Home | History | Annotate | Line # | Download | only in stdlib
jemalloc.c revision 1.41
      1  1.41  christos /*	$NetBSD: jemalloc.c,v 1.41 2017/05/19 19:51:10 christos Exp $	*/
      2   1.2        ad 
      3   1.1        ad /*-
      4   1.1        ad  * Copyright (C) 2006,2007 Jason Evans <jasone (at) FreeBSD.org>.
      5   1.1        ad  * All rights reserved.
      6   1.1        ad  *
      7   1.1        ad  * Redistribution and use in source and binary forms, with or without
      8   1.1        ad  * modification, are permitted provided that the following conditions
      9   1.1        ad  * are met:
     10   1.1        ad  * 1. Redistributions of source code must retain the above copyright
     11   1.1        ad  *    notice(s), this list of conditions and the following disclaimer as
     12   1.1        ad  *    the first lines of this file unmodified other than the possible
     13   1.1        ad  *    addition of one or more copyright notices.
     14   1.1        ad  * 2. Redistributions in binary form must reproduce the above copyright
     15   1.1        ad  *    notice(s), this list of conditions and the following disclaimer in
     16   1.1        ad  *    the documentation and/or other materials provided with the
     17   1.1        ad  *    distribution.
     18   1.1        ad  *
     19   1.1        ad  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY
     20   1.1        ad  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21   1.1        ad  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22   1.1        ad  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE
     23   1.1        ad  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24   1.1        ad  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25   1.1        ad  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
     26   1.1        ad  * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
     27   1.1        ad  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
     28   1.1        ad  * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
     29   1.1        ad  * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     30   1.1        ad  *
     31   1.1        ad  *******************************************************************************
     32   1.1        ad  *
     33   1.1        ad  * This allocator implementation is designed to provide scalable performance
     34   1.1        ad  * for multi-threaded programs on multi-processor systems.  The following
     35   1.1        ad  * features are included for this purpose:
     36   1.1        ad  *
     37   1.1        ad  *   + Multiple arenas are used if there are multiple CPUs, which reduces lock
     38   1.1        ad  *     contention and cache sloshing.
     39   1.1        ad  *
     40   1.1        ad  *   + Cache line sharing between arenas is avoided for internal data
     41   1.1        ad  *     structures.
     42   1.1        ad  *
     43   1.1        ad  *   + Memory is managed in chunks and runs (chunks can be split into runs),
     44   1.1        ad  *     rather than as individual pages.  This provides a constant-time
     45   1.1        ad  *     mechanism for associating allocations with particular arenas.
     46   1.1        ad  *
     47   1.1        ad  * Allocation requests are rounded up to the nearest size class, and no record
     48   1.1        ad  * of the original request size is maintained.  Allocations are broken into
     49   1.1        ad  * categories according to size class.  Assuming runtime defaults, 4 kB pages
     50   1.1        ad  * and a 16 byte quantum, the size classes in each category are as follows:
     51   1.1        ad  *
     52   1.1        ad  *   |=====================================|
     53   1.1        ad  *   | Category | Subcategory    |    Size |
     54   1.1        ad  *   |=====================================|
     55   1.1        ad  *   | Small    | Tiny           |       2 |
     56   1.1        ad  *   |          |                |       4 |
     57   1.1        ad  *   |          |                |       8 |
     58   1.1        ad  *   |          |----------------+---------|
     59   1.1        ad  *   |          | Quantum-spaced |      16 |
     60   1.1        ad  *   |          |                |      32 |
     61   1.1        ad  *   |          |                |      48 |
     62   1.1        ad  *   |          |                |     ... |
     63   1.1        ad  *   |          |                |     480 |
     64   1.1        ad  *   |          |                |     496 |
     65   1.1        ad  *   |          |                |     512 |
     66   1.1        ad  *   |          |----------------+---------|
     67   1.1        ad  *   |          | Sub-page       |    1 kB |
     68   1.1        ad  *   |          |                |    2 kB |
     69   1.1        ad  *   |=====================================|
     70   1.1        ad  *   | Large                     |    4 kB |
     71   1.1        ad  *   |                           |    8 kB |
     72   1.1        ad  *   |                           |   12 kB |
     73   1.1        ad  *   |                           |     ... |
     74   1.1        ad  *   |                           | 1012 kB |
     75   1.1        ad  *   |                           | 1016 kB |
     76   1.1        ad  *   |                           | 1020 kB |
     77   1.1        ad  *   |=====================================|
     78   1.1        ad  *   | Huge                      |    1 MB |
     79   1.1        ad  *   |                           |    2 MB |
     80   1.1        ad  *   |                           |    3 MB |
     81   1.1        ad  *   |                           |     ... |
     82   1.1        ad  *   |=====================================|
     83   1.1        ad  *
     84   1.1        ad  * A different mechanism is used for each category:
     85   1.1        ad  *
     86   1.1        ad  *   Small : Each size class is segregated into its own set of runs.  Each run
     87   1.1        ad  *           maintains a bitmap of which regions are free/allocated.
     88   1.1        ad  *
     89   1.1        ad  *   Large : Each allocation is backed by a dedicated run.  Metadata are stored
     90   1.1        ad  *           in the associated arena chunk header maps.
     91   1.1        ad  *
     92   1.1        ad  *   Huge : Each allocation is backed by a dedicated contiguous set of chunks.
     93   1.1        ad  *          Metadata are stored in a separate red-black tree.
     94   1.1        ad  *
     95   1.1        ad  *******************************************************************************
     96   1.1        ad  */
     97   1.1        ad 
     98   1.2        ad /* LINTLIBRARY */
     99   1.2        ad 
    100   1.2        ad #ifdef __NetBSD__
    101   1.2        ad #  define xutrace(a, b)		utrace("malloc", (a), (b))
    102   1.2        ad #  define __DECONST(x, y)	((x)__UNCONST(y))
    103   1.2        ad #  define NO_TLS
    104   1.2        ad #else
    105   1.2        ad #  define xutrace(a, b)		utrace((a), (b))
    106   1.2        ad #endif	/* __NetBSD__ */
    107   1.2        ad 
    108   1.1        ad /*
    109   1.1        ad  * MALLOC_PRODUCTION disables assertions and statistics gathering.  It also
    110   1.1        ad  * defaults the A and J runtime options to off.  These settings are appropriate
    111   1.1        ad  * for production systems.
    112   1.1        ad  */
    113   1.2        ad #define MALLOC_PRODUCTION
    114   1.1        ad 
    115   1.1        ad #ifndef MALLOC_PRODUCTION
    116   1.1        ad #  define MALLOC_DEBUG
    117   1.1        ad #endif
    118   1.1        ad 
    119   1.1        ad #include <sys/cdefs.h>
    120   1.2        ad /* __FBSDID("$FreeBSD: src/lib/libc/stdlib/malloc.c,v 1.147 2007/06/15 22:00:16 jasone Exp $"); */
    121  1.41  christos __RCSID("$NetBSD: jemalloc.c,v 1.41 2017/05/19 19:51:10 christos Exp $");
    122   1.1        ad 
    123   1.2        ad #ifdef __FreeBSD__
    124   1.1        ad #include "libc_private.h"
    125   1.1        ad #ifdef MALLOC_DEBUG
    126   1.1        ad #  define _LOCK_DEBUG
    127   1.1        ad #endif
    128   1.1        ad #include "spinlock.h"
    129   1.2        ad #endif
    130   1.1        ad #include "namespace.h"
    131   1.1        ad #include <sys/mman.h>
    132   1.1        ad #include <sys/param.h>
    133   1.2        ad #ifdef __FreeBSD__
    134   1.1        ad #include <sys/stddef.h>
    135   1.2        ad #endif
    136   1.1        ad #include <sys/time.h>
    137   1.1        ad #include <sys/types.h>
    138   1.1        ad #include <sys/sysctl.h>
    139   1.1        ad #include <sys/tree.h>
    140   1.1        ad #include <sys/uio.h>
    141   1.1        ad #include <sys/ktrace.h> /* Must come after several other sys/ includes. */
    142   1.1        ad 
    143   1.2        ad #ifdef __FreeBSD__
    144   1.1        ad #include <machine/atomic.h>
    145   1.1        ad #include <machine/cpufunc.h>
    146  1.39  christos #include <machine/vmparam.h>
    147   1.2        ad #endif
    148   1.1        ad 
    149   1.1        ad #include <errno.h>
    150   1.1        ad #include <limits.h>
    151   1.1        ad #include <pthread.h>
    152   1.1        ad #include <sched.h>
    153   1.1        ad #include <stdarg.h>
    154   1.1        ad #include <stdbool.h>
    155   1.1        ad #include <stdio.h>
    156   1.1        ad #include <stdint.h>
    157   1.1        ad #include <stdlib.h>
    158   1.1        ad #include <string.h>
    159   1.1        ad #include <strings.h>
    160   1.1        ad #include <unistd.h>
    161   1.1        ad 
    162   1.2        ad #ifdef __NetBSD__
    163   1.2        ad #  include <reentrant.h>
    164  1.16  christos #  include "extern.h"
    165  1.41  christos __strong_alias(__libc_malloc,malloc)
    166  1.41  christos __strong_alias(__libc_realloc,realloc)
    167  1.41  christos __strong_alias(__libc_calloc,calloc)
    168  1.41  christos __strong_alias(__libc_free,free)
    169  1.16  christos 
    170  1.41  christos #define STRERROR_R(a, b, c)	strerror_r_ss(a, b, c);
    171   1.2        ad #endif
    172   1.2        ad 
    173   1.2        ad #ifdef __FreeBSD__
    174  1.16  christos #define STRERROR_R(a, b, c)	strerror_r(a, b, c);
    175   1.1        ad #include "un-namespace.h"
    176   1.2        ad #endif
    177   1.1        ad 
    178   1.1        ad /* MALLOC_STATS enables statistics calculation. */
    179   1.1        ad #ifndef MALLOC_PRODUCTION
    180   1.1        ad #  define MALLOC_STATS
    181   1.1        ad #endif
    182   1.1        ad 
    183   1.1        ad #ifdef MALLOC_DEBUG
    184   1.1        ad #  ifdef NDEBUG
    185   1.1        ad #    undef NDEBUG
    186   1.1        ad #  endif
    187   1.1        ad #else
    188   1.1        ad #  ifndef NDEBUG
    189   1.1        ad #    define NDEBUG
    190   1.1        ad #  endif
    191   1.1        ad #endif
    192   1.1        ad #include <assert.h>
    193   1.1        ad 
    194   1.1        ad #ifdef MALLOC_DEBUG
    195   1.1        ad    /* Disable inlining to make debugging easier. */
    196   1.1        ad #  define inline
    197   1.1        ad #endif
    198   1.1        ad 
    199   1.1        ad /* Size of stack-allocated buffer passed to strerror_r(). */
    200   1.1        ad #define	STRERROR_BUF		64
    201   1.1        ad 
    202   1.1        ad /* Minimum alignment of allocations is 2^QUANTUM_2POW_MIN bytes. */
    203  1.31    martin 
    204  1.31    martin /*
    205  1.31    martin  * If you touch the TINY_MIN_2POW definition for any architecture, please
    206  1.31    martin  * make sure to adjust the corresponding definition for JEMALLOC_TINY_MIN_2POW
    207  1.31    martin  * in the gcc 4.8 tree in dist/gcc/tree-ssa-ccp.c and verify that a native
    208  1.31    martin  * gcc is still buildable!
    209  1.31    martin  */
    210  1.31    martin 
    211   1.1        ad #ifdef __i386__
    212   1.1        ad #  define QUANTUM_2POW_MIN	4
    213   1.1        ad #  define SIZEOF_PTR_2POW	2
    214   1.1        ad #  define USE_BRK
    215   1.1        ad #endif
    216   1.1        ad #ifdef __ia64__
    217   1.1        ad #  define QUANTUM_2POW_MIN	4
    218   1.1        ad #  define SIZEOF_PTR_2POW	3
    219   1.1        ad #endif
    220  1.34      matt #ifdef __aarch64__
    221  1.34      matt #  define QUANTUM_2POW_MIN	4
    222  1.34      matt #  define SIZEOF_PTR_2POW	3
    223  1.34      matt #  define NO_TLS
    224  1.34      matt #endif
    225   1.1        ad #ifdef __alpha__
    226   1.1        ad #  define QUANTUM_2POW_MIN	4
    227   1.1        ad #  define SIZEOF_PTR_2POW	3
    228  1.30     skrll #  define TINY_MIN_2POW		3
    229   1.1        ad #  define NO_TLS
    230   1.1        ad #endif
    231   1.1        ad #ifdef __sparc64__
    232   1.1        ad #  define QUANTUM_2POW_MIN	4
    233   1.1        ad #  define SIZEOF_PTR_2POW	3
    234  1.31    martin #  define TINY_MIN_2POW		3
    235   1.1        ad #  define NO_TLS
    236   1.1        ad #endif
    237   1.1        ad #ifdef __amd64__
    238   1.1        ad #  define QUANTUM_2POW_MIN	4
    239   1.1        ad #  define SIZEOF_PTR_2POW	3
    240  1.31    martin #  define TINY_MIN_2POW		3
    241   1.1        ad #endif
    242   1.1        ad #ifdef __arm__
    243   1.1        ad #  define QUANTUM_2POW_MIN	3
    244   1.1        ad #  define SIZEOF_PTR_2POW	2
    245   1.1        ad #  define USE_BRK
    246  1.30     skrll #  ifdef __ARM_EABI__
    247  1.30     skrll #    define TINY_MIN_2POW	3
    248  1.30     skrll #  endif
    249   1.1        ad #  define NO_TLS
    250   1.1        ad #endif
    251   1.1        ad #ifdef __powerpc__
    252   1.1        ad #  define QUANTUM_2POW_MIN	4
    253   1.1        ad #  define SIZEOF_PTR_2POW	2
    254   1.1        ad #  define USE_BRK
    255  1.32    martin #  define TINY_MIN_2POW		3
    256   1.1        ad #endif
    257   1.3        he #if defined(__sparc__) && !defined(__sparc64__)
    258   1.2        ad #  define QUANTUM_2POW_MIN	4
    259   1.2        ad #  define SIZEOF_PTR_2POW	2
    260   1.2        ad #  define USE_BRK
    261   1.2        ad #endif
    262  1.35      matt #ifdef __or1k__
    263  1.35      matt #  define QUANTUM_2POW_MIN	4
    264  1.35      matt #  define SIZEOF_PTR_2POW	2
    265  1.35      matt #  define USE_BRK
    266  1.35      matt #endif
    267   1.2        ad #ifdef __vax__
    268   1.2        ad #  define QUANTUM_2POW_MIN	4
    269   1.2        ad #  define SIZEOF_PTR_2POW	2
    270   1.2        ad #  define USE_BRK
    271   1.2        ad #endif
    272   1.2        ad #ifdef __sh__
    273   1.2        ad #  define QUANTUM_2POW_MIN	4
    274   1.2        ad #  define SIZEOF_PTR_2POW	2
    275   1.2        ad #  define USE_BRK
    276   1.2        ad #endif
    277   1.2        ad #ifdef __m68k__
    278   1.2        ad #  define QUANTUM_2POW_MIN	4
    279   1.2        ad #  define SIZEOF_PTR_2POW	2
    280   1.2        ad #  define USE_BRK
    281   1.2        ad #endif
    282  1.36      matt #if defined(__mips__) || defined(__riscv__)
    283  1.36      matt # ifdef _LP64
    284  1.36      matt #  define SIZEOF_PTR_2POW	3
    285  1.36      matt #  define TINY_MIN_2POW		3
    286  1.36      matt # else
    287   1.2        ad #  define SIZEOF_PTR_2POW	2
    288  1.36      matt # endif
    289  1.36      matt # define QUANTUM_2POW_MIN	4
    290  1.36      matt # define USE_BRK
    291   1.2        ad #endif
    292   1.4        ad #ifdef __hppa__
    293   1.4        ad #  define QUANTUM_2POW_MIN     4
    294   1.4        ad #  define SIZEOF_PTR_2POW      2
    295   1.4        ad #  define USE_BRK
    296   1.4        ad #endif
    297   1.1        ad 
    298   1.1        ad #define	SIZEOF_PTR		(1 << SIZEOF_PTR_2POW)
    299   1.1        ad 
    300   1.1        ad /* sizeof(int) == (1 << SIZEOF_INT_2POW). */
    301   1.1        ad #ifndef SIZEOF_INT_2POW
    302   1.1        ad #  define SIZEOF_INT_2POW	2
    303   1.1        ad #endif
    304   1.1        ad 
    305   1.1        ad /*
    306   1.1        ad  * Size and alignment of memory chunks that are allocated by the OS's virtual
    307   1.1        ad  * memory system.
    308   1.1        ad  */
    309   1.1        ad #define	CHUNK_2POW_DEFAULT	20
    310   1.1        ad 
    311   1.1        ad /*
    312   1.1        ad  * Maximum size of L1 cache line.  This is used to avoid cache line aliasing,
    313   1.1        ad  * so over-estimates are okay (up to a point), but under-estimates will
    314   1.1        ad  * negatively affect performance.
    315   1.1        ad  */
    316   1.1        ad #define	CACHELINE_2POW		6
    317   1.1        ad #define	CACHELINE		((size_t)(1 << CACHELINE_2POW))
    318   1.1        ad 
    319   1.1        ad /* Smallest size class to support. */
    320  1.30     skrll #ifndef TINY_MIN_2POW
    321  1.30     skrll #define	TINY_MIN_2POW		2
    322  1.30     skrll #endif
    323   1.1        ad 
    324   1.1        ad /*
    325   1.1        ad  * Maximum size class that is a multiple of the quantum, but not (necessarily)
    326   1.1        ad  * a power of 2.  Above this size, allocations are rounded up to the nearest
    327   1.1        ad  * power of 2.
    328   1.1        ad  */
    329   1.1        ad #define	SMALL_MAX_2POW_DEFAULT	9
    330   1.1        ad #define	SMALL_MAX_DEFAULT	(1 << SMALL_MAX_2POW_DEFAULT)
    331   1.1        ad 
    332   1.1        ad /*
    333  1.22     njoly  * RUN_MAX_OVRHD indicates maximum desired run header overhead.  Runs are sized
    334  1.22     njoly  * as small as possible such that this setting is still honored, without
    335  1.22     njoly  * violating other constraints.  The goal is to make runs as small as possible
    336  1.22     njoly  * without exceeding a per run external fragmentation threshold.
    337   1.1        ad  *
    338  1.22     njoly  * We use binary fixed point math for overhead computations, where the binary
    339  1.22     njoly  * point is implicitly RUN_BFP bits to the left.
    340   1.1        ad  *
    341  1.22     njoly  * Note that it is possible to set RUN_MAX_OVRHD low enough that it cannot be
    342  1.22     njoly  * honored for some/all object sizes, since there is one bit of header overhead
    343  1.22     njoly  * per object (plus a constant).  This constraint is relaxed (ignored) for runs
    344  1.22     njoly  * that are so small that the per-region overhead is greater than:
    345  1.22     njoly  *
    346  1.22     njoly  *   (RUN_MAX_OVRHD / (reg_size << (3+RUN_BFP))
    347   1.1        ad  */
    348  1.22     njoly #define RUN_BFP			12
    349  1.22     njoly /*                              \/   Implicit binary fixed point. */
    350  1.22     njoly #define RUN_MAX_OVRHD		0x0000003dU
    351  1.22     njoly #define RUN_MAX_OVRHD_RELAX	0x00001800U
    352   1.1        ad 
    353   1.1        ad /* Put a cap on small object run size.  This overrides RUN_MAX_OVRHD. */
    354   1.1        ad #define RUN_MAX_SMALL_2POW	15
    355   1.1        ad #define RUN_MAX_SMALL		(1 << RUN_MAX_SMALL_2POW)
    356   1.1        ad 
    357   1.1        ad /******************************************************************************/
    358   1.1        ad 
    359   1.2        ad #ifdef __FreeBSD__
    360   1.1        ad /*
    361   1.1        ad  * Mutexes based on spinlocks.  We can't use normal pthread mutexes, because
    362   1.1        ad  * they require malloc()ed memory.
    363   1.1        ad  */
    364   1.1        ad typedef struct {
    365   1.1        ad 	spinlock_t	lock;
    366   1.1        ad } malloc_mutex_t;
    367   1.1        ad 
    368   1.1        ad /* Set to true once the allocator has been initialized. */
    369   1.1        ad static bool malloc_initialized = false;
    370   1.1        ad 
    371   1.1        ad /* Used to avoid initialization races. */
    372   1.1        ad static malloc_mutex_t init_lock = {_SPINLOCK_INITIALIZER};
    373   1.2        ad #else
    374   1.2        ad #define	malloc_mutex_t	mutex_t
    375   1.2        ad 
    376   1.2        ad /* Set to true once the allocator has been initialized. */
    377   1.2        ad static bool malloc_initialized = false;
    378   1.2        ad 
    379  1.37  christos #ifdef _REENTRANT
    380   1.2        ad /* Used to avoid initialization races. */
    381   1.2        ad static mutex_t init_lock = MUTEX_INITIALIZER;
    382   1.2        ad #endif
    383  1.37  christos #endif
    384   1.1        ad 
    385   1.1        ad /******************************************************************************/
    386   1.1        ad /*
    387   1.1        ad  * Statistics data structures.
    388   1.1        ad  */
    389   1.1        ad 
    390   1.1        ad #ifdef MALLOC_STATS
    391   1.1        ad 
    392   1.1        ad typedef struct malloc_bin_stats_s malloc_bin_stats_t;
    393   1.1        ad struct malloc_bin_stats_s {
    394   1.1        ad 	/*
    395   1.1        ad 	 * Number of allocation requests that corresponded to the size of this
    396   1.1        ad 	 * bin.
    397   1.1        ad 	 */
    398   1.1        ad 	uint64_t	nrequests;
    399   1.1        ad 
    400   1.1        ad 	/* Total number of runs created for this bin's size class. */
    401   1.1        ad 	uint64_t	nruns;
    402   1.1        ad 
    403   1.1        ad 	/*
    404   1.1        ad 	 * Total number of runs reused by extracting them from the runs tree for
    405   1.1        ad 	 * this bin's size class.
    406   1.1        ad 	 */
    407   1.1        ad 	uint64_t	reruns;
    408   1.1        ad 
    409   1.1        ad 	/* High-water mark for this bin. */
    410   1.1        ad 	unsigned long	highruns;
    411   1.1        ad 
    412   1.1        ad 	/* Current number of runs in this bin. */
    413   1.1        ad 	unsigned long	curruns;
    414   1.1        ad };
    415   1.1        ad 
    416   1.1        ad typedef struct arena_stats_s arena_stats_t;
    417   1.1        ad struct arena_stats_s {
    418   1.1        ad 	/* Number of bytes currently mapped. */
    419   1.1        ad 	size_t		mapped;
    420   1.1        ad 
    421   1.1        ad 	/* Per-size-category statistics. */
    422   1.1        ad 	size_t		allocated_small;
    423   1.1        ad 	uint64_t	nmalloc_small;
    424   1.1        ad 	uint64_t	ndalloc_small;
    425   1.1        ad 
    426   1.1        ad 	size_t		allocated_large;
    427   1.1        ad 	uint64_t	nmalloc_large;
    428   1.1        ad 	uint64_t	ndalloc_large;
    429   1.1        ad };
    430   1.1        ad 
    431   1.1        ad typedef struct chunk_stats_s chunk_stats_t;
    432   1.1        ad struct chunk_stats_s {
    433   1.1        ad 	/* Number of chunks that were allocated. */
    434   1.1        ad 	uint64_t	nchunks;
    435   1.1        ad 
    436   1.1        ad 	/* High-water mark for number of chunks allocated. */
    437   1.1        ad 	unsigned long	highchunks;
    438   1.1        ad 
    439   1.1        ad 	/*
    440   1.1        ad 	 * Current number of chunks allocated.  This value isn't maintained for
    441   1.1        ad 	 * any other purpose, so keep track of it in order to be able to set
    442   1.1        ad 	 * highchunks.
    443   1.1        ad 	 */
    444   1.1        ad 	unsigned long	curchunks;
    445   1.1        ad };
    446   1.1        ad 
    447   1.1        ad #endif /* #ifdef MALLOC_STATS */
    448   1.1        ad 
    449   1.1        ad /******************************************************************************/
    450   1.1        ad /*
    451   1.1        ad  * Chunk data structures.
    452   1.1        ad  */
    453   1.1        ad 
    454   1.1        ad /* Tree of chunks. */
    455   1.1        ad typedef struct chunk_node_s chunk_node_t;
    456   1.1        ad struct chunk_node_s {
    457   1.1        ad 	/* Linkage for the chunk tree. */
    458   1.1        ad 	RB_ENTRY(chunk_node_s) link;
    459   1.1        ad 
    460   1.1        ad 	/*
    461   1.1        ad 	 * Pointer to the chunk that this tree node is responsible for.  In some
    462   1.1        ad 	 * (but certainly not all) cases, this data structure is placed at the
    463   1.1        ad 	 * beginning of the corresponding chunk, so this field may point to this
    464   1.1        ad 	 * node.
    465   1.1        ad 	 */
    466   1.1        ad 	void	*chunk;
    467   1.1        ad 
    468   1.1        ad 	/* Total chunk size. */
    469   1.1        ad 	size_t	size;
    470   1.1        ad };
    471   1.1        ad typedef struct chunk_tree_s chunk_tree_t;
    472   1.1        ad RB_HEAD(chunk_tree_s, chunk_node_s);
    473   1.1        ad 
    474   1.1        ad /******************************************************************************/
    475   1.1        ad /*
    476   1.1        ad  * Arena data structures.
    477   1.1        ad  */
    478   1.1        ad 
    479   1.1        ad typedef struct arena_s arena_t;
    480   1.1        ad typedef struct arena_bin_s arena_bin_t;
    481   1.1        ad 
    482   1.1        ad typedef struct arena_chunk_map_s arena_chunk_map_t;
    483   1.1        ad struct arena_chunk_map_s {
    484   1.1        ad 	/* Number of pages in run. */
    485   1.1        ad 	uint32_t	npages;
    486   1.1        ad 	/*
    487   1.1        ad 	 * Position within run.  For a free run, this is POS_FREE for the first
    488   1.1        ad 	 * and last pages.  The POS_FREE special value makes it possible to
    489   1.1        ad 	 * quickly coalesce free runs.
    490   1.1        ad 	 *
    491   1.1        ad 	 * This is the limiting factor for chunksize; there can be at most 2^31
    492   1.1        ad 	 * pages in a run.
    493   1.1        ad 	 */
    494   1.1        ad #define POS_FREE ((uint32_t)0xffffffffU)
    495   1.1        ad 	uint32_t	pos;
    496   1.1        ad };
    497   1.1        ad 
    498   1.1        ad /* Arena chunk header. */
    499   1.1        ad typedef struct arena_chunk_s arena_chunk_t;
    500   1.1        ad struct arena_chunk_s {
    501   1.1        ad 	/* Arena that owns the chunk. */
    502   1.1        ad 	arena_t *arena;
    503   1.1        ad 
    504   1.1        ad 	/* Linkage for the arena's chunk tree. */
    505   1.1        ad 	RB_ENTRY(arena_chunk_s) link;
    506   1.1        ad 
    507   1.1        ad 	/*
    508   1.1        ad 	 * Number of pages in use.  This is maintained in order to make
    509   1.1        ad 	 * detection of empty chunks fast.
    510   1.1        ad 	 */
    511   1.1        ad 	uint32_t pages_used;
    512   1.1        ad 
    513   1.1        ad 	/*
    514   1.1        ad 	 * Every time a free run larger than this value is created/coalesced,
    515   1.1        ad 	 * this value is increased.  The only way that the value decreases is if
    516   1.1        ad 	 * arena_run_alloc() fails to find a free run as large as advertised by
    517   1.1        ad 	 * this value.
    518   1.1        ad 	 */
    519   1.1        ad 	uint32_t max_frun_npages;
    520   1.1        ad 
    521   1.1        ad 	/*
    522   1.1        ad 	 * Every time a free run that starts at an earlier page than this value
    523   1.1        ad 	 * is created/coalesced, this value is decreased.  It is reset in a
    524   1.1        ad 	 * similar fashion to max_frun_npages.
    525   1.1        ad 	 */
    526   1.1        ad 	uint32_t min_frun_ind;
    527   1.1        ad 
    528   1.1        ad 	/*
    529   1.1        ad 	 * Map of pages within chunk that keeps track of free/large/small.  For
    530   1.1        ad 	 * free runs, only the map entries for the first and last pages are
    531   1.1        ad 	 * kept up to date, so that free runs can be quickly coalesced.
    532   1.1        ad 	 */
    533   1.1        ad 	arena_chunk_map_t map[1]; /* Dynamically sized. */
    534   1.1        ad };
    535   1.1        ad typedef struct arena_chunk_tree_s arena_chunk_tree_t;
    536   1.1        ad RB_HEAD(arena_chunk_tree_s, arena_chunk_s);
    537   1.1        ad 
    538   1.1        ad typedef struct arena_run_s arena_run_t;
    539   1.1        ad struct arena_run_s {
    540   1.1        ad 	/* Linkage for run trees. */
    541   1.1        ad 	RB_ENTRY(arena_run_s) link;
    542   1.1        ad 
    543   1.1        ad #ifdef MALLOC_DEBUG
    544   1.1        ad 	uint32_t	magic;
    545   1.1        ad #  define ARENA_RUN_MAGIC 0x384adf93
    546   1.1        ad #endif
    547   1.1        ad 
    548   1.1        ad 	/* Bin this run is associated with. */
    549   1.1        ad 	arena_bin_t	*bin;
    550   1.1        ad 
    551   1.1        ad 	/* Index of first element that might have a free region. */
    552   1.1        ad 	unsigned	regs_minelm;
    553   1.1        ad 
    554   1.1        ad 	/* Number of free regions in run. */
    555   1.1        ad 	unsigned	nfree;
    556   1.1        ad 
    557   1.1        ad 	/* Bitmask of in-use regions (0: in use, 1: free). */
    558   1.1        ad 	unsigned	regs_mask[1]; /* Dynamically sized. */
    559   1.1        ad };
    560   1.1        ad typedef struct arena_run_tree_s arena_run_tree_t;
    561   1.1        ad RB_HEAD(arena_run_tree_s, arena_run_s);
    562   1.1        ad 
    563   1.1        ad struct arena_bin_s {
    564   1.1        ad 	/*
    565   1.1        ad 	 * Current run being used to service allocations of this bin's size
    566   1.1        ad 	 * class.
    567   1.1        ad 	 */
    568   1.1        ad 	arena_run_t	*runcur;
    569   1.1        ad 
    570   1.1        ad 	/*
    571   1.1        ad 	 * Tree of non-full runs.  This tree is used when looking for an
    572   1.1        ad 	 * existing run when runcur is no longer usable.  We choose the
    573   1.1        ad 	 * non-full run that is lowest in memory; this policy tends to keep
    574   1.1        ad 	 * objects packed well, and it can also help reduce the number of
    575   1.1        ad 	 * almost-empty chunks.
    576   1.1        ad 	 */
    577   1.1        ad 	arena_run_tree_t runs;
    578   1.1        ad 
    579   1.1        ad 	/* Size of regions in a run for this bin's size class. */
    580   1.1        ad 	size_t		reg_size;
    581   1.1        ad 
    582   1.1        ad 	/* Total size of a run for this bin's size class. */
    583   1.1        ad 	size_t		run_size;
    584   1.1        ad 
    585   1.1        ad 	/* Total number of regions in a run for this bin's size class. */
    586   1.1        ad 	uint32_t	nregs;
    587   1.1        ad 
    588   1.1        ad 	/* Number of elements in a run's regs_mask for this bin's size class. */
    589   1.1        ad 	uint32_t	regs_mask_nelms;
    590   1.1        ad 
    591   1.1        ad 	/* Offset of first region in a run for this bin's size class. */
    592   1.1        ad 	uint32_t	reg0_offset;
    593   1.1        ad 
    594   1.1        ad #ifdef MALLOC_STATS
    595   1.1        ad 	/* Bin statistics. */
    596   1.1        ad 	malloc_bin_stats_t stats;
    597   1.1        ad #endif
    598   1.1        ad };
    599   1.1        ad 
    600   1.1        ad struct arena_s {
    601   1.1        ad #ifdef MALLOC_DEBUG
    602   1.1        ad 	uint32_t		magic;
    603   1.1        ad #  define ARENA_MAGIC 0x947d3d24
    604   1.1        ad #endif
    605   1.1        ad 
    606   1.1        ad 	/* All operations on this arena require that mtx be locked. */
    607   1.1        ad 	malloc_mutex_t		mtx;
    608   1.1        ad 
    609   1.1        ad #ifdef MALLOC_STATS
    610   1.1        ad 	arena_stats_t		stats;
    611   1.1        ad #endif
    612   1.1        ad 
    613   1.1        ad 	/*
    614   1.1        ad 	 * Tree of chunks this arena manages.
    615   1.1        ad 	 */
    616   1.1        ad 	arena_chunk_tree_t	chunks;
    617   1.1        ad 
    618   1.1        ad 	/*
    619   1.1        ad 	 * In order to avoid rapid chunk allocation/deallocation when an arena
    620   1.1        ad 	 * oscillates right on the cusp of needing a new chunk, cache the most
    621   1.1        ad 	 * recently freed chunk.  This caching is disabled by opt_hint.
    622   1.1        ad 	 *
    623   1.1        ad 	 * There is one spare chunk per arena, rather than one spare total, in
    624   1.1        ad 	 * order to avoid interactions between multiple threads that could make
    625   1.1        ad 	 * a single spare inadequate.
    626   1.1        ad 	 */
    627   1.1        ad 	arena_chunk_t *spare;
    628   1.1        ad 
    629   1.1        ad 	/*
    630   1.1        ad 	 * bins is used to store rings of free regions of the following sizes,
    631   1.1        ad 	 * assuming a 16-byte quantum, 4kB pagesize, and default MALLOC_OPTIONS.
    632   1.1        ad 	 *
    633   1.1        ad 	 *   bins[i] | size |
    634   1.1        ad 	 *   --------+------+
    635   1.1        ad 	 *        0  |    2 |
    636   1.1        ad 	 *        1  |    4 |
    637   1.1        ad 	 *        2  |    8 |
    638   1.1        ad 	 *   --------+------+
    639   1.1        ad 	 *        3  |   16 |
    640   1.1        ad 	 *        4  |   32 |
    641   1.1        ad 	 *        5  |   48 |
    642   1.1        ad 	 *        6  |   64 |
    643   1.1        ad 	 *           :      :
    644   1.1        ad 	 *           :      :
    645   1.1        ad 	 *       33  |  496 |
    646   1.1        ad 	 *       34  |  512 |
    647   1.1        ad 	 *   --------+------+
    648   1.1        ad 	 *       35  | 1024 |
    649   1.1        ad 	 *       36  | 2048 |
    650   1.1        ad 	 *   --------+------+
    651   1.1        ad 	 */
    652   1.1        ad 	arena_bin_t		bins[1]; /* Dynamically sized. */
    653   1.1        ad };
    654   1.1        ad 
    655   1.1        ad /******************************************************************************/
    656   1.1        ad /*
    657   1.1        ad  * Data.
    658   1.1        ad  */
    659   1.1        ad 
    660   1.1        ad /* Number of CPUs. */
    661   1.1        ad static unsigned		ncpus;
    662   1.1        ad 
    663   1.1        ad /* VM page size. */
    664   1.1        ad static size_t		pagesize;
    665   1.1        ad static size_t		pagesize_mask;
    666   1.9  christos static int		pagesize_2pow;
    667   1.1        ad 
    668   1.1        ad /* Various bin-related settings. */
    669   1.1        ad static size_t		bin_maxclass; /* Max size class for bins. */
    670   1.1        ad static unsigned		ntbins; /* Number of (2^n)-spaced tiny bins. */
    671   1.1        ad static unsigned		nqbins; /* Number of quantum-spaced bins. */
    672   1.1        ad static unsigned		nsbins; /* Number of (2^n)-spaced sub-page bins. */
    673   1.1        ad static size_t		small_min;
    674   1.1        ad static size_t		small_max;
    675   1.1        ad 
    676   1.1        ad /* Various quantum-related settings. */
    677   1.1        ad static size_t		quantum;
    678   1.1        ad static size_t		quantum_mask; /* (quantum - 1). */
    679   1.1        ad 
    680   1.1        ad /* Various chunk-related settings. */
    681   1.1        ad static size_t		chunksize;
    682   1.1        ad static size_t		chunksize_mask; /* (chunksize - 1). */
    683   1.5      yamt static int		chunksize_2pow;
    684   1.1        ad static unsigned		chunk_npages;
    685   1.1        ad static unsigned		arena_chunk_header_npages;
    686   1.1        ad static size_t		arena_maxclass; /* Max size class for arenas. */
    687   1.1        ad 
    688   1.1        ad /********/
    689   1.1        ad /*
    690   1.1        ad  * Chunks.
    691   1.1        ad  */
    692   1.1        ad 
    693  1.37  christos #ifdef _REENTRANT
    694   1.1        ad /* Protects chunk-related data structures. */
    695   1.1        ad static malloc_mutex_t	chunks_mtx;
    696  1.37  christos #endif
    697   1.1        ad 
    698   1.1        ad /* Tree of chunks that are stand-alone huge allocations. */
    699   1.1        ad static chunk_tree_t	huge;
    700   1.1        ad 
    701   1.1        ad #ifdef USE_BRK
    702   1.1        ad /*
    703   1.1        ad  * Try to use brk for chunk-size allocations, due to address space constraints.
    704   1.1        ad  */
    705   1.1        ad /*
    706   1.1        ad  * Protects sbrk() calls.  This must be separate from chunks_mtx, since
    707   1.1        ad  * base_pages_alloc() also uses sbrk(), but cannot lock chunks_mtx (doing so
    708   1.1        ad  * could cause recursive lock acquisition).
    709   1.1        ad  */
    710   1.1        ad static malloc_mutex_t	brk_mtx;
    711   1.1        ad /* Result of first sbrk(0) call. */
    712   1.1        ad static void		*brk_base;
    713   1.1        ad /* Current end of brk, or ((void *)-1) if brk is exhausted. */
    714   1.1        ad static void		*brk_prev;
    715   1.1        ad /* Current upper limit on brk addresses. */
    716   1.1        ad static void		*brk_max;
    717   1.1        ad #endif
    718   1.1        ad 
    719   1.1        ad #ifdef MALLOC_STATS
    720   1.1        ad /* Huge allocation statistics. */
    721   1.1        ad static uint64_t		huge_nmalloc;
    722   1.1        ad static uint64_t		huge_ndalloc;
    723   1.8      yamt static uint64_t		huge_nralloc;
    724   1.1        ad static size_t		huge_allocated;
    725   1.1        ad #endif
    726   1.1        ad 
    727   1.1        ad /*
    728   1.1        ad  * Tree of chunks that were previously allocated.  This is used when allocating
    729   1.1        ad  * chunks, in an attempt to re-use address space.
    730   1.1        ad  */
    731   1.1        ad static chunk_tree_t	old_chunks;
    732   1.1        ad 
    733   1.1        ad /****************************/
    734   1.1        ad /*
    735   1.1        ad  * base (internal allocation).
    736   1.1        ad  */
    737   1.1        ad 
    738   1.1        ad /*
    739   1.1        ad  * Current pages that are being used for internal memory allocations.  These
    740   1.1        ad  * pages are carved up in cacheline-size quanta, so that there is no chance of
    741   1.1        ad  * false cache line sharing.
    742   1.1        ad  */
    743   1.1        ad static void		*base_pages;
    744   1.1        ad static void		*base_next_addr;
    745   1.1        ad static void		*base_past_addr; /* Addr immediately past base_pages. */
    746   1.1        ad static chunk_node_t	*base_chunk_nodes; /* LIFO cache of chunk nodes. */
    747  1.37  christos #ifdef _REENTRANT
    748   1.1        ad static malloc_mutex_t	base_mtx;
    749  1.37  christos #endif
    750   1.1        ad #ifdef MALLOC_STATS
    751   1.1        ad static size_t		base_mapped;
    752   1.1        ad #endif
    753   1.1        ad 
    754   1.1        ad /********/
    755   1.1        ad /*
    756   1.1        ad  * Arenas.
    757   1.1        ad  */
    758   1.1        ad 
    759   1.1        ad /*
    760   1.1        ad  * Arenas that are used to service external requests.  Not all elements of the
    761   1.1        ad  * arenas array are necessarily used; arenas are created lazily as needed.
    762   1.1        ad  */
    763   1.1        ad static arena_t		**arenas;
    764   1.1        ad static unsigned		narenas;
    765   1.1        ad static unsigned		next_arena;
    766  1.37  christos #ifdef _REENTRANT
    767   1.1        ad static malloc_mutex_t	arenas_mtx; /* Protects arenas initialization. */
    768  1.37  christos #endif
    769   1.1        ad 
    770  1.15        ad /*
    771  1.15        ad  * Map of pthread_self() --> arenas[???], used for selecting an arena to use
    772  1.15        ad  * for allocations.
    773  1.15        ad  */
    774  1.38    martin #ifndef NO_TLS
    775  1.38    martin static __thread arena_t	**arenas_map;
    776  1.15        ad #else
    777  1.38    martin static arena_t	**arenas_map;
    778  1.37  christos #endif
    779  1.38    martin 
    780  1.38    martin #if !defined(NO_TLS) || !defined(_REENTRANT)
    781  1.38    martin # define	get_arenas_map()	(arenas_map)
    782  1.38    martin # define	set_arenas_map(x)	(arenas_map = x)
    783  1.38    martin #else
    784  1.38    martin 
    785  1.38    martin static thread_key_t arenas_map_key = -1;
    786  1.38    martin 
    787  1.38    martin static inline arena_t **
    788  1.38    martin get_arenas_map(void)
    789  1.38    martin {
    790  1.38    martin 	if (!__isthreaded)
    791  1.38    martin 		return arenas_map;
    792  1.38    martin 
    793  1.38    martin 	if (arenas_map_key == -1) {
    794  1.38    martin 		(void)thr_keycreate(&arenas_map_key, NULL);
    795  1.38    martin 		if (arenas_map != NULL) {
    796  1.38    martin 			thr_setspecific(arenas_map_key, arenas_map);
    797  1.38    martin 			arenas_map = NULL;
    798  1.38    martin 		}
    799  1.38    martin 	}
    800  1.38    martin 
    801  1.38    martin 	return thr_getspecific(arenas_map_key);
    802  1.38    martin }
    803  1.38    martin 
    804  1.38    martin static __inline void
    805  1.38    martin set_arenas_map(arena_t **a)
    806  1.38    martin {
    807  1.38    martin 	if (!__isthreaded) {
    808  1.38    martin 		arenas_map = a;
    809  1.38    martin 		return;
    810  1.38    martin 	}
    811  1.38    martin 
    812  1.38    martin 	if (arenas_map_key == -1) {
    813  1.38    martin 		(void)thr_keycreate(&arenas_map_key, NULL);
    814  1.38    martin 		if (arenas_map != NULL) {
    815  1.38    martin 			_DIAGASSERT(arenas_map == a);
    816  1.38    martin 			arenas_map = NULL;
    817  1.38    martin 		}
    818  1.38    martin 	}
    819  1.38    martin 
    820  1.38    martin 	thr_setspecific(arenas_map_key, a);
    821  1.38    martin }
    822  1.15        ad #endif
    823   1.1        ad 
    824   1.1        ad #ifdef MALLOC_STATS
    825   1.1        ad /* Chunk statistics. */
    826   1.1        ad static chunk_stats_t	stats_chunks;
    827   1.1        ad #endif
    828   1.1        ad 
    829   1.1        ad /*******************************/
    830   1.1        ad /*
    831   1.1        ad  * Runtime configuration options.
    832   1.1        ad  */
    833   1.1        ad const char	*_malloc_options;
    834   1.1        ad 
    835   1.1        ad #ifndef MALLOC_PRODUCTION
    836   1.1        ad static bool	opt_abort = true;
    837   1.1        ad static bool	opt_junk = true;
    838   1.1        ad #else
    839   1.1        ad static bool	opt_abort = false;
    840   1.1        ad static bool	opt_junk = false;
    841   1.1        ad #endif
    842   1.1        ad static bool	opt_hint = false;
    843   1.1        ad static bool	opt_print_stats = false;
    844   1.9  christos static int	opt_quantum_2pow = QUANTUM_2POW_MIN;
    845   1.9  christos static int	opt_small_max_2pow = SMALL_MAX_2POW_DEFAULT;
    846   1.9  christos static int	opt_chunk_2pow = CHUNK_2POW_DEFAULT;
    847   1.1        ad static bool	opt_utrace = false;
    848   1.1        ad static bool	opt_sysv = false;
    849   1.1        ad static bool	opt_xmalloc = false;
    850   1.1        ad static bool	opt_zero = false;
    851   1.1        ad static int32_t	opt_narenas_lshift = 0;
    852   1.1        ad 
    853   1.1        ad typedef struct {
    854   1.1        ad 	void	*p;
    855   1.1        ad 	size_t	s;
    856   1.1        ad 	void	*r;
    857   1.1        ad } malloc_utrace_t;
    858   1.1        ad 
    859   1.1        ad #define	UTRACE(a, b, c)							\
    860   1.1        ad 	if (opt_utrace) {						\
    861   1.2        ad 		malloc_utrace_t ut;					\
    862   1.2        ad 		ut.p = a;						\
    863   1.2        ad 		ut.s = b;						\
    864   1.2        ad 		ut.r = c;						\
    865   1.2        ad 		xutrace(&ut, sizeof(ut));				\
    866   1.1        ad 	}
    867   1.1        ad 
    868   1.1        ad /******************************************************************************/
    869   1.1        ad /*
    870   1.1        ad  * Begin function prototypes for non-inline static functions.
    871   1.1        ad  */
    872   1.1        ad 
    873   1.1        ad static void	wrtmessage(const char *p1, const char *p2, const char *p3,
    874   1.1        ad 		const char *p4);
    875   1.1        ad #ifdef MALLOC_STATS
    876   1.1        ad static void	malloc_printf(const char *format, ...);
    877   1.1        ad #endif
    878  1.28  christos static char	*size_t2s(size_t x, char *s);
    879   1.1        ad static bool	base_pages_alloc(size_t minsize);
    880   1.1        ad static void	*base_alloc(size_t size);
    881   1.1        ad static chunk_node_t *base_chunk_node_alloc(void);
    882   1.1        ad static void	base_chunk_node_dealloc(chunk_node_t *node);
    883   1.1        ad #ifdef MALLOC_STATS
    884   1.1        ad static void	stats_print(arena_t *arena);
    885   1.1        ad #endif
    886   1.1        ad static void	*pages_map(void *addr, size_t size);
    887   1.5      yamt static void	*pages_map_align(void *addr, size_t size, int align);
    888   1.1        ad static void	pages_unmap(void *addr, size_t size);
    889   1.1        ad static void	*chunk_alloc(size_t size);
    890   1.1        ad static void	chunk_dealloc(void *chunk, size_t size);
    891   1.1        ad static void	arena_run_split(arena_t *arena, arena_run_t *run, size_t size);
    892   1.1        ad static arena_chunk_t *arena_chunk_alloc(arena_t *arena);
    893   1.1        ad static void	arena_chunk_dealloc(arena_t *arena, arena_chunk_t *chunk);
    894   1.1        ad static arena_run_t *arena_run_alloc(arena_t *arena, size_t size);
    895   1.1        ad static void	arena_run_dalloc(arena_t *arena, arena_run_t *run, size_t size);
    896   1.1        ad static arena_run_t *arena_bin_nonfull_run_get(arena_t *arena, arena_bin_t *bin);
    897   1.1        ad static void *arena_bin_malloc_hard(arena_t *arena, arena_bin_t *bin);
    898   1.1        ad static size_t arena_bin_run_size_calc(arena_bin_t *bin, size_t min_run_size);
    899   1.1        ad static void	*arena_malloc(arena_t *arena, size_t size);
    900   1.1        ad static void	*arena_palloc(arena_t *arena, size_t alignment, size_t size,
    901   1.1        ad     size_t alloc_size);
    902   1.1        ad static size_t	arena_salloc(const void *ptr);
    903   1.1        ad static void	*arena_ralloc(void *ptr, size_t size, size_t oldsize);
    904   1.1        ad static void	arena_dalloc(arena_t *arena, arena_chunk_t *chunk, void *ptr);
    905   1.1        ad static bool	arena_new(arena_t *arena);
    906   1.1        ad static arena_t	*arenas_extend(unsigned ind);
    907   1.1        ad static void	*huge_malloc(size_t size);
    908   1.1        ad static void	*huge_palloc(size_t alignment, size_t size);
    909   1.1        ad static void	*huge_ralloc(void *ptr, size_t size, size_t oldsize);
    910   1.1        ad static void	huge_dalloc(void *ptr);
    911   1.1        ad static void	*imalloc(size_t size);
    912   1.1        ad static void	*ipalloc(size_t alignment, size_t size);
    913   1.1        ad static void	*icalloc(size_t size);
    914   1.1        ad static size_t	isalloc(const void *ptr);
    915   1.1        ad static void	*iralloc(void *ptr, size_t size);
    916   1.1        ad static void	idalloc(void *ptr);
    917   1.1        ad static void	malloc_print_stats(void);
    918   1.1        ad static bool	malloc_init_hard(void);
    919   1.1        ad 
    920   1.1        ad /*
    921   1.1        ad  * End function prototypes.
    922   1.1        ad  */
    923   1.1        ad /******************************************************************************/
    924   1.1        ad /*
    925   1.1        ad  * Begin mutex.
    926   1.1        ad  */
    927   1.1        ad 
    928  1.15        ad #ifdef __NetBSD__
    929   1.2        ad #define	malloc_mutex_init(m)	mutex_init(m, NULL)
    930   1.2        ad #define	malloc_mutex_lock(m)	mutex_lock(m)
    931   1.2        ad #define	malloc_mutex_unlock(m)	mutex_unlock(m)
    932  1.15        ad #else	/* __NetBSD__ */
    933  1.15        ad static inline void
    934  1.15        ad malloc_mutex_init(malloc_mutex_t *a_mutex)
    935  1.15        ad {
    936  1.15        ad 	static const spinlock_t lock = _SPINLOCK_INITIALIZER;
    937  1.15        ad 
    938  1.15        ad 	a_mutex->lock = lock;
    939  1.15        ad }
    940  1.15        ad 
    941  1.15        ad static inline void
    942  1.15        ad malloc_mutex_lock(malloc_mutex_t *a_mutex)
    943  1.15        ad {
    944  1.15        ad 
    945  1.15        ad 	if (__isthreaded)
    946  1.15        ad 		_SPINLOCK(&a_mutex->lock);
    947  1.15        ad }
    948  1.15        ad 
    949  1.15        ad static inline void
    950  1.15        ad malloc_mutex_unlock(malloc_mutex_t *a_mutex)
    951  1.15        ad {
    952  1.15        ad 
    953  1.15        ad 	if (__isthreaded)
    954  1.15        ad 		_SPINUNLOCK(&a_mutex->lock);
    955  1.15        ad }
    956  1.15        ad #endif	/* __NetBSD__ */
    957   1.1        ad 
    958   1.1        ad /*
    959   1.1        ad  * End mutex.
    960   1.1        ad  */
    961   1.1        ad /******************************************************************************/
    962   1.1        ad /*
    963   1.1        ad  * Begin Utility functions/macros.
    964   1.1        ad  */
    965   1.1        ad 
    966   1.1        ad /* Return the chunk address for allocation address a. */
    967   1.1        ad #define	CHUNK_ADDR2BASE(a)						\
    968   1.1        ad 	((void *)((uintptr_t)(a) & ~chunksize_mask))
    969   1.1        ad 
    970   1.1        ad /* Return the chunk offset of address a. */
    971   1.1        ad #define	CHUNK_ADDR2OFFSET(a)						\
    972   1.1        ad 	((size_t)((uintptr_t)(a) & chunksize_mask))
    973   1.1        ad 
    974   1.1        ad /* Return the smallest chunk multiple that is >= s. */
    975   1.1        ad #define	CHUNK_CEILING(s)						\
    976   1.1        ad 	(((s) + chunksize_mask) & ~chunksize_mask)
    977   1.1        ad 
    978   1.1        ad /* Return the smallest cacheline multiple that is >= s. */
    979   1.1        ad #define	CACHELINE_CEILING(s)						\
    980   1.1        ad 	(((s) + (CACHELINE - 1)) & ~(CACHELINE - 1))
    981   1.1        ad 
    982   1.1        ad /* Return the smallest quantum multiple that is >= a. */
    983   1.1        ad #define	QUANTUM_CEILING(a)						\
    984   1.1        ad 	(((a) + quantum_mask) & ~quantum_mask)
    985   1.1        ad 
    986   1.1        ad /* Return the smallest pagesize multiple that is >= s. */
    987   1.1        ad #define	PAGE_CEILING(s)							\
    988   1.1        ad 	(((s) + pagesize_mask) & ~pagesize_mask)
    989   1.1        ad 
    990   1.1        ad /* Compute the smallest power of 2 that is >= x. */
    991   1.1        ad static inline size_t
    992   1.1        ad pow2_ceil(size_t x)
    993   1.1        ad {
    994   1.1        ad 
    995   1.1        ad 	x--;
    996   1.1        ad 	x |= x >> 1;
    997   1.1        ad 	x |= x >> 2;
    998   1.1        ad 	x |= x >> 4;
    999   1.1        ad 	x |= x >> 8;
   1000   1.1        ad 	x |= x >> 16;
   1001   1.1        ad #if (SIZEOF_PTR == 8)
   1002   1.1        ad 	x |= x >> 32;
   1003   1.1        ad #endif
   1004   1.1        ad 	x++;
   1005   1.1        ad 	return (x);
   1006   1.1        ad }
   1007   1.1        ad 
   1008   1.1        ad static void
   1009   1.1        ad wrtmessage(const char *p1, const char *p2, const char *p3, const char *p4)
   1010   1.1        ad {
   1011   1.1        ad 
   1012  1.16  christos 	write(STDERR_FILENO, p1, strlen(p1));
   1013  1.16  christos 	write(STDERR_FILENO, p2, strlen(p2));
   1014  1.16  christos 	write(STDERR_FILENO, p3, strlen(p3));
   1015  1.16  christos 	write(STDERR_FILENO, p4, strlen(p4));
   1016   1.1        ad }
   1017   1.1        ad 
   1018   1.1        ad void	(*_malloc_message)(const char *p1, const char *p2, const char *p3,
   1019   1.1        ad 	    const char *p4) = wrtmessage;
   1020   1.1        ad 
   1021   1.1        ad #ifdef MALLOC_STATS
   1022   1.1        ad /*
   1023   1.1        ad  * Print to stderr in such a way as to (hopefully) avoid memory allocation.
   1024   1.1        ad  */
   1025   1.1        ad static void
   1026   1.1        ad malloc_printf(const char *format, ...)
   1027   1.1        ad {
   1028   1.1        ad 	char buf[4096];
   1029   1.1        ad 	va_list ap;
   1030   1.1        ad 
   1031   1.1        ad 	va_start(ap, format);
   1032   1.1        ad 	vsnprintf(buf, sizeof(buf), format, ap);
   1033   1.1        ad 	va_end(ap);
   1034   1.1        ad 	_malloc_message(buf, "", "", "");
   1035   1.1        ad }
   1036   1.1        ad #endif
   1037   1.1        ad 
   1038   1.1        ad /*
   1039   1.1        ad  * We don't want to depend on vsnprintf() for production builds, since that can
   1040  1.28  christos  * cause unnecessary bloat for static binaries.  size_t2s() provides minimal
   1041   1.1        ad  * integer printing functionality, so that malloc_printf() use can be limited to
   1042   1.1        ad  * MALLOC_STATS code.
   1043   1.1        ad  */
   1044   1.1        ad #define UMAX2S_BUFSIZE	21
   1045   1.1        ad static char *
   1046  1.28  christos size_t2s(size_t x, char *s)
   1047   1.1        ad {
   1048   1.1        ad 	unsigned i;
   1049   1.1        ad 
   1050   1.1        ad 	/* Make sure UMAX2S_BUFSIZE is large enough. */
   1051   1.7      yamt 	/* LINTED */
   1052  1.25  christos 	assert(sizeof(size_t) <= 8);
   1053   1.1        ad 
   1054   1.1        ad 	i = UMAX2S_BUFSIZE - 1;
   1055   1.1        ad 	s[i] = '\0';
   1056   1.1        ad 	do {
   1057   1.1        ad 		i--;
   1058   1.2        ad 		s[i] = "0123456789"[(int)x % 10];
   1059   1.2        ad 		x /= (uintmax_t)10LL;
   1060   1.1        ad 	} while (x > 0);
   1061   1.1        ad 
   1062   1.1        ad 	return (&s[i]);
   1063   1.1        ad }
   1064   1.1        ad 
   1065   1.1        ad /******************************************************************************/
   1066   1.1        ad 
   1067   1.1        ad static bool
   1068   1.1        ad base_pages_alloc(size_t minsize)
   1069   1.1        ad {
   1070   1.2        ad 	size_t csize = 0;
   1071   1.1        ad 
   1072   1.1        ad #ifdef USE_BRK
   1073   1.1        ad 	/*
   1074   1.1        ad 	 * Do special brk allocation here, since base allocations don't need to
   1075   1.1        ad 	 * be chunk-aligned.
   1076   1.1        ad 	 */
   1077   1.1        ad 	if (brk_prev != (void *)-1) {
   1078   1.1        ad 		void *brk_cur;
   1079   1.1        ad 		intptr_t incr;
   1080   1.1        ad 
   1081   1.1        ad 		if (minsize != 0)
   1082   1.1        ad 			csize = CHUNK_CEILING(minsize);
   1083   1.1        ad 
   1084   1.1        ad 		malloc_mutex_lock(&brk_mtx);
   1085   1.1        ad 		do {
   1086   1.1        ad 			/* Get the current end of brk. */
   1087   1.1        ad 			brk_cur = sbrk(0);
   1088   1.1        ad 
   1089   1.1        ad 			/*
   1090   1.1        ad 			 * Calculate how much padding is necessary to
   1091   1.1        ad 			 * chunk-align the end of brk.  Don't worry about
   1092   1.1        ad 			 * brk_cur not being chunk-aligned though.
   1093   1.1        ad 			 */
   1094   1.1        ad 			incr = (intptr_t)chunksize
   1095   1.1        ad 			    - (intptr_t)CHUNK_ADDR2OFFSET(brk_cur);
   1096  1.20     lukem 			assert(incr >= 0);
   1097  1.20     lukem 			if ((size_t)incr < minsize)
   1098   1.1        ad 				incr += csize;
   1099   1.1        ad 
   1100   1.1        ad 			brk_prev = sbrk(incr);
   1101   1.1        ad 			if (brk_prev == brk_cur) {
   1102   1.1        ad 				/* Success. */
   1103   1.1        ad 				malloc_mutex_unlock(&brk_mtx);
   1104   1.1        ad 				base_pages = brk_cur;
   1105   1.1        ad 				base_next_addr = base_pages;
   1106   1.1        ad 				base_past_addr = (void *)((uintptr_t)base_pages
   1107   1.1        ad 				    + incr);
   1108   1.1        ad #ifdef MALLOC_STATS
   1109   1.1        ad 				base_mapped += incr;
   1110   1.1        ad #endif
   1111   1.1        ad 				return (false);
   1112   1.1        ad 			}
   1113   1.1        ad 		} while (brk_prev != (void *)-1);
   1114   1.1        ad 		malloc_mutex_unlock(&brk_mtx);
   1115   1.1        ad 	}
   1116   1.1        ad 	if (minsize == 0) {
   1117   1.1        ad 		/*
   1118   1.1        ad 		 * Failure during initialization doesn't matter, so avoid
   1119   1.1        ad 		 * falling through to the mmap-based page mapping code.
   1120   1.1        ad 		 */
   1121   1.1        ad 		return (true);
   1122   1.1        ad 	}
   1123   1.1        ad #endif
   1124   1.1        ad 	assert(minsize != 0);
   1125   1.1        ad 	csize = PAGE_CEILING(minsize);
   1126   1.1        ad 	base_pages = pages_map(NULL, csize);
   1127   1.1        ad 	if (base_pages == NULL)
   1128   1.1        ad 		return (true);
   1129   1.1        ad 	base_next_addr = base_pages;
   1130   1.1        ad 	base_past_addr = (void *)((uintptr_t)base_pages + csize);
   1131   1.1        ad #ifdef MALLOC_STATS
   1132   1.1        ad 	base_mapped += csize;
   1133   1.1        ad #endif
   1134   1.1        ad 	return (false);
   1135   1.1        ad }
   1136   1.1        ad 
   1137   1.1        ad static void *
   1138   1.1        ad base_alloc(size_t size)
   1139   1.1        ad {
   1140   1.1        ad 	void *ret;
   1141   1.1        ad 	size_t csize;
   1142   1.1        ad 
   1143   1.1        ad 	/* Round size up to nearest multiple of the cacheline size. */
   1144   1.1        ad 	csize = CACHELINE_CEILING(size);
   1145   1.1        ad 
   1146   1.1        ad 	malloc_mutex_lock(&base_mtx);
   1147   1.1        ad 
   1148   1.1        ad 	/* Make sure there's enough space for the allocation. */
   1149   1.1        ad 	if ((uintptr_t)base_next_addr + csize > (uintptr_t)base_past_addr) {
   1150   1.1        ad 		if (base_pages_alloc(csize)) {
   1151   1.1        ad 			ret = NULL;
   1152   1.1        ad 			goto RETURN;
   1153   1.1        ad 		}
   1154   1.1        ad 	}
   1155   1.1        ad 
   1156   1.1        ad 	/* Allocate. */
   1157   1.1        ad 	ret = base_next_addr;
   1158   1.1        ad 	base_next_addr = (void *)((uintptr_t)base_next_addr + csize);
   1159   1.1        ad 
   1160   1.1        ad RETURN:
   1161   1.1        ad 	malloc_mutex_unlock(&base_mtx);
   1162   1.1        ad 	return (ret);
   1163   1.1        ad }
   1164   1.1        ad 
   1165   1.1        ad static chunk_node_t *
   1166   1.1        ad base_chunk_node_alloc(void)
   1167   1.1        ad {
   1168   1.1        ad 	chunk_node_t *ret;
   1169   1.1        ad 
   1170   1.1        ad 	malloc_mutex_lock(&base_mtx);
   1171   1.1        ad 	if (base_chunk_nodes != NULL) {
   1172   1.1        ad 		ret = base_chunk_nodes;
   1173   1.2        ad 		/* LINTED */
   1174   1.1        ad 		base_chunk_nodes = *(chunk_node_t **)ret;
   1175   1.1        ad 		malloc_mutex_unlock(&base_mtx);
   1176   1.1        ad 	} else {
   1177   1.1        ad 		malloc_mutex_unlock(&base_mtx);
   1178   1.1        ad 		ret = (chunk_node_t *)base_alloc(sizeof(chunk_node_t));
   1179   1.1        ad 	}
   1180   1.1        ad 
   1181   1.1        ad 	return (ret);
   1182   1.1        ad }
   1183   1.1        ad 
   1184   1.1        ad static void
   1185   1.1        ad base_chunk_node_dealloc(chunk_node_t *node)
   1186   1.1        ad {
   1187   1.1        ad 
   1188   1.1        ad 	malloc_mutex_lock(&base_mtx);
   1189   1.2        ad 	/* LINTED */
   1190   1.1        ad 	*(chunk_node_t **)node = base_chunk_nodes;
   1191   1.1        ad 	base_chunk_nodes = node;
   1192   1.1        ad 	malloc_mutex_unlock(&base_mtx);
   1193   1.1        ad }
   1194   1.1        ad 
   1195   1.1        ad /******************************************************************************/
   1196   1.1        ad 
   1197   1.1        ad #ifdef MALLOC_STATS
   1198   1.1        ad static void
   1199   1.1        ad stats_print(arena_t *arena)
   1200   1.1        ad {
   1201   1.1        ad 	unsigned i;
   1202   1.1        ad 	int gap_start;
   1203   1.1        ad 
   1204   1.1        ad 	malloc_printf(
   1205   1.1        ad 	    "          allocated/mapped            nmalloc      ndalloc\n");
   1206   1.2        ad 
   1207   1.2        ad 	malloc_printf("small: %12zu %-12s %12llu %12llu\n",
   1208   1.1        ad 	    arena->stats.allocated_small, "", arena->stats.nmalloc_small,
   1209   1.1        ad 	    arena->stats.ndalloc_small);
   1210   1.2        ad 	malloc_printf("large: %12zu %-12s %12llu %12llu\n",
   1211   1.1        ad 	    arena->stats.allocated_large, "", arena->stats.nmalloc_large,
   1212   1.1        ad 	    arena->stats.ndalloc_large);
   1213   1.2        ad 	malloc_printf("total: %12zu/%-12zu %12llu %12llu\n",
   1214   1.1        ad 	    arena->stats.allocated_small + arena->stats.allocated_large,
   1215   1.1        ad 	    arena->stats.mapped,
   1216   1.1        ad 	    arena->stats.nmalloc_small + arena->stats.nmalloc_large,
   1217   1.1        ad 	    arena->stats.ndalloc_small + arena->stats.ndalloc_large);
   1218   1.1        ad 
   1219   1.1        ad 	malloc_printf("bins:     bin   size regs pgs  requests   newruns"
   1220   1.1        ad 	    "    reruns maxruns curruns\n");
   1221   1.1        ad 	for (i = 0, gap_start = -1; i < ntbins + nqbins + nsbins; i++) {
   1222   1.1        ad 		if (arena->bins[i].stats.nrequests == 0) {
   1223   1.1        ad 			if (gap_start == -1)
   1224   1.1        ad 				gap_start = i;
   1225   1.1        ad 		} else {
   1226   1.1        ad 			if (gap_start != -1) {
   1227   1.1        ad 				if (i > gap_start + 1) {
   1228   1.1        ad 					/* Gap of more than one size class. */
   1229   1.1        ad 					malloc_printf("[%u..%u]\n",
   1230   1.1        ad 					    gap_start, i - 1);
   1231   1.1        ad 				} else {
   1232   1.1        ad 					/* Gap of one size class. */
   1233   1.1        ad 					malloc_printf("[%u]\n", gap_start);
   1234   1.1        ad 				}
   1235   1.1        ad 				gap_start = -1;
   1236   1.1        ad 			}
   1237   1.1        ad 			malloc_printf(
   1238   1.1        ad 			    "%13u %1s %4u %4u %3u %9llu %9llu"
   1239   1.1        ad 			    " %9llu %7lu %7lu\n",
   1240   1.1        ad 			    i,
   1241   1.1        ad 			    i < ntbins ? "T" : i < ntbins + nqbins ? "Q" : "S",
   1242   1.1        ad 			    arena->bins[i].reg_size,
   1243   1.1        ad 			    arena->bins[i].nregs,
   1244   1.1        ad 			    arena->bins[i].run_size >> pagesize_2pow,
   1245   1.1        ad 			    arena->bins[i].stats.nrequests,
   1246   1.1        ad 			    arena->bins[i].stats.nruns,
   1247   1.1        ad 			    arena->bins[i].stats.reruns,
   1248   1.1        ad 			    arena->bins[i].stats.highruns,
   1249   1.1        ad 			    arena->bins[i].stats.curruns);
   1250   1.1        ad 		}
   1251   1.1        ad 	}
   1252   1.1        ad 	if (gap_start != -1) {
   1253   1.1        ad 		if (i > gap_start + 1) {
   1254   1.1        ad 			/* Gap of more than one size class. */
   1255   1.1        ad 			malloc_printf("[%u..%u]\n", gap_start, i - 1);
   1256   1.1        ad 		} else {
   1257   1.1        ad 			/* Gap of one size class. */
   1258   1.1        ad 			malloc_printf("[%u]\n", gap_start);
   1259   1.1        ad 		}
   1260   1.1        ad 	}
   1261   1.1        ad }
   1262   1.1        ad #endif
   1263   1.1        ad 
   1264   1.1        ad /*
   1265   1.1        ad  * End Utility functions/macros.
   1266   1.1        ad  */
   1267   1.1        ad /******************************************************************************/
   1268   1.1        ad /*
   1269   1.1        ad  * Begin chunk management functions.
   1270   1.1        ad  */
   1271   1.1        ad 
   1272   1.7      yamt #ifndef lint
   1273   1.1        ad static inline int
   1274   1.1        ad chunk_comp(chunk_node_t *a, chunk_node_t *b)
   1275   1.1        ad {
   1276   1.1        ad 
   1277   1.1        ad 	assert(a != NULL);
   1278   1.1        ad 	assert(b != NULL);
   1279   1.1        ad 
   1280   1.1        ad 	if ((uintptr_t)a->chunk < (uintptr_t)b->chunk)
   1281   1.1        ad 		return (-1);
   1282   1.1        ad 	else if (a->chunk == b->chunk)
   1283   1.1        ad 		return (0);
   1284   1.1        ad 	else
   1285   1.1        ad 		return (1);
   1286   1.1        ad }
   1287   1.1        ad 
   1288   1.1        ad /* Generate red-black tree code for chunks. */
   1289   1.1        ad RB_GENERATE_STATIC(chunk_tree_s, chunk_node_s, link, chunk_comp);
   1290   1.2        ad #endif
   1291   1.1        ad 
   1292   1.1        ad static void *
   1293   1.5      yamt pages_map_align(void *addr, size_t size, int align)
   1294   1.1        ad {
   1295   1.1        ad 	void *ret;
   1296   1.1        ad 
   1297   1.1        ad 	/*
   1298   1.1        ad 	 * We don't use MAP_FIXED here, because it can cause the *replacement*
   1299   1.1        ad 	 * of existing mappings, and we only want to create new mappings.
   1300   1.1        ad 	 */
   1301   1.5      yamt 	ret = mmap(addr, size, PROT_READ | PROT_WRITE,
   1302   1.5      yamt 	    MAP_PRIVATE | MAP_ANON | MAP_ALIGNED(align), -1, 0);
   1303   1.1        ad 	assert(ret != NULL);
   1304   1.1        ad 
   1305   1.1        ad 	if (ret == MAP_FAILED)
   1306   1.1        ad 		ret = NULL;
   1307   1.1        ad 	else if (addr != NULL && ret != addr) {
   1308   1.1        ad 		/*
   1309   1.1        ad 		 * We succeeded in mapping memory, but not in the right place.
   1310   1.1        ad 		 */
   1311   1.1        ad 		if (munmap(ret, size) == -1) {
   1312   1.1        ad 			char buf[STRERROR_BUF];
   1313   1.1        ad 
   1314  1.16  christos 			STRERROR_R(errno, buf, sizeof(buf));
   1315  1.16  christos 			_malloc_message(getprogname(),
   1316   1.1        ad 			    ": (malloc) Error in munmap(): ", buf, "\n");
   1317   1.1        ad 			if (opt_abort)
   1318   1.1        ad 				abort();
   1319   1.1        ad 		}
   1320   1.1        ad 		ret = NULL;
   1321   1.1        ad 	}
   1322   1.1        ad 
   1323   1.1        ad 	assert(ret == NULL || (addr == NULL && ret != addr)
   1324   1.1        ad 	    || (addr != NULL && ret == addr));
   1325   1.1        ad 	return (ret);
   1326   1.1        ad }
   1327   1.1        ad 
   1328   1.5      yamt static void *
   1329   1.5      yamt pages_map(void *addr, size_t size)
   1330   1.5      yamt {
   1331   1.5      yamt 
   1332   1.5      yamt 	return pages_map_align(addr, size, 0);
   1333   1.5      yamt }
   1334   1.5      yamt 
   1335   1.1        ad static void
   1336   1.1        ad pages_unmap(void *addr, size_t size)
   1337   1.1        ad {
   1338   1.1        ad 
   1339   1.1        ad 	if (munmap(addr, size) == -1) {
   1340   1.1        ad 		char buf[STRERROR_BUF];
   1341   1.1        ad 
   1342  1.16  christos 		STRERROR_R(errno, buf, sizeof(buf));
   1343  1.16  christos 		_malloc_message(getprogname(),
   1344   1.1        ad 		    ": (malloc) Error in munmap(): ", buf, "\n");
   1345   1.1        ad 		if (opt_abort)
   1346   1.1        ad 			abort();
   1347   1.1        ad 	}
   1348   1.1        ad }
   1349   1.1        ad 
   1350   1.1        ad static void *
   1351   1.1        ad chunk_alloc(size_t size)
   1352   1.1        ad {
   1353   1.1        ad 	void *ret, *chunk;
   1354   1.1        ad 	chunk_node_t *tchunk, *delchunk;
   1355   1.1        ad 
   1356   1.1        ad 	assert(size != 0);
   1357   1.1        ad 	assert((size & chunksize_mask) == 0);
   1358   1.1        ad 
   1359   1.1        ad 	malloc_mutex_lock(&chunks_mtx);
   1360   1.1        ad 
   1361   1.1        ad 	if (size == chunksize) {
   1362   1.1        ad 		/*
   1363   1.1        ad 		 * Check for address ranges that were previously chunks and try
   1364   1.1        ad 		 * to use them.
   1365   1.1        ad 		 */
   1366   1.1        ad 
   1367   1.2        ad 		/* LINTED */
   1368   1.1        ad 		tchunk = RB_MIN(chunk_tree_s, &old_chunks);
   1369   1.1        ad 		while (tchunk != NULL) {
   1370   1.1        ad 			/* Found an address range.  Try to recycle it. */
   1371   1.1        ad 
   1372   1.1        ad 			chunk = tchunk->chunk;
   1373   1.1        ad 			delchunk = tchunk;
   1374   1.2        ad 			/* LINTED */
   1375   1.1        ad 			tchunk = RB_NEXT(chunk_tree_s, &old_chunks, delchunk);
   1376   1.1        ad 
   1377   1.1        ad 			/* Remove delchunk from the tree. */
   1378   1.2        ad 			/* LINTED */
   1379   1.1        ad 			RB_REMOVE(chunk_tree_s, &old_chunks, delchunk);
   1380   1.1        ad 			base_chunk_node_dealloc(delchunk);
   1381   1.1        ad 
   1382   1.1        ad #ifdef USE_BRK
   1383   1.1        ad 			if ((uintptr_t)chunk >= (uintptr_t)brk_base
   1384   1.1        ad 			    && (uintptr_t)chunk < (uintptr_t)brk_max) {
   1385   1.1        ad 				/* Re-use a previously freed brk chunk. */
   1386   1.1        ad 				ret = chunk;
   1387   1.1        ad 				goto RETURN;
   1388   1.1        ad 			}
   1389   1.1        ad #endif
   1390   1.1        ad 			if ((ret = pages_map(chunk, size)) != NULL) {
   1391   1.1        ad 				/* Success. */
   1392   1.1        ad 				goto RETURN;
   1393   1.1        ad 			}
   1394   1.1        ad 		}
   1395   1.1        ad 	}
   1396   1.1        ad 
   1397   1.1        ad 	/*
   1398   1.1        ad 	 * Try to over-allocate, but allow the OS to place the allocation
   1399   1.1        ad 	 * anywhere.  Beware of size_t wrap-around.
   1400   1.1        ad 	 */
   1401   1.1        ad 	if (size + chunksize > size) {
   1402   1.5      yamt 		if ((ret = pages_map_align(NULL, size, chunksize_2pow))
   1403   1.5      yamt 		    != NULL) {
   1404   1.1        ad 			goto RETURN;
   1405   1.1        ad 		}
   1406   1.1        ad 	}
   1407   1.1        ad 
   1408   1.1        ad #ifdef USE_BRK
   1409   1.1        ad 	/*
   1410   1.1        ad 	 * Try to create allocations in brk, in order to make full use of
   1411   1.1        ad 	 * limited address space.
   1412   1.1        ad 	 */
   1413   1.1        ad 	if (brk_prev != (void *)-1) {
   1414   1.1        ad 		void *brk_cur;
   1415   1.1        ad 		intptr_t incr;
   1416   1.1        ad 
   1417   1.1        ad 		/*
   1418   1.1        ad 		 * The loop is necessary to recover from races with other
   1419   1.1        ad 		 * threads that are using brk for something other than malloc.
   1420   1.1        ad 		 */
   1421   1.1        ad 		malloc_mutex_lock(&brk_mtx);
   1422   1.1        ad 		do {
   1423   1.1        ad 			/* Get the current end of brk. */
   1424   1.1        ad 			brk_cur = sbrk(0);
   1425   1.1        ad 
   1426   1.1        ad 			/*
   1427   1.1        ad 			 * Calculate how much padding is necessary to
   1428   1.1        ad 			 * chunk-align the end of brk.
   1429   1.1        ad 			 */
   1430   1.1        ad 			incr = (intptr_t)size
   1431   1.1        ad 			    - (intptr_t)CHUNK_ADDR2OFFSET(brk_cur);
   1432  1.20     lukem 			if (incr == (intptr_t)size) {
   1433   1.1        ad 				ret = brk_cur;
   1434   1.1        ad 			} else {
   1435   1.1        ad 				ret = (void *)((intptr_t)brk_cur + incr);
   1436   1.1        ad 				incr += size;
   1437   1.1        ad 			}
   1438   1.1        ad 
   1439   1.1        ad 			brk_prev = sbrk(incr);
   1440   1.1        ad 			if (brk_prev == brk_cur) {
   1441   1.1        ad 				/* Success. */
   1442   1.1        ad 				malloc_mutex_unlock(&brk_mtx);
   1443   1.1        ad 				brk_max = (void *)((intptr_t)ret + size);
   1444   1.1        ad 				goto RETURN;
   1445   1.1        ad 			}
   1446   1.1        ad 		} while (brk_prev != (void *)-1);
   1447   1.1        ad 		malloc_mutex_unlock(&brk_mtx);
   1448   1.1        ad 	}
   1449   1.1        ad #endif
   1450   1.1        ad 
   1451   1.1        ad 	/* All strategies for allocation failed. */
   1452   1.1        ad 	ret = NULL;
   1453   1.1        ad RETURN:
   1454   1.1        ad 	if (ret != NULL) {
   1455   1.1        ad 		chunk_node_t key;
   1456   1.1        ad 		/*
   1457   1.1        ad 		 * Clean out any entries in old_chunks that overlap with the
   1458   1.1        ad 		 * memory we just allocated.
   1459   1.1        ad 		 */
   1460   1.1        ad 		key.chunk = ret;
   1461   1.2        ad 		/* LINTED */
   1462   1.1        ad 		tchunk = RB_NFIND(chunk_tree_s, &old_chunks, &key);
   1463   1.1        ad 		while (tchunk != NULL
   1464   1.1        ad 		    && (uintptr_t)tchunk->chunk >= (uintptr_t)ret
   1465   1.1        ad 		    && (uintptr_t)tchunk->chunk < (uintptr_t)ret + size) {
   1466   1.1        ad 			delchunk = tchunk;
   1467   1.2        ad 			/* LINTED */
   1468   1.1        ad 			tchunk = RB_NEXT(chunk_tree_s, &old_chunks, delchunk);
   1469   1.2        ad 			/* LINTED */
   1470   1.1        ad 			RB_REMOVE(chunk_tree_s, &old_chunks, delchunk);
   1471   1.1        ad 			base_chunk_node_dealloc(delchunk);
   1472   1.1        ad 		}
   1473   1.1        ad 
   1474   1.1        ad 	}
   1475   1.1        ad #ifdef MALLOC_STATS
   1476   1.1        ad 	if (ret != NULL) {
   1477   1.1        ad 		stats_chunks.nchunks += (size / chunksize);
   1478   1.1        ad 		stats_chunks.curchunks += (size / chunksize);
   1479   1.1        ad 	}
   1480   1.1        ad 	if (stats_chunks.curchunks > stats_chunks.highchunks)
   1481   1.1        ad 		stats_chunks.highchunks = stats_chunks.curchunks;
   1482   1.1        ad #endif
   1483   1.1        ad 	malloc_mutex_unlock(&chunks_mtx);
   1484   1.1        ad 
   1485   1.1        ad 	assert(CHUNK_ADDR2BASE(ret) == ret);
   1486   1.1        ad 	return (ret);
   1487   1.1        ad }
   1488   1.1        ad 
   1489   1.1        ad static void
   1490   1.1        ad chunk_dealloc(void *chunk, size_t size)
   1491   1.1        ad {
   1492   1.1        ad 	chunk_node_t *node;
   1493   1.1        ad 
   1494   1.1        ad 	assert(chunk != NULL);
   1495   1.1        ad 	assert(CHUNK_ADDR2BASE(chunk) == chunk);
   1496   1.1        ad 	assert(size != 0);
   1497   1.1        ad 	assert((size & chunksize_mask) == 0);
   1498   1.1        ad 
   1499   1.1        ad 	malloc_mutex_lock(&chunks_mtx);
   1500   1.1        ad 
   1501   1.1        ad #ifdef USE_BRK
   1502   1.1        ad 	if ((uintptr_t)chunk >= (uintptr_t)brk_base
   1503   1.1        ad 	    && (uintptr_t)chunk < (uintptr_t)brk_max) {
   1504   1.1        ad 		void *brk_cur;
   1505   1.1        ad 
   1506   1.1        ad 		malloc_mutex_lock(&brk_mtx);
   1507   1.1        ad 		/* Get the current end of brk. */
   1508   1.1        ad 		brk_cur = sbrk(0);
   1509   1.1        ad 
   1510   1.1        ad 		/*
   1511   1.1        ad 		 * Try to shrink the data segment if this chunk is at the end
   1512   1.1        ad 		 * of the data segment.  The sbrk() call here is subject to a
   1513   1.1        ad 		 * race condition with threads that use brk(2) or sbrk(2)
   1514   1.1        ad 		 * directly, but the alternative would be to leak memory for
   1515   1.1        ad 		 * the sake of poorly designed multi-threaded programs.
   1516   1.1        ad 		 */
   1517   1.1        ad 		if (brk_cur == brk_max
   1518   1.1        ad 		    && (void *)((uintptr_t)chunk + size) == brk_max
   1519   1.1        ad 		    && sbrk(-(intptr_t)size) == brk_max) {
   1520   1.1        ad 			malloc_mutex_unlock(&brk_mtx);
   1521   1.1        ad 			if (brk_prev == brk_max) {
   1522   1.1        ad 				/* Success. */
   1523   1.1        ad 				brk_prev = (void *)((intptr_t)brk_max
   1524   1.1        ad 				    - (intptr_t)size);
   1525   1.1        ad 				brk_max = brk_prev;
   1526   1.1        ad 			}
   1527   1.1        ad 		} else {
   1528   1.1        ad 			size_t offset;
   1529   1.1        ad 
   1530   1.1        ad 			malloc_mutex_unlock(&brk_mtx);
   1531   1.1        ad 			madvise(chunk, size, MADV_FREE);
   1532   1.1        ad 
   1533   1.1        ad 			/*
   1534   1.1        ad 			 * Iteratively create records of each chunk-sized
   1535   1.1        ad 			 * memory region that 'chunk' is comprised of, so that
   1536   1.1        ad 			 * the address range can be recycled if memory usage
   1537   1.1        ad 			 * increases later on.
   1538   1.1        ad 			 */
   1539   1.1        ad 			for (offset = 0; offset < size; offset += chunksize) {
   1540   1.1        ad 				node = base_chunk_node_alloc();
   1541   1.1        ad 				if (node == NULL)
   1542   1.1        ad 					break;
   1543   1.1        ad 
   1544   1.1        ad 				node->chunk = (void *)((uintptr_t)chunk
   1545   1.1        ad 				    + (uintptr_t)offset);
   1546   1.1        ad 				node->size = chunksize;
   1547   1.2        ad 				/* LINTED */
   1548   1.1        ad 				RB_INSERT(chunk_tree_s, &old_chunks, node);
   1549   1.1        ad 			}
   1550   1.1        ad 		}
   1551   1.1        ad 	} else {
   1552   1.1        ad #endif
   1553   1.1        ad 		pages_unmap(chunk, size);
   1554   1.1        ad 
   1555   1.1        ad 		/*
   1556   1.1        ad 		 * Make a record of the chunk's address, so that the address
   1557   1.1        ad 		 * range can be recycled if memory usage increases later on.
   1558   1.1        ad 		 * Don't bother to create entries if (size > chunksize), since
   1559   1.1        ad 		 * doing so could cause scalability issues for truly gargantuan
   1560   1.1        ad 		 * objects (many gigabytes or larger).
   1561   1.1        ad 		 */
   1562   1.1        ad 		if (size == chunksize) {
   1563   1.1        ad 			node = base_chunk_node_alloc();
   1564   1.1        ad 			if (node != NULL) {
   1565   1.1        ad 				node->chunk = (void *)(uintptr_t)chunk;
   1566   1.1        ad 				node->size = chunksize;
   1567   1.2        ad 				/* LINTED */
   1568   1.1        ad 				RB_INSERT(chunk_tree_s, &old_chunks, node);
   1569   1.1        ad 			}
   1570   1.1        ad 		}
   1571   1.1        ad #ifdef USE_BRK
   1572   1.1        ad 	}
   1573   1.1        ad #endif
   1574   1.1        ad 
   1575   1.1        ad #ifdef MALLOC_STATS
   1576   1.1        ad 	stats_chunks.curchunks -= (size / chunksize);
   1577   1.1        ad #endif
   1578   1.1        ad 	malloc_mutex_unlock(&chunks_mtx);
   1579   1.1        ad }
   1580   1.1        ad 
   1581   1.1        ad /*
   1582   1.1        ad  * End chunk management functions.
   1583   1.1        ad  */
   1584   1.1        ad /******************************************************************************/
   1585   1.1        ad /*
   1586   1.1        ad  * Begin arena.
   1587   1.1        ad  */
   1588   1.1        ad 
   1589   1.1        ad /*
   1590  1.17        ad  * Choose an arena based on a per-thread and (optimistically) per-CPU value.
   1591  1.17        ad  *
   1592  1.17        ad  * We maintain at least one block of arenas.  Usually there are more.
   1593  1.17        ad  * The blocks are $ncpu arenas in size.  Whole blocks are 'hashed'
   1594  1.17        ad  * amongst threads.  To accomplish this, next_arena advances only in
   1595  1.17        ad  * ncpu steps.
   1596   1.1        ad  */
   1597  1.19        ad static __noinline arena_t *
   1598  1.19        ad choose_arena_hard(void)
   1599   1.1        ad {
   1600  1.17        ad 	unsigned i, curcpu;
   1601  1.17        ad 	arena_t **map;
   1602   1.1        ad 
   1603  1.17        ad 	/* Initialize the current block of arenas and advance to next. */
   1604   1.1        ad 	malloc_mutex_lock(&arenas_mtx);
   1605  1.17        ad 	assert(next_arena % ncpus == 0);
   1606  1.17        ad 	assert(narenas % ncpus == 0);
   1607  1.17        ad 	map = &arenas[next_arena];
   1608  1.17        ad 	set_arenas_map(map);
   1609  1.17        ad 	for (i = 0; i < ncpus; i++) {
   1610  1.17        ad 		if (arenas[next_arena] == NULL)
   1611  1.17        ad 			arenas_extend(next_arena);
   1612  1.17        ad 		next_arena = (next_arena + 1) % narenas;
   1613  1.15        ad 	}
   1614   1.1        ad 	malloc_mutex_unlock(&arenas_mtx);
   1615   1.1        ad 
   1616  1.17        ad 	/*
   1617  1.17        ad 	 * If we were unable to allocate an arena above, then default to
   1618  1.17        ad 	 * the first arena, which is always present.
   1619  1.17        ad 	 */
   1620  1.17        ad 	curcpu = thr_curcpu();
   1621  1.17        ad 	if (map[curcpu] != NULL)
   1622  1.17        ad 		return map[curcpu];
   1623  1.17        ad 	return arenas[0];
   1624   1.1        ad }
   1625   1.1        ad 
   1626  1.19        ad static inline arena_t *
   1627  1.19        ad choose_arena(void)
   1628  1.19        ad {
   1629  1.19        ad 	unsigned curcpu;
   1630  1.19        ad 	arena_t **map;
   1631  1.19        ad 
   1632  1.19        ad 	map = get_arenas_map();
   1633  1.19        ad 	curcpu = thr_curcpu();
   1634  1.19        ad 	if (__predict_true(map != NULL && map[curcpu] != NULL))
   1635  1.19        ad 		return map[curcpu];
   1636  1.19        ad 
   1637  1.19        ad         return choose_arena_hard();
   1638  1.19        ad }
   1639  1.19        ad 
   1640   1.7      yamt #ifndef lint
   1641   1.1        ad static inline int
   1642   1.1        ad arena_chunk_comp(arena_chunk_t *a, arena_chunk_t *b)
   1643   1.1        ad {
   1644   1.1        ad 
   1645   1.1        ad 	assert(a != NULL);
   1646   1.1        ad 	assert(b != NULL);
   1647   1.1        ad 
   1648  1.40     joerg 	if (a->max_frun_npages < b->max_frun_npages)
   1649  1.40     joerg 		return -1;
   1650  1.40     joerg 	if (a->max_frun_npages > b->max_frun_npages)
   1651  1.40     joerg 		return 1;
   1652  1.40     joerg 
   1653   1.1        ad 	if ((uintptr_t)a < (uintptr_t)b)
   1654   1.1        ad 		return (-1);
   1655   1.1        ad 	else if (a == b)
   1656   1.1        ad 		return (0);
   1657   1.1        ad 	else
   1658   1.1        ad 		return (1);
   1659   1.1        ad }
   1660   1.1        ad 
   1661   1.1        ad /* Generate red-black tree code for arena chunks. */
   1662   1.1        ad RB_GENERATE_STATIC(arena_chunk_tree_s, arena_chunk_s, link, arena_chunk_comp);
   1663   1.2        ad #endif
   1664   1.1        ad 
   1665   1.7      yamt #ifndef lint
   1666   1.1        ad static inline int
   1667   1.1        ad arena_run_comp(arena_run_t *a, arena_run_t *b)
   1668   1.1        ad {
   1669   1.1        ad 
   1670   1.1        ad 	assert(a != NULL);
   1671   1.1        ad 	assert(b != NULL);
   1672   1.1        ad 
   1673   1.1        ad 	if ((uintptr_t)a < (uintptr_t)b)
   1674   1.1        ad 		return (-1);
   1675   1.1        ad 	else if (a == b)
   1676   1.1        ad 		return (0);
   1677   1.1        ad 	else
   1678   1.1        ad 		return (1);
   1679   1.1        ad }
   1680   1.1        ad 
   1681   1.1        ad /* Generate red-black tree code for arena runs. */
   1682   1.1        ad RB_GENERATE_STATIC(arena_run_tree_s, arena_run_s, link, arena_run_comp);
   1683   1.2        ad #endif
   1684   1.1        ad 
   1685   1.1        ad static inline void *
   1686   1.1        ad arena_run_reg_alloc(arena_run_t *run, arena_bin_t *bin)
   1687   1.1        ad {
   1688   1.1        ad 	void *ret;
   1689   1.1        ad 	unsigned i, mask, bit, regind;
   1690   1.1        ad 
   1691   1.1        ad 	assert(run->magic == ARENA_RUN_MAGIC);
   1692   1.1        ad 	assert(run->regs_minelm < bin->regs_mask_nelms);
   1693   1.1        ad 
   1694   1.1        ad 	/*
   1695   1.1        ad 	 * Move the first check outside the loop, so that run->regs_minelm can
   1696   1.1        ad 	 * be updated unconditionally, without the possibility of updating it
   1697   1.1        ad 	 * multiple times.
   1698   1.1        ad 	 */
   1699   1.1        ad 	i = run->regs_minelm;
   1700   1.1        ad 	mask = run->regs_mask[i];
   1701   1.1        ad 	if (mask != 0) {
   1702   1.1        ad 		/* Usable allocation found. */
   1703   1.1        ad 		bit = ffs((int)mask) - 1;
   1704   1.1        ad 
   1705   1.1        ad 		regind = ((i << (SIZEOF_INT_2POW + 3)) + bit);
   1706   1.1        ad 		ret = (void *)(((uintptr_t)run) + bin->reg0_offset
   1707   1.1        ad 		    + (bin->reg_size * regind));
   1708   1.1        ad 
   1709   1.1        ad 		/* Clear bit. */
   1710   1.1        ad 		mask ^= (1 << bit);
   1711   1.1        ad 		run->regs_mask[i] = mask;
   1712   1.1        ad 
   1713   1.1        ad 		return (ret);
   1714   1.1        ad 	}
   1715   1.1        ad 
   1716   1.1        ad 	for (i++; i < bin->regs_mask_nelms; i++) {
   1717   1.1        ad 		mask = run->regs_mask[i];
   1718   1.1        ad 		if (mask != 0) {
   1719   1.1        ad 			/* Usable allocation found. */
   1720   1.1        ad 			bit = ffs((int)mask) - 1;
   1721   1.1        ad 
   1722   1.1        ad 			regind = ((i << (SIZEOF_INT_2POW + 3)) + bit);
   1723   1.1        ad 			ret = (void *)(((uintptr_t)run) + bin->reg0_offset
   1724   1.1        ad 			    + (bin->reg_size * regind));
   1725   1.1        ad 
   1726   1.1        ad 			/* Clear bit. */
   1727   1.1        ad 			mask ^= (1 << bit);
   1728   1.1        ad 			run->regs_mask[i] = mask;
   1729   1.1        ad 
   1730   1.1        ad 			/*
   1731   1.1        ad 			 * Make a note that nothing before this element
   1732   1.1        ad 			 * contains a free region.
   1733   1.1        ad 			 */
   1734   1.1        ad 			run->regs_minelm = i; /* Low payoff: + (mask == 0); */
   1735   1.1        ad 
   1736   1.1        ad 			return (ret);
   1737   1.1        ad 		}
   1738   1.1        ad 	}
   1739   1.1        ad 	/* Not reached. */
   1740   1.7      yamt 	/* LINTED */
   1741   1.1        ad 	assert(0);
   1742   1.1        ad 	return (NULL);
   1743   1.1        ad }
   1744   1.1        ad 
   1745   1.1        ad static inline void
   1746   1.1        ad arena_run_reg_dalloc(arena_run_t *run, arena_bin_t *bin, void *ptr, size_t size)
   1747   1.1        ad {
   1748   1.1        ad 	/*
   1749   1.1        ad 	 * To divide by a number D that is not a power of two we multiply
   1750   1.1        ad 	 * by (2^21 / D) and then right shift by 21 positions.
   1751   1.1        ad 	 *
   1752   1.1        ad 	 *   X / D
   1753   1.1        ad 	 *
   1754   1.1        ad 	 * becomes
   1755   1.1        ad 	 *
   1756   1.1        ad 	 *   (X * size_invs[(D >> QUANTUM_2POW_MIN) - 3]) >> SIZE_INV_SHIFT
   1757   1.1        ad 	 */
   1758   1.1        ad #define SIZE_INV_SHIFT 21
   1759   1.1        ad #define SIZE_INV(s) (((1 << SIZE_INV_SHIFT) / (s << QUANTUM_2POW_MIN)) + 1)
   1760   1.1        ad 	static const unsigned size_invs[] = {
   1761   1.1        ad 	    SIZE_INV(3),
   1762   1.1        ad 	    SIZE_INV(4), SIZE_INV(5), SIZE_INV(6), SIZE_INV(7),
   1763   1.1        ad 	    SIZE_INV(8), SIZE_INV(9), SIZE_INV(10), SIZE_INV(11),
   1764   1.1        ad 	    SIZE_INV(12),SIZE_INV(13), SIZE_INV(14), SIZE_INV(15),
   1765   1.1        ad 	    SIZE_INV(16),SIZE_INV(17), SIZE_INV(18), SIZE_INV(19),
   1766   1.1        ad 	    SIZE_INV(20),SIZE_INV(21), SIZE_INV(22), SIZE_INV(23),
   1767   1.1        ad 	    SIZE_INV(24),SIZE_INV(25), SIZE_INV(26), SIZE_INV(27),
   1768   1.1        ad 	    SIZE_INV(28),SIZE_INV(29), SIZE_INV(30), SIZE_INV(31)
   1769   1.1        ad #if (QUANTUM_2POW_MIN < 4)
   1770   1.1        ad 	    ,
   1771   1.1        ad 	    SIZE_INV(32), SIZE_INV(33), SIZE_INV(34), SIZE_INV(35),
   1772   1.1        ad 	    SIZE_INV(36), SIZE_INV(37), SIZE_INV(38), SIZE_INV(39),
   1773   1.1        ad 	    SIZE_INV(40), SIZE_INV(41), SIZE_INV(42), SIZE_INV(43),
   1774   1.1        ad 	    SIZE_INV(44), SIZE_INV(45), SIZE_INV(46), SIZE_INV(47),
   1775   1.1        ad 	    SIZE_INV(48), SIZE_INV(49), SIZE_INV(50), SIZE_INV(51),
   1776   1.1        ad 	    SIZE_INV(52), SIZE_INV(53), SIZE_INV(54), SIZE_INV(55),
   1777   1.1        ad 	    SIZE_INV(56), SIZE_INV(57), SIZE_INV(58), SIZE_INV(59),
   1778   1.1        ad 	    SIZE_INV(60), SIZE_INV(61), SIZE_INV(62), SIZE_INV(63)
   1779   1.1        ad #endif
   1780   1.1        ad 	};
   1781   1.1        ad 	unsigned diff, regind, elm, bit;
   1782   1.1        ad 
   1783   1.7      yamt 	/* LINTED */
   1784   1.1        ad 	assert(run->magic == ARENA_RUN_MAGIC);
   1785   1.1        ad 	assert(((sizeof(size_invs)) / sizeof(unsigned)) + 3
   1786   1.1        ad 	    >= (SMALL_MAX_DEFAULT >> QUANTUM_2POW_MIN));
   1787   1.1        ad 
   1788   1.1        ad 	/*
   1789   1.1        ad 	 * Avoid doing division with a variable divisor if possible.  Using
   1790   1.1        ad 	 * actual division here can reduce allocator throughput by over 20%!
   1791   1.1        ad 	 */
   1792   1.1        ad 	diff = (unsigned)((uintptr_t)ptr - (uintptr_t)run - bin->reg0_offset);
   1793   1.1        ad 	if ((size & (size - 1)) == 0) {
   1794   1.1        ad 		/*
   1795   1.1        ad 		 * log2_table allows fast division of a power of two in the
   1796   1.1        ad 		 * [1..128] range.
   1797   1.1        ad 		 *
   1798   1.1        ad 		 * (x / divisor) becomes (x >> log2_table[divisor - 1]).
   1799   1.1        ad 		 */
   1800   1.1        ad 		static const unsigned char log2_table[] = {
   1801   1.1        ad 		    0, 1, 0, 2, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 4,
   1802   1.1        ad 		    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5,
   1803   1.1        ad 		    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
   1804   1.1        ad 		    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6,
   1805   1.1        ad 		    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
   1806   1.1        ad 		    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
   1807   1.1        ad 		    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
   1808   1.1        ad 		    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7
   1809   1.1        ad 		};
   1810   1.1        ad 
   1811   1.1        ad 		if (size <= 128)
   1812   1.1        ad 			regind = (diff >> log2_table[size - 1]);
   1813   1.1        ad 		else if (size <= 32768)
   1814   1.1        ad 			regind = diff >> (8 + log2_table[(size >> 8) - 1]);
   1815   1.1        ad 		else {
   1816   1.1        ad 			/*
   1817   1.1        ad 			 * The page size is too large for us to use the lookup
   1818   1.1        ad 			 * table.  Use real division.
   1819   1.1        ad 			 */
   1820   1.9  christos 			regind = (unsigned)(diff / size);
   1821   1.1        ad 		}
   1822   1.1        ad 	} else if (size <= ((sizeof(size_invs) / sizeof(unsigned))
   1823   1.1        ad 	    << QUANTUM_2POW_MIN) + 2) {
   1824   1.1        ad 		regind = size_invs[(size >> QUANTUM_2POW_MIN) - 3] * diff;
   1825   1.1        ad 		regind >>= SIZE_INV_SHIFT;
   1826   1.1        ad 	} else {
   1827   1.1        ad 		/*
   1828   1.1        ad 		 * size_invs isn't large enough to handle this size class, so
   1829   1.1        ad 		 * calculate regind using actual division.  This only happens
   1830   1.1        ad 		 * if the user increases small_max via the 'S' runtime
   1831   1.1        ad 		 * configuration option.
   1832   1.1        ad 		 */
   1833   1.9  christos 		regind = (unsigned)(diff / size);
   1834   1.1        ad 	};
   1835   1.1        ad 	assert(diff == regind * size);
   1836   1.1        ad 	assert(regind < bin->nregs);
   1837   1.1        ad 
   1838   1.1        ad 	elm = regind >> (SIZEOF_INT_2POW + 3);
   1839   1.1        ad 	if (elm < run->regs_minelm)
   1840   1.1        ad 		run->regs_minelm = elm;
   1841   1.1        ad 	bit = regind - (elm << (SIZEOF_INT_2POW + 3));
   1842   1.1        ad 	assert((run->regs_mask[elm] & (1 << bit)) == 0);
   1843   1.1        ad 	run->regs_mask[elm] |= (1 << bit);
   1844   1.1        ad #undef SIZE_INV
   1845   1.1        ad #undef SIZE_INV_SHIFT
   1846   1.1        ad }
   1847   1.1        ad 
   1848   1.1        ad static void
   1849   1.1        ad arena_run_split(arena_t *arena, arena_run_t *run, size_t size)
   1850   1.1        ad {
   1851   1.1        ad 	arena_chunk_t *chunk;
   1852   1.1        ad 	unsigned run_ind, map_offset, total_pages, need_pages, rem_pages;
   1853   1.1        ad 	unsigned i;
   1854   1.1        ad 
   1855   1.1        ad 	chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(run);
   1856   1.1        ad 	run_ind = (unsigned)(((uintptr_t)run - (uintptr_t)chunk)
   1857   1.1        ad 	    >> pagesize_2pow);
   1858   1.1        ad 	total_pages = chunk->map[run_ind].npages;
   1859   1.9  christos 	need_pages = (unsigned)(size >> pagesize_2pow);
   1860   1.1        ad 	assert(need_pages <= total_pages);
   1861   1.1        ad 	rem_pages = total_pages - need_pages;
   1862   1.1        ad 
   1863   1.1        ad 	/* Split enough pages from the front of run to fit allocation size. */
   1864   1.1        ad 	map_offset = run_ind;
   1865   1.1        ad 	for (i = 0; i < need_pages; i++) {
   1866   1.1        ad 		chunk->map[map_offset + i].npages = need_pages;
   1867   1.1        ad 		chunk->map[map_offset + i].pos = i;
   1868   1.1        ad 	}
   1869   1.1        ad 
   1870   1.1        ad 	/* Keep track of trailing unused pages for later use. */
   1871   1.1        ad 	if (rem_pages > 0) {
   1872   1.1        ad 		/* Update map for trailing pages. */
   1873   1.1        ad 		map_offset += need_pages;
   1874   1.1        ad 		chunk->map[map_offset].npages = rem_pages;
   1875   1.1        ad 		chunk->map[map_offset].pos = POS_FREE;
   1876   1.1        ad 		chunk->map[map_offset + rem_pages - 1].npages = rem_pages;
   1877   1.1        ad 		chunk->map[map_offset + rem_pages - 1].pos = POS_FREE;
   1878   1.1        ad 	}
   1879   1.1        ad 
   1880   1.1        ad 	chunk->pages_used += need_pages;
   1881   1.1        ad }
   1882   1.1        ad 
   1883   1.1        ad static arena_chunk_t *
   1884   1.1        ad arena_chunk_alloc(arena_t *arena)
   1885   1.1        ad {
   1886   1.1        ad 	arena_chunk_t *chunk;
   1887   1.1        ad 
   1888   1.1        ad 	if (arena->spare != NULL) {
   1889   1.1        ad 		chunk = arena->spare;
   1890   1.1        ad 		arena->spare = NULL;
   1891   1.1        ad 
   1892   1.2        ad 		/* LINTED */
   1893   1.1        ad 		RB_INSERT(arena_chunk_tree_s, &arena->chunks, chunk);
   1894   1.1        ad 	} else {
   1895   1.1        ad 		chunk = (arena_chunk_t *)chunk_alloc(chunksize);
   1896   1.1        ad 		if (chunk == NULL)
   1897   1.1        ad 			return (NULL);
   1898   1.1        ad #ifdef MALLOC_STATS
   1899   1.1        ad 		arena->stats.mapped += chunksize;
   1900   1.1        ad #endif
   1901   1.1        ad 
   1902   1.1        ad 		chunk->arena = arena;
   1903   1.1        ad 
   1904   1.1        ad 		/*
   1905   1.1        ad 		 * Claim that no pages are in use, since the header is merely
   1906   1.1        ad 		 * overhead.
   1907   1.1        ad 		 */
   1908   1.1        ad 		chunk->pages_used = 0;
   1909   1.1        ad 
   1910   1.1        ad 		chunk->max_frun_npages = chunk_npages -
   1911   1.1        ad 		    arena_chunk_header_npages;
   1912   1.1        ad 		chunk->min_frun_ind = arena_chunk_header_npages;
   1913   1.1        ad 
   1914   1.1        ad 		/*
   1915   1.1        ad 		 * Initialize enough of the map to support one maximal free run.
   1916   1.1        ad 		 */
   1917   1.1        ad 		chunk->map[arena_chunk_header_npages].npages = chunk_npages -
   1918   1.1        ad 		    arena_chunk_header_npages;
   1919   1.1        ad 		chunk->map[arena_chunk_header_npages].pos = POS_FREE;
   1920   1.1        ad 		chunk->map[chunk_npages - 1].npages = chunk_npages -
   1921   1.1        ad 		    arena_chunk_header_npages;
   1922   1.1        ad 		chunk->map[chunk_npages - 1].pos = POS_FREE;
   1923  1.40     joerg 
   1924  1.40     joerg 		RB_INSERT(arena_chunk_tree_s, &arena->chunks, chunk);
   1925   1.1        ad 	}
   1926   1.1        ad 
   1927   1.1        ad 	return (chunk);
   1928   1.1        ad }
   1929   1.1        ad 
   1930   1.1        ad static void
   1931   1.1        ad arena_chunk_dealloc(arena_t *arena, arena_chunk_t *chunk)
   1932   1.1        ad {
   1933   1.1        ad 
   1934   1.1        ad 	/*
   1935   1.1        ad 	 * Remove chunk from the chunk tree, regardless of whether this chunk
   1936   1.1        ad 	 * will be cached, so that the arena does not use it.
   1937   1.1        ad 	 */
   1938   1.2        ad 	/* LINTED */
   1939   1.1        ad 	RB_REMOVE(arena_chunk_tree_s, &chunk->arena->chunks, chunk);
   1940   1.1        ad 
   1941   1.1        ad 	if (opt_hint == false) {
   1942   1.1        ad 		if (arena->spare != NULL) {
   1943   1.1        ad 			chunk_dealloc((void *)arena->spare, chunksize);
   1944   1.1        ad #ifdef MALLOC_STATS
   1945   1.1        ad 			arena->stats.mapped -= chunksize;
   1946   1.1        ad #endif
   1947   1.1        ad 		}
   1948   1.1        ad 		arena->spare = chunk;
   1949   1.1        ad 	} else {
   1950   1.1        ad 		assert(arena->spare == NULL);
   1951   1.1        ad 		chunk_dealloc((void *)chunk, chunksize);
   1952   1.1        ad #ifdef MALLOC_STATS
   1953   1.1        ad 		arena->stats.mapped -= chunksize;
   1954   1.1        ad #endif
   1955   1.1        ad 	}
   1956   1.1        ad }
   1957   1.1        ad 
   1958   1.1        ad static arena_run_t *
   1959   1.1        ad arena_run_alloc(arena_t *arena, size_t size)
   1960   1.1        ad {
   1961  1.40     joerg 	arena_chunk_t *chunk, *chunk_tmp;
   1962   1.1        ad 	arena_run_t *run;
   1963  1.40     joerg 	unsigned need_npages;
   1964   1.1        ad 
   1965   1.1        ad 	assert(size <= (chunksize - (arena_chunk_header_npages <<
   1966   1.1        ad 	    pagesize_2pow)));
   1967   1.1        ad 	assert((size & pagesize_mask) == 0);
   1968   1.1        ad 
   1969   1.1        ad 	/*
   1970  1.40     joerg 	 * Search through the arena chunk tree for a large enough free run.
   1971  1.40     joerg 	 * Tree order ensures that any exact fit is picked immediately or
   1972  1.40     joerg 	 * otherwise the lowest address of the next size.
   1973   1.1        ad 	 */
   1974   1.9  christos 	need_npages = (unsigned)(size >> pagesize_2pow);
   1975   1.2        ad 	/* LINTED */
   1976  1.40     joerg 	for (;;) {
   1977  1.40     joerg 		chunk_tmp = RB_ROOT(&arena->chunks);
   1978  1.40     joerg 		chunk = NULL;
   1979  1.40     joerg 		while (chunk_tmp) {
   1980  1.40     joerg 			if (chunk_tmp->max_frun_npages == need_npages) {
   1981  1.40     joerg 				chunk = chunk_tmp;
   1982  1.40     joerg 				break;
   1983  1.40     joerg 			}
   1984  1.40     joerg 			if (chunk_tmp->max_frun_npages < need_npages) {
   1985  1.40     joerg 				chunk_tmp = RB_RIGHT(chunk_tmp, link);
   1986  1.40     joerg 				continue;
   1987  1.40     joerg 			}
   1988  1.40     joerg 			chunk = chunk_tmp;
   1989  1.40     joerg 			chunk_tmp = RB_LEFT(chunk, link);
   1990  1.40     joerg 		}
   1991  1.40     joerg 		if (chunk == NULL)
   1992  1.40     joerg 			break;
   1993   1.1        ad 		/*
   1994  1.40     joerg 		 * At this point, the chunk must have a cached run size large
   1995  1.40     joerg 		 * enough to fit the allocation.
   1996   1.1        ad 		 */
   1997  1.40     joerg 		assert(need_npages <= chunk->max_frun_npages);
   1998  1.40     joerg 		{
   1999   1.1        ad 			arena_chunk_map_t *mapelm;
   2000   1.1        ad 			unsigned i;
   2001   1.1        ad 			unsigned max_frun_npages = 0;
   2002   1.1        ad 			unsigned min_frun_ind = chunk_npages;
   2003   1.1        ad 
   2004   1.1        ad 			assert(chunk->min_frun_ind >=
   2005   1.1        ad 			    arena_chunk_header_npages);
   2006   1.1        ad 			for (i = chunk->min_frun_ind; i < chunk_npages;) {
   2007   1.1        ad 				mapelm = &chunk->map[i];
   2008   1.1        ad 				if (mapelm->pos == POS_FREE) {
   2009   1.1        ad 					if (mapelm->npages >= need_npages) {
   2010   1.1        ad 						run = (arena_run_t *)
   2011   1.1        ad 						    ((uintptr_t)chunk + (i <<
   2012   1.1        ad 						    pagesize_2pow));
   2013   1.1        ad 						/* Update page map. */
   2014   1.1        ad 						arena_run_split(arena, run,
   2015   1.1        ad 						    size);
   2016   1.1        ad 						return (run);
   2017   1.1        ad 					}
   2018   1.1        ad 					if (mapelm->npages >
   2019   1.1        ad 					    max_frun_npages) {
   2020   1.1        ad 						max_frun_npages =
   2021   1.1        ad 						    mapelm->npages;
   2022   1.1        ad 					}
   2023   1.1        ad 					if (i < min_frun_ind) {
   2024   1.1        ad 						min_frun_ind = i;
   2025   1.1        ad 						if (i < chunk->min_frun_ind)
   2026   1.1        ad 							chunk->min_frun_ind = i;
   2027   1.1        ad 					}
   2028   1.1        ad 				}
   2029   1.1        ad 				i += mapelm->npages;
   2030   1.1        ad 			}
   2031   1.1        ad 			/*
   2032   1.1        ad 			 * Search failure.  Reset cached chunk->max_frun_npages.
   2033   1.1        ad 			 * chunk->min_frun_ind was already reset above (if
   2034   1.1        ad 			 * necessary).
   2035   1.1        ad 			 */
   2036  1.40     joerg 			RB_REMOVE(arena_chunk_tree_s, &arena->chunks, chunk);
   2037   1.1        ad 			chunk->max_frun_npages = max_frun_npages;
   2038  1.40     joerg 			RB_INSERT(arena_chunk_tree_s, &arena->chunks, chunk);
   2039   1.1        ad 		}
   2040   1.1        ad 	}
   2041   1.1        ad 
   2042   1.1        ad 	/*
   2043   1.1        ad 	 * No usable runs.  Create a new chunk from which to allocate the run.
   2044   1.1        ad 	 */
   2045   1.1        ad 	chunk = arena_chunk_alloc(arena);
   2046   1.1        ad 	if (chunk == NULL)
   2047   1.1        ad 		return (NULL);
   2048   1.1        ad 	run = (arena_run_t *)((uintptr_t)chunk + (arena_chunk_header_npages <<
   2049   1.1        ad 	    pagesize_2pow));
   2050   1.1        ad 	/* Update page map. */
   2051   1.1        ad 	arena_run_split(arena, run, size);
   2052   1.1        ad 	return (run);
   2053   1.1        ad }
   2054   1.1        ad 
   2055   1.1        ad static void
   2056   1.1        ad arena_run_dalloc(arena_t *arena, arena_run_t *run, size_t size)
   2057   1.1        ad {
   2058   1.1        ad 	arena_chunk_t *chunk;
   2059   1.1        ad 	unsigned run_ind, run_pages;
   2060   1.1        ad 
   2061   1.1        ad 	chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(run);
   2062   1.1        ad 
   2063   1.1        ad 	run_ind = (unsigned)(((uintptr_t)run - (uintptr_t)chunk)
   2064   1.1        ad 	    >> pagesize_2pow);
   2065   1.1        ad 	assert(run_ind >= arena_chunk_header_npages);
   2066   1.1        ad 	assert(run_ind < (chunksize >> pagesize_2pow));
   2067   1.9  christos 	run_pages = (unsigned)(size >> pagesize_2pow);
   2068   1.1        ad 	assert(run_pages == chunk->map[run_ind].npages);
   2069   1.1        ad 
   2070   1.1        ad 	/* Subtract pages from count of pages used in chunk. */
   2071   1.1        ad 	chunk->pages_used -= run_pages;
   2072   1.1        ad 
   2073   1.1        ad 	/* Mark run as deallocated. */
   2074   1.1        ad 	assert(chunk->map[run_ind].npages == run_pages);
   2075   1.1        ad 	chunk->map[run_ind].pos = POS_FREE;
   2076   1.1        ad 	assert(chunk->map[run_ind + run_pages - 1].npages == run_pages);
   2077   1.1        ad 	chunk->map[run_ind + run_pages - 1].pos = POS_FREE;
   2078   1.1        ad 
   2079   1.1        ad 	/*
   2080   1.1        ad 	 * Tell the kernel that we don't need the data in this run, but only if
   2081   1.1        ad 	 * requested via runtime configuration.
   2082   1.1        ad 	 */
   2083   1.1        ad 	if (opt_hint)
   2084   1.1        ad 		madvise(run, size, MADV_FREE);
   2085   1.1        ad 
   2086   1.1        ad 	/* Try to coalesce with neighboring runs. */
   2087   1.1        ad 	if (run_ind > arena_chunk_header_npages &&
   2088   1.1        ad 	    chunk->map[run_ind - 1].pos == POS_FREE) {
   2089   1.1        ad 		unsigned prev_npages;
   2090   1.1        ad 
   2091   1.1        ad 		/* Coalesce with previous run. */
   2092   1.1        ad 		prev_npages = chunk->map[run_ind - 1].npages;
   2093   1.1        ad 		run_ind -= prev_npages;
   2094   1.1        ad 		assert(chunk->map[run_ind].npages == prev_npages);
   2095   1.1        ad 		assert(chunk->map[run_ind].pos == POS_FREE);
   2096   1.1        ad 		run_pages += prev_npages;
   2097   1.1        ad 
   2098   1.1        ad 		chunk->map[run_ind].npages = run_pages;
   2099   1.1        ad 		assert(chunk->map[run_ind].pos == POS_FREE);
   2100   1.1        ad 		chunk->map[run_ind + run_pages - 1].npages = run_pages;
   2101   1.1        ad 		assert(chunk->map[run_ind + run_pages - 1].pos == POS_FREE);
   2102   1.1        ad 	}
   2103   1.1        ad 
   2104   1.1        ad 	if (run_ind + run_pages < chunk_npages &&
   2105   1.1        ad 	    chunk->map[run_ind + run_pages].pos == POS_FREE) {
   2106   1.1        ad 		unsigned next_npages;
   2107   1.1        ad 
   2108   1.1        ad 		/* Coalesce with next run. */
   2109   1.1        ad 		next_npages = chunk->map[run_ind + run_pages].npages;
   2110   1.1        ad 		run_pages += next_npages;
   2111   1.1        ad 		assert(chunk->map[run_ind + run_pages - 1].npages ==
   2112   1.1        ad 		    next_npages);
   2113   1.1        ad 		assert(chunk->map[run_ind + run_pages - 1].pos == POS_FREE);
   2114   1.1        ad 
   2115   1.1        ad 		chunk->map[run_ind].npages = run_pages;
   2116   1.1        ad 		chunk->map[run_ind].pos = POS_FREE;
   2117   1.1        ad 		chunk->map[run_ind + run_pages - 1].npages = run_pages;
   2118   1.1        ad 		assert(chunk->map[run_ind + run_pages - 1].pos == POS_FREE);
   2119   1.1        ad 	}
   2120   1.1        ad 
   2121  1.40     joerg 	if (chunk->map[run_ind].npages > chunk->max_frun_npages) {
   2122  1.40     joerg 		RB_REMOVE(arena_chunk_tree_s, &arena->chunks, chunk);
   2123   1.1        ad 		chunk->max_frun_npages = chunk->map[run_ind].npages;
   2124  1.40     joerg 		RB_INSERT(arena_chunk_tree_s, &arena->chunks, chunk);
   2125  1.40     joerg 	}
   2126   1.1        ad 	if (run_ind < chunk->min_frun_ind)
   2127   1.1        ad 		chunk->min_frun_ind = run_ind;
   2128   1.1        ad 
   2129   1.1        ad 	/* Deallocate chunk if it is now completely unused. */
   2130   1.1        ad 	if (chunk->pages_used == 0)
   2131   1.1        ad 		arena_chunk_dealloc(arena, chunk);
   2132   1.1        ad }
   2133   1.1        ad 
   2134   1.1        ad static arena_run_t *
   2135   1.1        ad arena_bin_nonfull_run_get(arena_t *arena, arena_bin_t *bin)
   2136   1.1        ad {
   2137   1.1        ad 	arena_run_t *run;
   2138   1.1        ad 	unsigned i, remainder;
   2139   1.1        ad 
   2140   1.1        ad 	/* Look for a usable run. */
   2141   1.2        ad 	/* LINTED */
   2142   1.1        ad 	if ((run = RB_MIN(arena_run_tree_s, &bin->runs)) != NULL) {
   2143   1.1        ad 		/* run is guaranteed to have available space. */
   2144   1.2        ad 		/* LINTED */
   2145   1.1        ad 		RB_REMOVE(arena_run_tree_s, &bin->runs, run);
   2146   1.1        ad #ifdef MALLOC_STATS
   2147   1.1        ad 		bin->stats.reruns++;
   2148   1.1        ad #endif
   2149   1.1        ad 		return (run);
   2150   1.1        ad 	}
   2151   1.1        ad 	/* No existing runs have any space available. */
   2152   1.1        ad 
   2153   1.1        ad 	/* Allocate a new run. */
   2154   1.1        ad 	run = arena_run_alloc(arena, bin->run_size);
   2155   1.1        ad 	if (run == NULL)
   2156   1.1        ad 		return (NULL);
   2157   1.1        ad 
   2158   1.1        ad 	/* Initialize run internals. */
   2159   1.1        ad 	run->bin = bin;
   2160   1.1        ad 
   2161   1.1        ad 	for (i = 0; i < bin->regs_mask_nelms; i++)
   2162   1.1        ad 		run->regs_mask[i] = UINT_MAX;
   2163   1.1        ad 	remainder = bin->nregs & ((1 << (SIZEOF_INT_2POW + 3)) - 1);
   2164   1.1        ad 	if (remainder != 0) {
   2165   1.1        ad 		/* The last element has spare bits that need to be unset. */
   2166   1.1        ad 		run->regs_mask[i] = (UINT_MAX >> ((1 << (SIZEOF_INT_2POW + 3))
   2167   1.1        ad 		    - remainder));
   2168   1.1        ad 	}
   2169   1.1        ad 
   2170   1.1        ad 	run->regs_minelm = 0;
   2171   1.1        ad 
   2172   1.1        ad 	run->nfree = bin->nregs;
   2173   1.1        ad #ifdef MALLOC_DEBUG
   2174   1.1        ad 	run->magic = ARENA_RUN_MAGIC;
   2175   1.1        ad #endif
   2176   1.1        ad 
   2177   1.1        ad #ifdef MALLOC_STATS
   2178   1.1        ad 	bin->stats.nruns++;
   2179   1.1        ad 	bin->stats.curruns++;
   2180   1.1        ad 	if (bin->stats.curruns > bin->stats.highruns)
   2181   1.1        ad 		bin->stats.highruns = bin->stats.curruns;
   2182   1.1        ad #endif
   2183   1.1        ad 	return (run);
   2184   1.1        ad }
   2185   1.1        ad 
   2186   1.1        ad /* bin->runcur must have space available before this function is called. */
   2187   1.1        ad static inline void *
   2188   1.1        ad arena_bin_malloc_easy(arena_t *arena, arena_bin_t *bin, arena_run_t *run)
   2189   1.1        ad {
   2190   1.1        ad 	void *ret;
   2191   1.1        ad 
   2192   1.1        ad 	assert(run->magic == ARENA_RUN_MAGIC);
   2193   1.1        ad 	assert(run->nfree > 0);
   2194   1.1        ad 
   2195   1.1        ad 	ret = arena_run_reg_alloc(run, bin);
   2196   1.1        ad 	assert(ret != NULL);
   2197   1.1        ad 	run->nfree--;
   2198   1.1        ad 
   2199   1.1        ad 	return (ret);
   2200   1.1        ad }
   2201   1.1        ad 
   2202   1.1        ad /* Re-fill bin->runcur, then call arena_bin_malloc_easy(). */
   2203   1.1        ad static void *
   2204   1.1        ad arena_bin_malloc_hard(arena_t *arena, arena_bin_t *bin)
   2205   1.1        ad {
   2206   1.1        ad 
   2207   1.1        ad 	bin->runcur = arena_bin_nonfull_run_get(arena, bin);
   2208   1.1        ad 	if (bin->runcur == NULL)
   2209   1.1        ad 		return (NULL);
   2210   1.1        ad 	assert(bin->runcur->magic == ARENA_RUN_MAGIC);
   2211   1.1        ad 	assert(bin->runcur->nfree > 0);
   2212   1.1        ad 
   2213   1.1        ad 	return (arena_bin_malloc_easy(arena, bin, bin->runcur));
   2214   1.1        ad }
   2215   1.1        ad 
   2216   1.1        ad /*
   2217   1.1        ad  * Calculate bin->run_size such that it meets the following constraints:
   2218   1.1        ad  *
   2219   1.1        ad  *   *) bin->run_size >= min_run_size
   2220   1.1        ad  *   *) bin->run_size <= arena_maxclass
   2221   1.1        ad  *   *) bin->run_size <= RUN_MAX_SMALL
   2222   1.1        ad  *   *) run header overhead <= RUN_MAX_OVRHD (or header overhead relaxed).
   2223   1.1        ad  *
   2224   1.1        ad  * bin->nregs, bin->regs_mask_nelms, and bin->reg0_offset are
   2225   1.1        ad  * also calculated here, since these settings are all interdependent.
   2226   1.1        ad  */
   2227   1.1        ad static size_t
   2228   1.1        ad arena_bin_run_size_calc(arena_bin_t *bin, size_t min_run_size)
   2229   1.1        ad {
   2230   1.1        ad 	size_t try_run_size, good_run_size;
   2231   1.1        ad 	unsigned good_nregs, good_mask_nelms, good_reg0_offset;
   2232   1.1        ad 	unsigned try_nregs, try_mask_nelms, try_reg0_offset;
   2233   1.1        ad 
   2234   1.1        ad 	assert(min_run_size >= pagesize);
   2235   1.1        ad 	assert(min_run_size <= arena_maxclass);
   2236   1.1        ad 	assert(min_run_size <= RUN_MAX_SMALL);
   2237   1.1        ad 
   2238   1.1        ad 	/*
   2239   1.1        ad 	 * Calculate known-valid settings before entering the run_size
   2240   1.1        ad 	 * expansion loop, so that the first part of the loop always copies
   2241   1.1        ad 	 * valid settings.
   2242   1.1        ad 	 *
   2243   1.1        ad 	 * The do..while loop iteratively reduces the number of regions until
   2244   1.1        ad 	 * the run header and the regions no longer overlap.  A closed formula
   2245   1.1        ad 	 * would be quite messy, since there is an interdependency between the
   2246   1.1        ad 	 * header's mask length and the number of regions.
   2247   1.1        ad 	 */
   2248   1.1        ad 	try_run_size = min_run_size;
   2249   1.9  christos 	try_nregs = (unsigned)(((try_run_size - sizeof(arena_run_t)) /
   2250  1.22     njoly 	    bin->reg_size) + 1); /* Counter-act try_nregs-- in loop. */
   2251   1.1        ad 	do {
   2252   1.1        ad 		try_nregs--;
   2253   1.1        ad 		try_mask_nelms = (try_nregs >> (SIZEOF_INT_2POW + 3)) +
   2254   1.1        ad 		    ((try_nregs & ((1 << (SIZEOF_INT_2POW + 3)) - 1)) ? 1 : 0);
   2255   1.9  christos 		try_reg0_offset = (unsigned)(try_run_size -
   2256   1.9  christos 		    (try_nregs * bin->reg_size));
   2257   1.1        ad 	} while (sizeof(arena_run_t) + (sizeof(unsigned) * (try_mask_nelms - 1))
   2258   1.1        ad 	    > try_reg0_offset);
   2259   1.1        ad 
   2260   1.1        ad 	/* run_size expansion loop. */
   2261   1.1        ad 	do {
   2262   1.1        ad 		/*
   2263   1.1        ad 		 * Copy valid settings before trying more aggressive settings.
   2264   1.1        ad 		 */
   2265   1.1        ad 		good_run_size = try_run_size;
   2266   1.1        ad 		good_nregs = try_nregs;
   2267   1.1        ad 		good_mask_nelms = try_mask_nelms;
   2268   1.1        ad 		good_reg0_offset = try_reg0_offset;
   2269   1.1        ad 
   2270   1.1        ad 		/* Try more aggressive settings. */
   2271   1.1        ad 		try_run_size += pagesize;
   2272   1.9  christos 		try_nregs = (unsigned)(((try_run_size - sizeof(arena_run_t)) /
   2273   1.9  christos 		    bin->reg_size) + 1); /* Counter-act try_nregs-- in loop. */
   2274   1.1        ad 		do {
   2275   1.1        ad 			try_nregs--;
   2276   1.1        ad 			try_mask_nelms = (try_nregs >> (SIZEOF_INT_2POW + 3)) +
   2277   1.1        ad 			    ((try_nregs & ((1 << (SIZEOF_INT_2POW + 3)) - 1)) ?
   2278   1.1        ad 			    1 : 0);
   2279   1.9  christos 			try_reg0_offset = (unsigned)(try_run_size - (try_nregs *
   2280   1.9  christos 			    bin->reg_size));
   2281   1.1        ad 		} while (sizeof(arena_run_t) + (sizeof(unsigned) *
   2282   1.1        ad 		    (try_mask_nelms - 1)) > try_reg0_offset);
   2283   1.1        ad 	} while (try_run_size <= arena_maxclass && try_run_size <= RUN_MAX_SMALL
   2284  1.22     njoly 	    && RUN_MAX_OVRHD * (bin->reg_size << 3) > RUN_MAX_OVRHD_RELAX
   2285  1.22     njoly 	    && (try_reg0_offset << RUN_BFP) > RUN_MAX_OVRHD * try_run_size);
   2286   1.1        ad 
   2287   1.1        ad 	assert(sizeof(arena_run_t) + (sizeof(unsigned) * (good_mask_nelms - 1))
   2288   1.1        ad 	    <= good_reg0_offset);
   2289   1.1        ad 	assert((good_mask_nelms << (SIZEOF_INT_2POW + 3)) >= good_nregs);
   2290   1.1        ad 
   2291   1.1        ad 	/* Copy final settings. */
   2292   1.1        ad 	bin->run_size = good_run_size;
   2293   1.1        ad 	bin->nregs = good_nregs;
   2294   1.1        ad 	bin->regs_mask_nelms = good_mask_nelms;
   2295   1.1        ad 	bin->reg0_offset = good_reg0_offset;
   2296   1.1        ad 
   2297   1.1        ad 	return (good_run_size);
   2298   1.1        ad }
   2299   1.1        ad 
   2300   1.1        ad static void *
   2301   1.1        ad arena_malloc(arena_t *arena, size_t size)
   2302   1.1        ad {
   2303   1.1        ad 	void *ret;
   2304   1.1        ad 
   2305   1.1        ad 	assert(arena != NULL);
   2306   1.1        ad 	assert(arena->magic == ARENA_MAGIC);
   2307   1.1        ad 	assert(size != 0);
   2308   1.1        ad 	assert(QUANTUM_CEILING(size) <= arena_maxclass);
   2309   1.1        ad 
   2310   1.1        ad 	if (size <= bin_maxclass) {
   2311   1.1        ad 		arena_bin_t *bin;
   2312   1.1        ad 		arena_run_t *run;
   2313   1.1        ad 
   2314   1.1        ad 		/* Small allocation. */
   2315   1.1        ad 
   2316   1.1        ad 		if (size < small_min) {
   2317   1.1        ad 			/* Tiny. */
   2318   1.1        ad 			size = pow2_ceil(size);
   2319   1.1        ad 			bin = &arena->bins[ffs((int)(size >> (TINY_MIN_2POW +
   2320   1.1        ad 			    1)))];
   2321   1.1        ad #if (!defined(NDEBUG) || defined(MALLOC_STATS))
   2322   1.1        ad 			/*
   2323   1.1        ad 			 * Bin calculation is always correct, but we may need
   2324   1.1        ad 			 * to fix size for the purposes of assertions and/or
   2325   1.1        ad 			 * stats accuracy.
   2326   1.1        ad 			 */
   2327   1.1        ad 			if (size < (1 << TINY_MIN_2POW))
   2328   1.1        ad 				size = (1 << TINY_MIN_2POW);
   2329   1.1        ad #endif
   2330   1.1        ad 		} else if (size <= small_max) {
   2331   1.1        ad 			/* Quantum-spaced. */
   2332   1.1        ad 			size = QUANTUM_CEILING(size);
   2333   1.1        ad 			bin = &arena->bins[ntbins + (size >> opt_quantum_2pow)
   2334   1.1        ad 			    - 1];
   2335   1.1        ad 		} else {
   2336   1.1        ad 			/* Sub-page. */
   2337   1.1        ad 			size = pow2_ceil(size);
   2338   1.1        ad 			bin = &arena->bins[ntbins + nqbins
   2339   1.1        ad 			    + (ffs((int)(size >> opt_small_max_2pow)) - 2)];
   2340   1.1        ad 		}
   2341   1.1        ad 		assert(size == bin->reg_size);
   2342   1.1        ad 
   2343   1.1        ad 		malloc_mutex_lock(&arena->mtx);
   2344   1.1        ad 		if ((run = bin->runcur) != NULL && run->nfree > 0)
   2345   1.1        ad 			ret = arena_bin_malloc_easy(arena, bin, run);
   2346   1.1        ad 		else
   2347   1.1        ad 			ret = arena_bin_malloc_hard(arena, bin);
   2348   1.1        ad 
   2349   1.1        ad 		if (ret == NULL) {
   2350   1.1        ad 			malloc_mutex_unlock(&arena->mtx);
   2351   1.1        ad 			return (NULL);
   2352   1.1        ad 		}
   2353   1.1        ad 
   2354   1.1        ad #ifdef MALLOC_STATS
   2355   1.1        ad 		bin->stats.nrequests++;
   2356   1.1        ad 		arena->stats.nmalloc_small++;
   2357   1.1        ad 		arena->stats.allocated_small += size;
   2358   1.1        ad #endif
   2359   1.1        ad 	} else {
   2360   1.1        ad 		/* Large allocation. */
   2361   1.1        ad 		size = PAGE_CEILING(size);
   2362   1.1        ad 		malloc_mutex_lock(&arena->mtx);
   2363   1.1        ad 		ret = (void *)arena_run_alloc(arena, size);
   2364   1.1        ad 		if (ret == NULL) {
   2365   1.1        ad 			malloc_mutex_unlock(&arena->mtx);
   2366   1.1        ad 			return (NULL);
   2367   1.1        ad 		}
   2368   1.1        ad #ifdef MALLOC_STATS
   2369   1.1        ad 		arena->stats.nmalloc_large++;
   2370   1.1        ad 		arena->stats.allocated_large += size;
   2371   1.1        ad #endif
   2372   1.1        ad 	}
   2373   1.1        ad 
   2374   1.1        ad 	malloc_mutex_unlock(&arena->mtx);
   2375   1.1        ad 
   2376   1.1        ad 	if (opt_junk)
   2377   1.1        ad 		memset(ret, 0xa5, size);
   2378   1.1        ad 	else if (opt_zero)
   2379   1.1        ad 		memset(ret, 0, size);
   2380   1.1        ad 	return (ret);
   2381   1.1        ad }
   2382   1.1        ad 
   2383   1.1        ad static inline void
   2384   1.1        ad arena_palloc_trim(arena_t *arena, arena_chunk_t *chunk, unsigned pageind,
   2385   1.1        ad     unsigned npages)
   2386   1.1        ad {
   2387   1.1        ad 	unsigned i;
   2388   1.1        ad 
   2389   1.1        ad 	assert(npages > 0);
   2390   1.1        ad 
   2391   1.1        ad 	/*
   2392   1.1        ad 	 * Modifiy the map such that arena_run_dalloc() sees the run as
   2393   1.1        ad 	 * separately allocated.
   2394   1.1        ad 	 */
   2395   1.1        ad 	for (i = 0; i < npages; i++) {
   2396   1.1        ad 		chunk->map[pageind + i].npages = npages;
   2397   1.1        ad 		chunk->map[pageind + i].pos = i;
   2398   1.1        ad 	}
   2399   1.1        ad 	arena_run_dalloc(arena, (arena_run_t *)((uintptr_t)chunk + (pageind <<
   2400   1.1        ad 	    pagesize_2pow)), npages << pagesize_2pow);
   2401   1.1        ad }
   2402   1.1        ad 
   2403   1.1        ad /* Only handles large allocations that require more than page alignment. */
   2404   1.1        ad static void *
   2405   1.1        ad arena_palloc(arena_t *arena, size_t alignment, size_t size, size_t alloc_size)
   2406   1.1        ad {
   2407   1.1        ad 	void *ret;
   2408   1.1        ad 	size_t offset;
   2409   1.1        ad 	arena_chunk_t *chunk;
   2410   1.1        ad 	unsigned pageind, i, npages;
   2411   1.1        ad 
   2412   1.1        ad 	assert((size & pagesize_mask) == 0);
   2413   1.1        ad 	assert((alignment & pagesize_mask) == 0);
   2414   1.1        ad 
   2415   1.9  christos 	npages = (unsigned)(size >> pagesize_2pow);
   2416   1.1        ad 
   2417   1.1        ad 	malloc_mutex_lock(&arena->mtx);
   2418   1.1        ad 	ret = (void *)arena_run_alloc(arena, alloc_size);
   2419   1.1        ad 	if (ret == NULL) {
   2420   1.1        ad 		malloc_mutex_unlock(&arena->mtx);
   2421   1.1        ad 		return (NULL);
   2422   1.1        ad 	}
   2423   1.1        ad 
   2424   1.1        ad 	chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ret);
   2425   1.1        ad 
   2426   1.1        ad 	offset = (uintptr_t)ret & (alignment - 1);
   2427   1.1        ad 	assert((offset & pagesize_mask) == 0);
   2428   1.1        ad 	assert(offset < alloc_size);
   2429   1.1        ad 	if (offset == 0) {
   2430   1.9  christos 		pageind = (unsigned)(((uintptr_t)ret - (uintptr_t)chunk) >>
   2431   1.1        ad 		    pagesize_2pow);
   2432   1.1        ad 
   2433   1.1        ad 		/* Update the map for the run to be kept. */
   2434   1.1        ad 		for (i = 0; i < npages; i++) {
   2435   1.1        ad 			chunk->map[pageind + i].npages = npages;
   2436   1.1        ad 			assert(chunk->map[pageind + i].pos == i);
   2437   1.1        ad 		}
   2438   1.1        ad 
   2439   1.1        ad 		/* Trim trailing space. */
   2440   1.1        ad 		arena_palloc_trim(arena, chunk, pageind + npages,
   2441   1.9  christos 		    (unsigned)((alloc_size - size) >> pagesize_2pow));
   2442   1.1        ad 	} else {
   2443   1.1        ad 		size_t leadsize, trailsize;
   2444   1.1        ad 
   2445   1.1        ad 		leadsize = alignment - offset;
   2446   1.1        ad 		ret = (void *)((uintptr_t)ret + leadsize);
   2447   1.9  christos 		pageind = (unsigned)(((uintptr_t)ret - (uintptr_t)chunk) >>
   2448   1.1        ad 		    pagesize_2pow);
   2449   1.1        ad 
   2450   1.1        ad 		/* Update the map for the run to be kept. */
   2451   1.1        ad 		for (i = 0; i < npages; i++) {
   2452   1.1        ad 			chunk->map[pageind + i].npages = npages;
   2453   1.1        ad 			chunk->map[pageind + i].pos = i;
   2454   1.1        ad 		}
   2455   1.1        ad 
   2456   1.1        ad 		/* Trim leading space. */
   2457   1.9  christos 		arena_palloc_trim(arena, chunk,
   2458   1.9  christos 		    (unsigned)(pageind - (leadsize >> pagesize_2pow)),
   2459   1.9  christos 		    (unsigned)(leadsize >> pagesize_2pow));
   2460   1.1        ad 
   2461   1.1        ad 		trailsize = alloc_size - leadsize - size;
   2462   1.1        ad 		if (trailsize != 0) {
   2463   1.1        ad 			/* Trim trailing space. */
   2464   1.1        ad 			assert(trailsize < alloc_size);
   2465   1.1        ad 			arena_palloc_trim(arena, chunk, pageind + npages,
   2466   1.9  christos 			    (unsigned)(trailsize >> pagesize_2pow));
   2467   1.1        ad 		}
   2468   1.1        ad 	}
   2469   1.1        ad 
   2470   1.1        ad #ifdef MALLOC_STATS
   2471   1.1        ad 	arena->stats.nmalloc_large++;
   2472   1.1        ad 	arena->stats.allocated_large += size;
   2473   1.1        ad #endif
   2474   1.1        ad 	malloc_mutex_unlock(&arena->mtx);
   2475   1.1        ad 
   2476   1.1        ad 	if (opt_junk)
   2477   1.1        ad 		memset(ret, 0xa5, size);
   2478   1.1        ad 	else if (opt_zero)
   2479   1.1        ad 		memset(ret, 0, size);
   2480   1.1        ad 	return (ret);
   2481   1.1        ad }
   2482   1.1        ad 
   2483   1.1        ad /* Return the size of the allocation pointed to by ptr. */
   2484   1.1        ad static size_t
   2485   1.1        ad arena_salloc(const void *ptr)
   2486   1.1        ad {
   2487   1.1        ad 	size_t ret;
   2488   1.1        ad 	arena_chunk_t *chunk;
   2489   1.1        ad 	arena_chunk_map_t *mapelm;
   2490   1.1        ad 	unsigned pageind;
   2491   1.1        ad 
   2492   1.1        ad 	assert(ptr != NULL);
   2493   1.1        ad 	assert(CHUNK_ADDR2BASE(ptr) != ptr);
   2494   1.1        ad 
   2495   1.1        ad 	/*
   2496   1.1        ad 	 * No arena data structures that we query here can change in a way that
   2497   1.1        ad 	 * affects this function, so we don't need to lock.
   2498   1.1        ad 	 */
   2499   1.1        ad 	chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
   2500   1.9  christos 	pageind = (unsigned)(((uintptr_t)ptr - (uintptr_t)chunk) >>
   2501   1.9  christos 	    pagesize_2pow);
   2502   1.1        ad 	mapelm = &chunk->map[pageind];
   2503  1.10    simonb 	if (mapelm->pos != 0 || ptr != (char *)((uintptr_t)chunk) + (pageind <<
   2504  1.10    simonb 	    pagesize_2pow)) {
   2505  1.10    simonb 		arena_run_t *run;
   2506   1.1        ad 
   2507   1.1        ad 		pageind -= mapelm->pos;
   2508   1.1        ad 
   2509  1.10    simonb 		run = (arena_run_t *)((uintptr_t)chunk + (pageind <<
   2510  1.10    simonb 		    pagesize_2pow));
   2511   1.1        ad 		assert(run->magic == ARENA_RUN_MAGIC);
   2512   1.1        ad 		ret = run->bin->reg_size;
   2513   1.1        ad 	} else
   2514   1.1        ad 		ret = mapelm->npages << pagesize_2pow;
   2515   1.1        ad 
   2516   1.1        ad 	return (ret);
   2517   1.1        ad }
   2518   1.1        ad 
   2519   1.1        ad static void *
   2520   1.1        ad arena_ralloc(void *ptr, size_t size, size_t oldsize)
   2521   1.1        ad {
   2522   1.1        ad 	void *ret;
   2523   1.1        ad 
   2524   1.1        ad 	/* Avoid moving the allocation if the size class would not change. */
   2525   1.1        ad 	if (size < small_min) {
   2526   1.1        ad 		if (oldsize < small_min &&
   2527   1.1        ad 		    ffs((int)(pow2_ceil(size) >> (TINY_MIN_2POW + 1)))
   2528   1.1        ad 		    == ffs((int)(pow2_ceil(oldsize) >> (TINY_MIN_2POW + 1))))
   2529   1.1        ad 			goto IN_PLACE;
   2530   1.1        ad 	} else if (size <= small_max) {
   2531   1.1        ad 		if (oldsize >= small_min && oldsize <= small_max &&
   2532   1.1        ad 		    (QUANTUM_CEILING(size) >> opt_quantum_2pow)
   2533   1.1        ad 		    == (QUANTUM_CEILING(oldsize) >> opt_quantum_2pow))
   2534   1.1        ad 			goto IN_PLACE;
   2535   1.1        ad 	} else {
   2536   1.1        ad 		/*
   2537   1.1        ad 		 * We make no attempt to resize runs here, though it would be
   2538   1.1        ad 		 * possible to do so.
   2539   1.1        ad 		 */
   2540   1.1        ad 		if (oldsize > small_max && PAGE_CEILING(size) == oldsize)
   2541   1.1        ad 			goto IN_PLACE;
   2542   1.1        ad 	}
   2543   1.1        ad 
   2544   1.1        ad 	/*
   2545   1.1        ad 	 * If we get here, then size and oldsize are different enough that we
   2546   1.1        ad 	 * need to use a different size class.  In that case, fall back to
   2547   1.1        ad 	 * allocating new space and copying.
   2548   1.1        ad 	 */
   2549   1.1        ad 	ret = arena_malloc(choose_arena(), size);
   2550   1.1        ad 	if (ret == NULL)
   2551   1.1        ad 		return (NULL);
   2552   1.1        ad 
   2553   1.1        ad 	/* Junk/zero-filling were already done by arena_malloc(). */
   2554   1.1        ad 	if (size < oldsize)
   2555   1.1        ad 		memcpy(ret, ptr, size);
   2556   1.1        ad 	else
   2557   1.1        ad 		memcpy(ret, ptr, oldsize);
   2558   1.1        ad 	idalloc(ptr);
   2559   1.1        ad 	return (ret);
   2560   1.1        ad IN_PLACE:
   2561   1.1        ad 	if (opt_junk && size < oldsize)
   2562   1.1        ad 		memset((void *)((uintptr_t)ptr + size), 0x5a, oldsize - size);
   2563   1.1        ad 	else if (opt_zero && size > oldsize)
   2564   1.1        ad 		memset((void *)((uintptr_t)ptr + oldsize), 0, size - oldsize);
   2565   1.1        ad 	return (ptr);
   2566   1.1        ad }
   2567   1.1        ad 
   2568   1.1        ad static void
   2569   1.1        ad arena_dalloc(arena_t *arena, arena_chunk_t *chunk, void *ptr)
   2570   1.1        ad {
   2571   1.1        ad 	unsigned pageind;
   2572   1.1        ad 	arena_chunk_map_t *mapelm;
   2573   1.1        ad 	size_t size;
   2574   1.1        ad 
   2575   1.1        ad 	assert(arena != NULL);
   2576   1.1        ad 	assert(arena->magic == ARENA_MAGIC);
   2577   1.1        ad 	assert(chunk->arena == arena);
   2578   1.1        ad 	assert(ptr != NULL);
   2579   1.1        ad 	assert(CHUNK_ADDR2BASE(ptr) != ptr);
   2580   1.1        ad 
   2581   1.9  christos 	pageind = (unsigned)(((uintptr_t)ptr - (uintptr_t)chunk) >>
   2582   1.9  christos 	    pagesize_2pow);
   2583   1.1        ad 	mapelm = &chunk->map[pageind];
   2584  1.10    simonb 	if (mapelm->pos != 0 || ptr != (char *)((uintptr_t)chunk) + (pageind <<
   2585  1.10    simonb 	    pagesize_2pow)) {
   2586  1.10    simonb 		arena_run_t *run;
   2587   1.1        ad 		arena_bin_t *bin;
   2588   1.1        ad 
   2589   1.1        ad 		/* Small allocation. */
   2590   1.1        ad 
   2591   1.1        ad 		pageind -= mapelm->pos;
   2592   1.1        ad 
   2593  1.10    simonb 		run = (arena_run_t *)((uintptr_t)chunk + (pageind <<
   2594  1.10    simonb 		    pagesize_2pow));
   2595   1.1        ad 		assert(run->magic == ARENA_RUN_MAGIC);
   2596   1.1        ad 		bin = run->bin;
   2597   1.1        ad 		size = bin->reg_size;
   2598   1.1        ad 
   2599   1.1        ad 		if (opt_junk)
   2600   1.1        ad 			memset(ptr, 0x5a, size);
   2601   1.1        ad 
   2602   1.1        ad 		malloc_mutex_lock(&arena->mtx);
   2603   1.1        ad 		arena_run_reg_dalloc(run, bin, ptr, size);
   2604   1.1        ad 		run->nfree++;
   2605   1.1        ad 
   2606   1.1        ad 		if (run->nfree == bin->nregs) {
   2607   1.1        ad 			/* Deallocate run. */
   2608   1.1        ad 			if (run == bin->runcur)
   2609   1.1        ad 				bin->runcur = NULL;
   2610   1.1        ad 			else if (bin->nregs != 1) {
   2611   1.1        ad 				/*
   2612   1.1        ad 				 * This block's conditional is necessary because
   2613   1.1        ad 				 * if the run only contains one region, then it
   2614   1.1        ad 				 * never gets inserted into the non-full runs
   2615   1.1        ad 				 * tree.
   2616   1.1        ad 				 */
   2617   1.2        ad 				/* LINTED */
   2618   1.1        ad 				RB_REMOVE(arena_run_tree_s, &bin->runs, run);
   2619   1.1        ad 			}
   2620   1.1        ad #ifdef MALLOC_DEBUG
   2621   1.1        ad 			run->magic = 0;
   2622   1.1        ad #endif
   2623   1.1        ad 			arena_run_dalloc(arena, run, bin->run_size);
   2624   1.1        ad #ifdef MALLOC_STATS
   2625   1.1        ad 			bin->stats.curruns--;
   2626   1.1        ad #endif
   2627   1.1        ad 		} else if (run->nfree == 1 && run != bin->runcur) {
   2628   1.1        ad 			/*
   2629   1.1        ad 			 * Make sure that bin->runcur always refers to the
   2630   1.1        ad 			 * lowest non-full run, if one exists.
   2631   1.1        ad 			 */
   2632   1.1        ad 			if (bin->runcur == NULL)
   2633   1.1        ad 				bin->runcur = run;
   2634   1.1        ad 			else if ((uintptr_t)run < (uintptr_t)bin->runcur) {
   2635   1.1        ad 				/* Switch runcur. */
   2636   1.1        ad 				if (bin->runcur->nfree > 0) {
   2637   1.1        ad 					/* Insert runcur. */
   2638   1.2        ad 					/* LINTED */
   2639   1.1        ad 					RB_INSERT(arena_run_tree_s, &bin->runs,
   2640   1.1        ad 					    bin->runcur);
   2641   1.1        ad 				}
   2642   1.1        ad 				bin->runcur = run;
   2643   1.2        ad 			} else {
   2644   1.2        ad 				/* LINTED */
   2645   1.1        ad 				RB_INSERT(arena_run_tree_s, &bin->runs, run);
   2646   1.2        ad 			}
   2647   1.1        ad 		}
   2648   1.1        ad #ifdef MALLOC_STATS
   2649   1.1        ad 		arena->stats.allocated_small -= size;
   2650   1.1        ad 		arena->stats.ndalloc_small++;
   2651   1.1        ad #endif
   2652   1.1        ad 	} else {
   2653   1.1        ad 		/* Large allocation. */
   2654   1.1        ad 
   2655   1.1        ad 		size = mapelm->npages << pagesize_2pow;
   2656   1.1        ad 		assert((((uintptr_t)ptr) & pagesize_mask) == 0);
   2657   1.1        ad 
   2658   1.1        ad 		if (opt_junk)
   2659   1.1        ad 			memset(ptr, 0x5a, size);
   2660   1.1        ad 
   2661   1.1        ad 		malloc_mutex_lock(&arena->mtx);
   2662   1.1        ad 		arena_run_dalloc(arena, (arena_run_t *)ptr, size);
   2663   1.1        ad #ifdef MALLOC_STATS
   2664   1.1        ad 		arena->stats.allocated_large -= size;
   2665   1.1        ad 		arena->stats.ndalloc_large++;
   2666   1.1        ad #endif
   2667   1.1        ad 	}
   2668   1.1        ad 
   2669   1.1        ad 	malloc_mutex_unlock(&arena->mtx);
   2670   1.1        ad }
   2671   1.1        ad 
   2672   1.1        ad static bool
   2673   1.1        ad arena_new(arena_t *arena)
   2674   1.1        ad {
   2675   1.1        ad 	unsigned i;
   2676   1.1        ad 	arena_bin_t *bin;
   2677   1.2        ad 	size_t prev_run_size;
   2678   1.1        ad 
   2679   1.1        ad 	malloc_mutex_init(&arena->mtx);
   2680   1.1        ad 
   2681   1.1        ad #ifdef MALLOC_STATS
   2682   1.1        ad 	memset(&arena->stats, 0, sizeof(arena_stats_t));
   2683   1.1        ad #endif
   2684   1.1        ad 
   2685   1.1        ad 	/* Initialize chunks. */
   2686   1.1        ad 	RB_INIT(&arena->chunks);
   2687   1.1        ad 	arena->spare = NULL;
   2688   1.1        ad 
   2689   1.1        ad 	/* Initialize bins. */
   2690   1.1        ad 	prev_run_size = pagesize;
   2691   1.1        ad 
   2692   1.1        ad 	/* (2^n)-spaced tiny bins. */
   2693   1.1        ad 	for (i = 0; i < ntbins; i++) {
   2694   1.1        ad 		bin = &arena->bins[i];
   2695   1.1        ad 		bin->runcur = NULL;
   2696   1.1        ad 		RB_INIT(&bin->runs);
   2697   1.1        ad 
   2698   1.1        ad 		bin->reg_size = (1 << (TINY_MIN_2POW + i));
   2699   1.1        ad 		prev_run_size = arena_bin_run_size_calc(bin, prev_run_size);
   2700   1.1        ad 
   2701   1.1        ad #ifdef MALLOC_STATS
   2702   1.1        ad 		memset(&bin->stats, 0, sizeof(malloc_bin_stats_t));
   2703   1.1        ad #endif
   2704   1.1        ad 	}
   2705   1.1        ad 
   2706   1.1        ad 	/* Quantum-spaced bins. */
   2707   1.1        ad 	for (; i < ntbins + nqbins; i++) {
   2708   1.1        ad 		bin = &arena->bins[i];
   2709   1.1        ad 		bin->runcur = NULL;
   2710   1.1        ad 		RB_INIT(&bin->runs);
   2711   1.1        ad 
   2712   1.1        ad 		bin->reg_size = quantum * (i - ntbins + 1);
   2713   1.2        ad /*
   2714   1.1        ad 		pow2_size = pow2_ceil(quantum * (i - ntbins + 1));
   2715   1.2        ad */
   2716   1.1        ad 		prev_run_size = arena_bin_run_size_calc(bin, prev_run_size);
   2717   1.1        ad 
   2718   1.1        ad #ifdef MALLOC_STATS
   2719   1.1        ad 		memset(&bin->stats, 0, sizeof(malloc_bin_stats_t));
   2720   1.1        ad #endif
   2721   1.1        ad 	}
   2722   1.1        ad 
   2723   1.1        ad 	/* (2^n)-spaced sub-page bins. */
   2724   1.1        ad 	for (; i < ntbins + nqbins + nsbins; i++) {
   2725   1.1        ad 		bin = &arena->bins[i];
   2726   1.1        ad 		bin->runcur = NULL;
   2727   1.1        ad 		RB_INIT(&bin->runs);
   2728   1.1        ad 
   2729   1.1        ad 		bin->reg_size = (small_max << (i - (ntbins + nqbins) + 1));
   2730   1.1        ad 
   2731   1.1        ad 		prev_run_size = arena_bin_run_size_calc(bin, prev_run_size);
   2732   1.1        ad 
   2733   1.1        ad #ifdef MALLOC_STATS
   2734   1.1        ad 		memset(&bin->stats, 0, sizeof(malloc_bin_stats_t));
   2735   1.1        ad #endif
   2736   1.1        ad 	}
   2737   1.1        ad 
   2738   1.1        ad #ifdef MALLOC_DEBUG
   2739   1.1        ad 	arena->magic = ARENA_MAGIC;
   2740   1.1        ad #endif
   2741   1.1        ad 
   2742   1.1        ad 	return (false);
   2743   1.1        ad }
   2744   1.1        ad 
   2745   1.1        ad /* Create a new arena and insert it into the arenas array at index ind. */
   2746   1.1        ad static arena_t *
   2747   1.1        ad arenas_extend(unsigned ind)
   2748   1.1        ad {
   2749   1.1        ad 	arena_t *ret;
   2750   1.1        ad 
   2751   1.1        ad 	/* Allocate enough space for trailing bins. */
   2752   1.1        ad 	ret = (arena_t *)base_alloc(sizeof(arena_t)
   2753   1.1        ad 	    + (sizeof(arena_bin_t) * (ntbins + nqbins + nsbins - 1)));
   2754   1.1        ad 	if (ret != NULL && arena_new(ret) == false) {
   2755   1.1        ad 		arenas[ind] = ret;
   2756   1.1        ad 		return (ret);
   2757   1.1        ad 	}
   2758   1.1        ad 	/* Only reached if there is an OOM error. */
   2759   1.1        ad 
   2760   1.1        ad 	/*
   2761   1.1        ad 	 * OOM here is quite inconvenient to propagate, since dealing with it
   2762   1.1        ad 	 * would require a check for failure in the fast path.  Instead, punt
   2763   1.1        ad 	 * by using arenas[0].  In practice, this is an extremely unlikely
   2764   1.1        ad 	 * failure.
   2765   1.1        ad 	 */
   2766  1.16  christos 	_malloc_message(getprogname(),
   2767   1.1        ad 	    ": (malloc) Error initializing arena\n", "", "");
   2768   1.1        ad 	if (opt_abort)
   2769   1.1        ad 		abort();
   2770   1.1        ad 
   2771   1.1        ad 	return (arenas[0]);
   2772   1.1        ad }
   2773   1.1        ad 
   2774   1.1        ad /*
   2775   1.1        ad  * End arena.
   2776   1.1        ad  */
   2777   1.1        ad /******************************************************************************/
   2778   1.1        ad /*
   2779   1.1        ad  * Begin general internal functions.
   2780   1.1        ad  */
   2781   1.1        ad 
   2782   1.1        ad static void *
   2783   1.1        ad huge_malloc(size_t size)
   2784   1.1        ad {
   2785   1.1        ad 	void *ret;
   2786   1.1        ad 	size_t csize;
   2787   1.1        ad 	chunk_node_t *node;
   2788   1.1        ad 
   2789   1.1        ad 	/* Allocate one or more contiguous chunks for this request. */
   2790   1.1        ad 
   2791   1.1        ad 	csize = CHUNK_CEILING(size);
   2792   1.1        ad 	if (csize == 0) {
   2793   1.1        ad 		/* size is large enough to cause size_t wrap-around. */
   2794   1.1        ad 		return (NULL);
   2795   1.1        ad 	}
   2796   1.1        ad 
   2797   1.1        ad 	/* Allocate a chunk node with which to track the chunk. */
   2798   1.1        ad 	node = base_chunk_node_alloc();
   2799   1.1        ad 	if (node == NULL)
   2800   1.1        ad 		return (NULL);
   2801   1.1        ad 
   2802   1.1        ad 	ret = chunk_alloc(csize);
   2803   1.1        ad 	if (ret == NULL) {
   2804   1.1        ad 		base_chunk_node_dealloc(node);
   2805   1.1        ad 		return (NULL);
   2806   1.1        ad 	}
   2807   1.1        ad 
   2808   1.1        ad 	/* Insert node into huge. */
   2809   1.1        ad 	node->chunk = ret;
   2810   1.1        ad 	node->size = csize;
   2811   1.1        ad 
   2812   1.1        ad 	malloc_mutex_lock(&chunks_mtx);
   2813   1.1        ad 	RB_INSERT(chunk_tree_s, &huge, node);
   2814   1.1        ad #ifdef MALLOC_STATS
   2815   1.1        ad 	huge_nmalloc++;
   2816   1.1        ad 	huge_allocated += csize;
   2817   1.1        ad #endif
   2818   1.1        ad 	malloc_mutex_unlock(&chunks_mtx);
   2819   1.1        ad 
   2820   1.1        ad 	if (opt_junk)
   2821   1.1        ad 		memset(ret, 0xa5, csize);
   2822   1.1        ad 	else if (opt_zero)
   2823   1.1        ad 		memset(ret, 0, csize);
   2824   1.1        ad 
   2825   1.1        ad 	return (ret);
   2826   1.1        ad }
   2827   1.1        ad 
   2828   1.1        ad /* Only handles large allocations that require more than chunk alignment. */
   2829   1.1        ad static void *
   2830   1.1        ad huge_palloc(size_t alignment, size_t size)
   2831   1.1        ad {
   2832   1.1        ad 	void *ret;
   2833   1.1        ad 	size_t alloc_size, chunk_size, offset;
   2834   1.1        ad 	chunk_node_t *node;
   2835   1.1        ad 
   2836   1.1        ad 	/*
   2837   1.1        ad 	 * This allocation requires alignment that is even larger than chunk
   2838   1.1        ad 	 * alignment.  This means that huge_malloc() isn't good enough.
   2839   1.1        ad 	 *
   2840   1.1        ad 	 * Allocate almost twice as many chunks as are demanded by the size or
   2841   1.1        ad 	 * alignment, in order to assure the alignment can be achieved, then
   2842   1.1        ad 	 * unmap leading and trailing chunks.
   2843   1.1        ad 	 */
   2844   1.1        ad 	assert(alignment >= chunksize);
   2845   1.1        ad 
   2846   1.1        ad 	chunk_size = CHUNK_CEILING(size);
   2847   1.1        ad 
   2848   1.1        ad 	if (size >= alignment)
   2849   1.1        ad 		alloc_size = chunk_size + alignment - chunksize;
   2850   1.1        ad 	else
   2851   1.1        ad 		alloc_size = (alignment << 1) - chunksize;
   2852   1.1        ad 
   2853   1.1        ad 	/* Allocate a chunk node with which to track the chunk. */
   2854   1.1        ad 	node = base_chunk_node_alloc();
   2855   1.1        ad 	if (node == NULL)
   2856   1.1        ad 		return (NULL);
   2857   1.1        ad 
   2858   1.1        ad 	ret = chunk_alloc(alloc_size);
   2859   1.1        ad 	if (ret == NULL) {
   2860   1.1        ad 		base_chunk_node_dealloc(node);
   2861   1.1        ad 		return (NULL);
   2862   1.1        ad 	}
   2863   1.1        ad 
   2864   1.1        ad 	offset = (uintptr_t)ret & (alignment - 1);
   2865   1.1        ad 	assert((offset & chunksize_mask) == 0);
   2866   1.1        ad 	assert(offset < alloc_size);
   2867   1.1        ad 	if (offset == 0) {
   2868   1.1        ad 		/* Trim trailing space. */
   2869   1.1        ad 		chunk_dealloc((void *)((uintptr_t)ret + chunk_size), alloc_size
   2870   1.1        ad 		    - chunk_size);
   2871   1.1        ad 	} else {
   2872   1.1        ad 		size_t trailsize;
   2873   1.1        ad 
   2874   1.1        ad 		/* Trim leading space. */
   2875   1.1        ad 		chunk_dealloc(ret, alignment - offset);
   2876   1.1        ad 
   2877   1.1        ad 		ret = (void *)((uintptr_t)ret + (alignment - offset));
   2878   1.1        ad 
   2879   1.1        ad 		trailsize = alloc_size - (alignment - offset) - chunk_size;
   2880   1.1        ad 		if (trailsize != 0) {
   2881   1.1        ad 		    /* Trim trailing space. */
   2882   1.1        ad 		    assert(trailsize < alloc_size);
   2883   1.1        ad 		    chunk_dealloc((void *)((uintptr_t)ret + chunk_size),
   2884   1.1        ad 			trailsize);
   2885   1.1        ad 		}
   2886   1.1        ad 	}
   2887   1.1        ad 
   2888   1.1        ad 	/* Insert node into huge. */
   2889   1.1        ad 	node->chunk = ret;
   2890   1.1        ad 	node->size = chunk_size;
   2891   1.1        ad 
   2892   1.1        ad 	malloc_mutex_lock(&chunks_mtx);
   2893   1.1        ad 	RB_INSERT(chunk_tree_s, &huge, node);
   2894   1.1        ad #ifdef MALLOC_STATS
   2895   1.1        ad 	huge_nmalloc++;
   2896   1.1        ad 	huge_allocated += chunk_size;
   2897   1.1        ad #endif
   2898   1.1        ad 	malloc_mutex_unlock(&chunks_mtx);
   2899   1.1        ad 
   2900   1.1        ad 	if (opt_junk)
   2901   1.1        ad 		memset(ret, 0xa5, chunk_size);
   2902   1.1        ad 	else if (opt_zero)
   2903   1.1        ad 		memset(ret, 0, chunk_size);
   2904   1.1        ad 
   2905   1.1        ad 	return (ret);
   2906   1.1        ad }
   2907   1.1        ad 
   2908   1.1        ad static void *
   2909   1.1        ad huge_ralloc(void *ptr, size_t size, size_t oldsize)
   2910   1.1        ad {
   2911   1.1        ad 	void *ret;
   2912   1.1        ad 
   2913   1.1        ad 	/* Avoid moving the allocation if the size class would not change. */
   2914   1.1        ad 	if (oldsize > arena_maxclass &&
   2915   1.1        ad 	    CHUNK_CEILING(size) == CHUNK_CEILING(oldsize)) {
   2916   1.1        ad 		if (opt_junk && size < oldsize) {
   2917   1.1        ad 			memset((void *)((uintptr_t)ptr + size), 0x5a, oldsize
   2918   1.1        ad 			    - size);
   2919   1.1        ad 		} else if (opt_zero && size > oldsize) {
   2920   1.1        ad 			memset((void *)((uintptr_t)ptr + oldsize), 0, size
   2921   1.1        ad 			    - oldsize);
   2922   1.1        ad 		}
   2923   1.1        ad 		return (ptr);
   2924   1.1        ad 	}
   2925   1.1        ad 
   2926   1.8      yamt 	if (CHUNK_ADDR2BASE(ptr) == ptr
   2927   1.8      yamt #ifdef USE_BRK
   2928   1.8      yamt 	    && ((uintptr_t)ptr < (uintptr_t)brk_base
   2929   1.8      yamt 	    || (uintptr_t)ptr >= (uintptr_t)brk_max)
   2930   1.8      yamt #endif
   2931   1.8      yamt 	    ) {
   2932   1.8      yamt 		chunk_node_t *node, key;
   2933   1.8      yamt 		void *newptr;
   2934   1.8      yamt 		size_t oldcsize;
   2935   1.8      yamt 		size_t newcsize;
   2936   1.8      yamt 
   2937   1.8      yamt 		newcsize = CHUNK_CEILING(size);
   2938   1.8      yamt 		oldcsize = CHUNK_CEILING(oldsize);
   2939   1.8      yamt 		assert(oldcsize != newcsize);
   2940   1.8      yamt 		if (newcsize == 0) {
   2941   1.8      yamt 			/* size_t wrap-around */
   2942   1.8      yamt 			return (NULL);
   2943   1.8      yamt 		}
   2944  1.21     enami 
   2945  1.21     enami 		/*
   2946  1.21     enami 		 * Remove the old region from the tree now.  If mremap()
   2947  1.21     enami 		 * returns the region to the system, other thread may
   2948  1.21     enami 		 * map it for same huge allocation and insert it to the
   2949  1.21     enami 		 * tree before we acquire the mutex lock again.
   2950  1.21     enami 		 */
   2951  1.21     enami 		malloc_mutex_lock(&chunks_mtx);
   2952  1.21     enami 		key.chunk = __DECONST(void *, ptr);
   2953  1.21     enami 		/* LINTED */
   2954  1.21     enami 		node = RB_FIND(chunk_tree_s, &huge, &key);
   2955  1.21     enami 		assert(node != NULL);
   2956  1.21     enami 		assert(node->chunk == ptr);
   2957  1.21     enami 		assert(node->size == oldcsize);
   2958  1.21     enami 		RB_REMOVE(chunk_tree_s, &huge, node);
   2959  1.21     enami 		malloc_mutex_unlock(&chunks_mtx);
   2960  1.21     enami 
   2961   1.8      yamt 		newptr = mremap(ptr, oldcsize, NULL, newcsize,
   2962   1.8      yamt 		    MAP_ALIGNED(chunksize_2pow));
   2963  1.21     enami 		if (newptr == MAP_FAILED) {
   2964  1.21     enami 			/* We still own the old region. */
   2965  1.21     enami 			malloc_mutex_lock(&chunks_mtx);
   2966  1.21     enami 			RB_INSERT(chunk_tree_s, &huge, node);
   2967  1.21     enami 			malloc_mutex_unlock(&chunks_mtx);
   2968  1.21     enami 		} else {
   2969   1.8      yamt 			assert(CHUNK_ADDR2BASE(newptr) == newptr);
   2970   1.8      yamt 
   2971  1.21     enami 			/* Insert new or resized old region. */
   2972   1.8      yamt 			malloc_mutex_lock(&chunks_mtx);
   2973   1.8      yamt 			node->size = newcsize;
   2974  1.21     enami 			node->chunk = newptr;
   2975  1.21     enami 			RB_INSERT(chunk_tree_s, &huge, node);
   2976   1.8      yamt #ifdef MALLOC_STATS
   2977   1.8      yamt 			huge_nralloc++;
   2978   1.8      yamt 			huge_allocated += newcsize - oldcsize;
   2979   1.8      yamt 			if (newcsize > oldcsize) {
   2980   1.8      yamt 				stats_chunks.curchunks +=
   2981   1.8      yamt 				    (newcsize - oldcsize) / chunksize;
   2982   1.8      yamt 				if (stats_chunks.curchunks >
   2983   1.8      yamt 				    stats_chunks.highchunks)
   2984   1.8      yamt 					stats_chunks.highchunks =
   2985   1.8      yamt 					    stats_chunks.curchunks;
   2986   1.8      yamt 			} else {
   2987   1.8      yamt 				stats_chunks.curchunks -=
   2988   1.8      yamt 				    (oldcsize - newcsize) / chunksize;
   2989   1.8      yamt 			}
   2990   1.8      yamt #endif
   2991   1.8      yamt 			malloc_mutex_unlock(&chunks_mtx);
   2992   1.8      yamt 
   2993   1.8      yamt 			if (opt_junk && size < oldsize) {
   2994   1.8      yamt 				memset((void *)((uintptr_t)newptr + size), 0x5a,
   2995   1.8      yamt 				    newcsize - size);
   2996   1.8      yamt 			} else if (opt_zero && size > oldsize) {
   2997   1.8      yamt 				memset((void *)((uintptr_t)newptr + oldsize), 0,
   2998   1.8      yamt 				    size - oldsize);
   2999   1.8      yamt 			}
   3000   1.8      yamt 			return (newptr);
   3001   1.8      yamt 		}
   3002   1.8      yamt 	}
   3003   1.8      yamt 
   3004   1.1        ad 	/*
   3005   1.1        ad 	 * If we get here, then size and oldsize are different enough that we
   3006   1.1        ad 	 * need to use a different size class.  In that case, fall back to
   3007   1.1        ad 	 * allocating new space and copying.
   3008   1.1        ad 	 */
   3009   1.1        ad 	ret = huge_malloc(size);
   3010   1.1        ad 	if (ret == NULL)
   3011   1.1        ad 		return (NULL);
   3012   1.1        ad 
   3013   1.1        ad 	if (CHUNK_ADDR2BASE(ptr) == ptr) {
   3014   1.1        ad 		/* The old allocation is a chunk. */
   3015   1.1        ad 		if (size < oldsize)
   3016   1.1        ad 			memcpy(ret, ptr, size);
   3017   1.1        ad 		else
   3018   1.1        ad 			memcpy(ret, ptr, oldsize);
   3019   1.1        ad 	} else {
   3020   1.1        ad 		/* The old allocation is a region. */
   3021   1.1        ad 		assert(oldsize < size);
   3022   1.1        ad 		memcpy(ret, ptr, oldsize);
   3023   1.1        ad 	}
   3024   1.1        ad 	idalloc(ptr);
   3025   1.1        ad 	return (ret);
   3026   1.1        ad }
   3027   1.1        ad 
   3028   1.1        ad static void
   3029   1.1        ad huge_dalloc(void *ptr)
   3030   1.1        ad {
   3031   1.1        ad 	chunk_node_t key;
   3032   1.1        ad 	chunk_node_t *node;
   3033   1.1        ad 
   3034   1.1        ad 	malloc_mutex_lock(&chunks_mtx);
   3035   1.1        ad 
   3036   1.1        ad 	/* Extract from tree of huge allocations. */
   3037   1.1        ad 	key.chunk = ptr;
   3038   1.2        ad 	/* LINTED */
   3039   1.1        ad 	node = RB_FIND(chunk_tree_s, &huge, &key);
   3040   1.1        ad 	assert(node != NULL);
   3041   1.1        ad 	assert(node->chunk == ptr);
   3042   1.2        ad 	/* LINTED */
   3043   1.1        ad 	RB_REMOVE(chunk_tree_s, &huge, node);
   3044   1.1        ad 
   3045   1.1        ad #ifdef MALLOC_STATS
   3046   1.1        ad 	huge_ndalloc++;
   3047   1.1        ad 	huge_allocated -= node->size;
   3048   1.1        ad #endif
   3049   1.1        ad 
   3050   1.1        ad 	malloc_mutex_unlock(&chunks_mtx);
   3051   1.1        ad 
   3052   1.1        ad 	/* Unmap chunk. */
   3053   1.1        ad #ifdef USE_BRK
   3054   1.1        ad 	if (opt_junk)
   3055   1.1        ad 		memset(node->chunk, 0x5a, node->size);
   3056   1.1        ad #endif
   3057   1.1        ad 	chunk_dealloc(node->chunk, node->size);
   3058   1.1        ad 
   3059   1.1        ad 	base_chunk_node_dealloc(node);
   3060   1.1        ad }
   3061   1.1        ad 
   3062   1.1        ad static void *
   3063   1.1        ad imalloc(size_t size)
   3064   1.1        ad {
   3065   1.1        ad 	void *ret;
   3066   1.1        ad 
   3067   1.1        ad 	assert(size != 0);
   3068   1.1        ad 
   3069   1.1        ad 	if (size <= arena_maxclass)
   3070   1.1        ad 		ret = arena_malloc(choose_arena(), size);
   3071   1.1        ad 	else
   3072   1.1        ad 		ret = huge_malloc(size);
   3073   1.1        ad 
   3074   1.1        ad 	return (ret);
   3075   1.1        ad }
   3076   1.1        ad 
   3077   1.1        ad static void *
   3078   1.1        ad ipalloc(size_t alignment, size_t size)
   3079   1.1        ad {
   3080   1.1        ad 	void *ret;
   3081   1.1        ad 	size_t ceil_size;
   3082   1.1        ad 
   3083   1.1        ad 	/*
   3084   1.1        ad 	 * Round size up to the nearest multiple of alignment.
   3085   1.1        ad 	 *
   3086   1.1        ad 	 * This done, we can take advantage of the fact that for each small
   3087   1.1        ad 	 * size class, every object is aligned at the smallest power of two
   3088   1.1        ad 	 * that is non-zero in the base two representation of the size.  For
   3089   1.1        ad 	 * example:
   3090   1.1        ad 	 *
   3091   1.1        ad 	 *   Size |   Base 2 | Minimum alignment
   3092   1.1        ad 	 *   -----+----------+------------------
   3093   1.1        ad 	 *     96 |  1100000 |  32
   3094   1.1        ad 	 *    144 | 10100000 |  32
   3095   1.1        ad 	 *    192 | 11000000 |  64
   3096   1.1        ad 	 *
   3097   1.1        ad 	 * Depending on runtime settings, it is possible that arena_malloc()
   3098   1.1        ad 	 * will further round up to a power of two, but that never causes
   3099   1.1        ad 	 * correctness issues.
   3100   1.1        ad 	 */
   3101   1.1        ad 	ceil_size = (size + (alignment - 1)) & (-alignment);
   3102   1.1        ad 	/*
   3103   1.1        ad 	 * (ceil_size < size) protects against the combination of maximal
   3104   1.1        ad 	 * alignment and size greater than maximal alignment.
   3105   1.1        ad 	 */
   3106   1.1        ad 	if (ceil_size < size) {
   3107   1.1        ad 		/* size_t overflow. */
   3108   1.1        ad 		return (NULL);
   3109   1.1        ad 	}
   3110   1.1        ad 
   3111   1.1        ad 	if (ceil_size <= pagesize || (alignment <= pagesize
   3112   1.1        ad 	    && ceil_size <= arena_maxclass))
   3113   1.1        ad 		ret = arena_malloc(choose_arena(), ceil_size);
   3114   1.1        ad 	else {
   3115   1.1        ad 		size_t run_size;
   3116   1.1        ad 
   3117   1.1        ad 		/*
   3118   1.1        ad 		 * We can't achieve sub-page alignment, so round up alignment
   3119   1.1        ad 		 * permanently; it makes later calculations simpler.
   3120   1.1        ad 		 */
   3121   1.1        ad 		alignment = PAGE_CEILING(alignment);
   3122   1.1        ad 		ceil_size = PAGE_CEILING(size);
   3123   1.1        ad 		/*
   3124   1.1        ad 		 * (ceil_size < size) protects against very large sizes within
   3125   1.1        ad 		 * pagesize of SIZE_T_MAX.
   3126   1.1        ad 		 *
   3127   1.1        ad 		 * (ceil_size + alignment < ceil_size) protects against the
   3128   1.1        ad 		 * combination of maximal alignment and ceil_size large enough
   3129   1.1        ad 		 * to cause overflow.  This is similar to the first overflow
   3130   1.1        ad 		 * check above, but it needs to be repeated due to the new
   3131   1.1        ad 		 * ceil_size value, which may now be *equal* to maximal
   3132   1.1        ad 		 * alignment, whereas before we only detected overflow if the
   3133   1.1        ad 		 * original size was *greater* than maximal alignment.
   3134   1.1        ad 		 */
   3135   1.1        ad 		if (ceil_size < size || ceil_size + alignment < ceil_size) {
   3136   1.1        ad 			/* size_t overflow. */
   3137   1.1        ad 			return (NULL);
   3138   1.1        ad 		}
   3139   1.1        ad 
   3140   1.1        ad 		/*
   3141   1.1        ad 		 * Calculate the size of the over-size run that arena_palloc()
   3142   1.1        ad 		 * would need to allocate in order to guarantee the alignment.
   3143   1.1        ad 		 */
   3144   1.1        ad 		if (ceil_size >= alignment)
   3145   1.1        ad 			run_size = ceil_size + alignment - pagesize;
   3146   1.1        ad 		else {
   3147   1.1        ad 			/*
   3148   1.1        ad 			 * It is possible that (alignment << 1) will cause
   3149   1.1        ad 			 * overflow, but it doesn't matter because we also
   3150   1.1        ad 			 * subtract pagesize, which in the case of overflow
   3151   1.1        ad 			 * leaves us with a very large run_size.  That causes
   3152   1.1        ad 			 * the first conditional below to fail, which means
   3153   1.1        ad 			 * that the bogus run_size value never gets used for
   3154   1.1        ad 			 * anything important.
   3155   1.1        ad 			 */
   3156   1.1        ad 			run_size = (alignment << 1) - pagesize;
   3157   1.1        ad 		}
   3158   1.1        ad 
   3159   1.1        ad 		if (run_size <= arena_maxclass) {
   3160   1.1        ad 			ret = arena_palloc(choose_arena(), alignment, ceil_size,
   3161   1.1        ad 			    run_size);
   3162   1.1        ad 		} else if (alignment <= chunksize)
   3163   1.1        ad 			ret = huge_malloc(ceil_size);
   3164   1.1        ad 		else
   3165   1.1        ad 			ret = huge_palloc(alignment, ceil_size);
   3166   1.1        ad 	}
   3167   1.1        ad 
   3168   1.1        ad 	assert(((uintptr_t)ret & (alignment - 1)) == 0);
   3169   1.1        ad 	return (ret);
   3170   1.1        ad }
   3171   1.1        ad 
   3172   1.1        ad static void *
   3173   1.1        ad icalloc(size_t size)
   3174   1.1        ad {
   3175   1.1        ad 	void *ret;
   3176   1.1        ad 
   3177   1.1        ad 	if (size <= arena_maxclass) {
   3178   1.1        ad 		ret = arena_malloc(choose_arena(), size);
   3179   1.1        ad 		if (ret == NULL)
   3180   1.1        ad 			return (NULL);
   3181   1.1        ad 		memset(ret, 0, size);
   3182   1.1        ad 	} else {
   3183   1.1        ad 		/*
   3184   1.1        ad 		 * The virtual memory system provides zero-filled pages, so
   3185   1.1        ad 		 * there is no need to do so manually, unless opt_junk is
   3186   1.1        ad 		 * enabled, in which case huge_malloc() fills huge allocations
   3187   1.1        ad 		 * with junk.
   3188   1.1        ad 		 */
   3189   1.1        ad 		ret = huge_malloc(size);
   3190   1.1        ad 		if (ret == NULL)
   3191   1.1        ad 			return (NULL);
   3192   1.1        ad 
   3193   1.1        ad 		if (opt_junk)
   3194   1.1        ad 			memset(ret, 0, size);
   3195   1.1        ad #ifdef USE_BRK
   3196   1.1        ad 		else if ((uintptr_t)ret >= (uintptr_t)brk_base
   3197   1.1        ad 		    && (uintptr_t)ret < (uintptr_t)brk_max) {
   3198   1.1        ad 			/*
   3199   1.1        ad 			 * This may be a re-used brk chunk.  Therefore, zero
   3200   1.1        ad 			 * the memory.
   3201   1.1        ad 			 */
   3202   1.1        ad 			memset(ret, 0, size);
   3203   1.1        ad 		}
   3204   1.1        ad #endif
   3205   1.1        ad 	}
   3206   1.1        ad 
   3207   1.1        ad 	return (ret);
   3208   1.1        ad }
   3209   1.1        ad 
   3210   1.1        ad static size_t
   3211   1.1        ad isalloc(const void *ptr)
   3212   1.1        ad {
   3213   1.1        ad 	size_t ret;
   3214   1.1        ad 	arena_chunk_t *chunk;
   3215   1.1        ad 
   3216   1.1        ad 	assert(ptr != NULL);
   3217   1.1        ad 
   3218   1.1        ad 	chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
   3219   1.1        ad 	if (chunk != ptr) {
   3220   1.1        ad 		/* Region. */
   3221   1.1        ad 		assert(chunk->arena->magic == ARENA_MAGIC);
   3222   1.1        ad 
   3223   1.1        ad 		ret = arena_salloc(ptr);
   3224   1.1        ad 	} else {
   3225   1.1        ad 		chunk_node_t *node, key;
   3226   1.1        ad 
   3227   1.1        ad 		/* Chunk (huge allocation). */
   3228   1.1        ad 
   3229   1.1        ad 		malloc_mutex_lock(&chunks_mtx);
   3230   1.1        ad 
   3231   1.1        ad 		/* Extract from tree of huge allocations. */
   3232   1.1        ad 		key.chunk = __DECONST(void *, ptr);
   3233   1.2        ad 		/* LINTED */
   3234   1.1        ad 		node = RB_FIND(chunk_tree_s, &huge, &key);
   3235   1.1        ad 		assert(node != NULL);
   3236   1.1        ad 
   3237   1.1        ad 		ret = node->size;
   3238   1.1        ad 
   3239   1.1        ad 		malloc_mutex_unlock(&chunks_mtx);
   3240   1.1        ad 	}
   3241   1.1        ad 
   3242   1.1        ad 	return (ret);
   3243   1.1        ad }
   3244   1.1        ad 
   3245   1.1        ad static void *
   3246   1.1        ad iralloc(void *ptr, size_t size)
   3247   1.1        ad {
   3248   1.1        ad 	void *ret;
   3249   1.1        ad 	size_t oldsize;
   3250   1.1        ad 
   3251   1.1        ad 	assert(ptr != NULL);
   3252   1.1        ad 	assert(size != 0);
   3253   1.1        ad 
   3254   1.1        ad 	oldsize = isalloc(ptr);
   3255   1.1        ad 
   3256   1.1        ad 	if (size <= arena_maxclass)
   3257   1.1        ad 		ret = arena_ralloc(ptr, size, oldsize);
   3258   1.1        ad 	else
   3259   1.1        ad 		ret = huge_ralloc(ptr, size, oldsize);
   3260   1.1        ad 
   3261   1.1        ad 	return (ret);
   3262   1.1        ad }
   3263   1.1        ad 
   3264   1.1        ad static void
   3265   1.1        ad idalloc(void *ptr)
   3266   1.1        ad {
   3267   1.1        ad 	arena_chunk_t *chunk;
   3268   1.1        ad 
   3269   1.1        ad 	assert(ptr != NULL);
   3270   1.1        ad 
   3271   1.1        ad 	chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
   3272   1.1        ad 	if (chunk != ptr) {
   3273   1.1        ad 		/* Region. */
   3274   1.1        ad 		arena_dalloc(chunk->arena, chunk, ptr);
   3275   1.1        ad 	} else
   3276   1.1        ad 		huge_dalloc(ptr);
   3277   1.1        ad }
   3278   1.1        ad 
   3279   1.1        ad static void
   3280   1.1        ad malloc_print_stats(void)
   3281   1.1        ad {
   3282   1.1        ad 
   3283   1.1        ad 	if (opt_print_stats) {
   3284   1.1        ad 		char s[UMAX2S_BUFSIZE];
   3285   1.1        ad 		_malloc_message("___ Begin malloc statistics ___\n", "", "",
   3286   1.1        ad 		    "");
   3287   1.1        ad 		_malloc_message("Assertions ",
   3288   1.1        ad #ifdef NDEBUG
   3289   1.1        ad 		    "disabled",
   3290   1.1        ad #else
   3291   1.1        ad 		    "enabled",
   3292   1.1        ad #endif
   3293   1.1        ad 		    "\n", "");
   3294   1.1        ad 		_malloc_message("Boolean MALLOC_OPTIONS: ",
   3295   1.1        ad 		    opt_abort ? "A" : "a",
   3296   1.1        ad 		    opt_junk ? "J" : "j",
   3297   1.1        ad 		    opt_hint ? "H" : "h");
   3298   1.1        ad 		_malloc_message(opt_utrace ? "PU" : "Pu",
   3299   1.1        ad 		    opt_sysv ? "V" : "v",
   3300   1.1        ad 		    opt_xmalloc ? "X" : "x",
   3301   1.1        ad 		    opt_zero ? "Z\n" : "z\n");
   3302   1.1        ad 
   3303  1.28  christos 		_malloc_message("CPUs: ", size_t2s(ncpus, s), "\n", "");
   3304  1.28  christos 		_malloc_message("Max arenas: ", size_t2s(narenas, s), "\n", "");
   3305  1.28  christos 		_malloc_message("Pointer size: ", size_t2s(sizeof(void *), s),
   3306   1.1        ad 		    "\n", "");
   3307  1.28  christos 		_malloc_message("Quantum size: ", size_t2s(quantum, s), "\n", "");
   3308  1.28  christos 		_malloc_message("Max small size: ", size_t2s(small_max, s), "\n",
   3309   1.1        ad 		    "");
   3310   1.1        ad 
   3311  1.28  christos 		_malloc_message("Chunk size: ", size_t2s(chunksize, s), "", "");
   3312  1.28  christos 		_malloc_message(" (2^", size_t2s((size_t)opt_chunk_2pow, s),
   3313  1.27      matt 		    ")\n", "");
   3314   1.1        ad 
   3315   1.1        ad #ifdef MALLOC_STATS
   3316   1.1        ad 		{
   3317   1.1        ad 			size_t allocated, mapped;
   3318   1.1        ad 			unsigned i;
   3319   1.1        ad 			arena_t *arena;
   3320   1.1        ad 
   3321   1.1        ad 			/* Calculate and print allocated/mapped stats. */
   3322   1.1        ad 
   3323   1.1        ad 			/* arenas. */
   3324   1.1        ad 			for (i = 0, allocated = 0; i < narenas; i++) {
   3325   1.1        ad 				if (arenas[i] != NULL) {
   3326   1.1        ad 					malloc_mutex_lock(&arenas[i]->mtx);
   3327   1.1        ad 					allocated +=
   3328   1.1        ad 					    arenas[i]->stats.allocated_small;
   3329   1.1        ad 					allocated +=
   3330   1.1        ad 					    arenas[i]->stats.allocated_large;
   3331   1.1        ad 					malloc_mutex_unlock(&arenas[i]->mtx);
   3332   1.1        ad 				}
   3333   1.1        ad 			}
   3334   1.1        ad 
   3335   1.1        ad 			/* huge/base. */
   3336   1.1        ad 			malloc_mutex_lock(&chunks_mtx);
   3337   1.1        ad 			allocated += huge_allocated;
   3338   1.1        ad 			mapped = stats_chunks.curchunks * chunksize;
   3339   1.1        ad 			malloc_mutex_unlock(&chunks_mtx);
   3340   1.1        ad 
   3341   1.1        ad 			malloc_mutex_lock(&base_mtx);
   3342   1.1        ad 			mapped += base_mapped;
   3343   1.1        ad 			malloc_mutex_unlock(&base_mtx);
   3344   1.1        ad 
   3345   1.1        ad 			malloc_printf("Allocated: %zu, mapped: %zu\n",
   3346   1.1        ad 			    allocated, mapped);
   3347   1.1        ad 
   3348   1.1        ad 			/* Print chunk stats. */
   3349   1.1        ad 			{
   3350   1.1        ad 				chunk_stats_t chunks_stats;
   3351   1.1        ad 
   3352   1.1        ad 				malloc_mutex_lock(&chunks_mtx);
   3353   1.1        ad 				chunks_stats = stats_chunks;
   3354   1.1        ad 				malloc_mutex_unlock(&chunks_mtx);
   3355   1.1        ad 
   3356   1.1        ad 				malloc_printf("chunks: nchunks   "
   3357   1.1        ad 				    "highchunks    curchunks\n");
   3358   1.1        ad 				malloc_printf("  %13llu%13lu%13lu\n",
   3359   1.1        ad 				    chunks_stats.nchunks,
   3360   1.1        ad 				    chunks_stats.highchunks,
   3361   1.1        ad 				    chunks_stats.curchunks);
   3362   1.1        ad 			}
   3363   1.1        ad 
   3364   1.1        ad 			/* Print chunk stats. */
   3365   1.1        ad 			malloc_printf(
   3366   1.8      yamt 			    "huge: nmalloc      ndalloc      "
   3367   1.8      yamt 			    "nralloc    allocated\n");
   3368   1.8      yamt 			malloc_printf(" %12llu %12llu %12llu %12zu\n",
   3369   1.8      yamt 			    huge_nmalloc, huge_ndalloc, huge_nralloc,
   3370   1.8      yamt 			    huge_allocated);
   3371   1.1        ad 
   3372   1.1        ad 			/* Print stats for each arena. */
   3373   1.1        ad 			for (i = 0; i < narenas; i++) {
   3374   1.1        ad 				arena = arenas[i];
   3375   1.1        ad 				if (arena != NULL) {
   3376   1.1        ad 					malloc_printf(
   3377   1.2        ad 					    "\narenas[%u] @ %p\n", i, arena);
   3378   1.1        ad 					malloc_mutex_lock(&arena->mtx);
   3379   1.1        ad 					stats_print(arena);
   3380   1.1        ad 					malloc_mutex_unlock(&arena->mtx);
   3381   1.1        ad 				}
   3382   1.1        ad 			}
   3383   1.1        ad 		}
   3384   1.1        ad #endif /* #ifdef MALLOC_STATS */
   3385   1.1        ad 		_malloc_message("--- End malloc statistics ---\n", "", "", "");
   3386   1.1        ad 	}
   3387   1.1        ad }
   3388   1.1        ad 
   3389   1.1        ad /*
   3390   1.1        ad  * FreeBSD's pthreads implementation calls malloc(3), so the malloc
   3391   1.1        ad  * implementation has to take pains to avoid infinite recursion during
   3392   1.1        ad  * initialization.
   3393   1.1        ad  */
   3394   1.1        ad static inline bool
   3395   1.1        ad malloc_init(void)
   3396   1.1        ad {
   3397   1.1        ad 
   3398   1.1        ad 	if (malloc_initialized == false)
   3399   1.1        ad 		return (malloc_init_hard());
   3400   1.1        ad 
   3401   1.1        ad 	return (false);
   3402   1.1        ad }
   3403   1.1        ad 
   3404   1.1        ad static bool
   3405   1.1        ad malloc_init_hard(void)
   3406   1.1        ad {
   3407   1.1        ad 	unsigned i, j;
   3408   1.9  christos 	ssize_t linklen;
   3409   1.1        ad 	char buf[PATH_MAX + 1];
   3410   1.2        ad 	const char *opts = "";
   3411  1.23  christos 	int serrno;
   3412   1.1        ad 
   3413   1.1        ad 	malloc_mutex_lock(&init_lock);
   3414   1.1        ad 	if (malloc_initialized) {
   3415   1.1        ad 		/*
   3416   1.1        ad 		 * Another thread initialized the allocator before this one
   3417   1.1        ad 		 * acquired init_lock.
   3418   1.1        ad 		 */
   3419   1.1        ad 		malloc_mutex_unlock(&init_lock);
   3420   1.1        ad 		return (false);
   3421   1.1        ad 	}
   3422   1.1        ad 
   3423  1.24  christos 	serrno = errno;
   3424   1.1        ad 	/* Get number of CPUs. */
   3425   1.1        ad 	{
   3426   1.1        ad 		int mib[2];
   3427   1.1        ad 		size_t len;
   3428   1.1        ad 
   3429   1.1        ad 		mib[0] = CTL_HW;
   3430   1.1        ad 		mib[1] = HW_NCPU;
   3431   1.1        ad 		len = sizeof(ncpus);
   3432   1.1        ad 		if (sysctl(mib, 2, &ncpus, &len, (void *) 0, 0) == -1) {
   3433   1.1        ad 			/* Error. */
   3434   1.1        ad 			ncpus = 1;
   3435   1.1        ad 		}
   3436   1.1        ad 	}
   3437   1.1        ad 
   3438   1.1        ad 	/* Get page size. */
   3439   1.1        ad 	{
   3440   1.1        ad 		long result;
   3441   1.1        ad 
   3442   1.1        ad 		result = sysconf(_SC_PAGESIZE);
   3443   1.1        ad 		assert(result != -1);
   3444   1.1        ad 		pagesize = (unsigned) result;
   3445   1.1        ad 
   3446   1.1        ad 		/*
   3447   1.1        ad 		 * We assume that pagesize is a power of 2 when calculating
   3448   1.1        ad 		 * pagesize_mask and pagesize_2pow.
   3449   1.1        ad 		 */
   3450   1.1        ad 		assert(((result - 1) & result) == 0);
   3451   1.1        ad 		pagesize_mask = result - 1;
   3452   1.1        ad 		pagesize_2pow = ffs((int)result) - 1;
   3453   1.1        ad 	}
   3454   1.1        ad 
   3455   1.1        ad 	for (i = 0; i < 3; i++) {
   3456   1.1        ad 		/* Get runtime configuration. */
   3457   1.1        ad 		switch (i) {
   3458   1.1        ad 		case 0:
   3459   1.1        ad 			if ((linklen = readlink("/etc/malloc.conf", buf,
   3460   1.1        ad 						sizeof(buf) - 1)) != -1) {
   3461   1.1        ad 				/*
   3462   1.1        ad 				 * Use the contents of the "/etc/malloc.conf"
   3463   1.1        ad 				 * symbolic link's name.
   3464   1.1        ad 				 */
   3465   1.1        ad 				buf[linklen] = '\0';
   3466   1.1        ad 				opts = buf;
   3467   1.1        ad 			} else {
   3468   1.1        ad 				/* No configuration specified. */
   3469   1.1        ad 				buf[0] = '\0';
   3470   1.1        ad 				opts = buf;
   3471   1.1        ad 			}
   3472   1.1        ad 			break;
   3473   1.1        ad 		case 1:
   3474  1.18        ad 			if ((opts = getenv("MALLOC_OPTIONS")) != NULL &&
   3475  1.18        ad 			    issetugid() == 0) {
   3476   1.1        ad 				/*
   3477   1.1        ad 				 * Do nothing; opts is already initialized to
   3478   1.1        ad 				 * the value of the MALLOC_OPTIONS environment
   3479   1.1        ad 				 * variable.
   3480   1.1        ad 				 */
   3481   1.1        ad 			} else {
   3482   1.1        ad 				/* No configuration specified. */
   3483   1.1        ad 				buf[0] = '\0';
   3484   1.1        ad 				opts = buf;
   3485   1.1        ad 			}
   3486   1.1        ad 			break;
   3487   1.1        ad 		case 2:
   3488   1.1        ad 			if (_malloc_options != NULL) {
   3489   1.1        ad 			    /*
   3490   1.1        ad 			     * Use options that were compiled into the program.
   3491   1.1        ad 			     */
   3492   1.1        ad 			    opts = _malloc_options;
   3493   1.1        ad 			} else {
   3494   1.1        ad 				/* No configuration specified. */
   3495   1.1        ad 				buf[0] = '\0';
   3496   1.1        ad 				opts = buf;
   3497   1.1        ad 			}
   3498   1.1        ad 			break;
   3499   1.1        ad 		default:
   3500   1.1        ad 			/* NOTREACHED */
   3501   1.7      yamt 			/* LINTED */
   3502   1.1        ad 			assert(false);
   3503   1.1        ad 		}
   3504   1.1        ad 
   3505   1.1        ad 		for (j = 0; opts[j] != '\0'; j++) {
   3506   1.1        ad 			switch (opts[j]) {
   3507   1.1        ad 			case 'a':
   3508   1.1        ad 				opt_abort = false;
   3509   1.1        ad 				break;
   3510   1.1        ad 			case 'A':
   3511   1.1        ad 				opt_abort = true;
   3512   1.1        ad 				break;
   3513   1.1        ad 			case 'h':
   3514   1.1        ad 				opt_hint = false;
   3515   1.1        ad 				break;
   3516   1.1        ad 			case 'H':
   3517   1.1        ad 				opt_hint = true;
   3518   1.1        ad 				break;
   3519   1.1        ad 			case 'j':
   3520   1.1        ad 				opt_junk = false;
   3521   1.1        ad 				break;
   3522   1.1        ad 			case 'J':
   3523   1.1        ad 				opt_junk = true;
   3524   1.1        ad 				break;
   3525   1.1        ad 			case 'k':
   3526   1.1        ad 				/*
   3527   1.1        ad 				 * Chunks always require at least one header
   3528   1.1        ad 				 * page, so chunks can never be smaller than
   3529   1.1        ad 				 * two pages.
   3530   1.1        ad 				 */
   3531   1.1        ad 				if (opt_chunk_2pow > pagesize_2pow + 1)
   3532   1.1        ad 					opt_chunk_2pow--;
   3533   1.1        ad 				break;
   3534   1.1        ad 			case 'K':
   3535  1.20     lukem 				if (opt_chunk_2pow + 1 <
   3536  1.20     lukem 				    (int)(sizeof(size_t) << 3))
   3537   1.1        ad 					opt_chunk_2pow++;
   3538   1.1        ad 				break;
   3539   1.1        ad 			case 'n':
   3540   1.1        ad 				opt_narenas_lshift--;
   3541   1.1        ad 				break;
   3542   1.1        ad 			case 'N':
   3543   1.1        ad 				opt_narenas_lshift++;
   3544   1.1        ad 				break;
   3545   1.1        ad 			case 'p':
   3546   1.1        ad 				opt_print_stats = false;
   3547   1.1        ad 				break;
   3548   1.1        ad 			case 'P':
   3549   1.1        ad 				opt_print_stats = true;
   3550   1.1        ad 				break;
   3551   1.1        ad 			case 'q':
   3552   1.1        ad 				if (opt_quantum_2pow > QUANTUM_2POW_MIN)
   3553   1.1        ad 					opt_quantum_2pow--;
   3554   1.1        ad 				break;
   3555   1.1        ad 			case 'Q':
   3556   1.1        ad 				if (opt_quantum_2pow < pagesize_2pow - 1)
   3557   1.1        ad 					opt_quantum_2pow++;
   3558   1.1        ad 				break;
   3559   1.1        ad 			case 's':
   3560   1.1        ad 				if (opt_small_max_2pow > QUANTUM_2POW_MIN)
   3561   1.1        ad 					opt_small_max_2pow--;
   3562   1.1        ad 				break;
   3563   1.1        ad 			case 'S':
   3564   1.1        ad 				if (opt_small_max_2pow < pagesize_2pow - 1)
   3565   1.1        ad 					opt_small_max_2pow++;
   3566   1.1        ad 				break;
   3567   1.1        ad 			case 'u':
   3568   1.1        ad 				opt_utrace = false;
   3569   1.1        ad 				break;
   3570   1.1        ad 			case 'U':
   3571   1.1        ad 				opt_utrace = true;
   3572   1.1        ad 				break;
   3573   1.1        ad 			case 'v':
   3574   1.1        ad 				opt_sysv = false;
   3575   1.1        ad 				break;
   3576   1.1        ad 			case 'V':
   3577   1.1        ad 				opt_sysv = true;
   3578   1.1        ad 				break;
   3579   1.1        ad 			case 'x':
   3580   1.1        ad 				opt_xmalloc = false;
   3581   1.1        ad 				break;
   3582   1.1        ad 			case 'X':
   3583   1.1        ad 				opt_xmalloc = true;
   3584   1.1        ad 				break;
   3585   1.1        ad 			case 'z':
   3586   1.1        ad 				opt_zero = false;
   3587   1.1        ad 				break;
   3588   1.1        ad 			case 'Z':
   3589   1.1        ad 				opt_zero = true;
   3590   1.1        ad 				break;
   3591   1.1        ad 			default: {
   3592   1.1        ad 				char cbuf[2];
   3593   1.1        ad 
   3594   1.1        ad 				cbuf[0] = opts[j];
   3595   1.1        ad 				cbuf[1] = '\0';
   3596  1.16  christos 				_malloc_message(getprogname(),
   3597   1.1        ad 				    ": (malloc) Unsupported character in "
   3598   1.1        ad 				    "malloc options: '", cbuf, "'\n");
   3599   1.1        ad 			}
   3600   1.1        ad 			}
   3601   1.1        ad 		}
   3602   1.1        ad 	}
   3603  1.24  christos 	errno = serrno;
   3604   1.1        ad 
   3605   1.1        ad 	/* Take care to call atexit() only once. */
   3606   1.1        ad 	if (opt_print_stats) {
   3607   1.1        ad 		/* Print statistics at exit. */
   3608   1.1        ad 		atexit(malloc_print_stats);
   3609   1.1        ad 	}
   3610   1.1        ad 
   3611   1.1        ad 	/* Set variables according to the value of opt_small_max_2pow. */
   3612   1.1        ad 	if (opt_small_max_2pow < opt_quantum_2pow)
   3613   1.1        ad 		opt_small_max_2pow = opt_quantum_2pow;
   3614   1.1        ad 	small_max = (1 << opt_small_max_2pow);
   3615   1.1        ad 
   3616   1.1        ad 	/* Set bin-related variables. */
   3617   1.1        ad 	bin_maxclass = (pagesize >> 1);
   3618   1.1        ad 	assert(opt_quantum_2pow >= TINY_MIN_2POW);
   3619   1.9  christos 	ntbins = (unsigned)(opt_quantum_2pow - TINY_MIN_2POW);
   3620   1.1        ad 	assert(ntbins <= opt_quantum_2pow);
   3621   1.9  christos 	nqbins = (unsigned)(small_max >> opt_quantum_2pow);
   3622   1.9  christos 	nsbins = (unsigned)(pagesize_2pow - opt_small_max_2pow - 1);
   3623   1.1        ad 
   3624   1.1        ad 	/* Set variables according to the value of opt_quantum_2pow. */
   3625   1.1        ad 	quantum = (1 << opt_quantum_2pow);
   3626   1.1        ad 	quantum_mask = quantum - 1;
   3627   1.1        ad 	if (ntbins > 0)
   3628   1.1        ad 		small_min = (quantum >> 1) + 1;
   3629   1.1        ad 	else
   3630   1.1        ad 		small_min = 1;
   3631   1.1        ad 	assert(small_min <= quantum);
   3632   1.1        ad 
   3633   1.1        ad 	/* Set variables according to the value of opt_chunk_2pow. */
   3634   1.1        ad 	chunksize = (1LU << opt_chunk_2pow);
   3635   1.1        ad 	chunksize_mask = chunksize - 1;
   3636   1.9  christos 	chunksize_2pow = (unsigned)opt_chunk_2pow;
   3637   1.9  christos 	chunk_npages = (unsigned)(chunksize >> pagesize_2pow);
   3638   1.1        ad 	{
   3639   1.1        ad 		unsigned header_size;
   3640   1.1        ad 
   3641   1.9  christos 		header_size = (unsigned)(sizeof(arena_chunk_t) +
   3642   1.9  christos 		    (sizeof(arena_chunk_map_t) * (chunk_npages - 1)));
   3643   1.1        ad 		arena_chunk_header_npages = (header_size >> pagesize_2pow);
   3644   1.1        ad 		if ((header_size & pagesize_mask) != 0)
   3645   1.1        ad 			arena_chunk_header_npages++;
   3646   1.1        ad 	}
   3647   1.1        ad 	arena_maxclass = chunksize - (arena_chunk_header_npages <<
   3648   1.1        ad 	    pagesize_2pow);
   3649   1.1        ad 
   3650   1.1        ad 	UTRACE(0, 0, 0);
   3651   1.1        ad 
   3652   1.1        ad #ifdef MALLOC_STATS
   3653   1.1        ad 	memset(&stats_chunks, 0, sizeof(chunk_stats_t));
   3654   1.1        ad #endif
   3655   1.1        ad 
   3656   1.1        ad 	/* Various sanity checks that regard configuration. */
   3657   1.1        ad 	assert(quantum >= sizeof(void *));
   3658   1.1        ad 	assert(quantum <= pagesize);
   3659   1.1        ad 	assert(chunksize >= pagesize);
   3660   1.1        ad 	assert(quantum * 4 <= chunksize);
   3661   1.1        ad 
   3662   1.1        ad 	/* Initialize chunks data. */
   3663   1.1        ad 	malloc_mutex_init(&chunks_mtx);
   3664   1.1        ad 	RB_INIT(&huge);
   3665   1.1        ad #ifdef USE_BRK
   3666   1.1        ad 	malloc_mutex_init(&brk_mtx);
   3667   1.1        ad 	brk_base = sbrk(0);
   3668   1.1        ad 	brk_prev = brk_base;
   3669   1.1        ad 	brk_max = brk_base;
   3670   1.1        ad #endif
   3671   1.1        ad #ifdef MALLOC_STATS
   3672   1.1        ad 	huge_nmalloc = 0;
   3673   1.1        ad 	huge_ndalloc = 0;
   3674   1.8      yamt 	huge_nralloc = 0;
   3675   1.1        ad 	huge_allocated = 0;
   3676   1.1        ad #endif
   3677   1.1        ad 	RB_INIT(&old_chunks);
   3678   1.1        ad 
   3679   1.1        ad 	/* Initialize base allocation data structures. */
   3680   1.1        ad #ifdef MALLOC_STATS
   3681   1.1        ad 	base_mapped = 0;
   3682   1.1        ad #endif
   3683   1.1        ad #ifdef USE_BRK
   3684   1.1        ad 	/*
   3685   1.1        ad 	 * Allocate a base chunk here, since it doesn't actually have to be
   3686   1.1        ad 	 * chunk-aligned.  Doing this before allocating any other chunks allows
   3687   1.1        ad 	 * the use of space that would otherwise be wasted.
   3688   1.1        ad 	 */
   3689   1.1        ad 	base_pages_alloc(0);
   3690   1.1        ad #endif
   3691   1.1        ad 	base_chunk_nodes = NULL;
   3692   1.1        ad 	malloc_mutex_init(&base_mtx);
   3693   1.1        ad 
   3694   1.1        ad 	if (ncpus > 1) {
   3695   1.1        ad 		/*
   3696   1.1        ad 		 * For SMP systems, create four times as many arenas as there
   3697   1.1        ad 		 * are CPUs by default.
   3698   1.1        ad 		 */
   3699   1.1        ad 		opt_narenas_lshift += 2;
   3700   1.1        ad 	}
   3701   1.1        ad 
   3702   1.1        ad 	/* Determine how many arenas to use. */
   3703   1.1        ad 	narenas = ncpus;
   3704   1.1        ad 	if (opt_narenas_lshift > 0) {
   3705   1.1        ad 		if ((narenas << opt_narenas_lshift) > narenas)
   3706   1.1        ad 			narenas <<= opt_narenas_lshift;
   3707   1.1        ad 		/*
   3708   1.1        ad 		 * Make sure not to exceed the limits of what base_malloc()
   3709   1.1        ad 		 * can handle.
   3710   1.1        ad 		 */
   3711   1.1        ad 		if (narenas * sizeof(arena_t *) > chunksize)
   3712   1.9  christos 			narenas = (unsigned)(chunksize / sizeof(arena_t *));
   3713   1.1        ad 	} else if (opt_narenas_lshift < 0) {
   3714   1.1        ad 		if ((narenas << opt_narenas_lshift) < narenas)
   3715   1.1        ad 			narenas <<= opt_narenas_lshift;
   3716  1.15        ad 		/* Make sure there is at least one arena. */
   3717  1.15        ad 		if (narenas == 0)
   3718  1.15        ad 			narenas = 1;
   3719   1.1        ad 	}
   3720   1.1        ad 
   3721   1.1        ad 	next_arena = 0;
   3722   1.1        ad 
   3723   1.1        ad 	/* Allocate and initialize arenas. */
   3724   1.1        ad 	arenas = (arena_t **)base_alloc(sizeof(arena_t *) * narenas);
   3725   1.1        ad 	if (arenas == NULL) {
   3726   1.1        ad 		malloc_mutex_unlock(&init_lock);
   3727   1.1        ad 		return (true);
   3728   1.1        ad 	}
   3729   1.1        ad 	/*
   3730   1.1        ad 	 * Zero the array.  In practice, this should always be pre-zeroed,
   3731   1.1        ad 	 * since it was just mmap()ed, but let's be sure.
   3732   1.1        ad 	 */
   3733   1.1        ad 	memset(arenas, 0, sizeof(arena_t *) * narenas);
   3734   1.1        ad 
   3735   1.1        ad 	/*
   3736   1.1        ad 	 * Initialize one arena here.  The rest are lazily created in
   3737   1.1        ad 	 * arena_choose_hard().
   3738   1.1        ad 	 */
   3739   1.1        ad 	arenas_extend(0);
   3740   1.1        ad 	if (arenas[0] == NULL) {
   3741   1.1        ad 		malloc_mutex_unlock(&init_lock);
   3742   1.1        ad 		return (true);
   3743   1.1        ad 	}
   3744   1.1        ad 
   3745   1.1        ad 	malloc_mutex_init(&arenas_mtx);
   3746   1.1        ad 
   3747   1.1        ad 	malloc_initialized = true;
   3748   1.1        ad 	malloc_mutex_unlock(&init_lock);
   3749   1.1        ad 	return (false);
   3750   1.1        ad }
   3751   1.1        ad 
   3752   1.1        ad /*
   3753   1.1        ad  * End general internal functions.
   3754   1.1        ad  */
   3755   1.1        ad /******************************************************************************/
   3756   1.1        ad /*
   3757   1.1        ad  * Begin malloc(3)-compatible functions.
   3758   1.1        ad  */
   3759   1.1        ad 
   3760   1.1        ad void *
   3761   1.1        ad malloc(size_t size)
   3762   1.1        ad {
   3763   1.1        ad 	void *ret;
   3764   1.1        ad 
   3765   1.1        ad 	if (malloc_init()) {
   3766   1.1        ad 		ret = NULL;
   3767   1.1        ad 		goto RETURN;
   3768   1.1        ad 	}
   3769   1.1        ad 
   3770   1.1        ad 	if (size == 0) {
   3771   1.1        ad 		if (opt_sysv == false)
   3772   1.1        ad 			size = 1;
   3773   1.1        ad 		else {
   3774   1.1        ad 			ret = NULL;
   3775   1.1        ad 			goto RETURN;
   3776   1.1        ad 		}
   3777   1.1        ad 	}
   3778   1.1        ad 
   3779   1.1        ad 	ret = imalloc(size);
   3780   1.1        ad 
   3781   1.1        ad RETURN:
   3782   1.1        ad 	if (ret == NULL) {
   3783   1.1        ad 		if (opt_xmalloc) {
   3784  1.16  christos 			_malloc_message(getprogname(),
   3785   1.1        ad 			    ": (malloc) Error in malloc(): out of memory\n", "",
   3786   1.1        ad 			    "");
   3787   1.1        ad 			abort();
   3788   1.1        ad 		}
   3789   1.1        ad 		errno = ENOMEM;
   3790   1.1        ad 	}
   3791   1.1        ad 
   3792   1.1        ad 	UTRACE(0, size, ret);
   3793   1.1        ad 	return (ret);
   3794   1.1        ad }
   3795   1.1        ad 
   3796   1.1        ad int
   3797   1.1        ad posix_memalign(void **memptr, size_t alignment, size_t size)
   3798   1.1        ad {
   3799   1.1        ad 	int ret;
   3800   1.1        ad 	void *result;
   3801   1.1        ad 
   3802   1.1        ad 	if (malloc_init())
   3803   1.1        ad 		result = NULL;
   3804   1.1        ad 	else {
   3805   1.1        ad 		/* Make sure that alignment is a large enough power of 2. */
   3806   1.1        ad 		if (((alignment - 1) & alignment) != 0
   3807   1.1        ad 		    || alignment < sizeof(void *)) {
   3808   1.1        ad 			if (opt_xmalloc) {
   3809  1.16  christos 				_malloc_message(getprogname(),
   3810   1.1        ad 				    ": (malloc) Error in posix_memalign(): "
   3811   1.1        ad 				    "invalid alignment\n", "", "");
   3812   1.1        ad 				abort();
   3813   1.1        ad 			}
   3814   1.1        ad 			result = NULL;
   3815   1.1        ad 			ret = EINVAL;
   3816   1.1        ad 			goto RETURN;
   3817   1.1        ad 		}
   3818   1.1        ad 
   3819   1.1        ad 		result = ipalloc(alignment, size);
   3820   1.1        ad 	}
   3821   1.1        ad 
   3822   1.1        ad 	if (result == NULL) {
   3823   1.1        ad 		if (opt_xmalloc) {
   3824  1.16  christos 			_malloc_message(getprogname(),
   3825   1.1        ad 			": (malloc) Error in posix_memalign(): out of memory\n",
   3826   1.1        ad 			"", "");
   3827   1.1        ad 			abort();
   3828   1.1        ad 		}
   3829   1.1        ad 		ret = ENOMEM;
   3830   1.1        ad 		goto RETURN;
   3831   1.1        ad 	}
   3832   1.1        ad 
   3833   1.1        ad 	*memptr = result;
   3834   1.1        ad 	ret = 0;
   3835   1.1        ad 
   3836   1.1        ad RETURN:
   3837   1.1        ad 	UTRACE(0, size, result);
   3838   1.1        ad 	return (ret);
   3839   1.1        ad }
   3840   1.1        ad 
   3841   1.1        ad void *
   3842   1.1        ad calloc(size_t num, size_t size)
   3843   1.1        ad {
   3844   1.1        ad 	void *ret;
   3845   1.1        ad 	size_t num_size;
   3846   1.1        ad 
   3847   1.1        ad 	if (malloc_init()) {
   3848   1.1        ad 		num_size = 0;
   3849   1.1        ad 		ret = NULL;
   3850   1.1        ad 		goto RETURN;
   3851   1.1        ad 	}
   3852   1.1        ad 
   3853   1.1        ad 	num_size = num * size;
   3854   1.1        ad 	if (num_size == 0) {
   3855   1.1        ad 		if ((opt_sysv == false) && ((num == 0) || (size == 0)))
   3856   1.1        ad 			num_size = 1;
   3857   1.1        ad 		else {
   3858   1.1        ad 			ret = NULL;
   3859   1.1        ad 			goto RETURN;
   3860   1.1        ad 		}
   3861   1.1        ad 	/*
   3862   1.1        ad 	 * Try to avoid division here.  We know that it isn't possible to
   3863   1.1        ad 	 * overflow during multiplication if neither operand uses any of the
   3864   1.1        ad 	 * most significant half of the bits in a size_t.
   3865   1.1        ad 	 */
   3866   1.2        ad 	} else if ((unsigned long long)((num | size) &
   3867   1.2        ad 	   ((unsigned long long)SIZE_T_MAX << (sizeof(size_t) << 2))) &&
   3868   1.2        ad 	   (num_size / size != num)) {
   3869   1.1        ad 		/* size_t overflow. */
   3870   1.1        ad 		ret = NULL;
   3871   1.1        ad 		goto RETURN;
   3872   1.1        ad 	}
   3873   1.1        ad 
   3874   1.1        ad 	ret = icalloc(num_size);
   3875   1.1        ad 
   3876   1.1        ad RETURN:
   3877   1.1        ad 	if (ret == NULL) {
   3878   1.1        ad 		if (opt_xmalloc) {
   3879  1.16  christos 			_malloc_message(getprogname(),
   3880   1.1        ad 			    ": (malloc) Error in calloc(): out of memory\n", "",
   3881   1.1        ad 			    "");
   3882   1.1        ad 			abort();
   3883   1.1        ad 		}
   3884   1.1        ad 		errno = ENOMEM;
   3885   1.1        ad 	}
   3886   1.1        ad 
   3887   1.1        ad 	UTRACE(0, num_size, ret);
   3888   1.1        ad 	return (ret);
   3889   1.1        ad }
   3890   1.1        ad 
   3891   1.1        ad void *
   3892   1.1        ad realloc(void *ptr, size_t size)
   3893   1.1        ad {
   3894   1.1        ad 	void *ret;
   3895   1.1        ad 
   3896   1.1        ad 	if (size == 0) {
   3897   1.1        ad 		if (opt_sysv == false)
   3898   1.1        ad 			size = 1;
   3899   1.1        ad 		else {
   3900   1.1        ad 			if (ptr != NULL)
   3901   1.1        ad 				idalloc(ptr);
   3902   1.1        ad 			ret = NULL;
   3903   1.1        ad 			goto RETURN;
   3904   1.1        ad 		}
   3905   1.1        ad 	}
   3906   1.1        ad 
   3907   1.1        ad 	if (ptr != NULL) {
   3908   1.1        ad 		assert(malloc_initialized);
   3909   1.1        ad 
   3910   1.1        ad 		ret = iralloc(ptr, size);
   3911   1.1        ad 
   3912   1.1        ad 		if (ret == NULL) {
   3913   1.1        ad 			if (opt_xmalloc) {
   3914  1.16  christos 				_malloc_message(getprogname(),
   3915   1.1        ad 				    ": (malloc) Error in realloc(): out of "
   3916   1.1        ad 				    "memory\n", "", "");
   3917   1.1        ad 				abort();
   3918   1.1        ad 			}
   3919   1.1        ad 			errno = ENOMEM;
   3920   1.1        ad 		}
   3921   1.1        ad 	} else {
   3922   1.1        ad 		if (malloc_init())
   3923   1.1        ad 			ret = NULL;
   3924   1.1        ad 		else
   3925   1.1        ad 			ret = imalloc(size);
   3926   1.1        ad 
   3927   1.1        ad 		if (ret == NULL) {
   3928   1.1        ad 			if (opt_xmalloc) {
   3929  1.16  christos 				_malloc_message(getprogname(),
   3930   1.1        ad 				    ": (malloc) Error in realloc(): out of "
   3931   1.1        ad 				    "memory\n", "", "");
   3932   1.1        ad 				abort();
   3933   1.1        ad 			}
   3934   1.1        ad 			errno = ENOMEM;
   3935   1.1        ad 		}
   3936   1.1        ad 	}
   3937   1.1        ad 
   3938   1.1        ad RETURN:
   3939   1.1        ad 	UTRACE(ptr, size, ret);
   3940   1.1        ad 	return (ret);
   3941   1.1        ad }
   3942   1.1        ad 
   3943   1.1        ad void
   3944   1.1        ad free(void *ptr)
   3945   1.1        ad {
   3946   1.1        ad 
   3947   1.1        ad 	UTRACE(ptr, 0, 0);
   3948   1.1        ad 	if (ptr != NULL) {
   3949   1.1        ad 		assert(malloc_initialized);
   3950   1.1        ad 
   3951   1.1        ad 		idalloc(ptr);
   3952   1.1        ad 	}
   3953   1.1        ad }
   3954   1.1        ad 
   3955   1.1        ad /*
   3956   1.1        ad  * End malloc(3)-compatible functions.
   3957   1.1        ad  */
   3958   1.1        ad /******************************************************************************/
   3959   1.1        ad /*
   3960   1.1        ad  * Begin non-standard functions.
   3961   1.1        ad  */
   3962   1.2        ad #ifndef __NetBSD__
   3963   1.1        ad size_t
   3964   1.1        ad malloc_usable_size(const void *ptr)
   3965   1.1        ad {
   3966   1.1        ad 
   3967   1.1        ad 	assert(ptr != NULL);
   3968   1.1        ad 
   3969   1.1        ad 	return (isalloc(ptr));
   3970   1.1        ad }
   3971   1.2        ad #endif
   3972   1.1        ad 
   3973   1.1        ad /*
   3974   1.1        ad  * End non-standard functions.
   3975   1.1        ad  */
   3976   1.1        ad /******************************************************************************/
   3977   1.1        ad /*
   3978   1.1        ad  * Begin library-private functions, used by threading libraries for protection
   3979   1.1        ad  * of malloc during fork().  These functions are only called if the program is
   3980   1.1        ad  * running in threaded mode, so there is no need to check whether the program
   3981   1.1        ad  * is threaded here.
   3982   1.1        ad  */
   3983   1.1        ad 
   3984   1.1        ad void
   3985   1.1        ad _malloc_prefork(void)
   3986   1.1        ad {
   3987   1.1        ad 	unsigned i;
   3988   1.1        ad 
   3989   1.1        ad 	/* Acquire all mutexes in a safe order. */
   3990   1.1        ad 
   3991   1.1        ad 	malloc_mutex_lock(&arenas_mtx);
   3992   1.1        ad 	for (i = 0; i < narenas; i++) {
   3993   1.1        ad 		if (arenas[i] != NULL)
   3994   1.1        ad 			malloc_mutex_lock(&arenas[i]->mtx);
   3995   1.1        ad 	}
   3996   1.1        ad 
   3997   1.1        ad 	malloc_mutex_lock(&base_mtx);
   3998   1.1        ad 
   3999   1.1        ad 	malloc_mutex_lock(&chunks_mtx);
   4000   1.1        ad }
   4001   1.1        ad 
   4002   1.1        ad void
   4003   1.1        ad _malloc_postfork(void)
   4004   1.1        ad {
   4005   1.1        ad 	unsigned i;
   4006   1.1        ad 
   4007   1.1        ad 	/* Release all mutexes, now that fork() has completed. */
   4008   1.1        ad 
   4009   1.1        ad 	malloc_mutex_unlock(&chunks_mtx);
   4010   1.1        ad 
   4011   1.1        ad 	malloc_mutex_unlock(&base_mtx);
   4012   1.1        ad 
   4013   1.1        ad 	for (i = 0; i < narenas; i++) {
   4014   1.1        ad 		if (arenas[i] != NULL)
   4015   1.1        ad 			malloc_mutex_unlock(&arenas[i]->mtx);
   4016   1.1        ad 	}
   4017   1.1        ad 	malloc_mutex_unlock(&arenas_mtx);
   4018   1.1        ad }
   4019   1.1        ad 
   4020   1.1        ad /*
   4021   1.1        ad  * End library-private functions.
   4022   1.1        ad  */
   4023   1.1        ad /******************************************************************************/
   4024