree.
   2535   1.1        ad 				 */
   2536   1.2        ad 				/* LINTED */
   2537   1.1        ad 				RB_REMOVE(arena_run_tree_s, &bin->runs, run);
   2538   1.1        ad 			}
   2539   1.1        ad #ifdef MALLOC_DEBUG
   2540   1.1        ad 			run->magic = 0;
   2541   1.1        ad #endif
   2542   1.1        ad 			arena_run_dalloc(arena, run, bin->run_size);
   2543   1.1        ad #ifdef MALLOC_STATS
   2544   1.1        ad 			bin->stats.curruns--;
   2545   1.1        ad #endif
   2546   1.1        ad 		} else if (run->nfree == 1 && run != bin->runcur) {
   2547   1.1        ad 			/*
   2548   1.1        ad 			 * Make sure that bin->runcur always refers to the
   2549   1.1        ad 			 * lowest non-full run, if one exists.
   2550   1.1        ad 			 */
   2551   1.1        ad 			if (bin->runcur == NULL)
   2552   1.1        ad 				bin->runcur = run;
   2553   1.1        ad 			else if ((uintptr_t)run < (uintptr_t)bin->runcur) {
   2554   1.1        ad 				/* Switch runcur. */
   2555   1.1        ad 				if (bin->runcur->nfree > 0) {
   2556   1.1        ad 					/* Insert runcur. */
   2557   1.2        ad 					/* LINTED */
   2558   1.1        ad 					RB_INSERT(arena_run_tree_s, &bin->runs,
   2559   1.1        ad 					    bin->runcur);
   2560   1.1        ad 				}
   2561   1.1        ad 				bin->runcur = run;
   2562   1.2        ad 			} else {
   2563   1.2        ad 				/* LINTED */
   2564   1.1        ad 				RB_INSERT(arena_run_tree_s, &bin->runs, run);
   2565   1.2        ad 			}
   2566   1.1        ad 		}
   2567   1.1        ad #ifdef MALLOC_STATS
   2568   1.1        ad 		arena->stats.allocated_small -= size;
   2569   1.1        ad 		arena->stats.ndalloc_small++;
   2570   1.1        ad #endif
   2571   1.1        ad 	} else {
   2572   1.1        ad 		/* Large allocation. */
   2573   1.1        ad 
   2574   1.1        ad 		size = mapelm->npages << pagesize_2pow;
   2575   1.1        ad 		assert((((uintptr_t)ptr) & pagesize_mask) == 0);
   2576   1.1        ad 
   2577   1.1        ad 		if (opt_junk)
   2578   1.1        ad 			memset(ptr, 0x5a, size);
   2579   1.1        ad 
   2580   1.1        ad 		malloc_mutex_lock(&arena->mtx);
   2581   1.1        ad 		arena_run_dalloc(arena, (arena_run_t *)ptr, size);
   2582   1.1        ad #ifdef MALLOC_STATS
   2583   1.1        ad 		arena->stats.allocated_large -= size;
   2584   1.1        ad 		arena->stats.ndalloc_large++;
   2585   1.1        ad #endif
   2586   1.1        ad 	}
   2587   1.1        ad 
   2588   1.1        ad 	malloc_mutex_unlock(&arena->mtx);
   2589   1.1        ad }
   2590   1.1        ad 
   2591   1.1        ad static bool
   2592   1.1        ad arena_new(arena_t *arena)
   2593   1.1        ad {
   2594   1.1        ad 	unsigned i;
   2595   1.1        ad 	arena_bin_t *bin;
   2596   1.2        ad 	size_t prev_run_size;
   2597   1.1        ad 
   2598   1.1        ad 	malloc_mutex_init(&arena->mtx);
   2599   1.1        ad 
   2600   1.1        ad #ifdef MALLOC_STATS
   2601   1.1        ad 	memset(&arena->stats, 0, sizeof(arena_stats_t));
   2602   1.1        ad #endif
   2603   1.1        ad 
   2604   1.1        ad 	/* Initialize chunks. */
   2605   1.1        ad 	RB_INIT(&arena->chunks);
   2606   1.1        ad 	arena->spare = NULL;
   2607   1.1        ad 
   2608   1.1        ad 	/* Initialize bins. */
   2609   1.1        ad 	prev_run_size = pagesize;
   2610   1.1        ad 
   2611   1.1        ad 	/* (2^n)-spaced tiny bins. */
   2612   1.1        ad 	for (i = 0; i < ntbins; i++) {
   2613   1.1        ad 		bin = &arena->bins[i];
   2614   1.1        ad 		bin->runcur = NULL;
   2615   1.1        ad 		RB_INIT(&bin->runs);
   2616   1.1        ad 
   2617   1.1        ad 		bin->reg_size = (1 << (TINY_MIN_2POW + i));
   2618   1.1        ad 		prev_run_size = arena_bin_run_size_calc(bin, prev_run_size);
   2619   1.1        ad 
   2620   1.1        ad #ifdef MALLOC_STATS
   2621   1.1        ad 		memset(&bin->stats, 0, sizeof(malloc_bin_stats_t));
   2622   1.1        ad #endif
   2623   1.1        ad 	}
   2624   1.1        ad 
   2625   1.1        ad 	/* Quantum-spaced bins. */
   2626   1.1        ad 	for (; i < ntbins + nqbins; i++) {
   2627   1.1        ad 		bin = &arena->bins[i];
   2628   1.1        ad 		bin->runcur = NULL;
   2629   1.1        ad 		RB_INIT(&bin->runs);
   2630   1.1        ad 
   2631   1.1        ad 		bin->reg_size = quantum * (i - ntbins + 1);
   2632   1.2        ad /*
   2633   1.1        ad 		pow2_size = pow2_ceil(quantum * (i - ntbins + 1));
   2634   1.2        ad */
   2635   1.1        ad 		prev_run_size = arena_bin_run_size_calc(bin, prev_run_size);
   2636   1.1        ad 
   2637   1.1        ad #ifdef MALLOC_STATS
   2638   1.1        ad 		memset(&bin->stats, 0, sizeof(malloc_bin_stats_t));
   2639   1.1        ad #endif
   2640   1.1        ad 	}
   2641   1.1        ad 
   2642   1.1        ad 	/* (2^n)-spaced sub-page bins. */
   2643   1.1        ad 	for (; i < ntbins + nqbins + nsbins; i++) {
   2644   1.1        ad 		bin = &arena->bins[i];
   2645   1.1        ad 		bin->runcur = NULL;
   2646   1.1        ad 		RB_INIT(&bin->runs);
   2647   1.1        ad 
   2648   1.1        ad 		bin->reg_size = (small_max << (i - (ntbins + nqbins) + 1));
   2649   1.1        ad 
   2650   1.1        ad 		prev_run_size = arena_bin_run_size_calc(bin, prev_run_size);
   2651   1.1        ad 
   2652   1.1        ad #ifdef MALLOC_STATS
   2653   1.1        ad 		memset(&bin->stats, 0, sizeof(malloc_bin_stats_t));
   2654   1.1        ad #endif
   2655   1.1        ad 	}
   2656   1.1        ad 
   2657   1.1        ad #ifdef MALLOC_DEBUG
   2658   1.1        ad 	arena->magic = ARENA_MAGIC;
   2659   1.1        ad #endif
   2660   1.1        ad 
   2661   1.1        ad 	return (false);
   2662   1.1        ad }
   2663   1.1        ad 
   2664   1.1        ad /* Create a new arena and insert it into the arenas array at index ind. */
   2665   1.1        ad static arena_t *
   2666   1.1        ad arenas_extend(unsigned ind)
   2667   1.1        ad {
   2668   1.1        ad 	arena_t *ret;
   2669   1.1        ad 
   2670   1.1        ad 	/* Allocate enough space for trailing bins. */
   2671   1.1        ad 	ret = (arena_t *)base_alloc(sizeof(arena_t)
   2672   1.1        ad 	    + (sizeof(arena_bin_t) * (ntbins + nqbins + nsbins - 1)));
   2673   1.1        ad 	if (ret != NULL && arena_new(ret) == false) {
   2674   1.1        ad 		arenas[ind] = ret;
   2675   1.1        ad 		return (ret);
   2676   1.1        ad 	}
   2677   1.1        ad 	/* Only reached if there is an OOM error. */
   2678   1.1        ad 
   2679   1.1        ad 	/*
   2680   1.1        ad 	 * OOM here is quite inconvenient to propagate, since dealing with it
   2681   1.1        ad 	 * would require a check for failure in the fast path.  Instead, punt
   2682   1.1        ad 	 * by using arenas[0].  In practice, this is an extremely unlikely
   2683   1.1        ad 	 * failure.
   2684   1.1        ad 	 */
   2685  1.16  christos 	_malloc_message(getprogname(),
   2686   1.1        ad 	    ": (malloc) Error initializing arena\n", "", "");
   2687   1.1        ad 	if (opt_abort)
   2688   1.1        ad 		abort();
   2689   1.1        ad 
   2690   1.1        ad 	return (arenas[0]);
   2691   1.1        ad }
   2692   1.1        ad 
   2693   1.1        ad /*
   2694   1.1        ad  * End arena.
   2695   1.1        ad  */
   2696   1.1        ad /******************************************************************************/
   2697   1.1        ad /*
   2698   1.1        ad  * Begin general internal functions.
   2699   1.1        ad  */
   2700   1.1        ad 
   2701   1.1        ad static void *
   2702   1.1        ad huge_malloc(size_t size)
   2703   1.1        ad {
   2704   1.1        ad 	void *ret;
   2705   1.1        ad 	size_t csize;
   2706   1.1        ad 	chunk_node_t *node;
   2707   1.1        ad 
   2708   1.1        ad 	/* Allocate one or more contiguous chunks for this request. */
   2709   1.1        ad 
   2710   1.1        ad 	csize = CHUNK_CEILING(size);
   2711   1.1        ad 	if (csize == 0) {
   2712   1.1        ad 		/* size is large enough to cause size_t wrap-around. */
   2713   1.1        ad 		return (NULL);
   2714   1.1        ad 	}
   2715   1.1        ad 
   2716   1.1        ad 	/* Allocate a chunk node with which to track the chunk. */
   2717   1.1        ad 	node = base_chunk_node_alloc();
   2718   1.1        ad 	if (node == NULL)
   2719   1.1        ad 		return (NULL);
   2720   1.1        ad 
   2721   1.1        ad 	ret = chunk_alloc(csize);
   2722   1.1        ad 	if (ret == NULL) {
   2723   1.1        ad 		base_chunk_node_dealloc(node);
   2724   1.1        ad 		return (NULL);
   2725   1.1        ad 	}
   2726   1.1        ad 
   2727   1.1        ad 	/* Insert node into huge. */
   2728   1.1        ad 	node->chunk = ret;
   2729   1.1        ad 	node->size = csize;
   2730   1.1        ad 
   2731   1.1        ad 	malloc_mutex_lock(&chunks_mtx);
   2732   1.1        ad 	RB_INSERT(chunk_tree_s, &huge, node);
   2733   1.1        ad #ifdef MALLOC_STATS
   2734   1.1        ad 	huge_nmalloc++;
   2735   1.1        ad 	huge_allocated += csize;
   2736   1.1        ad #endif
   2737   1.1        ad 	malloc_mutex_unlock(&chunks_mtx);
   2738   1.1        ad 
   2739   1.1        ad 	if (opt_junk)
   2740   1.1        ad 		memset(ret, 0xa5, csize);
   2741   1.1        ad 	else if (opt_zero)
   2742   1.1        ad 		memset(ret, 0, csize);
   2743   1.1        ad 
   2744   1.1        ad 	return (ret);
   2745   1.1        ad }
   2746   1.1        ad 
   2747   1.1        ad /* Only handles large allocations that require more than chunk alignment. */
   2748   1.1        ad static void *
   2749   1.1        ad huge_palloc(size_t alignment, size_t size)
   2750   1.1        ad {
   2751   1.1        ad 	void *ret;
   2752   1.1        ad 	size_t alloc_size, chunk_size, offset;
   2753   1.1        ad 	chunk_node_t *node;
   2754   1.1        ad 
   2755   1.1        ad 	/*
   2756   1.1        ad 	 * This allocation requires alignment that is even larger than chunk
   2757   1.1        ad 	 * alignment.  This means that huge_malloc() isn't good enough.
   2758   1.1        ad 	 *
   2759   1.1        ad 	 * Allocate almost twice as many chunks as are demanded by the size or
   2760   1.1        ad 	 * alignment, in order to assure the alignment can be achieved, then
   2761   1.1        ad 	 * unmap leading and trailing chunks.
   2762   1.1        ad 	 */
   2763   1.1        ad 	assert(alignment >= chunksize);
   2764   1.1        ad 
   2765   1.1        ad 	chunk_size = CHUNK_CEILING(size);
   2766   1.1        ad 
   2767   1.1        ad 	if (size >= alignment)
   2768   1.1        ad 		alloc_size = chunk_size + alignment - chunksize;
   2769   1.1        ad 	else
   2770   1.1        ad 		alloc_size = (alignment << 1) - chunksize;
   2771   1.1        ad 
   2772   1.1        ad 	/* Allocate a chunk node with which to track the chunk. */
   2773   1.1        ad 	node = base_chunk_node_alloc();
   2774   1.1        ad 	if (node == NULL)
   2775   1.1        ad 		return (NULL);
   2776   1.1        ad 
   2777   1.1        ad 	ret = chunk_alloc(alloc_size);
   2778   1.1        ad 	if (ret == NULL) {
   2779   1.1        ad 		base_chunk_node_dealloc(node);
   2780   1.1        ad 		return (NULL);
   2781   1.1        ad 	}
   2782   1.1        ad 
   2783   1.1        ad 	offset = (uintptr_t)ret & (alignment - 1);
   2784   1.1        ad 	assert((offset & chunksize_mask) == 0);
   2785   1.1        ad 	assert(offset < alloc_size);
   2786   1.1        ad 	if (offset == 0) {
   2787   1.1        ad 		/* Trim trailing space. */
   2788   1.1        ad 		chunk_dealloc((void *)((uintptr_t)ret + chunk_size), alloc_size
   2789   1.1        ad 		    - chunk_size);
   2790   1.1        ad 	} else {
   2791   1.1        ad 		size_t trailsize;
   2792   1.1        ad 
   2793   1.1        ad 		/* Trim leading space. */
   2794   1.1        ad 		chunk_dealloc(ret, alignment - offset);
   2795   1.1        ad 
   2796   1.1        ad 		ret = (void *)((uintptr_t)ret + (alignment - offset));
   2797   1.1        ad 
   2798   1.1        ad 		trailsize = alloc_size - (alignment - offset) - chunk_size;
   2799   1.1        ad 		if (trailsize != 0) {
   2800   1.1        ad 		    /* Trim trailing space. */
   2801   1.1        ad 		    assert(trailsize < alloc_size);
   2802   1.1        ad 		    chunk_dealloc((void *)((uintptr_t)ret + chunk_size),
   2803   1.1        ad 			trailsize);
   2804   1.1        ad 		}
   2805   1.1        ad 	}
   2806   1.1        ad 
   2807   1.1        ad 	/* Insert node into huge. */
   2808   1.1        ad 	node->chunk = ret;
   2809   1.1        ad 	node->size = chunk_size;
   2810   1.1        ad 
   2811   1.1        ad 	malloc_mutex_lock(&chunks_mtx);
   2812   1.1        ad 	RB_INSERT(chunk_tree_s, &huge, node);
   2813   1.1        ad #ifdef MALLOC_STATS
   2814   1.1        ad 	huge_nmalloc++;
   2815   1.1        ad 	huge_allocated += chunk_size;
   2816   1.1        ad #endif
   2817   1.1        ad 	malloc_mutex_unlock(&chunks_mtx);
   2818   1.1        ad 
   2819   1.1        ad 	if (opt_junk)
   2820   1.1        ad 		memset(ret, 0xa5, chunk_size);
   2821   1.1        ad 	else if (opt_zero)
   2822   1.1        ad 		memset(ret, 0, chunk_size);
   2823   1.1        ad 
   2824   1.1        ad 	return (ret);
   2825   1.1        ad }
   2826   1.1        ad 
   2827   1.1        ad static void *
   2828   1.1        ad huge_ralloc(void *ptr, size_t size, size_t oldsize)
   2829   1.1        ad {
   2830   1.1        ad 	void *ret;
   2831   1.1        ad 
   2832   1.1        ad 	/* Avoid moving the allocation if the size class would not change. */
   2833   1.1        ad 	if (oldsize > arena_maxclass &&
   2834   1.1        ad 	    CHUNK_CEILING(size) == CHUNK_CEILING(oldsize)) {
   2835   1.1        ad 		if (opt_junk && size < oldsize) {
   2836   1.1        ad 			memset((void *)((uintptr_t)ptr + size), 0x5a, oldsize
   2837   1.1        ad 			    - size);
   2838   1.1        ad 		} else if (opt_zero && size > oldsize) {
   2839   1.1        ad 			memset((void *)((uintptr_t)ptr + oldsize), 0, size
   2840   1.1        ad 			    - oldsize);
   2841   1.1        ad 		}
   2842   1.1        ad 		return (ptr);
   2843   1.1        ad 	}
   2844   1.1        ad 
   2845   1.8      yamt 	if (CHUNK_ADDR2BASE(ptr) == ptr
   2846   1.8      yamt #ifdef USE_BRK
   2847   1.8      yamt 	    && ((uintptr_t)ptr < (uintptr_t)brk_base
   2848   1.8      yamt 	    || (uintptr_t)ptr >= (uintptr_t)brk_max)
   2849   1.8      yamt #endif
   2850   1.8      yamt 	    ) {
   2851   1.8      yamt 		chunk_node_t *node, key;
   2852   1.8      yamt 		void *newptr;
   2853   1.8      yamt 		size_t oldcsize;
   2854   1.8      yamt 		size_t newcsize;
   2855   1.8      yamt 
   2856   1.8      yamt 		newcsize = CHUNK_CEILING(size);
   2857   1.8      yamt 		oldcsize = CHUNK_CEILING(oldsize);
   2858   1.8      yamt 		assert(oldcsize != newcsize);
   2859   1.8      yamt 		if (newcsize == 0) {
   2860   1.8      yamt 			/* size_t wrap-around */
   2861   1.8      yamt 			return (NULL);
   2862   1.8      yamt 		}
   2863  1.21     enami 
   2864  1.21     enami 		/*
   2865  1.21     enami 		 * Remove the old region from the tree now.  If mremap()
   2866  1.21     enami 		 * returns the region to the system, other thread may
   2867  1.21     enami 		 * map it for same huge allocation and insert it to the
   2868  1.21     enami 		 * tree before we acquire the mutex lock again.
   2869  1.21     enami 		 */
   2870  1.21     enami 		malloc_mutex_lock(&chunks_mtx);
   2871  1.21     enami 		key.chunk = __DECONST(void *, ptr);
   2872  1.21     enami 		/* LINTED */
   2873  1.21     enami 		node = RB_FIND(chunk_tree_s, &huge, &key);
   2874  1.21     enami 		assert(node != NULL);
   2875  1.21     enami 		assert(node->chunk == ptr);
   2876  1.21     enami 		assert(node->size == oldcsize);
   2877  1.21     enami 		RB_REMOVE(chunk_tree_s, &huge, node);
   2878  1.21     enami 		malloc_mutex_unlock(&chunks_mtx);
   2879  1.21     enami 
   2880   1.8      yamt 		newptr = mremap(ptr, oldcsize, NULL, newcsize,
   2881   1.8      yamt 		    MAP_ALIGNED(chunksize_2pow));
   2882  1.21     enami 		if (newptr == MAP_FAILED) {
   2883  1.21     enami 			/* We still own the old region. */
   2884  1.21     enami 			malloc_mutex_lock(&chunks_mtx);
   2885  1.21     enami 			RB_INSERT(chunk_tree_s, &huge, node);
   2886  1.21     enami 			malloc_mutex_unlock(&chunks_mtx);
   2887  1.21     enami 		} else {
   2888   1.8      yamt 			assert(CHUNK_ADDR2BASE(newptr) == newptr);
   2889   1.8      yamt 
   2890  1.21     enami 			/* Insert new or resized old region. */
   2891   1.8      yamt 			malloc_mutex_lock(&chunks_mtx);
   2892   1.8      yamt 			node->size = newcsize;
   2893  1.21     enami 			node->chunk = newptr;
   2894  1.21     enami 			RB_INSERT(chunk_tree_s, &huge, node);
   2895   1.8      yamt #ifdef MALLOC_STATS
   2896   1.8      yamt 			huge_nralloc++;
   2897   1.8      yamt 			huge_allocated += newcsize - oldcsize;
   2898   1.8      yamt 			if (newcsize > oldcsize) {
   2899   1.8      yamt 				stats_chunks.curchunks +=
   2900   1.8      yamt 				    (newcsize - oldcsize) / chunksize;
   2901   1.8      yamt 				if (stats_chunks.curchunks >
   2902   1.8      yamt 				    stats_chunks.highchunks)
   2903   1.8      yamt 					stats_chunks.highchunks =
   2904   1.8      yamt 					    stats_chunks.curchunks;
   2905   1.8      yamt 			} else {
   2906   1.8      yamt 				stats_chunks.curchunks -=
   2907   1.8      yamt 				    (oldcsize - newcsize) / chunksize;
   2908   1.8      yamt 			}
   2909   1.8      yamt #endif
   2910   1.8      yamt 			malloc_mutex_unlock(&chunks_mtx);
   2911   1.8      yamt 
   2912   1.8      yamt 			if (opt_junk && size < oldsize) {
   2913   1.8      yamt 				memset((void *)((uintptr_t)newptr + size), 0x5a,
   2914   1.8      yamt 				    newcsize - size);
   2915   1.8      yamt 			} else if (opt_zero && size > oldsize) {
   2916   1.8      yamt 				memset((void *)((uintptr_t)newptr + oldsize), 0,
   2917   1.8      yamt 				    size - oldsize);
   2918   1.8      yamt 			}
   2919   1.8      yamt 			return (newptr);
   2920   1.8      yamt 		}
   2921   1.8      yamt 	}
   2922   1.8      yamt 
   2923   1.1        ad 	/*
   2924   1.1        ad 	 * If we get here, then size and oldsize are different enough that we
   2925   1.1        ad 	 * need to use a different size class.  In that case, fall back to
   2926   1.1        ad 	 * allocating new space and copying.
   2927   1.1        ad 	 */
   2928   1.1        ad 	ret = huge_malloc(size);
   2929   1.1        ad 	if (ret == NULL)
   2930   1.1        ad 		return (NULL);
   2931   1.1        ad 
   2932   1.1        ad 	if (CHUNK_ADDR2BASE(ptr) == ptr) {
   2933   1.1        ad 		/* The old allocation is a chunk. */
   2934   1.1        ad 		if (size < oldsize)
   2935   1.1        ad 			memcpy(ret, ptr, size);
   2936   1.1        ad 		else
   2937   1.1        ad 			memcpy(ret, ptr, oldsize);
   2938   1.1        ad 	} else {
   2939   1.1        ad 		/* The old allocation is a region. */
   2940   1.1        ad 		assert(oldsize < size);
   2941   1.1        ad 		memcpy(ret, ptr, oldsize);
   2942   1.1        ad 	}
   2943   1.1        ad 	idalloc(ptr);
   2944   1.1        ad 	return (ret);
   2945   1.1        ad }
   2946   1.1        ad 
   2947   1.1        ad static void
   2948   1.1        ad huge_dalloc(void *ptr)
   2949   1.1        ad {
   2950   1.1        ad 	chunk_node_t key;
   2951   1.1        ad 	chunk_node_t *node;
   2952   1.1        ad 
   2953   1.1        ad 	malloc_mutex_lock(&chunks_mtx);
   2954   1.1        ad 
   2955   1.1        ad 	/* Extract from tree of huge allocations. */
   2956   1.1        ad 	key.chunk = ptr;
   2957   1.2        ad 	/* LINTED */
   2958   1.1        ad 	node = RB_FIND(chunk_tree_s, &huge, &key);
   2959   1.1        ad 	assert(node != NULL);
   2960   1.1        ad 	assert(node->chunk == ptr);
   2961   1.2        ad 	/* LINTED */
   2962   1.1        ad 	RB_REMOVE(chunk_tree_s, &huge, node);
   2963   1.1        ad 
   2964   1.1        ad #ifdef MALLOC_STATS
   2965   1.1        ad 	huge_ndalloc++;
   2966   1.1        ad 	huge_allocated -= node->size;
   2967   1.1        ad #endif
   2968   1.1        ad 
   2969   1.1        ad 	malloc_mutex_unlock(&chunks_mtx);
   2970   1.1        ad 
   2971   1.1        ad 	/* Unmap chunk. */
   2972   1.1        ad #ifdef USE_BRK
   2973   1.1        ad 	if (opt_junk)
   2974   1.1        ad 		memset(node->chunk, 0x5a, node->size);
   2975   1.1        ad #endif
   2976   1.1        ad 	chunk_dealloc(node->chunk, node->size);
   2977   1.1        ad 
   2978   1.1        ad 	base_chunk_node_dealloc(node);
   2979   1.1        ad }
   2980   1.1        ad 
   2981   1.1        ad static void *
   2982   1.1        ad imalloc(size_t size)
   2983   1.1        ad {
   2984   1.1        ad 	void *ret;
   2985   1.1        ad 
   2986   1.1        ad 	assert(size != 0);
   2987   1.1        ad 
   2988   1.1        ad 	if (size <= arena_maxclass)
   2989   1.1        ad 		ret = arena_malloc(choose_arena(), size);
   2990   1.1        ad 	else
   2991   1.1        ad 		ret = huge_malloc(size);
   2992   1.1        ad 
   2993   1.1        ad 	return (ret);
   2994   1.1        ad }
   2995   1.1        ad 
   2996   1.1        ad static void *
   2997   1.1        ad ipalloc(size_t alignment, size_t size)
   2998   1.1        ad {
   2999   1.1        ad 	void *ret;
   3000   1.1        ad 	size_t ceil_size;
   3001   1.1        ad 
   3002   1.1        ad 	/*
   3003   1.1        ad 	 * Round size up to the nearest multiple of alignment.
   3004   1.1        ad 	 *
   3005   1.1        ad 	 * This done, we can take advantage of the fact that for each small
   3006   1.1        ad 	 * size class, every object is aligned at the smallest power of two
   3007   1.1        ad 	 * that is non-zero in the base two representation of the size.  For
   3008   1.1        ad 	 * example:
   3009   1.1        ad 	 *
   3010   1.1        ad 	 *   Size |   Base 2 | Minimum alignment
   3011   1.1        ad 	 *   -----+----------+------------------
   3012   1.1        ad 	 *     96 |  1100000 |  32
   3013   1.1        ad 	 *    144 | 10100000 |  32
   3014   1.1        ad 	 *    192 | 11000000 |  64
   3015   1.1        ad 	 *
   3016   1.1        ad 	 * Depending on runtime settings, it is possible that arena_malloc()
   3017   1.1        ad 	 * will further round up to a power of two, but that never causes
   3018   1.1        ad 	 * correctness issues.
   3019   1.1        ad 	 */
   3020   1.1        ad 	ceil_size = (size + (alignment - 1)) & (-alignment);
   3021   1.1        ad 	/*
   3022   1.1        ad 	 * (ceil_size < size) protects against the combination of maximal
   3023   1.1        ad 	 * alignment and size greater than maximal alignment.
   3024   1.1        ad 	 */
   3025   1.1        ad 	if (ceil_size < size) {
   3026   1.1        ad 		/* size_t overflow. */
   3027   1.1        ad 		return (NULL);
   3028   1.1        ad 	}
   3029   1.1        ad 
   3030   1.1        ad 	if (ceil_size <= pagesize || (alignment <= pagesize
   3031   1.1        ad 	    && ceil_size <= arena_maxclass))
   3032   1.1        ad 		ret = arena_malloc(choose_arena(), ceil_size);
   3033   1.1        ad 	else {
   3034   1.1        ad 		size_t run_size;
   3035   1.1        ad 
   3036   1.1        ad 		/*
   3037   1.1        ad 		 * We can't achieve sub-page alignment, so round up alignment
   3038   1.1        ad 		 * permanently; it makes later calculations simpler.
   3039   1.1        ad 		 */
   3040   1.1        ad 		alignment = PAGE_CEILING(alignment);
   3041   1.1        ad 		ceil_size = PAGE_CEILING(size);
   3042   1.1        ad 		/*
   3043   1.1        ad 		 * (ceil_size < size) protects against very large sizes within
   3044   1.1        ad 		 * pagesize of SIZE_T_MAX.
   3045   1.1        ad 		 *
   3046   1.1        ad 		 * (ceil_size + alignment < ceil_size) protects against the
   3047   1.1        ad 		 * combination of maximal alignment and ceil_size large enough
   3048   1.1        ad 		 * to cause overflow.  This is similar to the first overflow
   3049   1.1        ad 		 * check above, but it needs to be repeated due to the new
   3050   1.1        ad 		 * ceil_size value, which may now be *equal* to maximal
   3051   1.1        ad 		 * alignment, whereas before we only detected overflow if the
   3052   1.1        ad 		 * original size was *greater* than maximal alignment.
   3053   1.1        ad 		 */
   3054   1.1        ad 		if (ceil_size < size || ceil_size + alignment < ceil_size) {
   3055   1.1        ad 			/* size_t overflow. */
   3056   1.1        ad 			return (NULL);
   3057   1.1        ad 		}
   3058   1.1        ad 
   3059   1.1        ad 		/*
   3060   1.1        ad 		 * Calculate the size of the over-size run that arena_palloc()
   3061   1.1        ad 		 * would need to allocate in order to guarantee the alignment.
   3062   1.1        ad 		 */
   3063   1.1        ad 		if (ceil_size >= alignment)
   3064   1.1        ad 			run_size = ceil_size + alignment - pagesize;
   3065   1.1        ad 		else {
   3066   1.1        ad 			/*
   3067   1.1        ad 			 * It is possible that (alignment << 1) will cause
   3068   1.1        ad 			 * overflow, but it doesn't matter because we also
   3069   1.1        ad 			 * subtract pagesize, which in the case of overflow
   3070   1.1        ad 			 * leaves us with a very large run_size.  That causes
   3071   1.1        ad 			 * the first conditional below to fail, which means
   3072   1.1        ad 			 * that the bogus run_size value never gets used for
   3073   1.1        ad 			 * anything important.
   3074   1.1        ad 			 */
   3075   1.1        ad 			run_size = (alignment << 1) - pagesize;
   3076   1.1        ad 		}
   3077   1.1        ad 
   3078   1.1        ad 		if (run_size <= arena_maxclass) {
   3079   1.1        ad 			ret = arena_palloc(choose_arena(), alignment, ceil_size,
   3080   1.1        ad 			    run_size);
   3081   1.1        ad 		} else if (alignment <= chunksize)
   3082   1.1        ad 			ret = huge_malloc(ceil_size);
   3083   1.1        ad 		else
   3084   1.1        ad 			ret = huge_palloc(alignment, ceil_size);
   3085   1.1        ad 	}
   3086   1.1        ad 
   3087   1.1        ad 	assert(((uintptr_t)ret & (alignment - 1)) == 0);
   3088   1.1        ad 	return (ret);
   3089   1.1        ad }
   3090   1.1        ad 
   3091   1.1        ad static void *
   3092   1.1        ad icalloc(size_t size)
   3093   1.1        ad {
   3094   1.1        ad 	void *ret;
   3095   1.1        ad 
   3096   1.1        ad 	if (size <= arena_maxclass) {
   3097   1.1        ad 		ret = arena_malloc(choose_arena(), size);
   3098   1.1        ad 		if (ret == NULL)
   3099   1.1        ad 			return (NULL);
   3100   1.1        ad 		memset(ret, 0, size);
   3101   1.1        ad 	} else {
   3102   1.1        ad 		/*
   3103   1.1        ad 		 * The virtual memory system provides zero-filled pages, so
   3104   1.1        ad 		 * there is no need to do so manually, unless opt_junk is
   3105   1.1        ad 		 * enabled, in which case huge_malloc() fills huge allocations
   3106   1.1        ad 		 * with junk.
   3107   1.1        ad 		 */
   3108   1.1        ad 		ret = huge_malloc(size);
   3109   1.1        ad 		if (ret == NULL)
   3110   1.1        ad 			return (NULL);
   3111   1.1        ad 
   3112   1.1        ad 		if (opt_junk)
   3113   1.1        ad 			memset(ret, 0, size);
   3114   1.1        ad #ifdef USE_BRK
   3115   1.1        ad 		else if ((uintptr_t)ret >= (uintptr_t)brk_base
   3116   1.1        ad 		    && (uintptr_t)ret < (uintptr_t)brk_max) {
   3117   1.1        ad 			/*
   3118   1.1        ad 			 * This may be a re-used brk chunk.  Therefore, zero
   3119   1.1        ad 			 * the memory.
   3120   1.1        ad 			 */
   3121   1.1        ad 			memset(ret, 0, size);
   3122   1.1        ad 		}
   3123   1.1        ad #endif
   3124   1.1        ad 	}
   3125   1.1        ad 
   3126   1.1        ad 	return (ret);
   3127   1.1        ad }
   3128   1.1        ad 
   3129   1.1        ad static size_t
   3130   1.1        ad isalloc(const void *ptr)
   3131   1.1        ad {
   3132   1.1        ad 	size_t ret;
   3133   1.1        ad 	arena_chunk_t *chunk;
   3134   1.1        ad 
   3135   1.1        ad 	assert(ptr != NULL);
   3136   1.1        ad 
   3137   1.1        ad 	chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
   3138   1.1        ad 	if (chunk != ptr) {
   3139   1.1        ad 		/* Region. */
   3140   1.1        ad 		assert(chunk->arena->magic == ARENA_MAGIC);
   3141   1.1        ad 
   3142   1.1        ad 		ret = arena_salloc(ptr);
   3143   1.1        ad 	} else {
   3144   1.1        ad 		chunk_node_t *node, key;
   3145   1.1        ad 
   3146   1.1        ad 		/* Chunk (huge allocation). */
   3147   1.1        ad 
   3148   1.1        ad 		malloc_mutex_lock(&chunks_mtx);
   3149   1.1        ad 
   3150   1.1        ad 		/* Extract from tree of huge allocations. */
   3151   1.1        ad 		key.chunk = __DECONST(void *, ptr);
   3152   1.2        ad 		/* LINTED */
   3153   1.1        ad 		node = RB_FIND(chunk_tree_s, &huge, &key);
   3154   1.1        ad 		assert(node != NULL);
   3155   1.1        ad 
   3156   1.1        ad 		ret = node->size;
   3157   1.1        ad 
   3158   1.1        ad 		malloc_mutex_unlock(&chunks_mtx);
   3159   1.1        ad 	}
   3160   1.1        ad 
   3161   1.1        ad 	return (ret);
   3162   1.1        ad }
   3163   1.1        ad 
   3164   1.1        ad static void *
   3165   1.1        ad iralloc(void *ptr, size_t size)
   3166   1.1        ad {
   3167   1.1        ad 	void *ret;
   3168   1.1        ad 	size_t oldsize;
   3169   1.1        ad 
   3170   1.1        ad 	assert(ptr != NULL);
   3171   1.1        ad 	assert(size != 0);
   3172   1.1        ad 
   3173   1.1        ad 	oldsize = isalloc(ptr);
   3174   1.1        ad 
   3175   1.1        ad 	if (size <= arena_maxclass)
   3176   1.1        ad 		ret = arena_ralloc(ptr, size, oldsize);
   3177   1.1        ad 	else
   3178   1.1        ad 		ret = huge_ralloc(ptr, size, oldsize);
   3179   1.1        ad 
   3180   1.1        ad 	return (ret);
   3181   1.1        ad }
   3182   1.1        ad 
   3183   1.1        ad static void
   3184   1.1        ad idalloc(void *ptr)
   3185   1.1        ad {
   3186   1.1        ad 	arena_chunk_t *chunk;
   3187   1.1        ad 
   3188   1.1        ad 	assert(ptr != NULL);
   3189   1.1        ad 
   3190   1.1        ad 	chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
   3191   1.1        ad 	if (chunk != ptr) {
   3192   1.1        ad 		/* Region. */
   3193   1.1        ad 		arena_dalloc(chunk->arena, chunk, ptr);
   3194   1.1        ad 	} else
   3195   1.1        ad 		huge_dalloc(ptr);
   3196   1.1        ad }
   3197   1.1        ad 
   3198   1.1        ad static void
   3199   1.1        ad malloc_print_stats(void)
   3200   1.1        ad {
   3201   1.1        ad 
   3202   1.1        ad 	if (opt_print_stats) {
   3203   1.1        ad 		char s[UMAX2S_BUFSIZE];
   3204   1.1        ad 		_malloc_message("___ Begin malloc statistics ___\n", "", "",
   3205   1.1        ad 		    "");
   3206   1.1        ad 		_malloc_message("Assertions ",
   3207   1.1        ad #ifdef NDEBUG
   3208   1.1        ad 		    "disabled",
   3209   1.1        ad #else
   3210   1.1        ad 		    "enabled",
   3211   1.1        ad #endif
   3212   1.1        ad 		    "\n", "");
   3213   1.1        ad 		_malloc_message("Boolean MALLOC_OPTIONS: ",
   3214   1.1        ad 		    opt_abort ? "A" : "a",
   3215   1.1        ad 		    opt_junk ? "J" : "j",
   3216   1.1        ad 		    opt_hint ? "H" : "h");
   3217   1.1        ad 		_malloc_message(opt_utrace ? "PU" : "Pu",
   3218   1.1        ad 		    opt_sysv ? "V" : "v",
   3219   1.1        ad 		    opt_xmalloc ? "X" : "x",
   3220   1.1        ad 		    opt_zero ? "Z\n" : "z\n");
   3221   1.1        ad 
   3222  1.28  christos 		_malloc_message("CPUs: ", size_t2s(ncpus, s), "\n", "");
   3223  1.28  christos 		_malloc_message("Max arenas: ", size_t2s(narenas, s), "\n", "");
   3224  1.28  christos 		_malloc_message("Pointer size: ", size_t2s(sizeof(void *), s),
   3225   1.1        ad 		    "\n", "");
   3226  1.28  christos 		_malloc_message("Quantum size: ", size_t2s(quantum, s), "\n", "");
   3227  1.28  christos 		_malloc_message("Max small size: ", size_t2s(small_max, s), "\n",
   3228   1.1        ad 		    "");
   3229   1.1        ad 
   3230  1.28  christos 		_malloc_message("Chunk size: ", size_t2s(chunksize, s), "", "");
   3231  1.28  christos 		_malloc_message(" (2^", size_t2s((size_t)opt_chunk_2pow, s),
   3232  1.27      matt 		    ")\n", "");
   3233   1.1        ad 
   3234   1.1        ad #ifdef MALLOC_STATS
   3235   1.1        ad 		{
   3236   1.1        ad 			size_t allocated, mapped;
   3237   1.1        ad 			unsigned i;
   3238   1.1        ad 			arena_t *arena;
   3239   1.1        ad 
   3240   1.1        ad 			/* Calculate and print allocated/mapped stats. */
   3241   1.1        ad 
   3242   1.1        ad 			/* arenas. */
   3243   1.1        ad 			for (i = 0, allocated = 0; i < narenas; i++) {
   3244   1.1        ad 				if (arenas[i] != NULL) {
   3245   1.1        ad 					malloc_mutex_lock(&arenas[i]->mtx);
   3246   1.1        ad 					allocated +=
   3247   1.1        ad 					    arenas[i]->stats.allocated_small;
   3248   1.1        ad 					allocated +=
   3249   1.1        ad 					    arenas[i]->stats.allocated_large;
   3250   1.1        ad 					malloc_mutex_unlock(&arenas[i]->mtx);
   3251   1.1        ad 				}
   3252   1.1        ad 			}
   3253   1.1        ad 
   3254   1.1        ad 			/* huge/base. */
   3255   1.1        ad 			malloc_mutex_lock(&chunks_mtx);
   3256   1.1        ad 			allocated += huge_allocated;
   3257   1.1        ad 			mapped = stats_chunks.curchunks * chunksize;
   3258   1.1        ad 			malloc_mutex_unlock(&chunks_mtx);
   3259   1.1        ad 
   3260   1.1        ad 			malloc_mutex_lock(&base_mtx);
   3261   1.1        ad 			mapped += base_mapped;
   3262   1.1        ad 			malloc_mutex_unlock(&base_mtx);
   3263   1.1        ad 
   3264   1.1        ad 			malloc_printf("Allocated: %zu, mapped: %zu\n",
   3265   1.1        ad 			    allocated, mapped);
   3266   1.1        ad 
   3267   1.1        ad 			/* Print chunk stats. */
   3268   1.1        ad 			{
   3269   1.1        ad 				chunk_stats_t chunks_stats;
   3270   1.1        ad 
   3271   1.1        ad 				malloc_mutex_lock(&chunks_mtx);
   3272   1.1        ad 				chunks_stats = stats_chunks;
   3273   1.1        ad 				malloc_mutex_unlock(&chunks_mtx);
   3274   1.1        ad 
   3275   1.1        ad 				malloc_printf("chunks: nchunks   "
   3276   1.1        ad 				    "highchunks    curchunks\n");
   3277   1.1        ad 				malloc_printf("  %13llu%13lu%13lu\n",
   3278   1.1        ad 				    chunks_stats.nchunks,
   3279   1.1        ad 				    chunks_stats.highchunks,
   3280   1.1        ad 				    chunks_stats.curchunks);
   3281   1.1        ad 			}
   3282   1.1        ad 
   3283   1.1        ad 			/* Print chunk stats. */
   3284   1.1        ad 			malloc_printf(
   3285   1.8      yamt 			    "huge: nmalloc      ndalloc      "
   3286   1.8      yamt 			    "nralloc    allocated\n");
   3287   1.8      yamt 			malloc_printf(" %12llu %12llu %12llu %12zu\n",
   3288   1.8      yamt 			    huge_nmalloc, huge_ndalloc, huge_nralloc,
   3289   1.8      yamt 			    huge_allocated);
   3290   1.1        ad 
   3291   1.1        ad 			/* Print stats for each arena. */
   3292   1.1        ad 			for (i = 0; i < narenas; i++) {
   3293   1.1        ad 				arena = arenas[i];
   3294   1.1        ad 				if (arena != NULL) {
   3295   1.1        ad 					malloc_printf(
   3296   1.2        ad 					    "\narenas[%u] @ %p\n", i, arena);
   3297   1.1        ad 					malloc_mutex_lock(&arena->mtx);
   3298   1.1        ad 					stats_print(arena);
   3299   1.1        ad 					malloc_mutex_unlock(&arena->mtx);
   3300   1.1        ad 				}
   3301   1.1        ad 			}
   3302   1.1        ad 		}
   3303   1.1        ad #endif /* #ifdef MALLOC_STATS */
   3304   1.1        ad 		_malloc_message("--- End malloc statistics ---\n", "", "", "");
   3305   1.1        ad 	}
   3306   1.1        ad }
   3307   1.1        ad 
   3308   1.1        ad /*
   3309   1.1        ad  * FreeBSD's pthreads implementation calls malloc(3), so the malloc
   3310   1.1        ad  * implementation has to take pains to avoid infinite recursion during
   3311   1.1        ad  * initialization.
   3312   1.1        ad  */
   3313   1.1        ad static inline bool
   3314   1.1        ad malloc_init(void)
   3315   1.1        ad {
   3316   1.1        ad 
   3317   1.1        ad 	if (malloc_initialized == false)
   3318   1.1        ad 		return (malloc_init_hard());
   3319   1.1        ad 
   3320   1.1        ad 	return (false);
   3321   1.1        ad }
   3322   1.1        ad 
   3323   1.1        ad static bool
   3324   1.1        ad malloc_init_hard(void)
   3325   1.1        ad {
   3326   1.1        ad 	unsigned i, j;
   3327   1.9  christos 	ssize_t linklen;
   3328   1.1        ad 	char buf[PATH_MAX + 1];
   3329   1.2        ad 	const char *opts = "";
   3330  1.23  christos 	int serrno;
   3331   1.1        ad 
   3332   1.1        ad 	malloc_mutex_lock(&init_lock);
   3333   1.1        ad 	if (malloc_initialized) {
   3334   1.1        ad 		/*
   3335   1.1        ad 		 * Another thread initialized the allocator before this one
   3336   1.1        ad 		 * acquired init_lock.
   3337   1.1        ad 		 */
   3338   1.1        ad 		malloc_mutex_unlock(&init_lock);
   3339   1.1        ad 		return (false);
   3340   1.1        ad 	}
   3341   1.1        ad 
   3342  1.24  christos 	serrno = errno;
   3343   1.1        ad 	/* Get number of CPUs. */
   3344   1.1        ad 	{
   3345   1.1        ad 		int mib[2];
   3346   1.1        ad 		size_t len;
   3347   1.1        ad 
   3348   1.1        ad 		mib[0] = CTL_HW;
   3349   1.1        ad 		mib[1] = HW_NCPU;
   3350   1.1        ad 		len = sizeof(ncpus);
   3351   1.1        ad 		if (sysctl(mib, 2, &ncpus, &len, (void *) 0, 0) == -1) {
   3352   1.1        ad 			/* Error. */
   3353   1.1        ad 			ncpus = 1;
   3354   1.1        ad 		}
   3355   1.1        ad 	}
   3356   1.1        ad 
   3357   1.1        ad 	/* Get page size. */
   3358   1.1        ad 	{
   3359   1.1        ad 		long result;
   3360   1.1        ad 
   3361   1.1        ad 		result = sysconf(_SC_PAGESIZE);
   3362   1.1        ad 		assert(result != -1);
   3363   1.1        ad 		pagesize = (unsigned) result;
   3364   1.1        ad 
   3365   1.1        ad 		/*
   3366   1.1        ad 		 * We assume that pagesize is a power of 2 when calculating
   3367   1.1        ad 		 * pagesize_mask and pagesize_2pow.
   3368   1.1        ad 		 */
   3369   1.1        ad 		assert(((result - 1) & result) == 0);
   3370   1.1        ad 		pagesize_mask = result - 1;
   3371   1.1        ad 		pagesize_2pow = ffs((int)result) - 1;
   3372   1.1        ad 	}
   3373   1.1        ad 
   3374   1.1        ad 	for (i = 0; i < 3; i++) {
   3375   1.1        ad 		/* Get runtime configuration. */
   3376   1.1        ad 		switch (i) {
   3377   1.1        ad 		case 0:
   3378   1.1        ad 			if ((linklen = readlink("/etc/malloc.conf", buf,
   3379   1.1        ad 						sizeof(buf) - 1)) != -1) {
   3380   1.1        ad 				/*
   3381   1.1        ad 				 * Use the contents of the "/etc/malloc.conf"
   3382   1.1        ad 				 * symbolic link's name.
   3383   1.1        ad 				 */
   3384   1.1        ad 				buf[linklen] = '\0';
   3385   1.1        ad 				opts = buf;
   3386   1.1        ad 			} else {
   3387   1.1        ad 				/* No configuration specified. */
   3388   1.1        ad 				buf[0] = '\0';
   3389   1.1        ad 				opts = buf;
   3390   1.1        ad 			}
   3391   1.1        ad 			break;
   3392   1.1        ad 		case 1:
   3393  1.18        ad 			if ((opts = getenv("MALLOC_OPTIONS")) != NULL &&
   3394  1.18        ad 			    issetugid() == 0) {
   3395   1.1        ad 				/*
   3396   1.1        ad 				 * Do nothing; opts is already initialized to
   3397   1.1        ad 				 * the value of the MALLOC_OPTIONS environment
   3398   1.1        ad 				 * variable.
   3399   1.1        ad 				 */
   3400   1.1        ad 			} else {
   3401   1.1        ad 				/* No configuration specified. */
   3402   1.1        ad 				buf[0] = '\0';
   3403   1.1        ad 				opts = buf;
   3404   1.1        ad 			}
   3405   1.1        ad 			break;
   3406   1.1        ad 		case 2:
   3407   1.1        ad 			if (_malloc_options != NULL) {
   3408   1.1        ad 			    /*
   3409   1.1        ad 			     * Use options that were compiled into the program.
   3410   1.1        ad 			     */
   3411   1.1        ad 			    opts = _malloc_options;
   3412   1.1        ad 			} else {
   3413   1.1        ad 				/* No configuration specified. */
   3414   1.1        ad 				buf[0] = '\0';
   3415   1.1        ad 				opts = buf;
   3416   1.1        ad 			}
   3417   1.1        ad 			break;
   3418   1.1        ad 		default:
   3419   1.1        ad 			/* NOTREACHED */
   3420   1.7      yamt 			/* LINTED */
   3421   1.1        ad 			assert(false);
   3422   1.1        ad 		}
   3423   1.1        ad 
   3424   1.1        ad 		for (j = 0; opts[j] != '\0'; j++) {
   3425   1.1        ad 			switch (opts[j]) {
   3426   1.1        ad 			case 'a':
   3427   1.1        ad 				opt_abort = false;
   3428   1.1        ad 				break;
   3429   1.1        ad 			case 'A':
   3430   1.1        ad 				opt_abort = true;
   3431   1.1        ad 				break;
   3432   1.1        ad 			case 'h':
   3433   1.1        ad 				opt_hint = false;
   3434   1.1        ad 				break;
   3435   1.1        ad 			case 'H':
   3436   1.1        ad 				opt_hint = true;
   3437   1.1        ad 				break;
   3438   1.1        ad 			case 'j':
   3439   1.1        ad 				opt_junk = false;
   3440   1.1        ad 				break;
   3441   1.1        ad 			case 'J':
   3442   1.1        ad 				opt_junk = true;
   3443   1.1        ad 				break;
   3444   1.1        ad 			case 'k':
   3445   1.1        ad 				/*
   3446   1.1        ad 				 * Chunks always require at least one header
   3447   1.1        ad 				 * page, so chunks can never be smaller than
   3448   1.1        ad 				 * two pages.
   3449   1.1        ad 				 */
   3450   1.1        ad 				if (opt_chunk_2pow > pagesize_2pow + 1)
   3451   1.1        ad 					opt_chunk_2pow--;
   3452   1.1        ad 				break;
   3453   1.1        ad 			case 'K':
   3454  1.20     lukem 				if (opt_chunk_2pow + 1 <
   3455  1.20     lukem 				    (int)(sizeof(size_t) << 3))
   3456   1.1        ad 					opt_chunk_2pow++;
   3457   1.1        ad 				break;
   3458   1.1        ad 			case 'n':
   3459   1.1        ad 				opt_narenas_lshift--;
   3460   1.1        ad 				break;
   3461   1.1        ad 			case 'N':
   3462   1.1        ad 				opt_narenas_lshift++;
   3463   1.1        ad 				break;
   3464   1.1        ad 			case 'p':
   3465   1.1        ad 				opt_print_stats = false;
   3466   1.1        ad 				break;
   3467   1.1        ad 			case 'P':
   3468   1.1        ad 				opt_print_stats = true;
   3469   1.1        ad 				break;
   3470   1.1        ad 			case 'q':
   3471   1.1        ad 				if (opt_quantum_2pow > QUANTUM_2POW_MIN)
   3472   1.1        ad 					opt_quantum_2pow--;
   3473   1.1        ad 				break;
   3474   1.1        ad 			case 'Q':
   3475   1.1        ad 				if (opt_quantum_2pow < pagesize_2pow - 1)
   3476   1.1        ad 					opt_quantum_2pow++;
   3477   1.1        ad 				break;
   3478   1.1        ad 			case 's':
   3479   1.1        ad 				if (opt_small_max_2pow > QUANTUM_2POW_MIN)
   3480   1.1        ad 					opt_small_max_2pow--;
   3481   1.1        ad 				break;
   3482   1.1        ad 			case 'S':
   3483   1.1        ad 				if (opt_small_max_2pow < pagesize_2pow - 1)
   3484   1.1        ad 					opt_small_max_2pow++;
   3485   1.1        ad 				break;
   3486   1.1        ad 			case 'u':
   3487   1.1        ad 				opt_utrace = false;
   3488   1.1        ad 				break;
   3489   1.1        ad 			case 'U':
   3490   1.1        ad 				opt_utrace = true;
   3491   1.1        ad 				break;
   3492   1.1        ad 			case 'v':
   3493   1.1        ad 				opt_sysv = false;
   3494   1.1        ad 				break;
   3495   1.1        ad 			case 'V':
   3496   1.1        ad 				opt_sysv = true;
   3497   1.1        ad 				break;
   3498   1.1        ad 			case 'x':
   3499   1.1        ad 				opt_xmalloc = false;
   3500   1.1        ad 				break;
   3501   1.1        ad 			case 'X':
   3502   1.1        ad 				opt_xmalloc = true;
   3503   1.1        ad 				break;
   3504   1.1        ad 			case 'z':
   3505   1.1        ad 				opt_zero = false;
   3506   1.1        ad 				break;
   3507   1.1        ad 			case 'Z':
   3508   1.1        ad 				opt_zero = true;
   3509   1.1        ad 				break;
   3510   1.1        ad 			default: {
   3511   1.1        ad 				char cbuf[2];
   3512   1.1        ad 
   3513   1.1        ad 				cbuf[0] = opts[j];
   3514   1.1        ad 				cbuf[1] = '\0';
   3515  1.16  christos 				_malloc_message(getprogname(),
   3516   1.1        ad 				    ": (malloc) Unsupported character in "
   3517   1.1        ad 				    "malloc options: '", cbuf, "'\n");
   3518   1.1        ad 			}
   3519   1.1        ad 			}
   3520   1.1        ad 		}
   3521   1.1        ad 	}
   3522  1.24  christos 	errno = serrno;
   3523   1.1        ad 
   3524   1.1        ad 	/* Take care to call atexit() only once. */
   3525   1.1        ad 	if (opt_print_stats) {
   3526   1.1        ad 		/* Print statistics at exit. */
   3527   1.1        ad 		atexit(malloc_print_stats);
   3528   1.1        ad 	}
   3529   1.1        ad 
   3530   1.1        ad 	/* Set variables according to the value of opt_small_max_2pow. */
   3531   1.1        ad 	if (opt_small_max_2pow < opt_quantum_2pow)
   3532   1.1        ad 		opt_small_max_2pow = opt_quantum_2pow;
   3533   1.1        ad 	small_max = (1 << opt_small_max_2pow);
   3534   1.1        ad 
   3535   1.1        ad 	/* Set bin-related variables. */
   3536   1.1        ad 	bin_maxclass = (pagesize >> 1);
   3537   1.1        ad 	assert(opt_quantum_2pow >= TINY_MIN_2POW);
   3538   1.9  christos 	ntbins = (unsigned)(opt_quantum_2pow - TINY_MIN_2POW);
   3539   1.1        ad 	assert(ntbins <= opt_quantum_2pow);
   3540   1.9  christos 	nqbins = (unsigned)(small_max >> opt_quantum_2pow);
   3541   1.9  christos 	nsbins = (unsigned)(pagesize_2pow - opt_small_max_2pow - 1);
   3542   1.1        ad 
   3543   1.1        ad 	/* Set variables according to the value of opt_quantum_2pow. */
   3544   1.1        ad 	quantum = (1 << opt_quantum_2pow);
   3545   1.1        ad 	quantum_mask = quantum - 1;
   3546   1.1        ad 	if (ntbins > 0)
   3547   1.1        ad 		small_min = (quantum >> 1) + 1;
   3548   1.1        ad 	else
   3549   1.1        ad 		small_min = 1;
   3550   1.1        ad 	assert(small_min <= quantum);
   3551   1.1        ad 
   3552   1.1        ad 	/* Set variables according to the value of opt_chunk_2pow. */
   3553   1.1        ad 	chunksize = (1LU << opt_chunk_2pow);
   3554   1.1        ad 	chunksize_mask = chunksize - 1;
   3555   1.9  christos 	chunksize_2pow = (unsigned)opt_chunk_2pow;
   3556   1.9  christos 	chunk_npages = (unsigned)(chunksize >> pagesize_2pow);
   3557   1.1        ad 	{
   3558   1.1        ad 		unsigned header_size;
   3559   1.1        ad 
   3560   1.9  christos 		header_size = (unsigned)(sizeof(arena_chunk_t) +
   3561   1.9  christos 		    (sizeof(arena_chunk_map_t) * (chunk_npages - 1)));
   3562   1.1        ad 		arena_chunk_header_npages = (header_size >> pagesize_2pow);
   3563   1.1        ad 		if ((header_size & pagesize_mask) != 0)
   3564   1.1        ad 			arena_chunk_header_npages++;
   3565   1.1        ad 	}
   3566   1.1        ad 	arena_maxclass = chunksize - (arena_chunk_header_npages <<
   3567   1.1        ad 	    pagesize_2pow);
   3568   1.1        ad 
   3569   1.1        ad 	UTRACE(0, 0, 0);
   3570   1.1        ad 
   3571   1.1        ad #ifdef MALLOC_STATS
   3572   1.1        ad 	memset(&stats_chunks, 0, sizeof(chunk_stats_t));
   3573   1.1        ad #endif
   3574   1.1        ad 
   3575   1.1        ad 	/* Various sanity checks that regard configuration. */
   3576   1.1        ad 	assert(quantum >= sizeof(void *));
   3577   1.1        ad 	assert(quantum <= pagesize);
   3578   1.1        ad 	assert(chunksize >= pagesize);
   3579   1.1        ad 	assert(quantum * 4 <= chunksize);
   3580   1.1        ad 
   3581   1.1        ad 	/* Initialize chunks data. */
   3582   1.1        ad 	malloc_mutex_init(&chunks_mtx);
   3583   1.1        ad 	RB_INIT(&huge);
   3584   1.1        ad #ifdef USE_BRK
   3585   1.1        ad 	malloc_mutex_init(&brk_mtx);
   3586   1.1        ad 	brk_base = sbrk(0);
   3587   1.1        ad 	brk_prev = brk_base;
   3588   1.1        ad 	brk_max = brk_base;
   3589   1.1        ad #endif
   3590   1.1        ad #ifdef MALLOC_STATS
   3591   1.1        ad 	huge_nmalloc = 0;
   3592   1.1        ad 	huge_ndalloc = 0;
   3593   1.8      yamt 	huge_nralloc = 0;
   3594   1.1        ad 	huge_allocated = 0;
   3595   1.1        ad #endif
   3596   1.1        ad 	RB_INIT(&old_chunks);
   3597   1.1        ad 
   3598   1.1        ad 	/* Initialize base allocation data structures. */
   3599   1.1        ad #ifdef MALLOC_STATS
   3600   1.1        ad 	base_mapped = 0;
   3601   1.1        ad #endif
   3602   1.1        ad #ifdef USE_BRK
   3603   1.1        ad 	/*
   3604   1.1        ad 	 * Allocate a base chunk here, since it doesn't actually have to be
   3605   1.1        ad 	 * chunk-aligned.  Doing this before allocating any other chunks allows
   3606   1.1        ad 	 * the use of space that would otherwise be wasted.
   3607   1.1        ad 	 */
   3608   1.1        ad 	base_pages_alloc(0);
   3609   1.1        ad #endif
   3610   1.1        ad 	base_chunk_nodes = NULL;
   3611   1.1        ad 	malloc_mutex_init(&base_mtx);
   3612   1.1        ad 
   3613   1.1        ad 	if (ncpus > 1) {
   3614   1.1        ad 		/*
   3615   1.1        ad 		 * For SMP systems, create four times as many arenas as there
   3616   1.1        ad 		 * are CPUs by default.
   3617   1.1        ad 		 */
   3618   1.1        ad 		opt_narenas_lshift += 2;
   3619   1.1        ad 	}
   3620   1.1        ad 
   3621   1.2        ad #ifdef NO_TLS
   3622   1.2        ad 	/* Initialize arena key. */
   3623   1.2        ad 	(void)thr_keycreate(&arenas_map_key, NULL);
   3624   1.2        ad #endif
   3625   1.2        ad 
   3626   1.1        ad 	/* Determine how many arenas to use. */
   3627   1.1        ad 	narenas = ncpus;
   3628   1.1        ad 	if (opt_narenas_lshift > 0) {
   3629   1.1        ad 		if ((narenas << opt_narenas_lshift) > narenas)
   3630   1.1        ad 			narenas <<= opt_narenas_lshift;
   3631   1.1        ad 		/*
   3632   1.1        ad 		 * Make sure not to exceed the limits of what base_malloc()
   3633   1.1        ad 		 * can handle.
   3634   1.1        ad 		 */
   3635   1.1        ad 		if (narenas * sizeof(arena_t *) > chunksize)
   3636   1.9  christos 			narenas = (unsigned)(chunksize / sizeof(arena_t *));
   3637   1.1        ad 	} else if (opt_narenas_lshift < 0) {
   3638   1.1        ad 		if ((narenas << opt_narenas_lshift) < narenas)
   3639   1.1        ad 			narenas <<= opt_narenas_lshift;
   3640  1.15        ad 		/* Make sure there is at least one arena. */
   3641  1.15        ad 		if (narenas == 0)
   3642  1.15        ad 			narenas = 1;
   3643   1.1        ad 	}
   3644   1.1        ad 
   3645   1.1        ad 	next_arena = 0;
   3646   1.1        ad 
   3647   1.1        ad 	/* Allocate and initialize arenas. */
   3648   1.1        ad 	arenas = (arena_t **)base_alloc(sizeof(arena_t *) * narenas);
   3649   1.1        ad 	if (arenas == NULL) {
   3650   1.1        ad 		malloc_mutex_unlock(&init_lock);
   3651   1.1        ad 		return (true);
   3652   1.1        ad 	}
   3653   1.1        ad 	/*
   3654   1.1        ad 	 * Zero the array.  In practice, this should always be pre-zeroed,
   3655   1.1        ad 	 * since it was just mmap()ed, but let's be sure.
   3656   1.1        ad 	 */
   3657   1.1        ad 	memset(arenas, 0, sizeof(arena_t *) * narenas);
   3658   1.1        ad 
   3659   1.1        ad 	/*
   3660   1.1        ad 	 * Initialize one arena here.  The rest are lazily created in
   3661   1.1        ad 	 * arena_choose_hard().
   3662   1.1        ad 	 */
   3663   1.1        ad 	arenas_extend(0);
   3664   1.1        ad 	if (arenas[0] == NULL) {
   3665   1.1        ad 		malloc_mutex_unlock(&init_lock);
   3666   1.1        ad 		return (true);
   3667   1.1        ad 	}
   3668   1.1        ad 
   3669   1.1        ad 	malloc_mutex_init(&arenas_mtx);
   3670   1.1        ad 
   3671   1.1        ad 	malloc_initialized = true;
   3672   1.1        ad 	malloc_mutex_unlock(&init_lock);
   3673   1.1        ad 	return (false);
   3674   1.1        ad }
   3675   1.1        ad 
   3676   1.1        ad /*
   3677   1.1        ad  * End general internal functions.
   3678   1.1        ad  */
   3679   1.1        ad /******************************************************************************/
   3680   1.1        ad /*
   3681   1.1        ad  * Begin malloc(3)-compatible functions.
   3682   1.1        ad  */
   3683   1.1        ad 
   3684   1.1        ad void *
   3685   1.1        ad malloc(size_t size)
   3686   1.1        ad {
   3687   1.1        ad 	void *ret;
   3688   1.1        ad 
   3689   1.1        ad 	if (malloc_init()) {
   3690   1.1        ad 		ret = NULL;
   3691   1.1        ad 		goto RETURN;
   3692   1.1        ad 	}
   3693   1.1        ad 
   3694   1.1        ad 	if (size == 0) {
   3695   1.1        ad 		if (opt_sysv == false)
   3696   1.1        ad 			size = 1;
   3697   1.1        ad 		else {
   3698   1.1        ad 			ret = NULL;
   3699   1.1        ad 			goto RETURN;
   3700   1.1        ad 		}
   3701   1.1        ad 	}
   3702   1.1        ad 
   3703   1.1        ad 	ret = imalloc(size);
   3704   1.1        ad 
   3705   1.1        ad RETURN:
   3706   1.1        ad 	if (ret == NULL) {
   3707   1.1        ad 		if (opt_xmalloc) {
   3708  1.16  christos 			_malloc_message(getprogname(),
   3709   1.1        ad 			    ": (malloc) Error in malloc(): out of memory\n", "",
   3710   1.1        ad 			    "");
   3711   1.1        ad 			abort();
   3712   1.1        ad 		}
   3713   1.1        ad 		errno = ENOMEM;
   3714   1.1        ad 	}
   3715   1.1        ad 
   3716   1.1        ad 	UTRACE(0, size, ret);
   3717   1.1        ad 	return (ret);
   3718   1.1        ad }
   3719   1.1        ad 
   3720   1.1        ad int
   3721   1.1        ad posix_memalign(void **memptr, size_t alignment, size_t size)
   3722   1.1        ad {
   3723   1.1        ad 	int ret;
   3724   1.1        ad 	void *result;
   3725   1.1        ad 
   3726   1.1        ad 	if (malloc_init())
   3727   1.1        ad 		result = NULL;
   3728   1.1        ad 	else {
   3729   1.1        ad 		/* Make sure that alignment is a large enough power of 2. */
   3730   1.1        ad 		if (((alignment - 1) & alignment) != 0
   3731   1.1        ad 		    || alignment < sizeof(void *)) {
   3732   1.1        ad 			if (opt_xmalloc) {
   3733  1.16  christos 				_malloc_message(getprogname(),
   3734   1.1        ad 				    ": (malloc) Error in posix_memalign(): "
   3735   1.1        ad 				    "invalid alignment\n", "", "");
   3736   1.1        ad 				abort();
   3737   1.1        ad 			}
   3738   1.1        ad 			result = NULL;
   3739   1.1        ad 			ret = EINVAL;
   3740   1.1        ad 			goto RETURN;
   3741   1.1        ad 		}
   3742   1.1        ad 
   3743   1.1        ad 		result = ipalloc(alignment, size);
   3744   1.1        ad 	}
   3745   1.1        ad 
   3746   1.1        ad 	if (result == NULL) {
   3747   1.1        ad 		if (opt_xmalloc) {
   3748  1.16  christos 			_malloc_message(getprogname(),
   3749   1.1        ad 			": (malloc) Error in posix_memalign(): out of memory\n",
   3750   1.1        ad 			"", "");
   3751   1.1        ad 			abort();
   3752   1.1        ad 		}
   3753   1.1        ad 		ret = ENOMEM;
   3754   1.1        ad 		goto RETURN;
   3755   1.1        ad 	}
   3756   1.1        ad 
   3757   1.1        ad 	*memptr = result;
   3758   1.1        ad 	ret = 0;
   3759   1.1        ad 
   3760   1.1        ad RETURN:
   3761   1.1        ad 	UTRACE(0, size, result);
   3762   1.1        ad 	return (ret);
   3763   1.1        ad }
   3764   1.1        ad 
   3765   1.1        ad void *
   3766   1.1        ad calloc(size_t num, size_t size)
   3767   1.1        ad {
   3768   1.1        ad 	void *ret;
   3769   1.1        ad 	size_t num_size;
   3770   1.1        ad 
   3771   1.1        ad 	if (malloc_init()) {
   3772   1.1        ad 		num_size = 0;
   3773   1.1        ad 		ret = NULL;
   3774   1.1        ad 		goto RETURN;
   3775   1.1        ad 	}
   3776   1.1        ad 
   3777   1.1        ad 	num_size = num * size;
   3778   1.1        ad 	if (num_size == 0) {
   3779   1.1        ad 		if ((opt_sysv == false) && ((num == 0) || (size == 0)))
   3780   1.1        ad 			num_size = 1;
   3781   1.1        ad 		else {
   3782   1.1        ad 			ret = NULL;
   3783   1.1        ad 			goto RETURN;
   3784   1.1        ad 		}
   3785   1.1        ad 	/*
   3786   1.1        ad 	 * Try to avoid division here.  We know that it isn't possible to
   3787   1.1        ad 	 * overflow during multiplication if neither operand uses any of the
   3788   1.1        ad 	 * most significant half of the bits in a size_t.
   3789   1.1        ad 	 */
   3790   1.2        ad 	} else if ((unsigned long long)((num | size) &
   3791   1.2        ad 	   ((unsigned long long)SIZE_T_MAX << (sizeof(size_t) << 2))) &&
   3792   1.2        ad 	   (num_size / size != num)) {
   3793   1.1        ad 		/* size_t overflow. */
   3794   1.1        ad 		ret = NULL;
   3795   1.1        ad 		goto RETURN;
   3796   1.1        ad 	}
   3797   1.1        ad 
   3798   1.1        ad 	ret = icalloc(num_size);
   3799   1.1        ad 
   3800   1.1        ad RETURN:
   3801   1.1        ad 	if (ret == NULL) {
   3802   1.1        ad 		if (opt_xmalloc) {
   3803  1.16  christos 			_malloc_message(getprogname(),
   3804   1.1        ad 			    ": (malloc) Error in calloc(): out of memory\n", "",
   3805   1.1        ad 			    "");
   3806   1.1        ad 			abort();
   3807   1.1        ad 		}
   3808   1.1        ad 		errno = ENOMEM;
   3809   1.1        ad 	}
   3810   1.1        ad 
   3811   1.1        ad 	UTRACE(0, num_size, ret);
   3812   1.1        ad 	return (ret);
   3813   1.1        ad }
   3814   1.1        ad 
   3815   1.1        ad void *
   3816   1.1        ad realloc(void *ptr, size_t size)
   3817   1.1        ad {
   3818   1.1        ad 	void *ret;
   3819   1.1        ad 
   3820   1.1        ad 	if (size == 0) {
   3821   1.1        ad 		if (opt_sysv == false)
   3822   1.1        ad 			size = 1;
   3823   1.1        ad 		else {
   3824   1.1        ad 			if (ptr != NULL)
   3825   1.1        ad 				idalloc(ptr);
   3826   1.1        ad 			ret = NULL;
   3827   1.1        ad 			goto RETURN;
   3828   1.1        ad 		}
   3829   1.1        ad 	}
   3830   1.1        ad 
   3831   1.1        ad 	if (ptr != NULL) {
   3832   1.1        ad 		assert(malloc_initialized);
   3833   1.1        ad 
   3834   1.1        ad 		ret = iralloc(ptr, size);
   3835   1.1        ad 
   3836   1.1        ad 		if (ret == NULL) {
   3837   1.1        ad 			if (opt_xmalloc) {
   3838  1.16  christos 				_malloc_message(getprogname(),
   3839   1.1        ad 				    ": (malloc) Error in realloc(): out of "
   3840   1.1        ad 				    "memory\n", "", "");
   3841   1.1        ad 				abort();
   3842   1.1        ad 			}
   3843   1.1        ad 			errno = ENOMEM;
   3844   1.1        ad 		}
   3845   1.1        ad 	} else {
   3846   1.1        ad 		if (malloc_init())
   3847   1.1        ad 			ret = NULL;
   3848   1.1        ad 		else
   3849   1.1        ad 			ret = imalloc(size);
   3850   1.1        ad 
   3851   1.1        ad 		if (ret == NULL) {
   3852   1.1        ad 			if (opt_xmalloc) {
   3853  1.16  christos 				_malloc_message(getprogname(),
   3854   1.1        ad 				    ": (malloc) Error in realloc(): out of "
   3855   1.1        ad 				    "memory\n", "", "");
   3856   1.1        ad 				abort();
   3857   1.1        ad 			}
   3858   1.1        ad 			errno = ENOMEM;
   3859   1.1        ad 		}
   3860   1.1        ad 	}
   3861   1.1        ad 
   3862   1.1        ad RETURN:
   3863   1.1        ad 	UTRACE(ptr, size, ret);
   3864   1.1        ad 	return (ret);
   3865   1.1        ad }
   3866   1.1        ad 
   3867   1.1        ad void
   3868   1.1        ad free(void *ptr)
   3869   1.1        ad {
   3870   1.1        ad 
   3871   1.1        ad 	UTRACE(ptr, 0, 0);
   3872   1.1        ad 	if (ptr != NULL) {
   3873   1.1        ad 		assert(malloc_initialized);
   3874   1.1        ad 
   3875   1.1        ad 		idalloc(ptr);
   3876   1.1        ad 	}
   3877   1.1        ad }
   3878   1.1        ad 
   3879   1.1        ad /*
   3880   1.1        ad  * End malloc(3)-compatible functions.
   3881   1.1        ad  */
   3882   1.1        ad /******************************************************************************/
   3883   1.1        ad /*
   3884   1.1        ad  * Begin non-standard functions.
   3885   1.1        ad  */
   3886   1.2        ad #ifndef __NetBSD__
   3887   1.1        ad size_t
   3888   1.1        ad malloc_usable_size(const void *ptr)
   3889   1.1        ad {
   3890   1.1        ad 
   3891   1.1        ad 	assert(ptr != NULL);
   3892   1.1        ad 
   3893   1.1        ad 	return (isalloc(ptr));
   3894   1.1        ad }
   3895   1.2        ad #endif
   3896   1.1        ad 
   3897   1.1        ad /*
   3898   1.1        ad  * End non-standard functions.
   3899   1.1        ad  */
   3900   1.1        ad /******************************************************************************/
   3901   1.1        ad /*
   3902   1.1        ad  * Begin library-private functions, used by threading libraries for protection
   3903   1.1        ad  * of malloc during fork().  These functions are only called if the program is
   3904   1.1        ad  * running in threaded mode, so there is no need to check whether the program
   3905   1.1        ad  * is threaded here.
   3906   1.1        ad  */
   3907   1.1        ad 
   3908   1.1        ad void
   3909   1.1        ad _malloc_prefork(void)
   3910   1.1        ad {
   3911   1.1        ad 	unsigned i;
   3912   1.1        ad 
   3913   1.1        ad 	/* Acquire all mutexes in a safe order. */
   3914   1.1        ad 
   3915   1.1        ad 	malloc_mutex_lock(&arenas_mtx);
   3916   1.1        ad 	for (i = 0; i < narenas; i++) {
   3917   1.1        ad 		if (arenas[i] != NULL)
   3918   1.1        ad 			malloc_mutex_lock(&arenas[i]->mtx);
   3919   1.1        ad 	}
   3920   1.1        ad 	malloc_mutex_unlock(&arenas_mtx);
   3921   1.1        ad 
   3922   1.1        ad 	malloc_mutex_lock(&base_mtx);
   3923   1.1        ad 
   3924   1.1        ad 	malloc_mutex_lock(&chunks_mtx);
   3925   1.1        ad }
   3926   1.1        ad 
   3927   1.1        ad void
   3928   1.1        ad _malloc_postfork(void)
   3929   1.1        ad {
   3930   1.1        ad 	unsigned i;
   3931   1.1        ad 
   3932   1.1        ad 	/* Release all mutexes, now that fork() has completed. */
   3933   1.1        ad 
   3934   1.1        ad 	malloc_mutex_unlock(&chunks_mtx);
   3935   1.1        ad 
   3936   1.1        ad 	malloc_mutex_unlock(&base_mtx);
   3937   1.1        ad 
   3938   1.1        ad 	malloc_mutex_lock(&arenas_mtx);
   3939   1.1        ad 	for (i = 0; i < narenas; i++) {
   3940   1.1        ad 		if (arenas[i] != NULL)
   3941   1.1        ad 			malloc_mutex_unlock(&arenas[i]->mtx);
   3942   1.1        ad 	}
   3943   1.1        ad 	malloc_mutex_unlock(&arenas_mtx);
   3944   1.1        ad }
   3945   1.1        ad 
   3946   1.1        ad /*
   3947   1.1        ad  * End library-private functions.
   3948   1.1        ad  */
   3949   1.1        ad /******************************************************************************/
   3950