jemalloc.c revision 1.56 1 1.56 skrll /* $NetBSD: jemalloc.c,v 1.56 2023/05/07 12:41:47 skrll Exp $ */
2 1.2 ad
3 1.1 ad /*-
4 1.1 ad * Copyright (C) 2006,2007 Jason Evans <jasone (at) FreeBSD.org>.
5 1.1 ad * All rights reserved.
6 1.1 ad *
7 1.1 ad * Redistribution and use in source and binary forms, with or without
8 1.1 ad * modification, are permitted provided that the following conditions
9 1.1 ad * are met:
10 1.1 ad * 1. Redistributions of source code must retain the above copyright
11 1.1 ad * notice(s), this list of conditions and the following disclaimer as
12 1.1 ad * the first lines of this file unmodified other than the possible
13 1.1 ad * addition of one or more copyright notices.
14 1.1 ad * 2. Redistributions in binary form must reproduce the above copyright
15 1.1 ad * notice(s), this list of conditions and the following disclaimer in
16 1.1 ad * the documentation and/or other materials provided with the
17 1.1 ad * distribution.
18 1.1 ad *
19 1.1 ad * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY
20 1.1 ad * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 1.1 ad * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.1 ad * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE
23 1.1 ad * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.1 ad * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.1 ad * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
26 1.1 ad * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
27 1.1 ad * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
28 1.1 ad * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
29 1.1 ad * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 1.1 ad *
31 1.1 ad *******************************************************************************
32 1.1 ad *
33 1.1 ad * This allocator implementation is designed to provide scalable performance
34 1.1 ad * for multi-threaded programs on multi-processor systems. The following
35 1.1 ad * features are included for this purpose:
36 1.1 ad *
37 1.1 ad * + Multiple arenas are used if there are multiple CPUs, which reduces lock
38 1.1 ad * contention and cache sloshing.
39 1.1 ad *
40 1.1 ad * + Cache line sharing between arenas is avoided for internal data
41 1.1 ad * structures.
42 1.1 ad *
43 1.1 ad * + Memory is managed in chunks and runs (chunks can be split into runs),
44 1.1 ad * rather than as individual pages. This provides a constant-time
45 1.1 ad * mechanism for associating allocations with particular arenas.
46 1.1 ad *
47 1.1 ad * Allocation requests are rounded up to the nearest size class, and no record
48 1.1 ad * of the original request size is maintained. Allocations are broken into
49 1.1 ad * categories according to size class. Assuming runtime defaults, 4 kB pages
50 1.1 ad * and a 16 byte quantum, the size classes in each category are as follows:
51 1.1 ad *
52 1.1 ad * |=====================================|
53 1.1 ad * | Category | Subcategory | Size |
54 1.1 ad * |=====================================|
55 1.1 ad * | Small | Tiny | 2 |
56 1.1 ad * | | | 4 |
57 1.1 ad * | | | 8 |
58 1.1 ad * | |----------------+---------|
59 1.1 ad * | | Quantum-spaced | 16 |
60 1.1 ad * | | | 32 |
61 1.1 ad * | | | 48 |
62 1.1 ad * | | | ... |
63 1.1 ad * | | | 480 |
64 1.1 ad * | | | 496 |
65 1.1 ad * | | | 512 |
66 1.1 ad * | |----------------+---------|
67 1.1 ad * | | Sub-page | 1 kB |
68 1.1 ad * | | | 2 kB |
69 1.1 ad * |=====================================|
70 1.1 ad * | Large | 4 kB |
71 1.1 ad * | | 8 kB |
72 1.1 ad * | | 12 kB |
73 1.1 ad * | | ... |
74 1.1 ad * | | 1012 kB |
75 1.1 ad * | | 1016 kB |
76 1.1 ad * | | 1020 kB |
77 1.1 ad * |=====================================|
78 1.1 ad * | Huge | 1 MB |
79 1.1 ad * | | 2 MB |
80 1.1 ad * | | 3 MB |
81 1.1 ad * | | ... |
82 1.1 ad * |=====================================|
83 1.1 ad *
84 1.1 ad * A different mechanism is used for each category:
85 1.1 ad *
86 1.1 ad * Small : Each size class is segregated into its own set of runs. Each run
87 1.1 ad * maintains a bitmap of which regions are free/allocated.
88 1.1 ad *
89 1.1 ad * Large : Each allocation is backed by a dedicated run. Metadata are stored
90 1.1 ad * in the associated arena chunk header maps.
91 1.1 ad *
92 1.1 ad * Huge : Each allocation is backed by a dedicated contiguous set of chunks.
93 1.1 ad * Metadata are stored in a separate red-black tree.
94 1.1 ad *
95 1.1 ad *******************************************************************************
96 1.1 ad */
97 1.1 ad
98 1.2 ad /* LINTLIBRARY */
99 1.2 ad
100 1.2 ad #ifdef __NetBSD__
101 1.2 ad # define xutrace(a, b) utrace("malloc", (a), (b))
102 1.2 ad # define __DECONST(x, y) ((x)__UNCONST(y))
103 1.2 ad #else
104 1.2 ad # define xutrace(a, b) utrace((a), (b))
105 1.2 ad #endif /* __NetBSD__ */
106 1.2 ad
107 1.1 ad /*
108 1.1 ad * MALLOC_PRODUCTION disables assertions and statistics gathering. It also
109 1.1 ad * defaults the A and J runtime options to off. These settings are appropriate
110 1.1 ad * for production systems.
111 1.1 ad */
112 1.2 ad #define MALLOC_PRODUCTION
113 1.1 ad
114 1.1 ad #ifndef MALLOC_PRODUCTION
115 1.1 ad # define MALLOC_DEBUG
116 1.1 ad #endif
117 1.1 ad
118 1.1 ad #include <sys/cdefs.h>
119 1.55 skrll /* __FBSDID("$FreeBSD: src/lib/libc/stdlib/malloc.c,v 1.147 2007/06/15 22:00:16 jasone Exp $"); */
120 1.56 skrll __RCSID("$NetBSD: jemalloc.c,v 1.56 2023/05/07 12:41:47 skrll Exp $");
121 1.1 ad
122 1.2 ad #ifdef __FreeBSD__
123 1.1 ad #include "libc_private.h"
124 1.1 ad #ifdef MALLOC_DEBUG
125 1.1 ad # define _LOCK_DEBUG
126 1.1 ad #endif
127 1.1 ad #include "spinlock.h"
128 1.2 ad #endif
129 1.1 ad #include "namespace.h"
130 1.1 ad #include <sys/mman.h>
131 1.1 ad #include <sys/param.h>
132 1.2 ad #ifdef __FreeBSD__
133 1.1 ad #include <sys/stddef.h>
134 1.2 ad #endif
135 1.1 ad #include <sys/time.h>
136 1.1 ad #include <sys/types.h>
137 1.1 ad #include <sys/sysctl.h>
138 1.1 ad #include <sys/tree.h>
139 1.1 ad #include <sys/uio.h>
140 1.1 ad #include <sys/ktrace.h> /* Must come after several other sys/ includes. */
141 1.1 ad
142 1.2 ad #ifdef __FreeBSD__
143 1.1 ad #include <machine/atomic.h>
144 1.1 ad #include <machine/cpufunc.h>
145 1.39 christos #include <machine/vmparam.h>
146 1.2 ad #endif
147 1.1 ad
148 1.1 ad #include <errno.h>
149 1.1 ad #include <limits.h>
150 1.1 ad #include <pthread.h>
151 1.1 ad #include <sched.h>
152 1.1 ad #include <stdarg.h>
153 1.1 ad #include <stdbool.h>
154 1.1 ad #include <stdio.h>
155 1.1 ad #include <stdint.h>
156 1.1 ad #include <stdlib.h>
157 1.1 ad #include <string.h>
158 1.1 ad #include <strings.h>
159 1.1 ad #include <unistd.h>
160 1.1 ad
161 1.2 ad #ifdef __NetBSD__
162 1.2 ad # include <reentrant.h>
163 1.16 christos # include "extern.h"
164 1.16 christos
165 1.41 christos #define STRERROR_R(a, b, c) strerror_r_ss(a, b, c);
166 1.2 ad #endif
167 1.2 ad
168 1.2 ad #ifdef __FreeBSD__
169 1.16 christos #define STRERROR_R(a, b, c) strerror_r(a, b, c);
170 1.1 ad #include "un-namespace.h"
171 1.2 ad #endif
172 1.1 ad
173 1.1 ad /* MALLOC_STATS enables statistics calculation. */
174 1.1 ad #ifndef MALLOC_PRODUCTION
175 1.1 ad # define MALLOC_STATS
176 1.1 ad #endif
177 1.1 ad
178 1.1 ad #ifdef MALLOC_DEBUG
179 1.1 ad # ifdef NDEBUG
180 1.1 ad # undef NDEBUG
181 1.1 ad # endif
182 1.1 ad #else
183 1.1 ad # ifndef NDEBUG
184 1.1 ad # define NDEBUG
185 1.1 ad # endif
186 1.1 ad #endif
187 1.1 ad #include <assert.h>
188 1.1 ad
189 1.1 ad #ifdef MALLOC_DEBUG
190 1.1 ad /* Disable inlining to make debugging easier. */
191 1.1 ad # define inline
192 1.1 ad #endif
193 1.1 ad
194 1.1 ad /* Size of stack-allocated buffer passed to strerror_r(). */
195 1.1 ad #define STRERROR_BUF 64
196 1.1 ad
197 1.1 ad /* Minimum alignment of allocations is 2^QUANTUM_2POW_MIN bytes. */
198 1.31 martin
199 1.31 martin /*
200 1.31 martin * If you touch the TINY_MIN_2POW definition for any architecture, please
201 1.31 martin * make sure to adjust the corresponding definition for JEMALLOC_TINY_MIN_2POW
202 1.31 martin * in the gcc 4.8 tree in dist/gcc/tree-ssa-ccp.c and verify that a native
203 1.31 martin * gcc is still buildable!
204 1.31 martin */
205 1.31 martin
206 1.1 ad #ifdef __i386__
207 1.1 ad # define QUANTUM_2POW_MIN 4
208 1.1 ad # define SIZEOF_PTR_2POW 2
209 1.1 ad # define USE_BRK
210 1.1 ad #endif
211 1.1 ad #ifdef __ia64__
212 1.1 ad # define QUANTUM_2POW_MIN 4
213 1.1 ad # define SIZEOF_PTR_2POW 3
214 1.1 ad #endif
215 1.34 matt #ifdef __aarch64__
216 1.34 matt # define QUANTUM_2POW_MIN 4
217 1.34 matt # define SIZEOF_PTR_2POW 3
218 1.47 joerg # define TINY_MIN_2POW 3
219 1.34 matt #endif
220 1.1 ad #ifdef __alpha__
221 1.1 ad # define QUANTUM_2POW_MIN 4
222 1.1 ad # define SIZEOF_PTR_2POW 3
223 1.30 skrll # define TINY_MIN_2POW 3
224 1.1 ad #endif
225 1.1 ad #ifdef __sparc64__
226 1.1 ad # define QUANTUM_2POW_MIN 4
227 1.1 ad # define SIZEOF_PTR_2POW 3
228 1.31 martin # define TINY_MIN_2POW 3
229 1.1 ad #endif
230 1.1 ad #ifdef __amd64__
231 1.1 ad # define QUANTUM_2POW_MIN 4
232 1.1 ad # define SIZEOF_PTR_2POW 3
233 1.31 martin # define TINY_MIN_2POW 3
234 1.1 ad #endif
235 1.1 ad #ifdef __arm__
236 1.1 ad # define QUANTUM_2POW_MIN 3
237 1.1 ad # define SIZEOF_PTR_2POW 2
238 1.1 ad # define USE_BRK
239 1.30 skrll # ifdef __ARM_EABI__
240 1.30 skrll # define TINY_MIN_2POW 3
241 1.30 skrll # endif
242 1.1 ad #endif
243 1.1 ad #ifdef __powerpc__
244 1.1 ad # define QUANTUM_2POW_MIN 4
245 1.1 ad # define SIZEOF_PTR_2POW 2
246 1.1 ad # define USE_BRK
247 1.32 martin # define TINY_MIN_2POW 3
248 1.1 ad #endif
249 1.3 he #if defined(__sparc__) && !defined(__sparc64__)
250 1.2 ad # define QUANTUM_2POW_MIN 4
251 1.2 ad # define SIZEOF_PTR_2POW 2
252 1.2 ad # define USE_BRK
253 1.2 ad #endif
254 1.35 matt #ifdef __or1k__
255 1.35 matt # define QUANTUM_2POW_MIN 4
256 1.35 matt # define SIZEOF_PTR_2POW 2
257 1.35 matt # define USE_BRK
258 1.35 matt #endif
259 1.2 ad #ifdef __vax__
260 1.2 ad # define QUANTUM_2POW_MIN 4
261 1.2 ad # define SIZEOF_PTR_2POW 2
262 1.2 ad # define USE_BRK
263 1.49 joerg # define NO_TLS
264 1.2 ad #endif
265 1.2 ad #ifdef __sh__
266 1.2 ad # define QUANTUM_2POW_MIN 4
267 1.2 ad # define SIZEOF_PTR_2POW 2
268 1.2 ad # define USE_BRK
269 1.2 ad #endif
270 1.2 ad #ifdef __m68k__
271 1.2 ad # define QUANTUM_2POW_MIN 4
272 1.2 ad # define SIZEOF_PTR_2POW 2
273 1.2 ad # define USE_BRK
274 1.51 rin # ifdef __mc68010__
275 1.51 rin # define NO_TLS
276 1.49 joerg # endif
277 1.2 ad #endif
278 1.56 skrll #if defined(__mips__)
279 1.44 mrg # ifdef _LP64
280 1.44 mrg # define SIZEOF_PTR_2POW 3
281 1.44 mrg # define TINY_MIN_2POW 3
282 1.44 mrg # else
283 1.44 mrg # define SIZEOF_PTR_2POW 2
284 1.44 mrg # endif
285 1.44 mrg # define QUANTUM_2POW_MIN 4
286 1.44 mrg # define USE_BRK
287 1.52 mrg # if defined(__mips__)
288 1.52 mrg # define NO_TLS
289 1.52 mrg # endif
290 1.2 ad #endif
291 1.56 skrll #if defined(__riscv__)
292 1.56 skrll # ifdef _LP64
293 1.56 skrll # define SIZEOF_PTR_2POW 3
294 1.56 skrll # define TINY_MIN_2POW 3
295 1.56 skrll # else
296 1.56 skrll # define SIZEOF_PTR_2POW 2
297 1.56 skrll # endif
298 1.56 skrll # define QUANTUM_2POW_MIN 4
299 1.56 skrll # define USE_BRK
300 1.56 skrll # define NO_TLS
301 1.56 skrll #endif
302 1.55 skrll #ifdef __hppa__
303 1.55 skrll # define QUANTUM_2POW_MIN 4
304 1.44 mrg # define TINY_MIN_2POW 4
305 1.55 skrll # define SIZEOF_PTR_2POW 2
306 1.55 skrll # define USE_BRK
307 1.55 skrll #endif
308 1.1 ad
309 1.1 ad #define SIZEOF_PTR (1 << SIZEOF_PTR_2POW)
310 1.1 ad
311 1.1 ad /* sizeof(int) == (1 << SIZEOF_INT_2POW). */
312 1.1 ad #ifndef SIZEOF_INT_2POW
313 1.1 ad # define SIZEOF_INT_2POW 2
314 1.1 ad #endif
315 1.1 ad
316 1.1 ad /*
317 1.1 ad * Size and alignment of memory chunks that are allocated by the OS's virtual
318 1.1 ad * memory system.
319 1.1 ad */
320 1.1 ad #define CHUNK_2POW_DEFAULT 20
321 1.1 ad
322 1.1 ad /*
323 1.1 ad * Maximum size of L1 cache line. This is used to avoid cache line aliasing,
324 1.1 ad * so over-estimates are okay (up to a point), but under-estimates will
325 1.1 ad * negatively affect performance.
326 1.1 ad */
327 1.1 ad #define CACHELINE_2POW 6
328 1.1 ad #define CACHELINE ((size_t)(1 << CACHELINE_2POW))
329 1.1 ad
330 1.1 ad /* Smallest size class to support. */
331 1.30 skrll #ifndef TINY_MIN_2POW
332 1.30 skrll #define TINY_MIN_2POW 2
333 1.30 skrll #endif
334 1.1 ad
335 1.1 ad /*
336 1.1 ad * Maximum size class that is a multiple of the quantum, but not (necessarily)
337 1.1 ad * a power of 2. Above this size, allocations are rounded up to the nearest
338 1.1 ad * power of 2.
339 1.1 ad */
340 1.1 ad #define SMALL_MAX_2POW_DEFAULT 9
341 1.1 ad #define SMALL_MAX_DEFAULT (1 << SMALL_MAX_2POW_DEFAULT)
342 1.1 ad
343 1.1 ad /*
344 1.22 njoly * RUN_MAX_OVRHD indicates maximum desired run header overhead. Runs are sized
345 1.22 njoly * as small as possible such that this setting is still honored, without
346 1.22 njoly * violating other constraints. The goal is to make runs as small as possible
347 1.22 njoly * without exceeding a per run external fragmentation threshold.
348 1.1 ad *
349 1.22 njoly * We use binary fixed point math for overhead computations, where the binary
350 1.22 njoly * point is implicitly RUN_BFP bits to the left.
351 1.1 ad *
352 1.22 njoly * Note that it is possible to set RUN_MAX_OVRHD low enough that it cannot be
353 1.22 njoly * honored for some/all object sizes, since there is one bit of header overhead
354 1.22 njoly * per object (plus a constant). This constraint is relaxed (ignored) for runs
355 1.22 njoly * that are so small that the per-region overhead is greater than:
356 1.22 njoly *
357 1.22 njoly * (RUN_MAX_OVRHD / (reg_size << (3+RUN_BFP))
358 1.1 ad */
359 1.22 njoly #define RUN_BFP 12
360 1.22 njoly /* \/ Implicit binary fixed point. */
361 1.22 njoly #define RUN_MAX_OVRHD 0x0000003dU
362 1.22 njoly #define RUN_MAX_OVRHD_RELAX 0x00001800U
363 1.1 ad
364 1.1 ad /* Put a cap on small object run size. This overrides RUN_MAX_OVRHD. */
365 1.1 ad #define RUN_MAX_SMALL_2POW 15
366 1.1 ad #define RUN_MAX_SMALL (1 << RUN_MAX_SMALL_2POW)
367 1.1 ad
368 1.1 ad /******************************************************************************/
369 1.1 ad
370 1.2 ad #ifdef __FreeBSD__
371 1.1 ad /*
372 1.1 ad * Mutexes based on spinlocks. We can't use normal pthread mutexes, because
373 1.1 ad * they require malloc()ed memory.
374 1.1 ad */
375 1.1 ad typedef struct {
376 1.1 ad spinlock_t lock;
377 1.1 ad } malloc_mutex_t;
378 1.1 ad
379 1.1 ad /* Set to true once the allocator has been initialized. */
380 1.1 ad static bool malloc_initialized = false;
381 1.1 ad
382 1.1 ad /* Used to avoid initialization races. */
383 1.1 ad static malloc_mutex_t init_lock = {_SPINLOCK_INITIALIZER};
384 1.2 ad #else
385 1.2 ad #define malloc_mutex_t mutex_t
386 1.2 ad
387 1.2 ad /* Set to true once the allocator has been initialized. */
388 1.2 ad static bool malloc_initialized = false;
389 1.2 ad
390 1.37 christos #ifdef _REENTRANT
391 1.2 ad /* Used to avoid initialization races. */
392 1.2 ad static mutex_t init_lock = MUTEX_INITIALIZER;
393 1.2 ad #endif
394 1.37 christos #endif
395 1.1 ad
396 1.1 ad /******************************************************************************/
397 1.1 ad /*
398 1.1 ad * Statistics data structures.
399 1.1 ad */
400 1.1 ad
401 1.1 ad #ifdef MALLOC_STATS
402 1.1 ad
403 1.1 ad typedef struct malloc_bin_stats_s malloc_bin_stats_t;
404 1.1 ad struct malloc_bin_stats_s {
405 1.1 ad /*
406 1.1 ad * Number of allocation requests that corresponded to the size of this
407 1.1 ad * bin.
408 1.1 ad */
409 1.1 ad uint64_t nrequests;
410 1.1 ad
411 1.1 ad /* Total number of runs created for this bin's size class. */
412 1.1 ad uint64_t nruns;
413 1.1 ad
414 1.1 ad /*
415 1.1 ad * Total number of runs reused by extracting them from the runs tree for
416 1.1 ad * this bin's size class.
417 1.1 ad */
418 1.1 ad uint64_t reruns;
419 1.1 ad
420 1.1 ad /* High-water mark for this bin. */
421 1.1 ad unsigned long highruns;
422 1.1 ad
423 1.1 ad /* Current number of runs in this bin. */
424 1.1 ad unsigned long curruns;
425 1.1 ad };
426 1.1 ad
427 1.1 ad typedef struct arena_stats_s arena_stats_t;
428 1.1 ad struct arena_stats_s {
429 1.1 ad /* Number of bytes currently mapped. */
430 1.1 ad size_t mapped;
431 1.1 ad
432 1.1 ad /* Per-size-category statistics. */
433 1.1 ad size_t allocated_small;
434 1.1 ad uint64_t nmalloc_small;
435 1.1 ad uint64_t ndalloc_small;
436 1.1 ad
437 1.1 ad size_t allocated_large;
438 1.1 ad uint64_t nmalloc_large;
439 1.1 ad uint64_t ndalloc_large;
440 1.1 ad };
441 1.1 ad
442 1.1 ad typedef struct chunk_stats_s chunk_stats_t;
443 1.1 ad struct chunk_stats_s {
444 1.1 ad /* Number of chunks that were allocated. */
445 1.1 ad uint64_t nchunks;
446 1.1 ad
447 1.1 ad /* High-water mark for number of chunks allocated. */
448 1.1 ad unsigned long highchunks;
449 1.1 ad
450 1.1 ad /*
451 1.1 ad * Current number of chunks allocated. This value isn't maintained for
452 1.1 ad * any other purpose, so keep track of it in order to be able to set
453 1.1 ad * highchunks.
454 1.1 ad */
455 1.1 ad unsigned long curchunks;
456 1.1 ad };
457 1.1 ad
458 1.1 ad #endif /* #ifdef MALLOC_STATS */
459 1.1 ad
460 1.1 ad /******************************************************************************/
461 1.1 ad /*
462 1.1 ad * Chunk data structures.
463 1.1 ad */
464 1.1 ad
465 1.1 ad /* Tree of chunks. */
466 1.1 ad typedef struct chunk_node_s chunk_node_t;
467 1.1 ad struct chunk_node_s {
468 1.1 ad /* Linkage for the chunk tree. */
469 1.1 ad RB_ENTRY(chunk_node_s) link;
470 1.1 ad
471 1.1 ad /*
472 1.1 ad * Pointer to the chunk that this tree node is responsible for. In some
473 1.1 ad * (but certainly not all) cases, this data structure is placed at the
474 1.1 ad * beginning of the corresponding chunk, so this field may point to this
475 1.1 ad * node.
476 1.1 ad */
477 1.1 ad void *chunk;
478 1.1 ad
479 1.1 ad /* Total chunk size. */
480 1.1 ad size_t size;
481 1.1 ad };
482 1.1 ad typedef struct chunk_tree_s chunk_tree_t;
483 1.1 ad RB_HEAD(chunk_tree_s, chunk_node_s);
484 1.1 ad
485 1.1 ad /******************************************************************************/
486 1.1 ad /*
487 1.1 ad * Arena data structures.
488 1.1 ad */
489 1.1 ad
490 1.1 ad typedef struct arena_s arena_t;
491 1.1 ad typedef struct arena_bin_s arena_bin_t;
492 1.1 ad
493 1.1 ad typedef struct arena_chunk_map_s arena_chunk_map_t;
494 1.1 ad struct arena_chunk_map_s {
495 1.1 ad /* Number of pages in run. */
496 1.1 ad uint32_t npages;
497 1.1 ad /*
498 1.1 ad * Position within run. For a free run, this is POS_FREE for the first
499 1.1 ad * and last pages. The POS_FREE special value makes it possible to
500 1.1 ad * quickly coalesce free runs.
501 1.1 ad *
502 1.1 ad * This is the limiting factor for chunksize; there can be at most 2^31
503 1.1 ad * pages in a run.
504 1.1 ad */
505 1.1 ad #define POS_FREE ((uint32_t)0xffffffffU)
506 1.1 ad uint32_t pos;
507 1.1 ad };
508 1.1 ad
509 1.1 ad /* Arena chunk header. */
510 1.1 ad typedef struct arena_chunk_s arena_chunk_t;
511 1.1 ad struct arena_chunk_s {
512 1.1 ad /* Arena that owns the chunk. */
513 1.1 ad arena_t *arena;
514 1.1 ad
515 1.1 ad /* Linkage for the arena's chunk tree. */
516 1.1 ad RB_ENTRY(arena_chunk_s) link;
517 1.1 ad
518 1.1 ad /*
519 1.1 ad * Number of pages in use. This is maintained in order to make
520 1.1 ad * detection of empty chunks fast.
521 1.1 ad */
522 1.1 ad uint32_t pages_used;
523 1.1 ad
524 1.1 ad /*
525 1.1 ad * Every time a free run larger than this value is created/coalesced,
526 1.1 ad * this value is increased. The only way that the value decreases is if
527 1.1 ad * arena_run_alloc() fails to find a free run as large as advertised by
528 1.1 ad * this value.
529 1.1 ad */
530 1.1 ad uint32_t max_frun_npages;
531 1.1 ad
532 1.1 ad /*
533 1.1 ad * Every time a free run that starts at an earlier page than this value
534 1.1 ad * is created/coalesced, this value is decreased. It is reset in a
535 1.1 ad * similar fashion to max_frun_npages.
536 1.1 ad */
537 1.1 ad uint32_t min_frun_ind;
538 1.1 ad
539 1.1 ad /*
540 1.1 ad * Map of pages within chunk that keeps track of free/large/small. For
541 1.1 ad * free runs, only the map entries for the first and last pages are
542 1.1 ad * kept up to date, so that free runs can be quickly coalesced.
543 1.1 ad */
544 1.1 ad arena_chunk_map_t map[1]; /* Dynamically sized. */
545 1.1 ad };
546 1.1 ad typedef struct arena_chunk_tree_s arena_chunk_tree_t;
547 1.1 ad RB_HEAD(arena_chunk_tree_s, arena_chunk_s);
548 1.1 ad
549 1.1 ad typedef struct arena_run_s arena_run_t;
550 1.1 ad struct arena_run_s {
551 1.1 ad /* Linkage for run trees. */
552 1.1 ad RB_ENTRY(arena_run_s) link;
553 1.1 ad
554 1.1 ad #ifdef MALLOC_DEBUG
555 1.1 ad uint32_t magic;
556 1.1 ad # define ARENA_RUN_MAGIC 0x384adf93
557 1.1 ad #endif
558 1.1 ad
559 1.1 ad /* Bin this run is associated with. */
560 1.1 ad arena_bin_t *bin;
561 1.1 ad
562 1.1 ad /* Index of first element that might have a free region. */
563 1.1 ad unsigned regs_minelm;
564 1.1 ad
565 1.1 ad /* Number of free regions in run. */
566 1.1 ad unsigned nfree;
567 1.1 ad
568 1.1 ad /* Bitmask of in-use regions (0: in use, 1: free). */
569 1.1 ad unsigned regs_mask[1]; /* Dynamically sized. */
570 1.1 ad };
571 1.1 ad typedef struct arena_run_tree_s arena_run_tree_t;
572 1.1 ad RB_HEAD(arena_run_tree_s, arena_run_s);
573 1.1 ad
574 1.1 ad struct arena_bin_s {
575 1.1 ad /*
576 1.1 ad * Current run being used to service allocations of this bin's size
577 1.1 ad * class.
578 1.1 ad */
579 1.1 ad arena_run_t *runcur;
580 1.1 ad
581 1.1 ad /*
582 1.1 ad * Tree of non-full runs. This tree is used when looking for an
583 1.1 ad * existing run when runcur is no longer usable. We choose the
584 1.1 ad * non-full run that is lowest in memory; this policy tends to keep
585 1.1 ad * objects packed well, and it can also help reduce the number of
586 1.1 ad * almost-empty chunks.
587 1.1 ad */
588 1.1 ad arena_run_tree_t runs;
589 1.1 ad
590 1.1 ad /* Size of regions in a run for this bin's size class. */
591 1.1 ad size_t reg_size;
592 1.1 ad
593 1.1 ad /* Total size of a run for this bin's size class. */
594 1.1 ad size_t run_size;
595 1.1 ad
596 1.1 ad /* Total number of regions in a run for this bin's size class. */
597 1.1 ad uint32_t nregs;
598 1.1 ad
599 1.1 ad /* Number of elements in a run's regs_mask for this bin's size class. */
600 1.1 ad uint32_t regs_mask_nelms;
601 1.1 ad
602 1.1 ad /* Offset of first region in a run for this bin's size class. */
603 1.1 ad uint32_t reg0_offset;
604 1.1 ad
605 1.1 ad #ifdef MALLOC_STATS
606 1.1 ad /* Bin statistics. */
607 1.1 ad malloc_bin_stats_t stats;
608 1.1 ad #endif
609 1.1 ad };
610 1.1 ad
611 1.1 ad struct arena_s {
612 1.1 ad #ifdef MALLOC_DEBUG
613 1.1 ad uint32_t magic;
614 1.1 ad # define ARENA_MAGIC 0x947d3d24
615 1.1 ad #endif
616 1.1 ad
617 1.1 ad /* All operations on this arena require that mtx be locked. */
618 1.1 ad malloc_mutex_t mtx;
619 1.1 ad
620 1.1 ad #ifdef MALLOC_STATS
621 1.1 ad arena_stats_t stats;
622 1.1 ad #endif
623 1.1 ad
624 1.1 ad /*
625 1.1 ad * Tree of chunks this arena manages.
626 1.1 ad */
627 1.1 ad arena_chunk_tree_t chunks;
628 1.1 ad
629 1.1 ad /*
630 1.1 ad * In order to avoid rapid chunk allocation/deallocation when an arena
631 1.1 ad * oscillates right on the cusp of needing a new chunk, cache the most
632 1.1 ad * recently freed chunk. This caching is disabled by opt_hint.
633 1.1 ad *
634 1.1 ad * There is one spare chunk per arena, rather than one spare total, in
635 1.1 ad * order to avoid interactions between multiple threads that could make
636 1.1 ad * a single spare inadequate.
637 1.1 ad */
638 1.1 ad arena_chunk_t *spare;
639 1.1 ad
640 1.1 ad /*
641 1.1 ad * bins is used to store rings of free regions of the following sizes,
642 1.1 ad * assuming a 16-byte quantum, 4kB pagesize, and default MALLOC_OPTIONS.
643 1.1 ad *
644 1.1 ad * bins[i] | size |
645 1.1 ad * --------+------+
646 1.1 ad * 0 | 2 |
647 1.1 ad * 1 | 4 |
648 1.1 ad * 2 | 8 |
649 1.1 ad * --------+------+
650 1.1 ad * 3 | 16 |
651 1.1 ad * 4 | 32 |
652 1.1 ad * 5 | 48 |
653 1.1 ad * 6 | 64 |
654 1.1 ad * : :
655 1.1 ad * : :
656 1.1 ad * 33 | 496 |
657 1.1 ad * 34 | 512 |
658 1.1 ad * --------+------+
659 1.1 ad * 35 | 1024 |
660 1.1 ad * 36 | 2048 |
661 1.1 ad * --------+------+
662 1.1 ad */
663 1.1 ad arena_bin_t bins[1]; /* Dynamically sized. */
664 1.1 ad };
665 1.1 ad
666 1.1 ad /******************************************************************************/
667 1.1 ad /*
668 1.1 ad * Data.
669 1.1 ad */
670 1.1 ad
671 1.1 ad /* Number of CPUs. */
672 1.1 ad static unsigned ncpus;
673 1.1 ad
674 1.1 ad /* VM page size. */
675 1.1 ad static size_t pagesize;
676 1.1 ad static size_t pagesize_mask;
677 1.9 christos static int pagesize_2pow;
678 1.1 ad
679 1.1 ad /* Various bin-related settings. */
680 1.1 ad static size_t bin_maxclass; /* Max size class for bins. */
681 1.1 ad static unsigned ntbins; /* Number of (2^n)-spaced tiny bins. */
682 1.1 ad static unsigned nqbins; /* Number of quantum-spaced bins. */
683 1.1 ad static unsigned nsbins; /* Number of (2^n)-spaced sub-page bins. */
684 1.1 ad static size_t small_min;
685 1.1 ad static size_t small_max;
686 1.1 ad
687 1.1 ad /* Various quantum-related settings. */
688 1.1 ad static size_t quantum;
689 1.1 ad static size_t quantum_mask; /* (quantum - 1). */
690 1.1 ad
691 1.1 ad /* Various chunk-related settings. */
692 1.1 ad static size_t chunksize;
693 1.1 ad static size_t chunksize_mask; /* (chunksize - 1). */
694 1.5 yamt static int chunksize_2pow;
695 1.1 ad static unsigned chunk_npages;
696 1.1 ad static unsigned arena_chunk_header_npages;
697 1.1 ad static size_t arena_maxclass; /* Max size class for arenas. */
698 1.1 ad
699 1.1 ad /********/
700 1.1 ad /*
701 1.1 ad * Chunks.
702 1.1 ad */
703 1.1 ad
704 1.37 christos #ifdef _REENTRANT
705 1.1 ad /* Protects chunk-related data structures. */
706 1.1 ad static malloc_mutex_t chunks_mtx;
707 1.37 christos #endif
708 1.1 ad
709 1.1 ad /* Tree of chunks that are stand-alone huge allocations. */
710 1.1 ad static chunk_tree_t huge;
711 1.1 ad
712 1.1 ad #ifdef USE_BRK
713 1.1 ad /*
714 1.1 ad * Try to use brk for chunk-size allocations, due to address space constraints.
715 1.1 ad */
716 1.1 ad /*
717 1.1 ad * Protects sbrk() calls. This must be separate from chunks_mtx, since
718 1.1 ad * base_pages_alloc() also uses sbrk(), but cannot lock chunks_mtx (doing so
719 1.1 ad * could cause recursive lock acquisition).
720 1.1 ad */
721 1.46 christos #ifdef _REENTRANT
722 1.1 ad static malloc_mutex_t brk_mtx;
723 1.46 christos #endif
724 1.1 ad /* Result of first sbrk(0) call. */
725 1.1 ad static void *brk_base;
726 1.1 ad /* Current end of brk, or ((void *)-1) if brk is exhausted. */
727 1.1 ad static void *brk_prev;
728 1.1 ad /* Current upper limit on brk addresses. */
729 1.1 ad static void *brk_max;
730 1.1 ad #endif
731 1.1 ad
732 1.1 ad #ifdef MALLOC_STATS
733 1.1 ad /* Huge allocation statistics. */
734 1.1 ad static uint64_t huge_nmalloc;
735 1.1 ad static uint64_t huge_ndalloc;
736 1.8 yamt static uint64_t huge_nralloc;
737 1.1 ad static size_t huge_allocated;
738 1.1 ad #endif
739 1.1 ad
740 1.1 ad /*
741 1.1 ad * Tree of chunks that were previously allocated. This is used when allocating
742 1.1 ad * chunks, in an attempt to re-use address space.
743 1.1 ad */
744 1.1 ad static chunk_tree_t old_chunks;
745 1.1 ad
746 1.1 ad /****************************/
747 1.1 ad /*
748 1.1 ad * base (internal allocation).
749 1.1 ad */
750 1.1 ad
751 1.1 ad /*
752 1.1 ad * Current pages that are being used for internal memory allocations. These
753 1.1 ad * pages are carved up in cacheline-size quanta, so that there is no chance of
754 1.1 ad * false cache line sharing.
755 1.1 ad */
756 1.1 ad static void *base_pages;
757 1.1 ad static void *base_next_addr;
758 1.1 ad static void *base_past_addr; /* Addr immediately past base_pages. */
759 1.1 ad static chunk_node_t *base_chunk_nodes; /* LIFO cache of chunk nodes. */
760 1.37 christos #ifdef _REENTRANT
761 1.1 ad static malloc_mutex_t base_mtx;
762 1.37 christos #endif
763 1.1 ad #ifdef MALLOC_STATS
764 1.1 ad static size_t base_mapped;
765 1.1 ad #endif
766 1.1 ad
767 1.1 ad /********/
768 1.1 ad /*
769 1.1 ad * Arenas.
770 1.1 ad */
771 1.1 ad
772 1.1 ad /*
773 1.1 ad * Arenas that are used to service external requests. Not all elements of the
774 1.1 ad * arenas array are necessarily used; arenas are created lazily as needed.
775 1.1 ad */
776 1.1 ad static arena_t **arenas;
777 1.1 ad static unsigned narenas;
778 1.1 ad static unsigned next_arena;
779 1.37 christos #ifdef _REENTRANT
780 1.1 ad static malloc_mutex_t arenas_mtx; /* Protects arenas initialization. */
781 1.37 christos #endif
782 1.1 ad
783 1.15 ad /*
784 1.15 ad * Map of pthread_self() --> arenas[???], used for selecting an arena to use
785 1.15 ad * for allocations.
786 1.15 ad */
787 1.38 martin #ifndef NO_TLS
788 1.49 joerg static __attribute__((tls_model("initial-exec")))
789 1.49 joerg __thread arena_t **arenas_map;
790 1.15 ad #else
791 1.38 martin static arena_t **arenas_map;
792 1.37 christos #endif
793 1.38 martin
794 1.38 martin #if !defined(NO_TLS) || !defined(_REENTRANT)
795 1.38 martin # define get_arenas_map() (arenas_map)
796 1.38 martin # define set_arenas_map(x) (arenas_map = x)
797 1.50 rin #else /* NO_TLS && _REENTRANT */
798 1.38 martin
799 1.50 rin static thread_key_t arenas_map_key = -1;
800 1.38 martin
801 1.38 martin static inline arena_t **
802 1.38 martin get_arenas_map(void)
803 1.38 martin {
804 1.38 martin if (!__isthreaded)
805 1.38 martin return arenas_map;
806 1.38 martin
807 1.38 martin if (arenas_map_key == -1) {
808 1.38 martin (void)thr_keycreate(&arenas_map_key, NULL);
809 1.38 martin if (arenas_map != NULL) {
810 1.38 martin thr_setspecific(arenas_map_key, arenas_map);
811 1.38 martin arenas_map = NULL;
812 1.38 martin }
813 1.38 martin }
814 1.38 martin
815 1.38 martin return thr_getspecific(arenas_map_key);
816 1.38 martin }
817 1.38 martin
818 1.38 martin static __inline void
819 1.38 martin set_arenas_map(arena_t **a)
820 1.38 martin {
821 1.38 martin if (!__isthreaded) {
822 1.38 martin arenas_map = a;
823 1.38 martin return;
824 1.38 martin }
825 1.38 martin
826 1.38 martin if (arenas_map_key == -1) {
827 1.49 joerg #ifndef NO_TLS
828 1.38 martin (void)thr_keycreate(&arenas_map_key, NULL);
829 1.49 joerg #endif
830 1.38 martin if (arenas_map != NULL) {
831 1.38 martin _DIAGASSERT(arenas_map == a);
832 1.38 martin arenas_map = NULL;
833 1.38 martin }
834 1.38 martin }
835 1.38 martin
836 1.49 joerg #ifndef NO_TLS
837 1.38 martin thr_setspecific(arenas_map_key, a);
838 1.49 joerg #endif
839 1.38 martin }
840 1.50 rin #endif /* NO_TLS && _REENTRANT */
841 1.1 ad
842 1.1 ad #ifdef MALLOC_STATS
843 1.1 ad /* Chunk statistics. */
844 1.1 ad static chunk_stats_t stats_chunks;
845 1.1 ad #endif
846 1.1 ad
847 1.1 ad /*******************************/
848 1.1 ad /*
849 1.1 ad * Runtime configuration options.
850 1.1 ad */
851 1.1 ad const char *_malloc_options;
852 1.1 ad
853 1.1 ad #ifndef MALLOC_PRODUCTION
854 1.1 ad static bool opt_abort = true;
855 1.1 ad static bool opt_junk = true;
856 1.1 ad #else
857 1.1 ad static bool opt_abort = false;
858 1.1 ad static bool opt_junk = false;
859 1.1 ad #endif
860 1.1 ad static bool opt_hint = false;
861 1.1 ad static bool opt_print_stats = false;
862 1.9 christos static int opt_quantum_2pow = QUANTUM_2POW_MIN;
863 1.9 christos static int opt_small_max_2pow = SMALL_MAX_2POW_DEFAULT;
864 1.9 christos static int opt_chunk_2pow = CHUNK_2POW_DEFAULT;
865 1.1 ad static bool opt_utrace = false;
866 1.1 ad static bool opt_sysv = false;
867 1.1 ad static bool opt_xmalloc = false;
868 1.1 ad static bool opt_zero = false;
869 1.1 ad static int32_t opt_narenas_lshift = 0;
870 1.1 ad
871 1.1 ad typedef struct {
872 1.1 ad void *p;
873 1.1 ad size_t s;
874 1.1 ad void *r;
875 1.1 ad } malloc_utrace_t;
876 1.1 ad
877 1.1 ad #define UTRACE(a, b, c) \
878 1.1 ad if (opt_utrace) { \
879 1.2 ad malloc_utrace_t ut; \
880 1.2 ad ut.p = a; \
881 1.2 ad ut.s = b; \
882 1.2 ad ut.r = c; \
883 1.2 ad xutrace(&ut, sizeof(ut)); \
884 1.1 ad }
885 1.1 ad
886 1.1 ad /******************************************************************************/
887 1.1 ad /*
888 1.1 ad * Begin function prototypes for non-inline static functions.
889 1.1 ad */
890 1.1 ad
891 1.1 ad static void wrtmessage(const char *p1, const char *p2, const char *p3,
892 1.1 ad const char *p4);
893 1.1 ad #ifdef MALLOC_STATS
894 1.1 ad static void malloc_printf(const char *format, ...);
895 1.1 ad #endif
896 1.28 christos static char *size_t2s(size_t x, char *s);
897 1.1 ad static bool base_pages_alloc(size_t minsize);
898 1.1 ad static void *base_alloc(size_t size);
899 1.1 ad static chunk_node_t *base_chunk_node_alloc(void);
900 1.1 ad static void base_chunk_node_dealloc(chunk_node_t *node);
901 1.1 ad #ifdef MALLOC_STATS
902 1.1 ad static void stats_print(arena_t *arena);
903 1.1 ad #endif
904 1.1 ad static void *pages_map(void *addr, size_t size);
905 1.5 yamt static void *pages_map_align(void *addr, size_t size, int align);
906 1.1 ad static void pages_unmap(void *addr, size_t size);
907 1.1 ad static void *chunk_alloc(size_t size);
908 1.1 ad static void chunk_dealloc(void *chunk, size_t size);
909 1.1 ad static void arena_run_split(arena_t *arena, arena_run_t *run, size_t size);
910 1.1 ad static arena_chunk_t *arena_chunk_alloc(arena_t *arena);
911 1.1 ad static void arena_chunk_dealloc(arena_t *arena, arena_chunk_t *chunk);
912 1.1 ad static arena_run_t *arena_run_alloc(arena_t *arena, size_t size);
913 1.1 ad static void arena_run_dalloc(arena_t *arena, arena_run_t *run, size_t size);
914 1.1 ad static arena_run_t *arena_bin_nonfull_run_get(arena_t *arena, arena_bin_t *bin);
915 1.1 ad static void *arena_bin_malloc_hard(arena_t *arena, arena_bin_t *bin);
916 1.1 ad static size_t arena_bin_run_size_calc(arena_bin_t *bin, size_t min_run_size);
917 1.1 ad static void *arena_malloc(arena_t *arena, size_t size);
918 1.1 ad static void *arena_palloc(arena_t *arena, size_t alignment, size_t size,
919 1.1 ad size_t alloc_size);
920 1.1 ad static size_t arena_salloc(const void *ptr);
921 1.1 ad static void *arena_ralloc(void *ptr, size_t size, size_t oldsize);
922 1.1 ad static void arena_dalloc(arena_t *arena, arena_chunk_t *chunk, void *ptr);
923 1.1 ad static bool arena_new(arena_t *arena);
924 1.1 ad static arena_t *arenas_extend(unsigned ind);
925 1.1 ad static void *huge_malloc(size_t size);
926 1.1 ad static void *huge_palloc(size_t alignment, size_t size);
927 1.1 ad static void *huge_ralloc(void *ptr, size_t size, size_t oldsize);
928 1.1 ad static void huge_dalloc(void *ptr);
929 1.1 ad static void *imalloc(size_t size);
930 1.1 ad static void *ipalloc(size_t alignment, size_t size);
931 1.1 ad static void *icalloc(size_t size);
932 1.1 ad static size_t isalloc(const void *ptr);
933 1.1 ad static void *iralloc(void *ptr, size_t size);
934 1.1 ad static void idalloc(void *ptr);
935 1.1 ad static void malloc_print_stats(void);
936 1.1 ad static bool malloc_init_hard(void);
937 1.1 ad
938 1.1 ad /*
939 1.1 ad * End function prototypes.
940 1.1 ad */
941 1.1 ad /******************************************************************************/
942 1.1 ad /*
943 1.1 ad * Begin mutex.
944 1.1 ad */
945 1.1 ad
946 1.15 ad #ifdef __NetBSD__
947 1.2 ad #define malloc_mutex_init(m) mutex_init(m, NULL)
948 1.2 ad #define malloc_mutex_lock(m) mutex_lock(m)
949 1.2 ad #define malloc_mutex_unlock(m) mutex_unlock(m)
950 1.15 ad #else /* __NetBSD__ */
951 1.15 ad static inline void
952 1.15 ad malloc_mutex_init(malloc_mutex_t *a_mutex)
953 1.15 ad {
954 1.15 ad static const spinlock_t lock = _SPINLOCK_INITIALIZER;
955 1.15 ad
956 1.15 ad a_mutex->lock = lock;
957 1.15 ad }
958 1.15 ad
959 1.15 ad static inline void
960 1.15 ad malloc_mutex_lock(malloc_mutex_t *a_mutex)
961 1.15 ad {
962 1.15 ad
963 1.15 ad if (__isthreaded)
964 1.15 ad _SPINLOCK(&a_mutex->lock);
965 1.15 ad }
966 1.15 ad
967 1.15 ad static inline void
968 1.15 ad malloc_mutex_unlock(malloc_mutex_t *a_mutex)
969 1.15 ad {
970 1.15 ad
971 1.15 ad if (__isthreaded)
972 1.15 ad _SPINUNLOCK(&a_mutex->lock);
973 1.15 ad }
974 1.15 ad #endif /* __NetBSD__ */
975 1.1 ad
976 1.1 ad /*
977 1.1 ad * End mutex.
978 1.1 ad */
979 1.1 ad /******************************************************************************/
980 1.1 ad /*
981 1.1 ad * Begin Utility functions/macros.
982 1.1 ad */
983 1.1 ad
984 1.1 ad /* Return the chunk address for allocation address a. */
985 1.1 ad #define CHUNK_ADDR2BASE(a) \
986 1.1 ad ((void *)((uintptr_t)(a) & ~chunksize_mask))
987 1.1 ad
988 1.1 ad /* Return the chunk offset of address a. */
989 1.1 ad #define CHUNK_ADDR2OFFSET(a) \
990 1.1 ad ((size_t)((uintptr_t)(a) & chunksize_mask))
991 1.1 ad
992 1.1 ad /* Return the smallest chunk multiple that is >= s. */
993 1.1 ad #define CHUNK_CEILING(s) \
994 1.1 ad (((s) + chunksize_mask) & ~chunksize_mask)
995 1.1 ad
996 1.1 ad /* Return the smallest cacheline multiple that is >= s. */
997 1.1 ad #define CACHELINE_CEILING(s) \
998 1.1 ad (((s) + (CACHELINE - 1)) & ~(CACHELINE - 1))
999 1.1 ad
1000 1.1 ad /* Return the smallest quantum multiple that is >= a. */
1001 1.1 ad #define QUANTUM_CEILING(a) \
1002 1.1 ad (((a) + quantum_mask) & ~quantum_mask)
1003 1.1 ad
1004 1.1 ad /* Return the smallest pagesize multiple that is >= s. */
1005 1.1 ad #define PAGE_CEILING(s) \
1006 1.1 ad (((s) + pagesize_mask) & ~pagesize_mask)
1007 1.1 ad
1008 1.1 ad /* Compute the smallest power of 2 that is >= x. */
1009 1.1 ad static inline size_t
1010 1.1 ad pow2_ceil(size_t x)
1011 1.1 ad {
1012 1.1 ad
1013 1.1 ad x--;
1014 1.1 ad x |= x >> 1;
1015 1.1 ad x |= x >> 2;
1016 1.1 ad x |= x >> 4;
1017 1.1 ad x |= x >> 8;
1018 1.1 ad x |= x >> 16;
1019 1.1 ad #if (SIZEOF_PTR == 8)
1020 1.1 ad x |= x >> 32;
1021 1.1 ad #endif
1022 1.1 ad x++;
1023 1.1 ad return (x);
1024 1.1 ad }
1025 1.1 ad
1026 1.1 ad static void
1027 1.1 ad wrtmessage(const char *p1, const char *p2, const char *p3, const char *p4)
1028 1.1 ad {
1029 1.1 ad
1030 1.16 christos write(STDERR_FILENO, p1, strlen(p1));
1031 1.16 christos write(STDERR_FILENO, p2, strlen(p2));
1032 1.16 christos write(STDERR_FILENO, p3, strlen(p3));
1033 1.16 christos write(STDERR_FILENO, p4, strlen(p4));
1034 1.1 ad }
1035 1.1 ad
1036 1.1 ad void (*_malloc_message)(const char *p1, const char *p2, const char *p3,
1037 1.1 ad const char *p4) = wrtmessage;
1038 1.1 ad
1039 1.1 ad #ifdef MALLOC_STATS
1040 1.1 ad /*
1041 1.1 ad * Print to stderr in such a way as to (hopefully) avoid memory allocation.
1042 1.1 ad */
1043 1.1 ad static void
1044 1.1 ad malloc_printf(const char *format, ...)
1045 1.1 ad {
1046 1.1 ad char buf[4096];
1047 1.1 ad va_list ap;
1048 1.1 ad
1049 1.1 ad va_start(ap, format);
1050 1.1 ad vsnprintf(buf, sizeof(buf), format, ap);
1051 1.1 ad va_end(ap);
1052 1.1 ad _malloc_message(buf, "", "", "");
1053 1.1 ad }
1054 1.1 ad #endif
1055 1.1 ad
1056 1.1 ad /*
1057 1.1 ad * We don't want to depend on vsnprintf() for production builds, since that can
1058 1.28 christos * cause unnecessary bloat for static binaries. size_t2s() provides minimal
1059 1.1 ad * integer printing functionality, so that malloc_printf() use can be limited to
1060 1.1 ad * MALLOC_STATS code.
1061 1.1 ad */
1062 1.1 ad #define UMAX2S_BUFSIZE 21
1063 1.1 ad static char *
1064 1.28 christos size_t2s(size_t x, char *s)
1065 1.1 ad {
1066 1.1 ad unsigned i;
1067 1.1 ad
1068 1.1 ad /* Make sure UMAX2S_BUFSIZE is large enough. */
1069 1.7 yamt /* LINTED */
1070 1.25 christos assert(sizeof(size_t) <= 8);
1071 1.1 ad
1072 1.1 ad i = UMAX2S_BUFSIZE - 1;
1073 1.1 ad s[i] = '\0';
1074 1.1 ad do {
1075 1.1 ad i--;
1076 1.2 ad s[i] = "0123456789"[(int)x % 10];
1077 1.2 ad x /= (uintmax_t)10LL;
1078 1.1 ad } while (x > 0);
1079 1.1 ad
1080 1.1 ad return (&s[i]);
1081 1.1 ad }
1082 1.1 ad
1083 1.1 ad /******************************************************************************/
1084 1.1 ad
1085 1.1 ad static bool
1086 1.1 ad base_pages_alloc(size_t minsize)
1087 1.1 ad {
1088 1.2 ad size_t csize = 0;
1089 1.1 ad
1090 1.1 ad #ifdef USE_BRK
1091 1.1 ad /*
1092 1.1 ad * Do special brk allocation here, since base allocations don't need to
1093 1.1 ad * be chunk-aligned.
1094 1.1 ad */
1095 1.1 ad if (brk_prev != (void *)-1) {
1096 1.1 ad void *brk_cur;
1097 1.1 ad intptr_t incr;
1098 1.1 ad
1099 1.1 ad if (minsize != 0)
1100 1.1 ad csize = CHUNK_CEILING(minsize);
1101 1.1 ad
1102 1.1 ad malloc_mutex_lock(&brk_mtx);
1103 1.1 ad do {
1104 1.1 ad /* Get the current end of brk. */
1105 1.1 ad brk_cur = sbrk(0);
1106 1.1 ad
1107 1.1 ad /*
1108 1.1 ad * Calculate how much padding is necessary to
1109 1.1 ad * chunk-align the end of brk. Don't worry about
1110 1.1 ad * brk_cur not being chunk-aligned though.
1111 1.1 ad */
1112 1.1 ad incr = (intptr_t)chunksize
1113 1.1 ad - (intptr_t)CHUNK_ADDR2OFFSET(brk_cur);
1114 1.20 lukem assert(incr >= 0);
1115 1.20 lukem if ((size_t)incr < minsize)
1116 1.1 ad incr += csize;
1117 1.1 ad
1118 1.1 ad brk_prev = sbrk(incr);
1119 1.1 ad if (brk_prev == brk_cur) {
1120 1.1 ad /* Success. */
1121 1.1 ad malloc_mutex_unlock(&brk_mtx);
1122 1.1 ad base_pages = brk_cur;
1123 1.1 ad base_next_addr = base_pages;
1124 1.1 ad base_past_addr = (void *)((uintptr_t)base_pages
1125 1.1 ad + incr);
1126 1.1 ad #ifdef MALLOC_STATS
1127 1.1 ad base_mapped += incr;
1128 1.1 ad #endif
1129 1.1 ad return (false);
1130 1.1 ad }
1131 1.1 ad } while (brk_prev != (void *)-1);
1132 1.1 ad malloc_mutex_unlock(&brk_mtx);
1133 1.1 ad }
1134 1.1 ad if (minsize == 0) {
1135 1.1 ad /*
1136 1.1 ad * Failure during initialization doesn't matter, so avoid
1137 1.1 ad * falling through to the mmap-based page mapping code.
1138 1.1 ad */
1139 1.1 ad return (true);
1140 1.1 ad }
1141 1.1 ad #endif
1142 1.1 ad assert(minsize != 0);
1143 1.1 ad csize = PAGE_CEILING(minsize);
1144 1.1 ad base_pages = pages_map(NULL, csize);
1145 1.1 ad if (base_pages == NULL)
1146 1.1 ad return (true);
1147 1.1 ad base_next_addr = base_pages;
1148 1.1 ad base_past_addr = (void *)((uintptr_t)base_pages + csize);
1149 1.1 ad #ifdef MALLOC_STATS
1150 1.1 ad base_mapped += csize;
1151 1.1 ad #endif
1152 1.1 ad return (false);
1153 1.1 ad }
1154 1.1 ad
1155 1.1 ad static void *
1156 1.1 ad base_alloc(size_t size)
1157 1.1 ad {
1158 1.1 ad void *ret;
1159 1.1 ad size_t csize;
1160 1.1 ad
1161 1.1 ad /* Round size up to nearest multiple of the cacheline size. */
1162 1.1 ad csize = CACHELINE_CEILING(size);
1163 1.1 ad
1164 1.1 ad malloc_mutex_lock(&base_mtx);
1165 1.1 ad
1166 1.1 ad /* Make sure there's enough space for the allocation. */
1167 1.1 ad if ((uintptr_t)base_next_addr + csize > (uintptr_t)base_past_addr) {
1168 1.1 ad if (base_pages_alloc(csize)) {
1169 1.1 ad ret = NULL;
1170 1.1 ad goto RETURN;
1171 1.1 ad }
1172 1.1 ad }
1173 1.1 ad
1174 1.1 ad /* Allocate. */
1175 1.1 ad ret = base_next_addr;
1176 1.1 ad base_next_addr = (void *)((uintptr_t)base_next_addr + csize);
1177 1.1 ad
1178 1.1 ad RETURN:
1179 1.1 ad malloc_mutex_unlock(&base_mtx);
1180 1.1 ad return (ret);
1181 1.1 ad }
1182 1.1 ad
1183 1.1 ad static chunk_node_t *
1184 1.1 ad base_chunk_node_alloc(void)
1185 1.1 ad {
1186 1.1 ad chunk_node_t *ret;
1187 1.1 ad
1188 1.1 ad malloc_mutex_lock(&base_mtx);
1189 1.1 ad if (base_chunk_nodes != NULL) {
1190 1.1 ad ret = base_chunk_nodes;
1191 1.2 ad /* LINTED */
1192 1.1 ad base_chunk_nodes = *(chunk_node_t **)ret;
1193 1.1 ad malloc_mutex_unlock(&base_mtx);
1194 1.1 ad } else {
1195 1.1 ad malloc_mutex_unlock(&base_mtx);
1196 1.1 ad ret = (chunk_node_t *)base_alloc(sizeof(chunk_node_t));
1197 1.1 ad }
1198 1.1 ad
1199 1.1 ad return (ret);
1200 1.1 ad }
1201 1.1 ad
1202 1.1 ad static void
1203 1.1 ad base_chunk_node_dealloc(chunk_node_t *node)
1204 1.1 ad {
1205 1.1 ad
1206 1.1 ad malloc_mutex_lock(&base_mtx);
1207 1.2 ad /* LINTED */
1208 1.1 ad *(chunk_node_t **)node = base_chunk_nodes;
1209 1.1 ad base_chunk_nodes = node;
1210 1.1 ad malloc_mutex_unlock(&base_mtx);
1211 1.1 ad }
1212 1.1 ad
1213 1.1 ad /******************************************************************************/
1214 1.1 ad
1215 1.1 ad #ifdef MALLOC_STATS
1216 1.1 ad static void
1217 1.1 ad stats_print(arena_t *arena)
1218 1.1 ad {
1219 1.1 ad unsigned i;
1220 1.1 ad int gap_start;
1221 1.1 ad
1222 1.1 ad malloc_printf(
1223 1.1 ad " allocated/mapped nmalloc ndalloc\n");
1224 1.2 ad
1225 1.2 ad malloc_printf("small: %12zu %-12s %12llu %12llu\n",
1226 1.1 ad arena->stats.allocated_small, "", arena->stats.nmalloc_small,
1227 1.1 ad arena->stats.ndalloc_small);
1228 1.2 ad malloc_printf("large: %12zu %-12s %12llu %12llu\n",
1229 1.1 ad arena->stats.allocated_large, "", arena->stats.nmalloc_large,
1230 1.1 ad arena->stats.ndalloc_large);
1231 1.2 ad malloc_printf("total: %12zu/%-12zu %12llu %12llu\n",
1232 1.1 ad arena->stats.allocated_small + arena->stats.allocated_large,
1233 1.1 ad arena->stats.mapped,
1234 1.1 ad arena->stats.nmalloc_small + arena->stats.nmalloc_large,
1235 1.1 ad arena->stats.ndalloc_small + arena->stats.ndalloc_large);
1236 1.1 ad
1237 1.1 ad malloc_printf("bins: bin size regs pgs requests newruns"
1238 1.1 ad " reruns maxruns curruns\n");
1239 1.1 ad for (i = 0, gap_start = -1; i < ntbins + nqbins + nsbins; i++) {
1240 1.1 ad if (arena->bins[i].stats.nrequests == 0) {
1241 1.1 ad if (gap_start == -1)
1242 1.1 ad gap_start = i;
1243 1.1 ad } else {
1244 1.1 ad if (gap_start != -1) {
1245 1.1 ad if (i > gap_start + 1) {
1246 1.1 ad /* Gap of more than one size class. */
1247 1.1 ad malloc_printf("[%u..%u]\n",
1248 1.1 ad gap_start, i - 1);
1249 1.1 ad } else {
1250 1.1 ad /* Gap of one size class. */
1251 1.1 ad malloc_printf("[%u]\n", gap_start);
1252 1.1 ad }
1253 1.1 ad gap_start = -1;
1254 1.1 ad }
1255 1.1 ad malloc_printf(
1256 1.1 ad "%13u %1s %4u %4u %3u %9llu %9llu"
1257 1.1 ad " %9llu %7lu %7lu\n",
1258 1.1 ad i,
1259 1.1 ad i < ntbins ? "T" : i < ntbins + nqbins ? "Q" : "S",
1260 1.1 ad arena->bins[i].reg_size,
1261 1.1 ad arena->bins[i].nregs,
1262 1.1 ad arena->bins[i].run_size >> pagesize_2pow,
1263 1.1 ad arena->bins[i].stats.nrequests,
1264 1.1 ad arena->bins[i].stats.nruns,
1265 1.1 ad arena->bins[i].stats.reruns,
1266 1.1 ad arena->bins[i].stats.highruns,
1267 1.1 ad arena->bins[i].stats.curruns);
1268 1.1 ad }
1269 1.1 ad }
1270 1.1 ad if (gap_start != -1) {
1271 1.1 ad if (i > gap_start + 1) {
1272 1.1 ad /* Gap of more than one size class. */
1273 1.1 ad malloc_printf("[%u..%u]\n", gap_start, i - 1);
1274 1.1 ad } else {
1275 1.1 ad /* Gap of one size class. */
1276 1.1 ad malloc_printf("[%u]\n", gap_start);
1277 1.1 ad }
1278 1.1 ad }
1279 1.1 ad }
1280 1.1 ad #endif
1281 1.1 ad
1282 1.1 ad /*
1283 1.1 ad * End Utility functions/macros.
1284 1.1 ad */
1285 1.1 ad /******************************************************************************/
1286 1.1 ad /*
1287 1.1 ad * Begin chunk management functions.
1288 1.1 ad */
1289 1.1 ad
1290 1.1 ad static inline int
1291 1.1 ad chunk_comp(chunk_node_t *a, chunk_node_t *b)
1292 1.1 ad {
1293 1.1 ad
1294 1.1 ad assert(a != NULL);
1295 1.1 ad assert(b != NULL);
1296 1.1 ad
1297 1.1 ad if ((uintptr_t)a->chunk < (uintptr_t)b->chunk)
1298 1.1 ad return (-1);
1299 1.1 ad else if (a->chunk == b->chunk)
1300 1.1 ad return (0);
1301 1.1 ad else
1302 1.1 ad return (1);
1303 1.1 ad }
1304 1.1 ad
1305 1.1 ad /* Generate red-black tree code for chunks. */
1306 1.54 christos RB_GENERATE_STATIC(chunk_tree_s, chunk_node_s, link, chunk_comp)
1307 1.1 ad
1308 1.1 ad static void *
1309 1.5 yamt pages_map_align(void *addr, size_t size, int align)
1310 1.1 ad {
1311 1.1 ad void *ret;
1312 1.1 ad
1313 1.1 ad /*
1314 1.1 ad * We don't use MAP_FIXED here, because it can cause the *replacement*
1315 1.1 ad * of existing mappings, and we only want to create new mappings.
1316 1.1 ad */
1317 1.5 yamt ret = mmap(addr, size, PROT_READ | PROT_WRITE,
1318 1.5 yamt MAP_PRIVATE | MAP_ANON | MAP_ALIGNED(align), -1, 0);
1319 1.1 ad assert(ret != NULL);
1320 1.1 ad
1321 1.1 ad if (ret == MAP_FAILED)
1322 1.1 ad ret = NULL;
1323 1.1 ad else if (addr != NULL && ret != addr) {
1324 1.1 ad /*
1325 1.1 ad * We succeeded in mapping memory, but not in the right place.
1326 1.1 ad */
1327 1.1 ad if (munmap(ret, size) == -1) {
1328 1.1 ad char buf[STRERROR_BUF];
1329 1.1 ad
1330 1.16 christos STRERROR_R(errno, buf, sizeof(buf));
1331 1.16 christos _malloc_message(getprogname(),
1332 1.1 ad ": (malloc) Error in munmap(): ", buf, "\n");
1333 1.1 ad if (opt_abort)
1334 1.1 ad abort();
1335 1.1 ad }
1336 1.1 ad ret = NULL;
1337 1.1 ad }
1338 1.1 ad
1339 1.1 ad assert(ret == NULL || (addr == NULL && ret != addr)
1340 1.1 ad || (addr != NULL && ret == addr));
1341 1.1 ad return (ret);
1342 1.1 ad }
1343 1.1 ad
1344 1.5 yamt static void *
1345 1.5 yamt pages_map(void *addr, size_t size)
1346 1.5 yamt {
1347 1.5 yamt
1348 1.5 yamt return pages_map_align(addr, size, 0);
1349 1.5 yamt }
1350 1.5 yamt
1351 1.1 ad static void
1352 1.1 ad pages_unmap(void *addr, size_t size)
1353 1.1 ad {
1354 1.1 ad
1355 1.1 ad if (munmap(addr, size) == -1) {
1356 1.1 ad char buf[STRERROR_BUF];
1357 1.1 ad
1358 1.16 christos STRERROR_R(errno, buf, sizeof(buf));
1359 1.16 christos _malloc_message(getprogname(),
1360 1.1 ad ": (malloc) Error in munmap(): ", buf, "\n");
1361 1.1 ad if (opt_abort)
1362 1.1 ad abort();
1363 1.1 ad }
1364 1.1 ad }
1365 1.1 ad
1366 1.1 ad static void *
1367 1.1 ad chunk_alloc(size_t size)
1368 1.1 ad {
1369 1.1 ad void *ret, *chunk;
1370 1.1 ad chunk_node_t *tchunk, *delchunk;
1371 1.1 ad
1372 1.1 ad assert(size != 0);
1373 1.1 ad assert((size & chunksize_mask) == 0);
1374 1.1 ad
1375 1.1 ad malloc_mutex_lock(&chunks_mtx);
1376 1.1 ad
1377 1.1 ad if (size == chunksize) {
1378 1.1 ad /*
1379 1.1 ad * Check for address ranges that were previously chunks and try
1380 1.1 ad * to use them.
1381 1.1 ad */
1382 1.1 ad
1383 1.1 ad tchunk = RB_MIN(chunk_tree_s, &old_chunks);
1384 1.1 ad while (tchunk != NULL) {
1385 1.1 ad /* Found an address range. Try to recycle it. */
1386 1.1 ad
1387 1.1 ad chunk = tchunk->chunk;
1388 1.1 ad delchunk = tchunk;
1389 1.1 ad tchunk = RB_NEXT(chunk_tree_s, &old_chunks, delchunk);
1390 1.1 ad
1391 1.1 ad /* Remove delchunk from the tree. */
1392 1.1 ad RB_REMOVE(chunk_tree_s, &old_chunks, delchunk);
1393 1.1 ad base_chunk_node_dealloc(delchunk);
1394 1.1 ad
1395 1.1 ad #ifdef USE_BRK
1396 1.1 ad if ((uintptr_t)chunk >= (uintptr_t)brk_base
1397 1.1 ad && (uintptr_t)chunk < (uintptr_t)brk_max) {
1398 1.1 ad /* Re-use a previously freed brk chunk. */
1399 1.1 ad ret = chunk;
1400 1.1 ad goto RETURN;
1401 1.1 ad }
1402 1.1 ad #endif
1403 1.1 ad if ((ret = pages_map(chunk, size)) != NULL) {
1404 1.1 ad /* Success. */
1405 1.1 ad goto RETURN;
1406 1.1 ad }
1407 1.1 ad }
1408 1.1 ad }
1409 1.1 ad
1410 1.1 ad /*
1411 1.1 ad * Try to over-allocate, but allow the OS to place the allocation
1412 1.1 ad * anywhere. Beware of size_t wrap-around.
1413 1.1 ad */
1414 1.1 ad if (size + chunksize > size) {
1415 1.5 yamt if ((ret = pages_map_align(NULL, size, chunksize_2pow))
1416 1.5 yamt != NULL) {
1417 1.1 ad goto RETURN;
1418 1.1 ad }
1419 1.1 ad }
1420 1.1 ad
1421 1.1 ad #ifdef USE_BRK
1422 1.1 ad /*
1423 1.1 ad * Try to create allocations in brk, in order to make full use of
1424 1.1 ad * limited address space.
1425 1.1 ad */
1426 1.1 ad if (brk_prev != (void *)-1) {
1427 1.1 ad void *brk_cur;
1428 1.1 ad intptr_t incr;
1429 1.1 ad
1430 1.1 ad /*
1431 1.1 ad * The loop is necessary to recover from races with other
1432 1.1 ad * threads that are using brk for something other than malloc.
1433 1.1 ad */
1434 1.1 ad malloc_mutex_lock(&brk_mtx);
1435 1.1 ad do {
1436 1.1 ad /* Get the current end of brk. */
1437 1.1 ad brk_cur = sbrk(0);
1438 1.1 ad
1439 1.1 ad /*
1440 1.1 ad * Calculate how much padding is necessary to
1441 1.1 ad * chunk-align the end of brk.
1442 1.1 ad */
1443 1.1 ad incr = (intptr_t)size
1444 1.1 ad - (intptr_t)CHUNK_ADDR2OFFSET(brk_cur);
1445 1.20 lukem if (incr == (intptr_t)size) {
1446 1.1 ad ret = brk_cur;
1447 1.1 ad } else {
1448 1.1 ad ret = (void *)((intptr_t)brk_cur + incr);
1449 1.1 ad incr += size;
1450 1.1 ad }
1451 1.1 ad
1452 1.1 ad brk_prev = sbrk(incr);
1453 1.1 ad if (brk_prev == brk_cur) {
1454 1.1 ad /* Success. */
1455 1.1 ad malloc_mutex_unlock(&brk_mtx);
1456 1.1 ad brk_max = (void *)((intptr_t)ret + size);
1457 1.1 ad goto RETURN;
1458 1.1 ad }
1459 1.1 ad } while (brk_prev != (void *)-1);
1460 1.1 ad malloc_mutex_unlock(&brk_mtx);
1461 1.1 ad }
1462 1.1 ad #endif
1463 1.1 ad
1464 1.1 ad /* All strategies for allocation failed. */
1465 1.1 ad ret = NULL;
1466 1.1 ad RETURN:
1467 1.1 ad if (ret != NULL) {
1468 1.1 ad chunk_node_t key;
1469 1.1 ad /*
1470 1.1 ad * Clean out any entries in old_chunks that overlap with the
1471 1.1 ad * memory we just allocated.
1472 1.1 ad */
1473 1.1 ad key.chunk = ret;
1474 1.1 ad tchunk = RB_NFIND(chunk_tree_s, &old_chunks, &key);
1475 1.1 ad while (tchunk != NULL
1476 1.1 ad && (uintptr_t)tchunk->chunk >= (uintptr_t)ret
1477 1.1 ad && (uintptr_t)tchunk->chunk < (uintptr_t)ret + size) {
1478 1.1 ad delchunk = tchunk;
1479 1.1 ad tchunk = RB_NEXT(chunk_tree_s, &old_chunks, delchunk);
1480 1.1 ad RB_REMOVE(chunk_tree_s, &old_chunks, delchunk);
1481 1.1 ad base_chunk_node_dealloc(delchunk);
1482 1.1 ad }
1483 1.1 ad
1484 1.1 ad }
1485 1.1 ad #ifdef MALLOC_STATS
1486 1.1 ad if (ret != NULL) {
1487 1.1 ad stats_chunks.nchunks += (size / chunksize);
1488 1.1 ad stats_chunks.curchunks += (size / chunksize);
1489 1.1 ad }
1490 1.1 ad if (stats_chunks.curchunks > stats_chunks.highchunks)
1491 1.1 ad stats_chunks.highchunks = stats_chunks.curchunks;
1492 1.1 ad #endif
1493 1.1 ad malloc_mutex_unlock(&chunks_mtx);
1494 1.1 ad
1495 1.1 ad assert(CHUNK_ADDR2BASE(ret) == ret);
1496 1.1 ad return (ret);
1497 1.1 ad }
1498 1.1 ad
1499 1.1 ad static void
1500 1.1 ad chunk_dealloc(void *chunk, size_t size)
1501 1.1 ad {
1502 1.1 ad chunk_node_t *node;
1503 1.1 ad
1504 1.1 ad assert(chunk != NULL);
1505 1.1 ad assert(CHUNK_ADDR2BASE(chunk) == chunk);
1506 1.1 ad assert(size != 0);
1507 1.1 ad assert((size & chunksize_mask) == 0);
1508 1.1 ad
1509 1.1 ad malloc_mutex_lock(&chunks_mtx);
1510 1.1 ad
1511 1.1 ad #ifdef USE_BRK
1512 1.1 ad if ((uintptr_t)chunk >= (uintptr_t)brk_base
1513 1.1 ad && (uintptr_t)chunk < (uintptr_t)brk_max) {
1514 1.1 ad void *brk_cur;
1515 1.1 ad
1516 1.1 ad malloc_mutex_lock(&brk_mtx);
1517 1.1 ad /* Get the current end of brk. */
1518 1.1 ad brk_cur = sbrk(0);
1519 1.1 ad
1520 1.1 ad /*
1521 1.1 ad * Try to shrink the data segment if this chunk is at the end
1522 1.1 ad * of the data segment. The sbrk() call here is subject to a
1523 1.1 ad * race condition with threads that use brk(2) or sbrk(2)
1524 1.1 ad * directly, but the alternative would be to leak memory for
1525 1.1 ad * the sake of poorly designed multi-threaded programs.
1526 1.1 ad */
1527 1.1 ad if (brk_cur == brk_max
1528 1.1 ad && (void *)((uintptr_t)chunk + size) == brk_max
1529 1.1 ad && sbrk(-(intptr_t)size) == brk_max) {
1530 1.1 ad malloc_mutex_unlock(&brk_mtx);
1531 1.1 ad if (brk_prev == brk_max) {
1532 1.1 ad /* Success. */
1533 1.1 ad brk_prev = (void *)((intptr_t)brk_max
1534 1.1 ad - (intptr_t)size);
1535 1.1 ad brk_max = brk_prev;
1536 1.1 ad }
1537 1.1 ad } else {
1538 1.1 ad size_t offset;
1539 1.1 ad
1540 1.1 ad malloc_mutex_unlock(&brk_mtx);
1541 1.1 ad madvise(chunk, size, MADV_FREE);
1542 1.1 ad
1543 1.1 ad /*
1544 1.1 ad * Iteratively create records of each chunk-sized
1545 1.1 ad * memory region that 'chunk' is comprised of, so that
1546 1.1 ad * the address range can be recycled if memory usage
1547 1.1 ad * increases later on.
1548 1.1 ad */
1549 1.1 ad for (offset = 0; offset < size; offset += chunksize) {
1550 1.1 ad node = base_chunk_node_alloc();
1551 1.1 ad if (node == NULL)
1552 1.1 ad break;
1553 1.1 ad
1554 1.1 ad node->chunk = (void *)((uintptr_t)chunk
1555 1.1 ad + (uintptr_t)offset);
1556 1.1 ad node->size = chunksize;
1557 1.1 ad RB_INSERT(chunk_tree_s, &old_chunks, node);
1558 1.1 ad }
1559 1.1 ad }
1560 1.1 ad } else {
1561 1.1 ad #endif
1562 1.1 ad pages_unmap(chunk, size);
1563 1.1 ad
1564 1.1 ad /*
1565 1.1 ad * Make a record of the chunk's address, so that the address
1566 1.1 ad * range can be recycled if memory usage increases later on.
1567 1.1 ad * Don't bother to create entries if (size > chunksize), since
1568 1.1 ad * doing so could cause scalability issues for truly gargantuan
1569 1.1 ad * objects (many gigabytes or larger).
1570 1.1 ad */
1571 1.1 ad if (size == chunksize) {
1572 1.1 ad node = base_chunk_node_alloc();
1573 1.1 ad if (node != NULL) {
1574 1.1 ad node->chunk = (void *)(uintptr_t)chunk;
1575 1.1 ad node->size = chunksize;
1576 1.1 ad RB_INSERT(chunk_tree_s, &old_chunks, node);
1577 1.1 ad }
1578 1.1 ad }
1579 1.1 ad #ifdef USE_BRK
1580 1.1 ad }
1581 1.1 ad #endif
1582 1.1 ad
1583 1.1 ad #ifdef MALLOC_STATS
1584 1.1 ad stats_chunks.curchunks -= (size / chunksize);
1585 1.1 ad #endif
1586 1.1 ad malloc_mutex_unlock(&chunks_mtx);
1587 1.1 ad }
1588 1.1 ad
1589 1.1 ad /*
1590 1.1 ad * End chunk management functions.
1591 1.1 ad */
1592 1.1 ad /******************************************************************************/
1593 1.1 ad /*
1594 1.1 ad * Begin arena.
1595 1.1 ad */
1596 1.1 ad
1597 1.1 ad /*
1598 1.17 ad * Choose an arena based on a per-thread and (optimistically) per-CPU value.
1599 1.17 ad *
1600 1.17 ad * We maintain at least one block of arenas. Usually there are more.
1601 1.17 ad * The blocks are $ncpu arenas in size. Whole blocks are 'hashed'
1602 1.17 ad * amongst threads. To accomplish this, next_arena advances only in
1603 1.17 ad * ncpu steps.
1604 1.1 ad */
1605 1.19 ad static __noinline arena_t *
1606 1.19 ad choose_arena_hard(void)
1607 1.1 ad {
1608 1.17 ad unsigned i, curcpu;
1609 1.17 ad arena_t **map;
1610 1.1 ad
1611 1.17 ad /* Initialize the current block of arenas and advance to next. */
1612 1.1 ad malloc_mutex_lock(&arenas_mtx);
1613 1.17 ad assert(next_arena % ncpus == 0);
1614 1.17 ad assert(narenas % ncpus == 0);
1615 1.17 ad map = &arenas[next_arena];
1616 1.17 ad set_arenas_map(map);
1617 1.17 ad for (i = 0; i < ncpus; i++) {
1618 1.17 ad if (arenas[next_arena] == NULL)
1619 1.17 ad arenas_extend(next_arena);
1620 1.17 ad next_arena = (next_arena + 1) % narenas;
1621 1.15 ad }
1622 1.1 ad malloc_mutex_unlock(&arenas_mtx);
1623 1.1 ad
1624 1.17 ad /*
1625 1.17 ad * If we were unable to allocate an arena above, then default to
1626 1.17 ad * the first arena, which is always present.
1627 1.17 ad */
1628 1.17 ad curcpu = thr_curcpu();
1629 1.17 ad if (map[curcpu] != NULL)
1630 1.17 ad return map[curcpu];
1631 1.17 ad return arenas[0];
1632 1.1 ad }
1633 1.1 ad
1634 1.19 ad static inline arena_t *
1635 1.19 ad choose_arena(void)
1636 1.19 ad {
1637 1.19 ad unsigned curcpu;
1638 1.19 ad arena_t **map;
1639 1.19 ad
1640 1.19 ad map = get_arenas_map();
1641 1.19 ad curcpu = thr_curcpu();
1642 1.19 ad if (__predict_true(map != NULL && map[curcpu] != NULL))
1643 1.19 ad return map[curcpu];
1644 1.19 ad
1645 1.19 ad return choose_arena_hard();
1646 1.19 ad }
1647 1.19 ad
1648 1.1 ad static inline int
1649 1.1 ad arena_chunk_comp(arena_chunk_t *a, arena_chunk_t *b)
1650 1.1 ad {
1651 1.1 ad
1652 1.1 ad assert(a != NULL);
1653 1.1 ad assert(b != NULL);
1654 1.1 ad
1655 1.40 joerg if (a->max_frun_npages < b->max_frun_npages)
1656 1.40 joerg return -1;
1657 1.40 joerg if (a->max_frun_npages > b->max_frun_npages)
1658 1.40 joerg return 1;
1659 1.40 joerg
1660 1.1 ad if ((uintptr_t)a < (uintptr_t)b)
1661 1.1 ad return (-1);
1662 1.1 ad else if (a == b)
1663 1.1 ad return (0);
1664 1.1 ad else
1665 1.1 ad return (1);
1666 1.1 ad }
1667 1.1 ad
1668 1.1 ad /* Generate red-black tree code for arena chunks. */
1669 1.54 christos RB_GENERATE_STATIC(arena_chunk_tree_s, arena_chunk_s, link, arena_chunk_comp)
1670 1.1 ad
1671 1.1 ad static inline int
1672 1.1 ad arena_run_comp(arena_run_t *a, arena_run_t *b)
1673 1.1 ad {
1674 1.1 ad
1675 1.1 ad assert(a != NULL);
1676 1.1 ad assert(b != NULL);
1677 1.1 ad
1678 1.1 ad if ((uintptr_t)a < (uintptr_t)b)
1679 1.1 ad return (-1);
1680 1.1 ad else if (a == b)
1681 1.1 ad return (0);
1682 1.1 ad else
1683 1.1 ad return (1);
1684 1.1 ad }
1685 1.1 ad
1686 1.1 ad /* Generate red-black tree code for arena runs. */
1687 1.54 christos RB_GENERATE_STATIC(arena_run_tree_s, arena_run_s, link, arena_run_comp)
1688 1.1 ad
1689 1.1 ad static inline void *
1690 1.1 ad arena_run_reg_alloc(arena_run_t *run, arena_bin_t *bin)
1691 1.1 ad {
1692 1.1 ad void *ret;
1693 1.1 ad unsigned i, mask, bit, regind;
1694 1.1 ad
1695 1.1 ad assert(run->magic == ARENA_RUN_MAGIC);
1696 1.1 ad assert(run->regs_minelm < bin->regs_mask_nelms);
1697 1.1 ad
1698 1.1 ad /*
1699 1.1 ad * Move the first check outside the loop, so that run->regs_minelm can
1700 1.1 ad * be updated unconditionally, without the possibility of updating it
1701 1.1 ad * multiple times.
1702 1.1 ad */
1703 1.1 ad i = run->regs_minelm;
1704 1.1 ad mask = run->regs_mask[i];
1705 1.1 ad if (mask != 0) {
1706 1.1 ad /* Usable allocation found. */
1707 1.1 ad bit = ffs((int)mask) - 1;
1708 1.1 ad
1709 1.1 ad regind = ((i << (SIZEOF_INT_2POW + 3)) + bit);
1710 1.1 ad ret = (void *)(((uintptr_t)run) + bin->reg0_offset
1711 1.1 ad + (bin->reg_size * regind));
1712 1.1 ad
1713 1.1 ad /* Clear bit. */
1714 1.45 kamil mask ^= (1U << bit);
1715 1.1 ad run->regs_mask[i] = mask;
1716 1.1 ad
1717 1.1 ad return (ret);
1718 1.1 ad }
1719 1.1 ad
1720 1.1 ad for (i++; i < bin->regs_mask_nelms; i++) {
1721 1.1 ad mask = run->regs_mask[i];
1722 1.1 ad if (mask != 0) {
1723 1.1 ad /* Usable allocation found. */
1724 1.1 ad bit = ffs((int)mask) - 1;
1725 1.1 ad
1726 1.1 ad regind = ((i << (SIZEOF_INT_2POW + 3)) + bit);
1727 1.1 ad ret = (void *)(((uintptr_t)run) + bin->reg0_offset
1728 1.1 ad + (bin->reg_size * regind));
1729 1.1 ad
1730 1.1 ad /* Clear bit. */
1731 1.45 kamil mask ^= (1U << bit);
1732 1.1 ad run->regs_mask[i] = mask;
1733 1.1 ad
1734 1.1 ad /*
1735 1.1 ad * Make a note that nothing before this element
1736 1.1 ad * contains a free region.
1737 1.1 ad */
1738 1.1 ad run->regs_minelm = i; /* Low payoff: + (mask == 0); */
1739 1.1 ad
1740 1.1 ad return (ret);
1741 1.1 ad }
1742 1.1 ad }
1743 1.1 ad /* Not reached. */
1744 1.7 yamt /* LINTED */
1745 1.1 ad assert(0);
1746 1.1 ad return (NULL);
1747 1.1 ad }
1748 1.1 ad
1749 1.1 ad static inline void
1750 1.1 ad arena_run_reg_dalloc(arena_run_t *run, arena_bin_t *bin, void *ptr, size_t size)
1751 1.1 ad {
1752 1.1 ad /*
1753 1.1 ad * To divide by a number D that is not a power of two we multiply
1754 1.1 ad * by (2^21 / D) and then right shift by 21 positions.
1755 1.1 ad *
1756 1.1 ad * X / D
1757 1.1 ad *
1758 1.1 ad * becomes
1759 1.1 ad *
1760 1.1 ad * (X * size_invs[(D >> QUANTUM_2POW_MIN) - 3]) >> SIZE_INV_SHIFT
1761 1.1 ad */
1762 1.1 ad #define SIZE_INV_SHIFT 21
1763 1.1 ad #define SIZE_INV(s) (((1 << SIZE_INV_SHIFT) / (s << QUANTUM_2POW_MIN)) + 1)
1764 1.1 ad static const unsigned size_invs[] = {
1765 1.1 ad SIZE_INV(3),
1766 1.1 ad SIZE_INV(4), SIZE_INV(5), SIZE_INV(6), SIZE_INV(7),
1767 1.1 ad SIZE_INV(8), SIZE_INV(9), SIZE_INV(10), SIZE_INV(11),
1768 1.1 ad SIZE_INV(12),SIZE_INV(13), SIZE_INV(14), SIZE_INV(15),
1769 1.1 ad SIZE_INV(16),SIZE_INV(17), SIZE_INV(18), SIZE_INV(19),
1770 1.1 ad SIZE_INV(20),SIZE_INV(21), SIZE_INV(22), SIZE_INV(23),
1771 1.1 ad SIZE_INV(24),SIZE_INV(25), SIZE_INV(26), SIZE_INV(27),
1772 1.1 ad SIZE_INV(28),SIZE_INV(29), SIZE_INV(30), SIZE_INV(31)
1773 1.1 ad #if (QUANTUM_2POW_MIN < 4)
1774 1.1 ad ,
1775 1.1 ad SIZE_INV(32), SIZE_INV(33), SIZE_INV(34), SIZE_INV(35),
1776 1.1 ad SIZE_INV(36), SIZE_INV(37), SIZE_INV(38), SIZE_INV(39),
1777 1.1 ad SIZE_INV(40), SIZE_INV(41), SIZE_INV(42), SIZE_INV(43),
1778 1.1 ad SIZE_INV(44), SIZE_INV(45), SIZE_INV(46), SIZE_INV(47),
1779 1.1 ad SIZE_INV(48), SIZE_INV(49), SIZE_INV(50), SIZE_INV(51),
1780 1.1 ad SIZE_INV(52), SIZE_INV(53), SIZE_INV(54), SIZE_INV(55),
1781 1.1 ad SIZE_INV(56), SIZE_INV(57), SIZE_INV(58), SIZE_INV(59),
1782 1.1 ad SIZE_INV(60), SIZE_INV(61), SIZE_INV(62), SIZE_INV(63)
1783 1.1 ad #endif
1784 1.1 ad };
1785 1.1 ad unsigned diff, regind, elm, bit;
1786 1.1 ad
1787 1.7 yamt /* LINTED */
1788 1.1 ad assert(run->magic == ARENA_RUN_MAGIC);
1789 1.1 ad assert(((sizeof(size_invs)) / sizeof(unsigned)) + 3
1790 1.1 ad >= (SMALL_MAX_DEFAULT >> QUANTUM_2POW_MIN));
1791 1.1 ad
1792 1.1 ad /*
1793 1.1 ad * Avoid doing division with a variable divisor if possible. Using
1794 1.1 ad * actual division here can reduce allocator throughput by over 20%!
1795 1.1 ad */
1796 1.1 ad diff = (unsigned)((uintptr_t)ptr - (uintptr_t)run - bin->reg0_offset);
1797 1.1 ad if ((size & (size - 1)) == 0) {
1798 1.1 ad /*
1799 1.1 ad * log2_table allows fast division of a power of two in the
1800 1.1 ad * [1..128] range.
1801 1.1 ad *
1802 1.1 ad * (x / divisor) becomes (x >> log2_table[divisor - 1]).
1803 1.1 ad */
1804 1.1 ad static const unsigned char log2_table[] = {
1805 1.1 ad 0, 1, 0, 2, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 4,
1806 1.1 ad 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5,
1807 1.1 ad 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1808 1.1 ad 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6,
1809 1.1 ad 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1810 1.1 ad 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1811 1.1 ad 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1812 1.1 ad 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7
1813 1.1 ad };
1814 1.1 ad
1815 1.1 ad if (size <= 128)
1816 1.1 ad regind = (diff >> log2_table[size - 1]);
1817 1.1 ad else if (size <= 32768)
1818 1.1 ad regind = diff >> (8 + log2_table[(size >> 8) - 1]);
1819 1.1 ad else {
1820 1.1 ad /*
1821 1.1 ad * The page size is too large for us to use the lookup
1822 1.1 ad * table. Use real division.
1823 1.1 ad */
1824 1.9 christos regind = (unsigned)(diff / size);
1825 1.1 ad }
1826 1.1 ad } else if (size <= ((sizeof(size_invs) / sizeof(unsigned))
1827 1.1 ad << QUANTUM_2POW_MIN) + 2) {
1828 1.1 ad regind = size_invs[(size >> QUANTUM_2POW_MIN) - 3] * diff;
1829 1.1 ad regind >>= SIZE_INV_SHIFT;
1830 1.1 ad } else {
1831 1.1 ad /*
1832 1.1 ad * size_invs isn't large enough to handle this size class, so
1833 1.1 ad * calculate regind using actual division. This only happens
1834 1.1 ad * if the user increases small_max via the 'S' runtime
1835 1.1 ad * configuration option.
1836 1.1 ad */
1837 1.9 christos regind = (unsigned)(diff / size);
1838 1.1 ad };
1839 1.1 ad assert(diff == regind * size);
1840 1.1 ad assert(regind < bin->nregs);
1841 1.1 ad
1842 1.1 ad elm = regind >> (SIZEOF_INT_2POW + 3);
1843 1.1 ad if (elm < run->regs_minelm)
1844 1.1 ad run->regs_minelm = elm;
1845 1.1 ad bit = regind - (elm << (SIZEOF_INT_2POW + 3));
1846 1.45 kamil assert((run->regs_mask[elm] & (1U << bit)) == 0);
1847 1.45 kamil run->regs_mask[elm] |= (1U << bit);
1848 1.1 ad #undef SIZE_INV
1849 1.1 ad #undef SIZE_INV_SHIFT
1850 1.1 ad }
1851 1.1 ad
1852 1.1 ad static void
1853 1.1 ad arena_run_split(arena_t *arena, arena_run_t *run, size_t size)
1854 1.1 ad {
1855 1.1 ad arena_chunk_t *chunk;
1856 1.1 ad unsigned run_ind, map_offset, total_pages, need_pages, rem_pages;
1857 1.1 ad unsigned i;
1858 1.1 ad
1859 1.1 ad chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(run);
1860 1.1 ad run_ind = (unsigned)(((uintptr_t)run - (uintptr_t)chunk)
1861 1.1 ad >> pagesize_2pow);
1862 1.1 ad total_pages = chunk->map[run_ind].npages;
1863 1.9 christos need_pages = (unsigned)(size >> pagesize_2pow);
1864 1.1 ad assert(need_pages <= total_pages);
1865 1.1 ad rem_pages = total_pages - need_pages;
1866 1.1 ad
1867 1.1 ad /* Split enough pages from the front of run to fit allocation size. */
1868 1.1 ad map_offset = run_ind;
1869 1.1 ad for (i = 0; i < need_pages; i++) {
1870 1.1 ad chunk->map[map_offset + i].npages = need_pages;
1871 1.1 ad chunk->map[map_offset + i].pos = i;
1872 1.1 ad }
1873 1.1 ad
1874 1.1 ad /* Keep track of trailing unused pages for later use. */
1875 1.1 ad if (rem_pages > 0) {
1876 1.1 ad /* Update map for trailing pages. */
1877 1.1 ad map_offset += need_pages;
1878 1.1 ad chunk->map[map_offset].npages = rem_pages;
1879 1.1 ad chunk->map[map_offset].pos = POS_FREE;
1880 1.1 ad chunk->map[map_offset + rem_pages - 1].npages = rem_pages;
1881 1.1 ad chunk->map[map_offset + rem_pages - 1].pos = POS_FREE;
1882 1.1 ad }
1883 1.1 ad
1884 1.1 ad chunk->pages_used += need_pages;
1885 1.1 ad }
1886 1.1 ad
1887 1.1 ad static arena_chunk_t *
1888 1.1 ad arena_chunk_alloc(arena_t *arena)
1889 1.1 ad {
1890 1.1 ad arena_chunk_t *chunk;
1891 1.1 ad
1892 1.1 ad if (arena->spare != NULL) {
1893 1.1 ad chunk = arena->spare;
1894 1.1 ad arena->spare = NULL;
1895 1.1 ad
1896 1.1 ad RB_INSERT(arena_chunk_tree_s, &arena->chunks, chunk);
1897 1.1 ad } else {
1898 1.1 ad chunk = (arena_chunk_t *)chunk_alloc(chunksize);
1899 1.1 ad if (chunk == NULL)
1900 1.1 ad return (NULL);
1901 1.1 ad #ifdef MALLOC_STATS
1902 1.1 ad arena->stats.mapped += chunksize;
1903 1.1 ad #endif
1904 1.1 ad
1905 1.1 ad chunk->arena = arena;
1906 1.1 ad
1907 1.1 ad /*
1908 1.1 ad * Claim that no pages are in use, since the header is merely
1909 1.1 ad * overhead.
1910 1.1 ad */
1911 1.1 ad chunk->pages_used = 0;
1912 1.1 ad
1913 1.1 ad chunk->max_frun_npages = chunk_npages -
1914 1.1 ad arena_chunk_header_npages;
1915 1.1 ad chunk->min_frun_ind = arena_chunk_header_npages;
1916 1.1 ad
1917 1.1 ad /*
1918 1.1 ad * Initialize enough of the map to support one maximal free run.
1919 1.1 ad */
1920 1.1 ad chunk->map[arena_chunk_header_npages].npages = chunk_npages -
1921 1.1 ad arena_chunk_header_npages;
1922 1.1 ad chunk->map[arena_chunk_header_npages].pos = POS_FREE;
1923 1.1 ad chunk->map[chunk_npages - 1].npages = chunk_npages -
1924 1.1 ad arena_chunk_header_npages;
1925 1.1 ad chunk->map[chunk_npages - 1].pos = POS_FREE;
1926 1.40 joerg
1927 1.40 joerg RB_INSERT(arena_chunk_tree_s, &arena->chunks, chunk);
1928 1.1 ad }
1929 1.1 ad
1930 1.1 ad return (chunk);
1931 1.1 ad }
1932 1.1 ad
1933 1.1 ad static void
1934 1.1 ad arena_chunk_dealloc(arena_t *arena, arena_chunk_t *chunk)
1935 1.1 ad {
1936 1.1 ad
1937 1.1 ad /*
1938 1.1 ad * Remove chunk from the chunk tree, regardless of whether this chunk
1939 1.1 ad * will be cached, so that the arena does not use it.
1940 1.1 ad */
1941 1.1 ad RB_REMOVE(arena_chunk_tree_s, &chunk->arena->chunks, chunk);
1942 1.1 ad
1943 1.1 ad if (opt_hint == false) {
1944 1.1 ad if (arena->spare != NULL) {
1945 1.1 ad chunk_dealloc((void *)arena->spare, chunksize);
1946 1.1 ad #ifdef MALLOC_STATS
1947 1.1 ad arena->stats.mapped -= chunksize;
1948 1.1 ad #endif
1949 1.1 ad }
1950 1.1 ad arena->spare = chunk;
1951 1.1 ad } else {
1952 1.1 ad assert(arena->spare == NULL);
1953 1.1 ad chunk_dealloc((void *)chunk, chunksize);
1954 1.1 ad #ifdef MALLOC_STATS
1955 1.1 ad arena->stats.mapped -= chunksize;
1956 1.1 ad #endif
1957 1.1 ad }
1958 1.1 ad }
1959 1.1 ad
1960 1.1 ad static arena_run_t *
1961 1.1 ad arena_run_alloc(arena_t *arena, size_t size)
1962 1.1 ad {
1963 1.40 joerg arena_chunk_t *chunk, *chunk_tmp;
1964 1.1 ad arena_run_t *run;
1965 1.40 joerg unsigned need_npages;
1966 1.1 ad
1967 1.1 ad assert(size <= (chunksize - (arena_chunk_header_npages <<
1968 1.1 ad pagesize_2pow)));
1969 1.1 ad assert((size & pagesize_mask) == 0);
1970 1.1 ad
1971 1.1 ad /*
1972 1.40 joerg * Search through the arena chunk tree for a large enough free run.
1973 1.40 joerg * Tree order ensures that any exact fit is picked immediately or
1974 1.40 joerg * otherwise the lowest address of the next size.
1975 1.1 ad */
1976 1.9 christos need_npages = (unsigned)(size >> pagesize_2pow);
1977 1.2 ad /* LINTED */
1978 1.40 joerg for (;;) {
1979 1.40 joerg chunk_tmp = RB_ROOT(&arena->chunks);
1980 1.40 joerg chunk = NULL;
1981 1.40 joerg while (chunk_tmp) {
1982 1.40 joerg if (chunk_tmp->max_frun_npages == need_npages) {
1983 1.40 joerg chunk = chunk_tmp;
1984 1.40 joerg break;
1985 1.40 joerg }
1986 1.40 joerg if (chunk_tmp->max_frun_npages < need_npages) {
1987 1.40 joerg chunk_tmp = RB_RIGHT(chunk_tmp, link);
1988 1.40 joerg continue;
1989 1.40 joerg }
1990 1.40 joerg chunk = chunk_tmp;
1991 1.40 joerg chunk_tmp = RB_LEFT(chunk, link);
1992 1.40 joerg }
1993 1.40 joerg if (chunk == NULL)
1994 1.40 joerg break;
1995 1.1 ad /*
1996 1.40 joerg * At this point, the chunk must have a cached run size large
1997 1.40 joerg * enough to fit the allocation.
1998 1.1 ad */
1999 1.40 joerg assert(need_npages <= chunk->max_frun_npages);
2000 1.40 joerg {
2001 1.1 ad arena_chunk_map_t *mapelm;
2002 1.1 ad unsigned i;
2003 1.1 ad unsigned max_frun_npages = 0;
2004 1.1 ad unsigned min_frun_ind = chunk_npages;
2005 1.1 ad
2006 1.1 ad assert(chunk->min_frun_ind >=
2007 1.1 ad arena_chunk_header_npages);
2008 1.1 ad for (i = chunk->min_frun_ind; i < chunk_npages;) {
2009 1.1 ad mapelm = &chunk->map[i];
2010 1.1 ad if (mapelm->pos == POS_FREE) {
2011 1.1 ad if (mapelm->npages >= need_npages) {
2012 1.1 ad run = (arena_run_t *)
2013 1.1 ad ((uintptr_t)chunk + (i <<
2014 1.1 ad pagesize_2pow));
2015 1.1 ad /* Update page map. */
2016 1.1 ad arena_run_split(arena, run,
2017 1.1 ad size);
2018 1.1 ad return (run);
2019 1.1 ad }
2020 1.1 ad if (mapelm->npages >
2021 1.1 ad max_frun_npages) {
2022 1.1 ad max_frun_npages =
2023 1.1 ad mapelm->npages;
2024 1.1 ad }
2025 1.1 ad if (i < min_frun_ind) {
2026 1.1 ad min_frun_ind = i;
2027 1.1 ad if (i < chunk->min_frun_ind)
2028 1.1 ad chunk->min_frun_ind = i;
2029 1.1 ad }
2030 1.1 ad }
2031 1.1 ad i += mapelm->npages;
2032 1.1 ad }
2033 1.1 ad /*
2034 1.1 ad * Search failure. Reset cached chunk->max_frun_npages.
2035 1.1 ad * chunk->min_frun_ind was already reset above (if
2036 1.1 ad * necessary).
2037 1.1 ad */
2038 1.40 joerg RB_REMOVE(arena_chunk_tree_s, &arena->chunks, chunk);
2039 1.1 ad chunk->max_frun_npages = max_frun_npages;
2040 1.40 joerg RB_INSERT(arena_chunk_tree_s, &arena->chunks, chunk);
2041 1.1 ad }
2042 1.1 ad }
2043 1.1 ad
2044 1.1 ad /*
2045 1.1 ad * No usable runs. Create a new chunk from which to allocate the run.
2046 1.1 ad */
2047 1.1 ad chunk = arena_chunk_alloc(arena);
2048 1.1 ad if (chunk == NULL)
2049 1.1 ad return (NULL);
2050 1.1 ad run = (arena_run_t *)((uintptr_t)chunk + (arena_chunk_header_npages <<
2051 1.1 ad pagesize_2pow));
2052 1.1 ad /* Update page map. */
2053 1.1 ad arena_run_split(arena, run, size);
2054 1.1 ad return (run);
2055 1.1 ad }
2056 1.1 ad
2057 1.1 ad static void
2058 1.1 ad arena_run_dalloc(arena_t *arena, arena_run_t *run, size_t size)
2059 1.1 ad {
2060 1.1 ad arena_chunk_t *chunk;
2061 1.1 ad unsigned run_ind, run_pages;
2062 1.1 ad
2063 1.1 ad chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(run);
2064 1.1 ad
2065 1.1 ad run_ind = (unsigned)(((uintptr_t)run - (uintptr_t)chunk)
2066 1.1 ad >> pagesize_2pow);
2067 1.1 ad assert(run_ind >= arena_chunk_header_npages);
2068 1.1 ad assert(run_ind < (chunksize >> pagesize_2pow));
2069 1.9 christos run_pages = (unsigned)(size >> pagesize_2pow);
2070 1.1 ad assert(run_pages == chunk->map[run_ind].npages);
2071 1.1 ad
2072 1.1 ad /* Subtract pages from count of pages used in chunk. */
2073 1.1 ad chunk->pages_used -= run_pages;
2074 1.1 ad
2075 1.1 ad /* Mark run as deallocated. */
2076 1.1 ad assert(chunk->map[run_ind].npages == run_pages);
2077 1.1 ad chunk->map[run_ind].pos = POS_FREE;
2078 1.1 ad assert(chunk->map[run_ind + run_pages - 1].npages == run_pages);
2079 1.1 ad chunk->map[run_ind + run_pages - 1].pos = POS_FREE;
2080 1.1 ad
2081 1.1 ad /*
2082 1.1 ad * Tell the kernel that we don't need the data in this run, but only if
2083 1.1 ad * requested via runtime configuration.
2084 1.1 ad */
2085 1.1 ad if (opt_hint)
2086 1.1 ad madvise(run, size, MADV_FREE);
2087 1.1 ad
2088 1.1 ad /* Try to coalesce with neighboring runs. */
2089 1.1 ad if (run_ind > arena_chunk_header_npages &&
2090 1.1 ad chunk->map[run_ind - 1].pos == POS_FREE) {
2091 1.1 ad unsigned prev_npages;
2092 1.1 ad
2093 1.1 ad /* Coalesce with previous run. */
2094 1.1 ad prev_npages = chunk->map[run_ind - 1].npages;
2095 1.1 ad run_ind -= prev_npages;
2096 1.1 ad assert(chunk->map[run_ind].npages == prev_npages);
2097 1.1 ad assert(chunk->map[run_ind].pos == POS_FREE);
2098 1.1 ad run_pages += prev_npages;
2099 1.1 ad
2100 1.1 ad chunk->map[run_ind].npages = run_pages;
2101 1.1 ad assert(chunk->map[run_ind].pos == POS_FREE);
2102 1.1 ad chunk->map[run_ind + run_pages - 1].npages = run_pages;
2103 1.1 ad assert(chunk->map[run_ind + run_pages - 1].pos == POS_FREE);
2104 1.1 ad }
2105 1.1 ad
2106 1.1 ad if (run_ind + run_pages < chunk_npages &&
2107 1.1 ad chunk->map[run_ind + run_pages].pos == POS_FREE) {
2108 1.1 ad unsigned next_npages;
2109 1.1 ad
2110 1.1 ad /* Coalesce with next run. */
2111 1.1 ad next_npages = chunk->map[run_ind + run_pages].npages;
2112 1.1 ad run_pages += next_npages;
2113 1.1 ad assert(chunk->map[run_ind + run_pages - 1].npages ==
2114 1.1 ad next_npages);
2115 1.1 ad assert(chunk->map[run_ind + run_pages - 1].pos == POS_FREE);
2116 1.1 ad
2117 1.1 ad chunk->map[run_ind].npages = run_pages;
2118 1.1 ad chunk->map[run_ind].pos = POS_FREE;
2119 1.1 ad chunk->map[run_ind + run_pages - 1].npages = run_pages;
2120 1.1 ad assert(chunk->map[run_ind + run_pages - 1].pos == POS_FREE);
2121 1.1 ad }
2122 1.1 ad
2123 1.40 joerg if (chunk->map[run_ind].npages > chunk->max_frun_npages) {
2124 1.40 joerg RB_REMOVE(arena_chunk_tree_s, &arena->chunks, chunk);
2125 1.1 ad chunk->max_frun_npages = chunk->map[run_ind].npages;
2126 1.40 joerg RB_INSERT(arena_chunk_tree_s, &arena->chunks, chunk);
2127 1.40 joerg }
2128 1.1 ad if (run_ind < chunk->min_frun_ind)
2129 1.1 ad chunk->min_frun_ind = run_ind;
2130 1.1 ad
2131 1.1 ad /* Deallocate chunk if it is now completely unused. */
2132 1.1 ad if (chunk->pages_used == 0)
2133 1.1 ad arena_chunk_dealloc(arena, chunk);
2134 1.1 ad }
2135 1.1 ad
2136 1.1 ad static arena_run_t *
2137 1.1 ad arena_bin_nonfull_run_get(arena_t *arena, arena_bin_t *bin)
2138 1.1 ad {
2139 1.1 ad arena_run_t *run;
2140 1.1 ad unsigned i, remainder;
2141 1.1 ad
2142 1.1 ad /* Look for a usable run. */
2143 1.1 ad if ((run = RB_MIN(arena_run_tree_s, &bin->runs)) != NULL) {
2144 1.1 ad /* run is guaranteed to have available space. */
2145 1.1 ad RB_REMOVE(arena_run_tree_s, &bin->runs, run);
2146 1.1 ad #ifdef MALLOC_STATS
2147 1.1 ad bin->stats.reruns++;
2148 1.1 ad #endif
2149 1.1 ad return (run);
2150 1.1 ad }
2151 1.1 ad /* No existing runs have any space available. */
2152 1.1 ad
2153 1.1 ad /* Allocate a new run. */
2154 1.1 ad run = arena_run_alloc(arena, bin->run_size);
2155 1.1 ad if (run == NULL)
2156 1.1 ad return (NULL);
2157 1.1 ad
2158 1.1 ad /* Initialize run internals. */
2159 1.1 ad run->bin = bin;
2160 1.1 ad
2161 1.1 ad for (i = 0; i < bin->regs_mask_nelms; i++)
2162 1.1 ad run->regs_mask[i] = UINT_MAX;
2163 1.1 ad remainder = bin->nregs & ((1 << (SIZEOF_INT_2POW + 3)) - 1);
2164 1.1 ad if (remainder != 0) {
2165 1.1 ad /* The last element has spare bits that need to be unset. */
2166 1.1 ad run->regs_mask[i] = (UINT_MAX >> ((1 << (SIZEOF_INT_2POW + 3))
2167 1.1 ad - remainder));
2168 1.1 ad }
2169 1.1 ad
2170 1.1 ad run->regs_minelm = 0;
2171 1.1 ad
2172 1.1 ad run->nfree = bin->nregs;
2173 1.1 ad #ifdef MALLOC_DEBUG
2174 1.1 ad run->magic = ARENA_RUN_MAGIC;
2175 1.1 ad #endif
2176 1.1 ad
2177 1.1 ad #ifdef MALLOC_STATS
2178 1.1 ad bin->stats.nruns++;
2179 1.1 ad bin->stats.curruns++;
2180 1.1 ad if (bin->stats.curruns > bin->stats.highruns)
2181 1.1 ad bin->stats.highruns = bin->stats.curruns;
2182 1.1 ad #endif
2183 1.1 ad return (run);
2184 1.1 ad }
2185 1.1 ad
2186 1.1 ad /* bin->runcur must have space available before this function is called. */
2187 1.1 ad static inline void *
2188 1.1 ad arena_bin_malloc_easy(arena_t *arena, arena_bin_t *bin, arena_run_t *run)
2189 1.1 ad {
2190 1.1 ad void *ret;
2191 1.1 ad
2192 1.1 ad assert(run->magic == ARENA_RUN_MAGIC);
2193 1.1 ad assert(run->nfree > 0);
2194 1.1 ad
2195 1.1 ad ret = arena_run_reg_alloc(run, bin);
2196 1.1 ad assert(ret != NULL);
2197 1.1 ad run->nfree--;
2198 1.1 ad
2199 1.1 ad return (ret);
2200 1.1 ad }
2201 1.1 ad
2202 1.1 ad /* Re-fill bin->runcur, then call arena_bin_malloc_easy(). */
2203 1.1 ad static void *
2204 1.1 ad arena_bin_malloc_hard(arena_t *arena, arena_bin_t *bin)
2205 1.1 ad {
2206 1.1 ad
2207 1.1 ad bin->runcur = arena_bin_nonfull_run_get(arena, bin);
2208 1.1 ad if (bin->runcur == NULL)
2209 1.1 ad return (NULL);
2210 1.1 ad assert(bin->runcur->magic == ARENA_RUN_MAGIC);
2211 1.1 ad assert(bin->runcur->nfree > 0);
2212 1.1 ad
2213 1.1 ad return (arena_bin_malloc_easy(arena, bin, bin->runcur));
2214 1.1 ad }
2215 1.1 ad
2216 1.1 ad /*
2217 1.1 ad * Calculate bin->run_size such that it meets the following constraints:
2218 1.1 ad *
2219 1.1 ad * *) bin->run_size >= min_run_size
2220 1.1 ad * *) bin->run_size <= arena_maxclass
2221 1.1 ad * *) bin->run_size <= RUN_MAX_SMALL
2222 1.1 ad * *) run header overhead <= RUN_MAX_OVRHD (or header overhead relaxed).
2223 1.1 ad *
2224 1.1 ad * bin->nregs, bin->regs_mask_nelms, and bin->reg0_offset are
2225 1.1 ad * also calculated here, since these settings are all interdependent.
2226 1.1 ad */
2227 1.1 ad static size_t
2228 1.1 ad arena_bin_run_size_calc(arena_bin_t *bin, size_t min_run_size)
2229 1.1 ad {
2230 1.1 ad size_t try_run_size, good_run_size;
2231 1.1 ad unsigned good_nregs, good_mask_nelms, good_reg0_offset;
2232 1.1 ad unsigned try_nregs, try_mask_nelms, try_reg0_offset;
2233 1.1 ad
2234 1.1 ad assert(min_run_size >= pagesize);
2235 1.1 ad assert(min_run_size <= arena_maxclass);
2236 1.1 ad assert(min_run_size <= RUN_MAX_SMALL);
2237 1.1 ad
2238 1.1 ad /*
2239 1.1 ad * Calculate known-valid settings before entering the run_size
2240 1.1 ad * expansion loop, so that the first part of the loop always copies
2241 1.1 ad * valid settings.
2242 1.1 ad *
2243 1.1 ad * The do..while loop iteratively reduces the number of regions until
2244 1.1 ad * the run header and the regions no longer overlap. A closed formula
2245 1.1 ad * would be quite messy, since there is an interdependency between the
2246 1.1 ad * header's mask length and the number of regions.
2247 1.1 ad */
2248 1.1 ad try_run_size = min_run_size;
2249 1.9 christos try_nregs = (unsigned)(((try_run_size - sizeof(arena_run_t)) /
2250 1.22 njoly bin->reg_size) + 1); /* Counter-act try_nregs-- in loop. */
2251 1.1 ad do {
2252 1.1 ad try_nregs--;
2253 1.1 ad try_mask_nelms = (try_nregs >> (SIZEOF_INT_2POW + 3)) +
2254 1.1 ad ((try_nregs & ((1 << (SIZEOF_INT_2POW + 3)) - 1)) ? 1 : 0);
2255 1.9 christos try_reg0_offset = (unsigned)(try_run_size -
2256 1.9 christos (try_nregs * bin->reg_size));
2257 1.1 ad } while (sizeof(arena_run_t) + (sizeof(unsigned) * (try_mask_nelms - 1))
2258 1.1 ad > try_reg0_offset);
2259 1.1 ad
2260 1.1 ad /* run_size expansion loop. */
2261 1.1 ad do {
2262 1.1 ad /*
2263 1.1 ad * Copy valid settings before trying more aggressive settings.
2264 1.1 ad */
2265 1.1 ad good_run_size = try_run_size;
2266 1.1 ad good_nregs = try_nregs;
2267 1.1 ad good_mask_nelms = try_mask_nelms;
2268 1.1 ad good_reg0_offset = try_reg0_offset;
2269 1.1 ad
2270 1.1 ad /* Try more aggressive settings. */
2271 1.1 ad try_run_size += pagesize;
2272 1.9 christos try_nregs = (unsigned)(((try_run_size - sizeof(arena_run_t)) /
2273 1.9 christos bin->reg_size) + 1); /* Counter-act try_nregs-- in loop. */
2274 1.1 ad do {
2275 1.1 ad try_nregs--;
2276 1.1 ad try_mask_nelms = (try_nregs >> (SIZEOF_INT_2POW + 3)) +
2277 1.1 ad ((try_nregs & ((1 << (SIZEOF_INT_2POW + 3)) - 1)) ?
2278 1.1 ad 1 : 0);
2279 1.9 christos try_reg0_offset = (unsigned)(try_run_size - (try_nregs *
2280 1.9 christos bin->reg_size));
2281 1.1 ad } while (sizeof(arena_run_t) + (sizeof(unsigned) *
2282 1.1 ad (try_mask_nelms - 1)) > try_reg0_offset);
2283 1.1 ad } while (try_run_size <= arena_maxclass && try_run_size <= RUN_MAX_SMALL
2284 1.22 njoly && RUN_MAX_OVRHD * (bin->reg_size << 3) > RUN_MAX_OVRHD_RELAX
2285 1.22 njoly && (try_reg0_offset << RUN_BFP) > RUN_MAX_OVRHD * try_run_size);
2286 1.1 ad
2287 1.1 ad assert(sizeof(arena_run_t) + (sizeof(unsigned) * (good_mask_nelms - 1))
2288 1.1 ad <= good_reg0_offset);
2289 1.1 ad assert((good_mask_nelms << (SIZEOF_INT_2POW + 3)) >= good_nregs);
2290 1.1 ad
2291 1.1 ad /* Copy final settings. */
2292 1.1 ad bin->run_size = good_run_size;
2293 1.1 ad bin->nregs = good_nregs;
2294 1.1 ad bin->regs_mask_nelms = good_mask_nelms;
2295 1.1 ad bin->reg0_offset = good_reg0_offset;
2296 1.1 ad
2297 1.1 ad return (good_run_size);
2298 1.1 ad }
2299 1.1 ad
2300 1.1 ad static void *
2301 1.1 ad arena_malloc(arena_t *arena, size_t size)
2302 1.1 ad {
2303 1.1 ad void *ret;
2304 1.1 ad
2305 1.1 ad assert(arena != NULL);
2306 1.1 ad assert(arena->magic == ARENA_MAGIC);
2307 1.1 ad assert(size != 0);
2308 1.1 ad assert(QUANTUM_CEILING(size) <= arena_maxclass);
2309 1.1 ad
2310 1.1 ad if (size <= bin_maxclass) {
2311 1.1 ad arena_bin_t *bin;
2312 1.1 ad arena_run_t *run;
2313 1.1 ad
2314 1.1 ad /* Small allocation. */
2315 1.1 ad
2316 1.1 ad if (size < small_min) {
2317 1.1 ad /* Tiny. */
2318 1.1 ad size = pow2_ceil(size);
2319 1.1 ad bin = &arena->bins[ffs((int)(size >> (TINY_MIN_2POW +
2320 1.1 ad 1)))];
2321 1.1 ad #if (!defined(NDEBUG) || defined(MALLOC_STATS))
2322 1.1 ad /*
2323 1.1 ad * Bin calculation is always correct, but we may need
2324 1.1 ad * to fix size for the purposes of assertions and/or
2325 1.1 ad * stats accuracy.
2326 1.1 ad */
2327 1.1 ad if (size < (1 << TINY_MIN_2POW))
2328 1.1 ad size = (1 << TINY_MIN_2POW);
2329 1.1 ad #endif
2330 1.1 ad } else if (size <= small_max) {
2331 1.1 ad /* Quantum-spaced. */
2332 1.1 ad size = QUANTUM_CEILING(size);
2333 1.1 ad bin = &arena->bins[ntbins + (size >> opt_quantum_2pow)
2334 1.1 ad - 1];
2335 1.1 ad } else {
2336 1.1 ad /* Sub-page. */
2337 1.1 ad size = pow2_ceil(size);
2338 1.1 ad bin = &arena->bins[ntbins + nqbins
2339 1.1 ad + (ffs((int)(size >> opt_small_max_2pow)) - 2)];
2340 1.1 ad }
2341 1.1 ad assert(size == bin->reg_size);
2342 1.1 ad
2343 1.1 ad malloc_mutex_lock(&arena->mtx);
2344 1.1 ad if ((run = bin->runcur) != NULL && run->nfree > 0)
2345 1.1 ad ret = arena_bin_malloc_easy(arena, bin, run);
2346 1.1 ad else
2347 1.1 ad ret = arena_bin_malloc_hard(arena, bin);
2348 1.1 ad
2349 1.1 ad if (ret == NULL) {
2350 1.1 ad malloc_mutex_unlock(&arena->mtx);
2351 1.1 ad return (NULL);
2352 1.1 ad }
2353 1.1 ad
2354 1.1 ad #ifdef MALLOC_STATS
2355 1.1 ad bin->stats.nrequests++;
2356 1.1 ad arena->stats.nmalloc_small++;
2357 1.1 ad arena->stats.allocated_small += size;
2358 1.1 ad #endif
2359 1.1 ad } else {
2360 1.1 ad /* Large allocation. */
2361 1.1 ad size = PAGE_CEILING(size);
2362 1.1 ad malloc_mutex_lock(&arena->mtx);
2363 1.1 ad ret = (void *)arena_run_alloc(arena, size);
2364 1.1 ad if (ret == NULL) {
2365 1.1 ad malloc_mutex_unlock(&arena->mtx);
2366 1.1 ad return (NULL);
2367 1.1 ad }
2368 1.1 ad #ifdef MALLOC_STATS
2369 1.1 ad arena->stats.nmalloc_large++;
2370 1.1 ad arena->stats.allocated_large += size;
2371 1.1 ad #endif
2372 1.1 ad }
2373 1.1 ad
2374 1.1 ad malloc_mutex_unlock(&arena->mtx);
2375 1.1 ad
2376 1.1 ad if (opt_junk)
2377 1.1 ad memset(ret, 0xa5, size);
2378 1.1 ad else if (opt_zero)
2379 1.1 ad memset(ret, 0, size);
2380 1.1 ad return (ret);
2381 1.1 ad }
2382 1.1 ad
2383 1.1 ad static inline void
2384 1.1 ad arena_palloc_trim(arena_t *arena, arena_chunk_t *chunk, unsigned pageind,
2385 1.1 ad unsigned npages)
2386 1.1 ad {
2387 1.1 ad unsigned i;
2388 1.1 ad
2389 1.1 ad assert(npages > 0);
2390 1.1 ad
2391 1.1 ad /*
2392 1.1 ad * Modifiy the map such that arena_run_dalloc() sees the run as
2393 1.1 ad * separately allocated.
2394 1.1 ad */
2395 1.1 ad for (i = 0; i < npages; i++) {
2396 1.1 ad chunk->map[pageind + i].npages = npages;
2397 1.1 ad chunk->map[pageind + i].pos = i;
2398 1.1 ad }
2399 1.1 ad arena_run_dalloc(arena, (arena_run_t *)((uintptr_t)chunk + (pageind <<
2400 1.1 ad pagesize_2pow)), npages << pagesize_2pow);
2401 1.1 ad }
2402 1.1 ad
2403 1.1 ad /* Only handles large allocations that require more than page alignment. */
2404 1.1 ad static void *
2405 1.1 ad arena_palloc(arena_t *arena, size_t alignment, size_t size, size_t alloc_size)
2406 1.1 ad {
2407 1.1 ad void *ret;
2408 1.1 ad size_t offset;
2409 1.1 ad arena_chunk_t *chunk;
2410 1.1 ad unsigned pageind, i, npages;
2411 1.1 ad
2412 1.1 ad assert((size & pagesize_mask) == 0);
2413 1.1 ad assert((alignment & pagesize_mask) == 0);
2414 1.1 ad
2415 1.9 christos npages = (unsigned)(size >> pagesize_2pow);
2416 1.1 ad
2417 1.1 ad malloc_mutex_lock(&arena->mtx);
2418 1.1 ad ret = (void *)arena_run_alloc(arena, alloc_size);
2419 1.1 ad if (ret == NULL) {
2420 1.1 ad malloc_mutex_unlock(&arena->mtx);
2421 1.1 ad return (NULL);
2422 1.1 ad }
2423 1.1 ad
2424 1.1 ad chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ret);
2425 1.1 ad
2426 1.1 ad offset = (uintptr_t)ret & (alignment - 1);
2427 1.1 ad assert((offset & pagesize_mask) == 0);
2428 1.1 ad assert(offset < alloc_size);
2429 1.1 ad if (offset == 0) {
2430 1.9 christos pageind = (unsigned)(((uintptr_t)ret - (uintptr_t)chunk) >>
2431 1.1 ad pagesize_2pow);
2432 1.1 ad
2433 1.1 ad /* Update the map for the run to be kept. */
2434 1.1 ad for (i = 0; i < npages; i++) {
2435 1.1 ad chunk->map[pageind + i].npages = npages;
2436 1.1 ad assert(chunk->map[pageind + i].pos == i);
2437 1.1 ad }
2438 1.1 ad
2439 1.1 ad /* Trim trailing space. */
2440 1.1 ad arena_palloc_trim(arena, chunk, pageind + npages,
2441 1.9 christos (unsigned)((alloc_size - size) >> pagesize_2pow));
2442 1.1 ad } else {
2443 1.1 ad size_t leadsize, trailsize;
2444 1.1 ad
2445 1.1 ad leadsize = alignment - offset;
2446 1.1 ad ret = (void *)((uintptr_t)ret + leadsize);
2447 1.9 christos pageind = (unsigned)(((uintptr_t)ret - (uintptr_t)chunk) >>
2448 1.1 ad pagesize_2pow);
2449 1.1 ad
2450 1.1 ad /* Update the map for the run to be kept. */
2451 1.1 ad for (i = 0; i < npages; i++) {
2452 1.1 ad chunk->map[pageind + i].npages = npages;
2453 1.1 ad chunk->map[pageind + i].pos = i;
2454 1.1 ad }
2455 1.1 ad
2456 1.1 ad /* Trim leading space. */
2457 1.9 christos arena_palloc_trim(arena, chunk,
2458 1.9 christos (unsigned)(pageind - (leadsize >> pagesize_2pow)),
2459 1.9 christos (unsigned)(leadsize >> pagesize_2pow));
2460 1.1 ad
2461 1.1 ad trailsize = alloc_size - leadsize - size;
2462 1.1 ad if (trailsize != 0) {
2463 1.1 ad /* Trim trailing space. */
2464 1.1 ad assert(trailsize < alloc_size);
2465 1.1 ad arena_palloc_trim(arena, chunk, pageind + npages,
2466 1.9 christos (unsigned)(trailsize >> pagesize_2pow));
2467 1.1 ad }
2468 1.1 ad }
2469 1.1 ad
2470 1.1 ad #ifdef MALLOC_STATS
2471 1.1 ad arena->stats.nmalloc_large++;
2472 1.1 ad arena->stats.allocated_large += size;
2473 1.1 ad #endif
2474 1.1 ad malloc_mutex_unlock(&arena->mtx);
2475 1.1 ad
2476 1.1 ad if (opt_junk)
2477 1.1 ad memset(ret, 0xa5, size);
2478 1.1 ad else if (opt_zero)
2479 1.1 ad memset(ret, 0, size);
2480 1.1 ad return (ret);
2481 1.1 ad }
2482 1.1 ad
2483 1.1 ad /* Return the size of the allocation pointed to by ptr. */
2484 1.1 ad static size_t
2485 1.1 ad arena_salloc(const void *ptr)
2486 1.1 ad {
2487 1.1 ad size_t ret;
2488 1.1 ad arena_chunk_t *chunk;
2489 1.1 ad arena_chunk_map_t *mapelm;
2490 1.1 ad unsigned pageind;
2491 1.1 ad
2492 1.1 ad assert(ptr != NULL);
2493 1.1 ad assert(CHUNK_ADDR2BASE(ptr) != ptr);
2494 1.1 ad
2495 1.1 ad /*
2496 1.1 ad * No arena data structures that we query here can change in a way that
2497 1.1 ad * affects this function, so we don't need to lock.
2498 1.1 ad */
2499 1.1 ad chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
2500 1.9 christos pageind = (unsigned)(((uintptr_t)ptr - (uintptr_t)chunk) >>
2501 1.9 christos pagesize_2pow);
2502 1.1 ad mapelm = &chunk->map[pageind];
2503 1.10 simonb if (mapelm->pos != 0 || ptr != (char *)((uintptr_t)chunk) + (pageind <<
2504 1.10 simonb pagesize_2pow)) {
2505 1.10 simonb arena_run_t *run;
2506 1.1 ad
2507 1.1 ad pageind -= mapelm->pos;
2508 1.1 ad
2509 1.10 simonb run = (arena_run_t *)((uintptr_t)chunk + (pageind <<
2510 1.10 simonb pagesize_2pow));
2511 1.1 ad assert(run->magic == ARENA_RUN_MAGIC);
2512 1.1 ad ret = run->bin->reg_size;
2513 1.1 ad } else
2514 1.1 ad ret = mapelm->npages << pagesize_2pow;
2515 1.1 ad
2516 1.1 ad return (ret);
2517 1.1 ad }
2518 1.1 ad
2519 1.1 ad static void *
2520 1.1 ad arena_ralloc(void *ptr, size_t size, size_t oldsize)
2521 1.1 ad {
2522 1.1 ad void *ret;
2523 1.1 ad
2524 1.1 ad /* Avoid moving the allocation if the size class would not change. */
2525 1.1 ad if (size < small_min) {
2526 1.1 ad if (oldsize < small_min &&
2527 1.1 ad ffs((int)(pow2_ceil(size) >> (TINY_MIN_2POW + 1)))
2528 1.1 ad == ffs((int)(pow2_ceil(oldsize) >> (TINY_MIN_2POW + 1))))
2529 1.1 ad goto IN_PLACE;
2530 1.1 ad } else if (size <= small_max) {
2531 1.1 ad if (oldsize >= small_min && oldsize <= small_max &&
2532 1.1 ad (QUANTUM_CEILING(size) >> opt_quantum_2pow)
2533 1.1 ad == (QUANTUM_CEILING(oldsize) >> opt_quantum_2pow))
2534 1.1 ad goto IN_PLACE;
2535 1.1 ad } else {
2536 1.1 ad /*
2537 1.1 ad * We make no attempt to resize runs here, though it would be
2538 1.1 ad * possible to do so.
2539 1.1 ad */
2540 1.1 ad if (oldsize > small_max && PAGE_CEILING(size) == oldsize)
2541 1.1 ad goto IN_PLACE;
2542 1.1 ad }
2543 1.1 ad
2544 1.1 ad /*
2545 1.1 ad * If we get here, then size and oldsize are different enough that we
2546 1.1 ad * need to use a different size class. In that case, fall back to
2547 1.1 ad * allocating new space and copying.
2548 1.1 ad */
2549 1.1 ad ret = arena_malloc(choose_arena(), size);
2550 1.1 ad if (ret == NULL)
2551 1.1 ad return (NULL);
2552 1.1 ad
2553 1.1 ad /* Junk/zero-filling were already done by arena_malloc(). */
2554 1.1 ad if (size < oldsize)
2555 1.1 ad memcpy(ret, ptr, size);
2556 1.1 ad else
2557 1.1 ad memcpy(ret, ptr, oldsize);
2558 1.1 ad idalloc(ptr);
2559 1.1 ad return (ret);
2560 1.1 ad IN_PLACE:
2561 1.1 ad if (opt_junk && size < oldsize)
2562 1.1 ad memset((void *)((uintptr_t)ptr + size), 0x5a, oldsize - size);
2563 1.1 ad else if (opt_zero && size > oldsize)
2564 1.1 ad memset((void *)((uintptr_t)ptr + oldsize), 0, size - oldsize);
2565 1.1 ad return (ptr);
2566 1.1 ad }
2567 1.1 ad
2568 1.1 ad static void
2569 1.1 ad arena_dalloc(arena_t *arena, arena_chunk_t *chunk, void *ptr)
2570 1.1 ad {
2571 1.1 ad unsigned pageind;
2572 1.1 ad arena_chunk_map_t *mapelm;
2573 1.1 ad size_t size;
2574 1.1 ad
2575 1.1 ad assert(arena != NULL);
2576 1.1 ad assert(arena->magic == ARENA_MAGIC);
2577 1.1 ad assert(chunk->arena == arena);
2578 1.1 ad assert(ptr != NULL);
2579 1.1 ad assert(CHUNK_ADDR2BASE(ptr) != ptr);
2580 1.1 ad
2581 1.9 christos pageind = (unsigned)(((uintptr_t)ptr - (uintptr_t)chunk) >>
2582 1.9 christos pagesize_2pow);
2583 1.1 ad mapelm = &chunk->map[pageind];
2584 1.10 simonb if (mapelm->pos != 0 || ptr != (char *)((uintptr_t)chunk) + (pageind <<
2585 1.10 simonb pagesize_2pow)) {
2586 1.10 simonb arena_run_t *run;
2587 1.1 ad arena_bin_t *bin;
2588 1.1 ad
2589 1.1 ad /* Small allocation. */
2590 1.1 ad
2591 1.1 ad pageind -= mapelm->pos;
2592 1.1 ad
2593 1.10 simonb run = (arena_run_t *)((uintptr_t)chunk + (pageind <<
2594 1.10 simonb pagesize_2pow));
2595 1.1 ad assert(run->magic == ARENA_RUN_MAGIC);
2596 1.1 ad bin = run->bin;
2597 1.1 ad size = bin->reg_size;
2598 1.1 ad
2599 1.1 ad if (opt_junk)
2600 1.1 ad memset(ptr, 0x5a, size);
2601 1.1 ad
2602 1.1 ad malloc_mutex_lock(&arena->mtx);
2603 1.1 ad arena_run_reg_dalloc(run, bin, ptr, size);
2604 1.1 ad run->nfree++;
2605 1.1 ad
2606 1.1 ad if (run->nfree == bin->nregs) {
2607 1.1 ad /* Deallocate run. */
2608 1.1 ad if (run == bin->runcur)
2609 1.1 ad bin->runcur = NULL;
2610 1.1 ad else if (bin->nregs != 1) {
2611 1.1 ad /*
2612 1.1 ad * This block's conditional is necessary because
2613 1.1 ad * if the run only contains one region, then it
2614 1.1 ad * never gets inserted into the non-full runs
2615 1.1 ad * tree.
2616 1.1 ad */
2617 1.1 ad RB_REMOVE(arena_run_tree_s, &bin->runs, run);
2618 1.1 ad }
2619 1.1 ad #ifdef MALLOC_DEBUG
2620 1.1 ad run->magic = 0;
2621 1.1 ad #endif
2622 1.1 ad arena_run_dalloc(arena, run, bin->run_size);
2623 1.1 ad #ifdef MALLOC_STATS
2624 1.1 ad bin->stats.curruns--;
2625 1.1 ad #endif
2626 1.1 ad } else if (run->nfree == 1 && run != bin->runcur) {
2627 1.1 ad /*
2628 1.1 ad * Make sure that bin->runcur always refers to the
2629 1.1 ad * lowest non-full run, if one exists.
2630 1.1 ad */
2631 1.1 ad if (bin->runcur == NULL)
2632 1.1 ad bin->runcur = run;
2633 1.1 ad else if ((uintptr_t)run < (uintptr_t)bin->runcur) {
2634 1.1 ad /* Switch runcur. */
2635 1.1 ad if (bin->runcur->nfree > 0) {
2636 1.1 ad /* Insert runcur. */
2637 1.1 ad RB_INSERT(arena_run_tree_s, &bin->runs,
2638 1.1 ad bin->runcur);
2639 1.1 ad }
2640 1.1 ad bin->runcur = run;
2641 1.2 ad } else {
2642 1.1 ad RB_INSERT(arena_run_tree_s, &bin->runs, run);
2643 1.2 ad }
2644 1.1 ad }
2645 1.1 ad #ifdef MALLOC_STATS
2646 1.1 ad arena->stats.allocated_small -= size;
2647 1.1 ad arena->stats.ndalloc_small++;
2648 1.1 ad #endif
2649 1.1 ad } else {
2650 1.1 ad /* Large allocation. */
2651 1.1 ad
2652 1.1 ad size = mapelm->npages << pagesize_2pow;
2653 1.1 ad assert((((uintptr_t)ptr) & pagesize_mask) == 0);
2654 1.1 ad
2655 1.1 ad if (opt_junk)
2656 1.1 ad memset(ptr, 0x5a, size);
2657 1.1 ad
2658 1.1 ad malloc_mutex_lock(&arena->mtx);
2659 1.1 ad arena_run_dalloc(arena, (arena_run_t *)ptr, size);
2660 1.1 ad #ifdef MALLOC_STATS
2661 1.1 ad arena->stats.allocated_large -= size;
2662 1.1 ad arena->stats.ndalloc_large++;
2663 1.1 ad #endif
2664 1.1 ad }
2665 1.1 ad
2666 1.1 ad malloc_mutex_unlock(&arena->mtx);
2667 1.1 ad }
2668 1.1 ad
2669 1.1 ad static bool
2670 1.1 ad arena_new(arena_t *arena)
2671 1.1 ad {
2672 1.1 ad unsigned i;
2673 1.1 ad arena_bin_t *bin;
2674 1.2 ad size_t prev_run_size;
2675 1.1 ad
2676 1.1 ad malloc_mutex_init(&arena->mtx);
2677 1.1 ad
2678 1.1 ad #ifdef MALLOC_STATS
2679 1.1 ad memset(&arena->stats, 0, sizeof(arena_stats_t));
2680 1.1 ad #endif
2681 1.1 ad
2682 1.1 ad /* Initialize chunks. */
2683 1.1 ad RB_INIT(&arena->chunks);
2684 1.1 ad arena->spare = NULL;
2685 1.1 ad
2686 1.1 ad /* Initialize bins. */
2687 1.1 ad prev_run_size = pagesize;
2688 1.1 ad
2689 1.1 ad /* (2^n)-spaced tiny bins. */
2690 1.1 ad for (i = 0; i < ntbins; i++) {
2691 1.1 ad bin = &arena->bins[i];
2692 1.1 ad bin->runcur = NULL;
2693 1.1 ad RB_INIT(&bin->runs);
2694 1.1 ad
2695 1.1 ad bin->reg_size = (1 << (TINY_MIN_2POW + i));
2696 1.1 ad prev_run_size = arena_bin_run_size_calc(bin, prev_run_size);
2697 1.1 ad
2698 1.1 ad #ifdef MALLOC_STATS
2699 1.1 ad memset(&bin->stats, 0, sizeof(malloc_bin_stats_t));
2700 1.1 ad #endif
2701 1.1 ad }
2702 1.1 ad
2703 1.1 ad /* Quantum-spaced bins. */
2704 1.1 ad for (; i < ntbins + nqbins; i++) {
2705 1.1 ad bin = &arena->bins[i];
2706 1.1 ad bin->runcur = NULL;
2707 1.1 ad RB_INIT(&bin->runs);
2708 1.1 ad
2709 1.1 ad bin->reg_size = quantum * (i - ntbins + 1);
2710 1.2 ad /*
2711 1.1 ad pow2_size = pow2_ceil(quantum * (i - ntbins + 1));
2712 1.2 ad */
2713 1.1 ad prev_run_size = arena_bin_run_size_calc(bin, prev_run_size);
2714 1.1 ad
2715 1.1 ad #ifdef MALLOC_STATS
2716 1.1 ad memset(&bin->stats, 0, sizeof(malloc_bin_stats_t));
2717 1.1 ad #endif
2718 1.1 ad }
2719 1.1 ad
2720 1.1 ad /* (2^n)-spaced sub-page bins. */
2721 1.1 ad for (; i < ntbins + nqbins + nsbins; i++) {
2722 1.1 ad bin = &arena->bins[i];
2723 1.1 ad bin->runcur = NULL;
2724 1.1 ad RB_INIT(&bin->runs);
2725 1.1 ad
2726 1.1 ad bin->reg_size = (small_max << (i - (ntbins + nqbins) + 1));
2727 1.1 ad
2728 1.1 ad prev_run_size = arena_bin_run_size_calc(bin, prev_run_size);
2729 1.1 ad
2730 1.1 ad #ifdef MALLOC_STATS
2731 1.1 ad memset(&bin->stats, 0, sizeof(malloc_bin_stats_t));
2732 1.1 ad #endif
2733 1.1 ad }
2734 1.1 ad
2735 1.1 ad #ifdef MALLOC_DEBUG
2736 1.1 ad arena->magic = ARENA_MAGIC;
2737 1.1 ad #endif
2738 1.1 ad
2739 1.1 ad return (false);
2740 1.1 ad }
2741 1.1 ad
2742 1.1 ad /* Create a new arena and insert it into the arenas array at index ind. */
2743 1.1 ad static arena_t *
2744 1.1 ad arenas_extend(unsigned ind)
2745 1.1 ad {
2746 1.1 ad arena_t *ret;
2747 1.1 ad
2748 1.1 ad /* Allocate enough space for trailing bins. */
2749 1.1 ad ret = (arena_t *)base_alloc(sizeof(arena_t)
2750 1.1 ad + (sizeof(arena_bin_t) * (ntbins + nqbins + nsbins - 1)));
2751 1.1 ad if (ret != NULL && arena_new(ret) == false) {
2752 1.1 ad arenas[ind] = ret;
2753 1.1 ad return (ret);
2754 1.1 ad }
2755 1.1 ad /* Only reached if there is an OOM error. */
2756 1.1 ad
2757 1.1 ad /*
2758 1.1 ad * OOM here is quite inconvenient to propagate, since dealing with it
2759 1.1 ad * would require a check for failure in the fast path. Instead, punt
2760 1.1 ad * by using arenas[0]. In practice, this is an extremely unlikely
2761 1.1 ad * failure.
2762 1.1 ad */
2763 1.16 christos _malloc_message(getprogname(),
2764 1.1 ad ": (malloc) Error initializing arena\n", "", "");
2765 1.1 ad if (opt_abort)
2766 1.1 ad abort();
2767 1.1 ad
2768 1.1 ad return (arenas[0]);
2769 1.1 ad }
2770 1.1 ad
2771 1.1 ad /*
2772 1.1 ad * End arena.
2773 1.1 ad */
2774 1.1 ad /******************************************************************************/
2775 1.1 ad /*
2776 1.1 ad * Begin general internal functions.
2777 1.1 ad */
2778 1.1 ad
2779 1.1 ad static void *
2780 1.1 ad huge_malloc(size_t size)
2781 1.1 ad {
2782 1.1 ad void *ret;
2783 1.1 ad size_t csize;
2784 1.1 ad chunk_node_t *node;
2785 1.1 ad
2786 1.1 ad /* Allocate one or more contiguous chunks for this request. */
2787 1.1 ad
2788 1.1 ad csize = CHUNK_CEILING(size);
2789 1.1 ad if (csize == 0) {
2790 1.1 ad /* size is large enough to cause size_t wrap-around. */
2791 1.1 ad return (NULL);
2792 1.1 ad }
2793 1.1 ad
2794 1.1 ad /* Allocate a chunk node with which to track the chunk. */
2795 1.1 ad node = base_chunk_node_alloc();
2796 1.1 ad if (node == NULL)
2797 1.1 ad return (NULL);
2798 1.1 ad
2799 1.1 ad ret = chunk_alloc(csize);
2800 1.1 ad if (ret == NULL) {
2801 1.1 ad base_chunk_node_dealloc(node);
2802 1.1 ad return (NULL);
2803 1.1 ad }
2804 1.1 ad
2805 1.1 ad /* Insert node into huge. */
2806 1.1 ad node->chunk = ret;
2807 1.1 ad node->size = csize;
2808 1.1 ad
2809 1.1 ad malloc_mutex_lock(&chunks_mtx);
2810 1.1 ad RB_INSERT(chunk_tree_s, &huge, node);
2811 1.1 ad #ifdef MALLOC_STATS
2812 1.1 ad huge_nmalloc++;
2813 1.1 ad huge_allocated += csize;
2814 1.1 ad #endif
2815 1.1 ad malloc_mutex_unlock(&chunks_mtx);
2816 1.1 ad
2817 1.1 ad if (opt_junk)
2818 1.1 ad memset(ret, 0xa5, csize);
2819 1.1 ad else if (opt_zero)
2820 1.1 ad memset(ret, 0, csize);
2821 1.1 ad
2822 1.1 ad return (ret);
2823 1.1 ad }
2824 1.1 ad
2825 1.1 ad /* Only handles large allocations that require more than chunk alignment. */
2826 1.1 ad static void *
2827 1.1 ad huge_palloc(size_t alignment, size_t size)
2828 1.1 ad {
2829 1.1 ad void *ret;
2830 1.1 ad size_t alloc_size, chunk_size, offset;
2831 1.1 ad chunk_node_t *node;
2832 1.1 ad
2833 1.1 ad /*
2834 1.1 ad * This allocation requires alignment that is even larger than chunk
2835 1.1 ad * alignment. This means that huge_malloc() isn't good enough.
2836 1.1 ad *
2837 1.1 ad * Allocate almost twice as many chunks as are demanded by the size or
2838 1.1 ad * alignment, in order to assure the alignment can be achieved, then
2839 1.1 ad * unmap leading and trailing chunks.
2840 1.1 ad */
2841 1.1 ad assert(alignment >= chunksize);
2842 1.1 ad
2843 1.1 ad chunk_size = CHUNK_CEILING(size);
2844 1.1 ad
2845 1.1 ad if (size >= alignment)
2846 1.1 ad alloc_size = chunk_size + alignment - chunksize;
2847 1.1 ad else
2848 1.1 ad alloc_size = (alignment << 1) - chunksize;
2849 1.1 ad
2850 1.1 ad /* Allocate a chunk node with which to track the chunk. */
2851 1.1 ad node = base_chunk_node_alloc();
2852 1.1 ad if (node == NULL)
2853 1.1 ad return (NULL);
2854 1.1 ad
2855 1.1 ad ret = chunk_alloc(alloc_size);
2856 1.1 ad if (ret == NULL) {
2857 1.1 ad base_chunk_node_dealloc(node);
2858 1.1 ad return (NULL);
2859 1.1 ad }
2860 1.1 ad
2861 1.1 ad offset = (uintptr_t)ret & (alignment - 1);
2862 1.1 ad assert((offset & chunksize_mask) == 0);
2863 1.1 ad assert(offset < alloc_size);
2864 1.1 ad if (offset == 0) {
2865 1.1 ad /* Trim trailing space. */
2866 1.1 ad chunk_dealloc((void *)((uintptr_t)ret + chunk_size), alloc_size
2867 1.1 ad - chunk_size);
2868 1.1 ad } else {
2869 1.1 ad size_t trailsize;
2870 1.1 ad
2871 1.1 ad /* Trim leading space. */
2872 1.1 ad chunk_dealloc(ret, alignment - offset);
2873 1.1 ad
2874 1.1 ad ret = (void *)((uintptr_t)ret + (alignment - offset));
2875 1.1 ad
2876 1.1 ad trailsize = alloc_size - (alignment - offset) - chunk_size;
2877 1.1 ad if (trailsize != 0) {
2878 1.1 ad /* Trim trailing space. */
2879 1.1 ad assert(trailsize < alloc_size);
2880 1.1 ad chunk_dealloc((void *)((uintptr_t)ret + chunk_size),
2881 1.1 ad trailsize);
2882 1.1 ad }
2883 1.1 ad }
2884 1.1 ad
2885 1.1 ad /* Insert node into huge. */
2886 1.1 ad node->chunk = ret;
2887 1.1 ad node->size = chunk_size;
2888 1.1 ad
2889 1.1 ad malloc_mutex_lock(&chunks_mtx);
2890 1.1 ad RB_INSERT(chunk_tree_s, &huge, node);
2891 1.1 ad #ifdef MALLOC_STATS
2892 1.1 ad huge_nmalloc++;
2893 1.1 ad huge_allocated += chunk_size;
2894 1.1 ad #endif
2895 1.1 ad malloc_mutex_unlock(&chunks_mtx);
2896 1.1 ad
2897 1.1 ad if (opt_junk)
2898 1.1 ad memset(ret, 0xa5, chunk_size);
2899 1.1 ad else if (opt_zero)
2900 1.1 ad memset(ret, 0, chunk_size);
2901 1.1 ad
2902 1.1 ad return (ret);
2903 1.1 ad }
2904 1.1 ad
2905 1.1 ad static void *
2906 1.1 ad huge_ralloc(void *ptr, size_t size, size_t oldsize)
2907 1.1 ad {
2908 1.1 ad void *ret;
2909 1.1 ad
2910 1.1 ad /* Avoid moving the allocation if the size class would not change. */
2911 1.1 ad if (oldsize > arena_maxclass &&
2912 1.1 ad CHUNK_CEILING(size) == CHUNK_CEILING(oldsize)) {
2913 1.1 ad if (opt_junk && size < oldsize) {
2914 1.1 ad memset((void *)((uintptr_t)ptr + size), 0x5a, oldsize
2915 1.1 ad - size);
2916 1.1 ad } else if (opt_zero && size > oldsize) {
2917 1.1 ad memset((void *)((uintptr_t)ptr + oldsize), 0, size
2918 1.1 ad - oldsize);
2919 1.1 ad }
2920 1.1 ad return (ptr);
2921 1.1 ad }
2922 1.1 ad
2923 1.8 yamt if (CHUNK_ADDR2BASE(ptr) == ptr
2924 1.8 yamt #ifdef USE_BRK
2925 1.8 yamt && ((uintptr_t)ptr < (uintptr_t)brk_base
2926 1.8 yamt || (uintptr_t)ptr >= (uintptr_t)brk_max)
2927 1.8 yamt #endif
2928 1.8 yamt ) {
2929 1.8 yamt chunk_node_t *node, key;
2930 1.8 yamt void *newptr;
2931 1.8 yamt size_t oldcsize;
2932 1.8 yamt size_t newcsize;
2933 1.8 yamt
2934 1.8 yamt newcsize = CHUNK_CEILING(size);
2935 1.8 yamt oldcsize = CHUNK_CEILING(oldsize);
2936 1.8 yamt assert(oldcsize != newcsize);
2937 1.8 yamt if (newcsize == 0) {
2938 1.8 yamt /* size_t wrap-around */
2939 1.8 yamt return (NULL);
2940 1.8 yamt }
2941 1.21 enami
2942 1.21 enami /*
2943 1.21 enami * Remove the old region from the tree now. If mremap()
2944 1.21 enami * returns the region to the system, other thread may
2945 1.21 enami * map it for same huge allocation and insert it to the
2946 1.21 enami * tree before we acquire the mutex lock again.
2947 1.21 enami */
2948 1.21 enami malloc_mutex_lock(&chunks_mtx);
2949 1.21 enami key.chunk = __DECONST(void *, ptr);
2950 1.21 enami node = RB_FIND(chunk_tree_s, &huge, &key);
2951 1.21 enami assert(node != NULL);
2952 1.21 enami assert(node->chunk == ptr);
2953 1.21 enami assert(node->size == oldcsize);
2954 1.21 enami RB_REMOVE(chunk_tree_s, &huge, node);
2955 1.21 enami malloc_mutex_unlock(&chunks_mtx);
2956 1.21 enami
2957 1.8 yamt newptr = mremap(ptr, oldcsize, NULL, newcsize,
2958 1.8 yamt MAP_ALIGNED(chunksize_2pow));
2959 1.21 enami if (newptr == MAP_FAILED) {
2960 1.21 enami /* We still own the old region. */
2961 1.21 enami malloc_mutex_lock(&chunks_mtx);
2962 1.21 enami RB_INSERT(chunk_tree_s, &huge, node);
2963 1.21 enami malloc_mutex_unlock(&chunks_mtx);
2964 1.21 enami } else {
2965 1.8 yamt assert(CHUNK_ADDR2BASE(newptr) == newptr);
2966 1.8 yamt
2967 1.21 enami /* Insert new or resized old region. */
2968 1.8 yamt malloc_mutex_lock(&chunks_mtx);
2969 1.8 yamt node->size = newcsize;
2970 1.21 enami node->chunk = newptr;
2971 1.21 enami RB_INSERT(chunk_tree_s, &huge, node);
2972 1.8 yamt #ifdef MALLOC_STATS
2973 1.8 yamt huge_nralloc++;
2974 1.8 yamt huge_allocated += newcsize - oldcsize;
2975 1.8 yamt if (newcsize > oldcsize) {
2976 1.8 yamt stats_chunks.curchunks +=
2977 1.8 yamt (newcsize - oldcsize) / chunksize;
2978 1.8 yamt if (stats_chunks.curchunks >
2979 1.8 yamt stats_chunks.highchunks)
2980 1.8 yamt stats_chunks.highchunks =
2981 1.8 yamt stats_chunks.curchunks;
2982 1.8 yamt } else {
2983 1.8 yamt stats_chunks.curchunks -=
2984 1.8 yamt (oldcsize - newcsize) / chunksize;
2985 1.8 yamt }
2986 1.8 yamt #endif
2987 1.8 yamt malloc_mutex_unlock(&chunks_mtx);
2988 1.8 yamt
2989 1.8 yamt if (opt_junk && size < oldsize) {
2990 1.8 yamt memset((void *)((uintptr_t)newptr + size), 0x5a,
2991 1.8 yamt newcsize - size);
2992 1.8 yamt } else if (opt_zero && size > oldsize) {
2993 1.8 yamt memset((void *)((uintptr_t)newptr + oldsize), 0,
2994 1.8 yamt size - oldsize);
2995 1.8 yamt }
2996 1.8 yamt return (newptr);
2997 1.8 yamt }
2998 1.8 yamt }
2999 1.8 yamt
3000 1.1 ad /*
3001 1.1 ad * If we get here, then size and oldsize are different enough that we
3002 1.1 ad * need to use a different size class. In that case, fall back to
3003 1.1 ad * allocating new space and copying.
3004 1.1 ad */
3005 1.1 ad ret = huge_malloc(size);
3006 1.1 ad if (ret == NULL)
3007 1.1 ad return (NULL);
3008 1.1 ad
3009 1.1 ad if (CHUNK_ADDR2BASE(ptr) == ptr) {
3010 1.1 ad /* The old allocation is a chunk. */
3011 1.1 ad if (size < oldsize)
3012 1.1 ad memcpy(ret, ptr, size);
3013 1.1 ad else
3014 1.1 ad memcpy(ret, ptr, oldsize);
3015 1.1 ad } else {
3016 1.1 ad /* The old allocation is a region. */
3017 1.1 ad assert(oldsize < size);
3018 1.1 ad memcpy(ret, ptr, oldsize);
3019 1.1 ad }
3020 1.1 ad idalloc(ptr);
3021 1.1 ad return (ret);
3022 1.1 ad }
3023 1.1 ad
3024 1.1 ad static void
3025 1.1 ad huge_dalloc(void *ptr)
3026 1.1 ad {
3027 1.1 ad chunk_node_t key;
3028 1.1 ad chunk_node_t *node;
3029 1.1 ad
3030 1.1 ad malloc_mutex_lock(&chunks_mtx);
3031 1.1 ad
3032 1.1 ad /* Extract from tree of huge allocations. */
3033 1.1 ad key.chunk = ptr;
3034 1.1 ad node = RB_FIND(chunk_tree_s, &huge, &key);
3035 1.1 ad assert(node != NULL);
3036 1.1 ad assert(node->chunk == ptr);
3037 1.1 ad RB_REMOVE(chunk_tree_s, &huge, node);
3038 1.1 ad
3039 1.1 ad #ifdef MALLOC_STATS
3040 1.1 ad huge_ndalloc++;
3041 1.1 ad huge_allocated -= node->size;
3042 1.1 ad #endif
3043 1.1 ad
3044 1.1 ad malloc_mutex_unlock(&chunks_mtx);
3045 1.1 ad
3046 1.1 ad /* Unmap chunk. */
3047 1.1 ad #ifdef USE_BRK
3048 1.1 ad if (opt_junk)
3049 1.1 ad memset(node->chunk, 0x5a, node->size);
3050 1.1 ad #endif
3051 1.1 ad chunk_dealloc(node->chunk, node->size);
3052 1.1 ad
3053 1.1 ad base_chunk_node_dealloc(node);
3054 1.1 ad }
3055 1.1 ad
3056 1.1 ad static void *
3057 1.1 ad imalloc(size_t size)
3058 1.1 ad {
3059 1.1 ad void *ret;
3060 1.1 ad
3061 1.1 ad assert(size != 0);
3062 1.1 ad
3063 1.1 ad if (size <= arena_maxclass)
3064 1.1 ad ret = arena_malloc(choose_arena(), size);
3065 1.1 ad else
3066 1.1 ad ret = huge_malloc(size);
3067 1.1 ad
3068 1.1 ad return (ret);
3069 1.1 ad }
3070 1.1 ad
3071 1.1 ad static void *
3072 1.1 ad ipalloc(size_t alignment, size_t size)
3073 1.1 ad {
3074 1.1 ad void *ret;
3075 1.1 ad size_t ceil_size;
3076 1.1 ad
3077 1.1 ad /*
3078 1.1 ad * Round size up to the nearest multiple of alignment.
3079 1.1 ad *
3080 1.1 ad * This done, we can take advantage of the fact that for each small
3081 1.1 ad * size class, every object is aligned at the smallest power of two
3082 1.1 ad * that is non-zero in the base two representation of the size. For
3083 1.1 ad * example:
3084 1.1 ad *
3085 1.1 ad * Size | Base 2 | Minimum alignment
3086 1.1 ad * -----+----------+------------------
3087 1.1 ad * 96 | 1100000 | 32
3088 1.1 ad * 144 | 10100000 | 32
3089 1.1 ad * 192 | 11000000 | 64
3090 1.1 ad *
3091 1.1 ad * Depending on runtime settings, it is possible that arena_malloc()
3092 1.1 ad * will further round up to a power of two, but that never causes
3093 1.1 ad * correctness issues.
3094 1.1 ad */
3095 1.1 ad ceil_size = (size + (alignment - 1)) & (-alignment);
3096 1.1 ad /*
3097 1.1 ad * (ceil_size < size) protects against the combination of maximal
3098 1.1 ad * alignment and size greater than maximal alignment.
3099 1.1 ad */
3100 1.1 ad if (ceil_size < size) {
3101 1.1 ad /* size_t overflow. */
3102 1.1 ad return (NULL);
3103 1.1 ad }
3104 1.1 ad
3105 1.1 ad if (ceil_size <= pagesize || (alignment <= pagesize
3106 1.1 ad && ceil_size <= arena_maxclass))
3107 1.1 ad ret = arena_malloc(choose_arena(), ceil_size);
3108 1.1 ad else {
3109 1.1 ad size_t run_size;
3110 1.1 ad
3111 1.1 ad /*
3112 1.1 ad * We can't achieve sub-page alignment, so round up alignment
3113 1.1 ad * permanently; it makes later calculations simpler.
3114 1.1 ad */
3115 1.1 ad alignment = PAGE_CEILING(alignment);
3116 1.1 ad ceil_size = PAGE_CEILING(size);
3117 1.1 ad /*
3118 1.1 ad * (ceil_size < size) protects against very large sizes within
3119 1.1 ad * pagesize of SIZE_T_MAX.
3120 1.1 ad *
3121 1.1 ad * (ceil_size + alignment < ceil_size) protects against the
3122 1.1 ad * combination of maximal alignment and ceil_size large enough
3123 1.1 ad * to cause overflow. This is similar to the first overflow
3124 1.1 ad * check above, but it needs to be repeated due to the new
3125 1.1 ad * ceil_size value, which may now be *equal* to maximal
3126 1.1 ad * alignment, whereas before we only detected overflow if the
3127 1.1 ad * original size was *greater* than maximal alignment.
3128 1.1 ad */
3129 1.1 ad if (ceil_size < size || ceil_size + alignment < ceil_size) {
3130 1.1 ad /* size_t overflow. */
3131 1.1 ad return (NULL);
3132 1.1 ad }
3133 1.1 ad
3134 1.1 ad /*
3135 1.1 ad * Calculate the size of the over-size run that arena_palloc()
3136 1.1 ad * would need to allocate in order to guarantee the alignment.
3137 1.1 ad */
3138 1.1 ad if (ceil_size >= alignment)
3139 1.1 ad run_size = ceil_size + alignment - pagesize;
3140 1.1 ad else {
3141 1.1 ad /*
3142 1.1 ad * It is possible that (alignment << 1) will cause
3143 1.1 ad * overflow, but it doesn't matter because we also
3144 1.1 ad * subtract pagesize, which in the case of overflow
3145 1.1 ad * leaves us with a very large run_size. That causes
3146 1.1 ad * the first conditional below to fail, which means
3147 1.1 ad * that the bogus run_size value never gets used for
3148 1.1 ad * anything important.
3149 1.1 ad */
3150 1.1 ad run_size = (alignment << 1) - pagesize;
3151 1.1 ad }
3152 1.1 ad
3153 1.1 ad if (run_size <= arena_maxclass) {
3154 1.1 ad ret = arena_palloc(choose_arena(), alignment, ceil_size,
3155 1.1 ad run_size);
3156 1.1 ad } else if (alignment <= chunksize)
3157 1.1 ad ret = huge_malloc(ceil_size);
3158 1.1 ad else
3159 1.1 ad ret = huge_palloc(alignment, ceil_size);
3160 1.1 ad }
3161 1.1 ad
3162 1.1 ad assert(((uintptr_t)ret & (alignment - 1)) == 0);
3163 1.1 ad return (ret);
3164 1.1 ad }
3165 1.1 ad
3166 1.1 ad static void *
3167 1.1 ad icalloc(size_t size)
3168 1.1 ad {
3169 1.1 ad void *ret;
3170 1.1 ad
3171 1.1 ad if (size <= arena_maxclass) {
3172 1.1 ad ret = arena_malloc(choose_arena(), size);
3173 1.1 ad if (ret == NULL)
3174 1.1 ad return (NULL);
3175 1.1 ad memset(ret, 0, size);
3176 1.1 ad } else {
3177 1.1 ad /*
3178 1.1 ad * The virtual memory system provides zero-filled pages, so
3179 1.1 ad * there is no need to do so manually, unless opt_junk is
3180 1.1 ad * enabled, in which case huge_malloc() fills huge allocations
3181 1.1 ad * with junk.
3182 1.1 ad */
3183 1.1 ad ret = huge_malloc(size);
3184 1.1 ad if (ret == NULL)
3185 1.1 ad return (NULL);
3186 1.1 ad
3187 1.1 ad if (opt_junk)
3188 1.1 ad memset(ret, 0, size);
3189 1.1 ad #ifdef USE_BRK
3190 1.1 ad else if ((uintptr_t)ret >= (uintptr_t)brk_base
3191 1.1 ad && (uintptr_t)ret < (uintptr_t)brk_max) {
3192 1.1 ad /*
3193 1.1 ad * This may be a re-used brk chunk. Therefore, zero
3194 1.1 ad * the memory.
3195 1.1 ad */
3196 1.1 ad memset(ret, 0, size);
3197 1.1 ad }
3198 1.1 ad #endif
3199 1.1 ad }
3200 1.1 ad
3201 1.1 ad return (ret);
3202 1.1 ad }
3203 1.1 ad
3204 1.1 ad static size_t
3205 1.1 ad isalloc(const void *ptr)
3206 1.1 ad {
3207 1.1 ad size_t ret;
3208 1.1 ad arena_chunk_t *chunk;
3209 1.1 ad
3210 1.1 ad assert(ptr != NULL);
3211 1.1 ad
3212 1.1 ad chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
3213 1.1 ad if (chunk != ptr) {
3214 1.1 ad /* Region. */
3215 1.1 ad assert(chunk->arena->magic == ARENA_MAGIC);
3216 1.1 ad
3217 1.1 ad ret = arena_salloc(ptr);
3218 1.1 ad } else {
3219 1.1 ad chunk_node_t *node, key;
3220 1.1 ad
3221 1.1 ad /* Chunk (huge allocation). */
3222 1.1 ad
3223 1.1 ad malloc_mutex_lock(&chunks_mtx);
3224 1.1 ad
3225 1.1 ad /* Extract from tree of huge allocations. */
3226 1.1 ad key.chunk = __DECONST(void *, ptr);
3227 1.1 ad node = RB_FIND(chunk_tree_s, &huge, &key);
3228 1.1 ad assert(node != NULL);
3229 1.1 ad
3230 1.1 ad ret = node->size;
3231 1.1 ad
3232 1.1 ad malloc_mutex_unlock(&chunks_mtx);
3233 1.1 ad }
3234 1.1 ad
3235 1.1 ad return (ret);
3236 1.1 ad }
3237 1.1 ad
3238 1.1 ad static void *
3239 1.1 ad iralloc(void *ptr, size_t size)
3240 1.1 ad {
3241 1.1 ad void *ret;
3242 1.1 ad size_t oldsize;
3243 1.1 ad
3244 1.1 ad assert(ptr != NULL);
3245 1.1 ad assert(size != 0);
3246 1.1 ad
3247 1.1 ad oldsize = isalloc(ptr);
3248 1.1 ad
3249 1.1 ad if (size <= arena_maxclass)
3250 1.1 ad ret = arena_ralloc(ptr, size, oldsize);
3251 1.1 ad else
3252 1.1 ad ret = huge_ralloc(ptr, size, oldsize);
3253 1.1 ad
3254 1.1 ad return (ret);
3255 1.1 ad }
3256 1.1 ad
3257 1.1 ad static void
3258 1.1 ad idalloc(void *ptr)
3259 1.1 ad {
3260 1.1 ad arena_chunk_t *chunk;
3261 1.1 ad
3262 1.1 ad assert(ptr != NULL);
3263 1.1 ad
3264 1.1 ad chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
3265 1.1 ad if (chunk != ptr) {
3266 1.1 ad /* Region. */
3267 1.1 ad arena_dalloc(chunk->arena, chunk, ptr);
3268 1.1 ad } else
3269 1.1 ad huge_dalloc(ptr);
3270 1.1 ad }
3271 1.1 ad
3272 1.1 ad static void
3273 1.1 ad malloc_print_stats(void)
3274 1.1 ad {
3275 1.1 ad
3276 1.1 ad if (opt_print_stats) {
3277 1.1 ad char s[UMAX2S_BUFSIZE];
3278 1.1 ad _malloc_message("___ Begin malloc statistics ___\n", "", "",
3279 1.1 ad "");
3280 1.1 ad _malloc_message("Assertions ",
3281 1.1 ad #ifdef NDEBUG
3282 1.1 ad "disabled",
3283 1.1 ad #else
3284 1.1 ad "enabled",
3285 1.1 ad #endif
3286 1.1 ad "\n", "");
3287 1.1 ad _malloc_message("Boolean MALLOC_OPTIONS: ",
3288 1.1 ad opt_abort ? "A" : "a",
3289 1.1 ad opt_junk ? "J" : "j",
3290 1.1 ad opt_hint ? "H" : "h");
3291 1.1 ad _malloc_message(opt_utrace ? "PU" : "Pu",
3292 1.1 ad opt_sysv ? "V" : "v",
3293 1.1 ad opt_xmalloc ? "X" : "x",
3294 1.1 ad opt_zero ? "Z\n" : "z\n");
3295 1.1 ad
3296 1.28 christos _malloc_message("CPUs: ", size_t2s(ncpus, s), "\n", "");
3297 1.28 christos _malloc_message("Max arenas: ", size_t2s(narenas, s), "\n", "");
3298 1.28 christos _malloc_message("Pointer size: ", size_t2s(sizeof(void *), s),
3299 1.1 ad "\n", "");
3300 1.28 christos _malloc_message("Quantum size: ", size_t2s(quantum, s), "\n", "");
3301 1.28 christos _malloc_message("Max small size: ", size_t2s(small_max, s), "\n",
3302 1.1 ad "");
3303 1.1 ad
3304 1.28 christos _malloc_message("Chunk size: ", size_t2s(chunksize, s), "", "");
3305 1.28 christos _malloc_message(" (2^", size_t2s((size_t)opt_chunk_2pow, s),
3306 1.27 matt ")\n", "");
3307 1.1 ad
3308 1.1 ad #ifdef MALLOC_STATS
3309 1.1 ad {
3310 1.1 ad size_t allocated, mapped;
3311 1.1 ad unsigned i;
3312 1.1 ad arena_t *arena;
3313 1.1 ad
3314 1.1 ad /* Calculate and print allocated/mapped stats. */
3315 1.1 ad
3316 1.1 ad /* arenas. */
3317 1.1 ad for (i = 0, allocated = 0; i < narenas; i++) {
3318 1.1 ad if (arenas[i] != NULL) {
3319 1.1 ad malloc_mutex_lock(&arenas[i]->mtx);
3320 1.1 ad allocated +=
3321 1.1 ad arenas[i]->stats.allocated_small;
3322 1.1 ad allocated +=
3323 1.1 ad arenas[i]->stats.allocated_large;
3324 1.1 ad malloc_mutex_unlock(&arenas[i]->mtx);
3325 1.1 ad }
3326 1.1 ad }
3327 1.1 ad
3328 1.1 ad /* huge/base. */
3329 1.1 ad malloc_mutex_lock(&chunks_mtx);
3330 1.1 ad allocated += huge_allocated;
3331 1.1 ad mapped = stats_chunks.curchunks * chunksize;
3332 1.1 ad malloc_mutex_unlock(&chunks_mtx);
3333 1.1 ad
3334 1.1 ad malloc_mutex_lock(&base_mtx);
3335 1.1 ad mapped += base_mapped;
3336 1.1 ad malloc_mutex_unlock(&base_mtx);
3337 1.1 ad
3338 1.1 ad malloc_printf("Allocated: %zu, mapped: %zu\n",
3339 1.1 ad allocated, mapped);
3340 1.1 ad
3341 1.1 ad /* Print chunk stats. */
3342 1.1 ad {
3343 1.1 ad chunk_stats_t chunks_stats;
3344 1.1 ad
3345 1.1 ad malloc_mutex_lock(&chunks_mtx);
3346 1.1 ad chunks_stats = stats_chunks;
3347 1.1 ad malloc_mutex_unlock(&chunks_mtx);
3348 1.1 ad
3349 1.1 ad malloc_printf("chunks: nchunks "
3350 1.1 ad "highchunks curchunks\n");
3351 1.1 ad malloc_printf(" %13llu%13lu%13lu\n",
3352 1.1 ad chunks_stats.nchunks,
3353 1.1 ad chunks_stats.highchunks,
3354 1.1 ad chunks_stats.curchunks);
3355 1.1 ad }
3356 1.1 ad
3357 1.1 ad /* Print chunk stats. */
3358 1.1 ad malloc_printf(
3359 1.8 yamt "huge: nmalloc ndalloc "
3360 1.8 yamt "nralloc allocated\n");
3361 1.8 yamt malloc_printf(" %12llu %12llu %12llu %12zu\n",
3362 1.8 yamt huge_nmalloc, huge_ndalloc, huge_nralloc,
3363 1.8 yamt huge_allocated);
3364 1.1 ad
3365 1.1 ad /* Print stats for each arena. */
3366 1.1 ad for (i = 0; i < narenas; i++) {
3367 1.1 ad arena = arenas[i];
3368 1.1 ad if (arena != NULL) {
3369 1.1 ad malloc_printf(
3370 1.2 ad "\narenas[%u] @ %p\n", i, arena);
3371 1.1 ad malloc_mutex_lock(&arena->mtx);
3372 1.1 ad stats_print(arena);
3373 1.1 ad malloc_mutex_unlock(&arena->mtx);
3374 1.1 ad }
3375 1.1 ad }
3376 1.1 ad }
3377 1.1 ad #endif /* #ifdef MALLOC_STATS */
3378 1.1 ad _malloc_message("--- End malloc statistics ---\n", "", "", "");
3379 1.1 ad }
3380 1.1 ad }
3381 1.1 ad
3382 1.1 ad /*
3383 1.1 ad * FreeBSD's pthreads implementation calls malloc(3), so the malloc
3384 1.1 ad * implementation has to take pains to avoid infinite recursion during
3385 1.1 ad * initialization.
3386 1.1 ad */
3387 1.1 ad static inline bool
3388 1.1 ad malloc_init(void)
3389 1.1 ad {
3390 1.1 ad
3391 1.1 ad if (malloc_initialized == false)
3392 1.1 ad return (malloc_init_hard());
3393 1.1 ad
3394 1.1 ad return (false);
3395 1.1 ad }
3396 1.1 ad
3397 1.1 ad static bool
3398 1.1 ad malloc_init_hard(void)
3399 1.1 ad {
3400 1.1 ad unsigned i, j;
3401 1.9 christos ssize_t linklen;
3402 1.1 ad char buf[PATH_MAX + 1];
3403 1.2 ad const char *opts = "";
3404 1.23 christos int serrno;
3405 1.1 ad
3406 1.1 ad malloc_mutex_lock(&init_lock);
3407 1.1 ad if (malloc_initialized) {
3408 1.1 ad /*
3409 1.1 ad * Another thread initialized the allocator before this one
3410 1.1 ad * acquired init_lock.
3411 1.1 ad */
3412 1.1 ad malloc_mutex_unlock(&init_lock);
3413 1.1 ad return (false);
3414 1.1 ad }
3415 1.1 ad
3416 1.24 christos serrno = errno;
3417 1.1 ad /* Get number of CPUs. */
3418 1.1 ad {
3419 1.1 ad int mib[2];
3420 1.1 ad size_t len;
3421 1.1 ad
3422 1.1 ad mib[0] = CTL_HW;
3423 1.1 ad mib[1] = HW_NCPU;
3424 1.1 ad len = sizeof(ncpus);
3425 1.1 ad if (sysctl(mib, 2, &ncpus, &len, (void *) 0, 0) == -1) {
3426 1.1 ad /* Error. */
3427 1.1 ad ncpus = 1;
3428 1.1 ad }
3429 1.1 ad }
3430 1.1 ad
3431 1.1 ad /* Get page size. */
3432 1.1 ad {
3433 1.1 ad long result;
3434 1.1 ad
3435 1.1 ad result = sysconf(_SC_PAGESIZE);
3436 1.1 ad assert(result != -1);
3437 1.1 ad pagesize = (unsigned) result;
3438 1.1 ad
3439 1.1 ad /*
3440 1.1 ad * We assume that pagesize is a power of 2 when calculating
3441 1.1 ad * pagesize_mask and pagesize_2pow.
3442 1.1 ad */
3443 1.1 ad assert(((result - 1) & result) == 0);
3444 1.1 ad pagesize_mask = result - 1;
3445 1.1 ad pagesize_2pow = ffs((int)result) - 1;
3446 1.1 ad }
3447 1.1 ad
3448 1.1 ad for (i = 0; i < 3; i++) {
3449 1.1 ad /* Get runtime configuration. */
3450 1.1 ad switch (i) {
3451 1.1 ad case 0:
3452 1.1 ad if ((linklen = readlink("/etc/malloc.conf", buf,
3453 1.1 ad sizeof(buf) - 1)) != -1) {
3454 1.1 ad /*
3455 1.1 ad * Use the contents of the "/etc/malloc.conf"
3456 1.1 ad * symbolic link's name.
3457 1.1 ad */
3458 1.1 ad buf[linklen] = '\0';
3459 1.1 ad opts = buf;
3460 1.1 ad } else {
3461 1.1 ad /* No configuration specified. */
3462 1.1 ad buf[0] = '\0';
3463 1.1 ad opts = buf;
3464 1.1 ad }
3465 1.1 ad break;
3466 1.1 ad case 1:
3467 1.18 ad if ((opts = getenv("MALLOC_OPTIONS")) != NULL &&
3468 1.18 ad issetugid() == 0) {
3469 1.1 ad /*
3470 1.1 ad * Do nothing; opts is already initialized to
3471 1.1 ad * the value of the MALLOC_OPTIONS environment
3472 1.1 ad * variable.
3473 1.1 ad */
3474 1.1 ad } else {
3475 1.1 ad /* No configuration specified. */
3476 1.1 ad buf[0] = '\0';
3477 1.1 ad opts = buf;
3478 1.1 ad }
3479 1.1 ad break;
3480 1.1 ad case 2:
3481 1.1 ad if (_malloc_options != NULL) {
3482 1.1 ad /*
3483 1.1 ad * Use options that were compiled into the program.
3484 1.1 ad */
3485 1.1 ad opts = _malloc_options;
3486 1.1 ad } else {
3487 1.1 ad /* No configuration specified. */
3488 1.1 ad buf[0] = '\0';
3489 1.1 ad opts = buf;
3490 1.1 ad }
3491 1.1 ad break;
3492 1.1 ad default:
3493 1.1 ad /* NOTREACHED */
3494 1.7 yamt /* LINTED */
3495 1.1 ad assert(false);
3496 1.1 ad }
3497 1.1 ad
3498 1.1 ad for (j = 0; opts[j] != '\0'; j++) {
3499 1.1 ad switch (opts[j]) {
3500 1.1 ad case 'a':
3501 1.1 ad opt_abort = false;
3502 1.1 ad break;
3503 1.1 ad case 'A':
3504 1.1 ad opt_abort = true;
3505 1.1 ad break;
3506 1.1 ad case 'h':
3507 1.1 ad opt_hint = false;
3508 1.1 ad break;
3509 1.1 ad case 'H':
3510 1.1 ad opt_hint = true;
3511 1.1 ad break;
3512 1.1 ad case 'j':
3513 1.1 ad opt_junk = false;
3514 1.1 ad break;
3515 1.1 ad case 'J':
3516 1.1 ad opt_junk = true;
3517 1.1 ad break;
3518 1.1 ad case 'k':
3519 1.1 ad /*
3520 1.1 ad * Chunks always require at least one header
3521 1.1 ad * page, so chunks can never be smaller than
3522 1.1 ad * two pages.
3523 1.1 ad */
3524 1.1 ad if (opt_chunk_2pow > pagesize_2pow + 1)
3525 1.1 ad opt_chunk_2pow--;
3526 1.1 ad break;
3527 1.1 ad case 'K':
3528 1.20 lukem if (opt_chunk_2pow + 1 <
3529 1.20 lukem (int)(sizeof(size_t) << 3))
3530 1.1 ad opt_chunk_2pow++;
3531 1.1 ad break;
3532 1.1 ad case 'n':
3533 1.1 ad opt_narenas_lshift--;
3534 1.1 ad break;
3535 1.1 ad case 'N':
3536 1.1 ad opt_narenas_lshift++;
3537 1.1 ad break;
3538 1.1 ad case 'p':
3539 1.1 ad opt_print_stats = false;
3540 1.1 ad break;
3541 1.1 ad case 'P':
3542 1.1 ad opt_print_stats = true;
3543 1.1 ad break;
3544 1.1 ad case 'q':
3545 1.1 ad if (opt_quantum_2pow > QUANTUM_2POW_MIN)
3546 1.1 ad opt_quantum_2pow--;
3547 1.1 ad break;
3548 1.1 ad case 'Q':
3549 1.1 ad if (opt_quantum_2pow < pagesize_2pow - 1)
3550 1.1 ad opt_quantum_2pow++;
3551 1.1 ad break;
3552 1.1 ad case 's':
3553 1.1 ad if (opt_small_max_2pow > QUANTUM_2POW_MIN)
3554 1.1 ad opt_small_max_2pow--;
3555 1.1 ad break;
3556 1.1 ad case 'S':
3557 1.1 ad if (opt_small_max_2pow < pagesize_2pow - 1)
3558 1.1 ad opt_small_max_2pow++;
3559 1.1 ad break;
3560 1.1 ad case 'u':
3561 1.1 ad opt_utrace = false;
3562 1.1 ad break;
3563 1.1 ad case 'U':
3564 1.1 ad opt_utrace = true;
3565 1.1 ad break;
3566 1.1 ad case 'v':
3567 1.1 ad opt_sysv = false;
3568 1.1 ad break;
3569 1.1 ad case 'V':
3570 1.1 ad opt_sysv = true;
3571 1.1 ad break;
3572 1.1 ad case 'x':
3573 1.1 ad opt_xmalloc = false;
3574 1.1 ad break;
3575 1.1 ad case 'X':
3576 1.1 ad opt_xmalloc = true;
3577 1.1 ad break;
3578 1.1 ad case 'z':
3579 1.1 ad opt_zero = false;
3580 1.1 ad break;
3581 1.1 ad case 'Z':
3582 1.1 ad opt_zero = true;
3583 1.1 ad break;
3584 1.1 ad default: {
3585 1.1 ad char cbuf[2];
3586 1.55 skrll
3587 1.1 ad cbuf[0] = opts[j];
3588 1.1 ad cbuf[1] = '\0';
3589 1.16 christos _malloc_message(getprogname(),
3590 1.1 ad ": (malloc) Unsupported character in "
3591 1.1 ad "malloc options: '", cbuf, "'\n");
3592 1.1 ad }
3593 1.1 ad }
3594 1.1 ad }
3595 1.1 ad }
3596 1.24 christos errno = serrno;
3597 1.1 ad
3598 1.1 ad /* Take care to call atexit() only once. */
3599 1.1 ad if (opt_print_stats) {
3600 1.1 ad /* Print statistics at exit. */
3601 1.1 ad atexit(malloc_print_stats);
3602 1.1 ad }
3603 1.1 ad
3604 1.1 ad /* Set variables according to the value of opt_small_max_2pow. */
3605 1.1 ad if (opt_small_max_2pow < opt_quantum_2pow)
3606 1.1 ad opt_small_max_2pow = opt_quantum_2pow;
3607 1.1 ad small_max = (1 << opt_small_max_2pow);
3608 1.1 ad
3609 1.1 ad /* Set bin-related variables. */
3610 1.1 ad bin_maxclass = (pagesize >> 1);
3611 1.1 ad assert(opt_quantum_2pow >= TINY_MIN_2POW);
3612 1.9 christos ntbins = (unsigned)(opt_quantum_2pow - TINY_MIN_2POW);
3613 1.1 ad assert(ntbins <= opt_quantum_2pow);
3614 1.9 christos nqbins = (unsigned)(small_max >> opt_quantum_2pow);
3615 1.9 christos nsbins = (unsigned)(pagesize_2pow - opt_small_max_2pow - 1);
3616 1.1 ad
3617 1.1 ad /* Set variables according to the value of opt_quantum_2pow. */
3618 1.1 ad quantum = (1 << opt_quantum_2pow);
3619 1.1 ad quantum_mask = quantum - 1;
3620 1.1 ad if (ntbins > 0)
3621 1.1 ad small_min = (quantum >> 1) + 1;
3622 1.1 ad else
3623 1.1 ad small_min = 1;
3624 1.1 ad assert(small_min <= quantum);
3625 1.1 ad
3626 1.1 ad /* Set variables according to the value of opt_chunk_2pow. */
3627 1.1 ad chunksize = (1LU << opt_chunk_2pow);
3628 1.1 ad chunksize_mask = chunksize - 1;
3629 1.9 christos chunksize_2pow = (unsigned)opt_chunk_2pow;
3630 1.9 christos chunk_npages = (unsigned)(chunksize >> pagesize_2pow);
3631 1.1 ad {
3632 1.1 ad unsigned header_size;
3633 1.1 ad
3634 1.9 christos header_size = (unsigned)(sizeof(arena_chunk_t) +
3635 1.9 christos (sizeof(arena_chunk_map_t) * (chunk_npages - 1)));
3636 1.1 ad arena_chunk_header_npages = (header_size >> pagesize_2pow);
3637 1.1 ad if ((header_size & pagesize_mask) != 0)
3638 1.1 ad arena_chunk_header_npages++;
3639 1.1 ad }
3640 1.1 ad arena_maxclass = chunksize - (arena_chunk_header_npages <<
3641 1.1 ad pagesize_2pow);
3642 1.1 ad
3643 1.1 ad UTRACE(0, 0, 0);
3644 1.1 ad
3645 1.1 ad #ifdef MALLOC_STATS
3646 1.1 ad memset(&stats_chunks, 0, sizeof(chunk_stats_t));
3647 1.1 ad #endif
3648 1.1 ad
3649 1.1 ad /* Various sanity checks that regard configuration. */
3650 1.1 ad assert(quantum >= sizeof(void *));
3651 1.1 ad assert(quantum <= pagesize);
3652 1.1 ad assert(chunksize >= pagesize);
3653 1.1 ad assert(quantum * 4 <= chunksize);
3654 1.1 ad
3655 1.1 ad /* Initialize chunks data. */
3656 1.1 ad malloc_mutex_init(&chunks_mtx);
3657 1.1 ad RB_INIT(&huge);
3658 1.1 ad #ifdef USE_BRK
3659 1.1 ad malloc_mutex_init(&brk_mtx);
3660 1.1 ad brk_base = sbrk(0);
3661 1.1 ad brk_prev = brk_base;
3662 1.1 ad brk_max = brk_base;
3663 1.1 ad #endif
3664 1.1 ad #ifdef MALLOC_STATS
3665 1.1 ad huge_nmalloc = 0;
3666 1.1 ad huge_ndalloc = 0;
3667 1.8 yamt huge_nralloc = 0;
3668 1.1 ad huge_allocated = 0;
3669 1.1 ad #endif
3670 1.1 ad RB_INIT(&old_chunks);
3671 1.1 ad
3672 1.1 ad /* Initialize base allocation data structures. */
3673 1.1 ad #ifdef MALLOC_STATS
3674 1.1 ad base_mapped = 0;
3675 1.1 ad #endif
3676 1.1 ad #ifdef USE_BRK
3677 1.1 ad /*
3678 1.1 ad * Allocate a base chunk here, since it doesn't actually have to be
3679 1.1 ad * chunk-aligned. Doing this before allocating any other chunks allows
3680 1.1 ad * the use of space that would otherwise be wasted.
3681 1.1 ad */
3682 1.1 ad base_pages_alloc(0);
3683 1.1 ad #endif
3684 1.1 ad base_chunk_nodes = NULL;
3685 1.1 ad malloc_mutex_init(&base_mtx);
3686 1.1 ad
3687 1.1 ad if (ncpus > 1) {
3688 1.1 ad /*
3689 1.1 ad * For SMP systems, create four times as many arenas as there
3690 1.1 ad * are CPUs by default.
3691 1.1 ad */
3692 1.1 ad opt_narenas_lshift += 2;
3693 1.1 ad }
3694 1.1 ad
3695 1.1 ad /* Determine how many arenas to use. */
3696 1.1 ad narenas = ncpus;
3697 1.1 ad if (opt_narenas_lshift > 0) {
3698 1.1 ad if ((narenas << opt_narenas_lshift) > narenas)
3699 1.1 ad narenas <<= opt_narenas_lshift;
3700 1.1 ad /*
3701 1.1 ad * Make sure not to exceed the limits of what base_malloc()
3702 1.1 ad * can handle.
3703 1.1 ad */
3704 1.1 ad if (narenas * sizeof(arena_t *) > chunksize)
3705 1.9 christos narenas = (unsigned)(chunksize / sizeof(arena_t *));
3706 1.1 ad } else if (opt_narenas_lshift < 0) {
3707 1.1 ad if ((narenas << opt_narenas_lshift) < narenas)
3708 1.1 ad narenas <<= opt_narenas_lshift;
3709 1.15 ad /* Make sure there is at least one arena. */
3710 1.15 ad if (narenas == 0)
3711 1.15 ad narenas = 1;
3712 1.1 ad }
3713 1.1 ad
3714 1.1 ad next_arena = 0;
3715 1.1 ad
3716 1.1 ad /* Allocate and initialize arenas. */
3717 1.1 ad arenas = (arena_t **)base_alloc(sizeof(arena_t *) * narenas);
3718 1.1 ad if (arenas == NULL) {
3719 1.1 ad malloc_mutex_unlock(&init_lock);
3720 1.1 ad return (true);
3721 1.1 ad }
3722 1.1 ad /*
3723 1.1 ad * Zero the array. In practice, this should always be pre-zeroed,
3724 1.1 ad * since it was just mmap()ed, but let's be sure.
3725 1.1 ad */
3726 1.1 ad memset(arenas, 0, sizeof(arena_t *) * narenas);
3727 1.1 ad
3728 1.1 ad /*
3729 1.1 ad * Initialize one arena here. The rest are lazily created in
3730 1.1 ad * arena_choose_hard().
3731 1.1 ad */
3732 1.1 ad arenas_extend(0);
3733 1.1 ad if (arenas[0] == NULL) {
3734 1.1 ad malloc_mutex_unlock(&init_lock);
3735 1.1 ad return (true);
3736 1.1 ad }
3737 1.1 ad
3738 1.1 ad malloc_mutex_init(&arenas_mtx);
3739 1.1 ad
3740 1.1 ad malloc_initialized = true;
3741 1.1 ad malloc_mutex_unlock(&init_lock);
3742 1.1 ad return (false);
3743 1.1 ad }
3744 1.1 ad
3745 1.1 ad /*
3746 1.1 ad * End general internal functions.
3747 1.1 ad */
3748 1.1 ad /******************************************************************************/
3749 1.1 ad /*
3750 1.1 ad * Begin malloc(3)-compatible functions.
3751 1.1 ad */
3752 1.1 ad
3753 1.1 ad void *
3754 1.1 ad malloc(size_t size)
3755 1.1 ad {
3756 1.1 ad void *ret;
3757 1.1 ad
3758 1.1 ad if (malloc_init()) {
3759 1.1 ad ret = NULL;
3760 1.1 ad goto RETURN;
3761 1.1 ad }
3762 1.1 ad
3763 1.1 ad if (size == 0) {
3764 1.1 ad if (opt_sysv == false)
3765 1.1 ad size = 1;
3766 1.1 ad else {
3767 1.1 ad ret = NULL;
3768 1.1 ad goto RETURN;
3769 1.1 ad }
3770 1.1 ad }
3771 1.1 ad
3772 1.1 ad ret = imalloc(size);
3773 1.1 ad
3774 1.1 ad RETURN:
3775 1.1 ad if (ret == NULL) {
3776 1.1 ad if (opt_xmalloc) {
3777 1.16 christos _malloc_message(getprogname(),
3778 1.1 ad ": (malloc) Error in malloc(): out of memory\n", "",
3779 1.1 ad "");
3780 1.1 ad abort();
3781 1.1 ad }
3782 1.1 ad errno = ENOMEM;
3783 1.1 ad }
3784 1.1 ad
3785 1.1 ad UTRACE(0, size, ret);
3786 1.1 ad return (ret);
3787 1.1 ad }
3788 1.1 ad
3789 1.1 ad int
3790 1.1 ad posix_memalign(void **memptr, size_t alignment, size_t size)
3791 1.1 ad {
3792 1.1 ad int ret;
3793 1.1 ad void *result;
3794 1.1 ad
3795 1.1 ad if (malloc_init())
3796 1.1 ad result = NULL;
3797 1.1 ad else {
3798 1.1 ad /* Make sure that alignment is a large enough power of 2. */
3799 1.1 ad if (((alignment - 1) & alignment) != 0
3800 1.1 ad || alignment < sizeof(void *)) {
3801 1.1 ad if (opt_xmalloc) {
3802 1.16 christos _malloc_message(getprogname(),
3803 1.1 ad ": (malloc) Error in posix_memalign(): "
3804 1.1 ad "invalid alignment\n", "", "");
3805 1.1 ad abort();
3806 1.1 ad }
3807 1.1 ad result = NULL;
3808 1.1 ad ret = EINVAL;
3809 1.1 ad goto RETURN;
3810 1.1 ad }
3811 1.1 ad
3812 1.1 ad result = ipalloc(alignment, size);
3813 1.1 ad }
3814 1.1 ad
3815 1.1 ad if (result == NULL) {
3816 1.1 ad if (opt_xmalloc) {
3817 1.16 christos _malloc_message(getprogname(),
3818 1.1 ad ": (malloc) Error in posix_memalign(): out of memory\n",
3819 1.1 ad "", "");
3820 1.1 ad abort();
3821 1.1 ad }
3822 1.1 ad ret = ENOMEM;
3823 1.1 ad goto RETURN;
3824 1.1 ad }
3825 1.1 ad
3826 1.1 ad *memptr = result;
3827 1.1 ad ret = 0;
3828 1.1 ad
3829 1.1 ad RETURN:
3830 1.1 ad UTRACE(0, size, result);
3831 1.1 ad return (ret);
3832 1.1 ad }
3833 1.1 ad
3834 1.1 ad void *
3835 1.1 ad calloc(size_t num, size_t size)
3836 1.1 ad {
3837 1.1 ad void *ret;
3838 1.1 ad size_t num_size;
3839 1.1 ad
3840 1.1 ad if (malloc_init()) {
3841 1.1 ad num_size = 0;
3842 1.1 ad ret = NULL;
3843 1.1 ad goto RETURN;
3844 1.1 ad }
3845 1.1 ad
3846 1.1 ad num_size = num * size;
3847 1.1 ad if (num_size == 0) {
3848 1.1 ad if ((opt_sysv == false) && ((num == 0) || (size == 0)))
3849 1.1 ad num_size = 1;
3850 1.1 ad else {
3851 1.1 ad ret = NULL;
3852 1.1 ad goto RETURN;
3853 1.1 ad }
3854 1.1 ad /*
3855 1.1 ad * Try to avoid division here. We know that it isn't possible to
3856 1.1 ad * overflow during multiplication if neither operand uses any of the
3857 1.1 ad * most significant half of the bits in a size_t.
3858 1.1 ad */
3859 1.2 ad } else if ((unsigned long long)((num | size) &
3860 1.2 ad ((unsigned long long)SIZE_T_MAX << (sizeof(size_t) << 2))) &&
3861 1.2 ad (num_size / size != num)) {
3862 1.1 ad /* size_t overflow. */
3863 1.1 ad ret = NULL;
3864 1.1 ad goto RETURN;
3865 1.1 ad }
3866 1.1 ad
3867 1.1 ad ret = icalloc(num_size);
3868 1.1 ad
3869 1.1 ad RETURN:
3870 1.1 ad if (ret == NULL) {
3871 1.1 ad if (opt_xmalloc) {
3872 1.16 christos _malloc_message(getprogname(),
3873 1.1 ad ": (malloc) Error in calloc(): out of memory\n", "",
3874 1.1 ad "");
3875 1.1 ad abort();
3876 1.1 ad }
3877 1.1 ad errno = ENOMEM;
3878 1.1 ad }
3879 1.1 ad
3880 1.1 ad UTRACE(0, num_size, ret);
3881 1.1 ad return (ret);
3882 1.1 ad }
3883 1.1 ad
3884 1.1 ad void *
3885 1.1 ad realloc(void *ptr, size_t size)
3886 1.1 ad {
3887 1.1 ad void *ret;
3888 1.1 ad
3889 1.1 ad if (size == 0) {
3890 1.1 ad if (opt_sysv == false)
3891 1.1 ad size = 1;
3892 1.1 ad else {
3893 1.1 ad if (ptr != NULL)
3894 1.1 ad idalloc(ptr);
3895 1.1 ad ret = NULL;
3896 1.1 ad goto RETURN;
3897 1.1 ad }
3898 1.1 ad }
3899 1.1 ad
3900 1.1 ad if (ptr != NULL) {
3901 1.1 ad assert(malloc_initialized);
3902 1.1 ad
3903 1.1 ad ret = iralloc(ptr, size);
3904 1.1 ad
3905 1.1 ad if (ret == NULL) {
3906 1.1 ad if (opt_xmalloc) {
3907 1.16 christos _malloc_message(getprogname(),
3908 1.1 ad ": (malloc) Error in realloc(): out of "
3909 1.1 ad "memory\n", "", "");
3910 1.1 ad abort();
3911 1.1 ad }
3912 1.1 ad errno = ENOMEM;
3913 1.1 ad }
3914 1.1 ad } else {
3915 1.1 ad if (malloc_init())
3916 1.1 ad ret = NULL;
3917 1.1 ad else
3918 1.1 ad ret = imalloc(size);
3919 1.1 ad
3920 1.1 ad if (ret == NULL) {
3921 1.1 ad if (opt_xmalloc) {
3922 1.16 christos _malloc_message(getprogname(),
3923 1.1 ad ": (malloc) Error in realloc(): out of "
3924 1.1 ad "memory\n", "", "");
3925 1.1 ad abort();
3926 1.1 ad }
3927 1.1 ad errno = ENOMEM;
3928 1.1 ad }
3929 1.1 ad }
3930 1.1 ad
3931 1.1 ad RETURN:
3932 1.1 ad UTRACE(ptr, size, ret);
3933 1.1 ad return (ret);
3934 1.1 ad }
3935 1.1 ad
3936 1.1 ad void
3937 1.1 ad free(void *ptr)
3938 1.1 ad {
3939 1.1 ad
3940 1.1 ad UTRACE(ptr, 0, 0);
3941 1.1 ad if (ptr != NULL) {
3942 1.1 ad assert(malloc_initialized);
3943 1.1 ad
3944 1.1 ad idalloc(ptr);
3945 1.1 ad }
3946 1.1 ad }
3947 1.1 ad
3948 1.1 ad /*
3949 1.1 ad * End malloc(3)-compatible functions.
3950 1.1 ad */
3951 1.1 ad /******************************************************************************/
3952 1.1 ad /*
3953 1.1 ad * Begin non-standard functions.
3954 1.1 ad */
3955 1.2 ad #ifndef __NetBSD__
3956 1.1 ad size_t
3957 1.1 ad malloc_usable_size(const void *ptr)
3958 1.1 ad {
3959 1.1 ad
3960 1.1 ad assert(ptr != NULL);
3961 1.1 ad
3962 1.1 ad return (isalloc(ptr));
3963 1.1 ad }
3964 1.2 ad #endif
3965 1.1 ad
3966 1.1 ad /*
3967 1.1 ad * End non-standard functions.
3968 1.1 ad */
3969 1.1 ad /******************************************************************************/
3970 1.1 ad /*
3971 1.1 ad * Begin library-private functions, used by threading libraries for protection
3972 1.1 ad * of malloc during fork(). These functions are only called if the program is
3973 1.1 ad * running in threaded mode, so there is no need to check whether the program
3974 1.1 ad * is threaded here.
3975 1.1 ad */
3976 1.1 ad
3977 1.1 ad void
3978 1.1 ad _malloc_prefork(void)
3979 1.1 ad {
3980 1.1 ad unsigned i;
3981 1.1 ad
3982 1.1 ad /* Acquire all mutexes in a safe order. */
3983 1.48 joerg malloc_mutex_lock(&init_lock);
3984 1.1 ad malloc_mutex_lock(&arenas_mtx);
3985 1.1 ad for (i = 0; i < narenas; i++) {
3986 1.1 ad if (arenas[i] != NULL)
3987 1.1 ad malloc_mutex_lock(&arenas[i]->mtx);
3988 1.1 ad }
3989 1.48 joerg malloc_mutex_lock(&chunks_mtx);
3990 1.1 ad malloc_mutex_lock(&base_mtx);
3991 1.48 joerg #ifdef USE_BRK
3992 1.48 joerg malloc_mutex_lock(&brk_mtx);
3993 1.48 joerg #endif
3994 1.1 ad }
3995 1.1 ad
3996 1.1 ad void
3997 1.1 ad _malloc_postfork(void)
3998 1.1 ad {
3999 1.1 ad unsigned i;
4000 1.1 ad
4001 1.1 ad /* Release all mutexes, now that fork() has completed. */
4002 1.48 joerg #ifdef USE_BRK
4003 1.48 joerg malloc_mutex_unlock(&brk_mtx);
4004 1.48 joerg #endif
4005 1.48 joerg malloc_mutex_unlock(&base_mtx);
4006 1.1 ad malloc_mutex_unlock(&chunks_mtx);
4007 1.1 ad
4008 1.48 joerg for (i = narenas; i-- > 0; ) {
4009 1.1 ad if (arenas[i] != NULL)
4010 1.1 ad malloc_mutex_unlock(&arenas[i]->mtx);
4011 1.1 ad }
4012 1.1 ad malloc_mutex_unlock(&arenas_mtx);
4013 1.48 joerg malloc_mutex_unlock(&init_lock);
4014 1.1 ad }
4015 1.1 ad
4016 1.53 joerg void
4017 1.53 joerg _malloc_postfork_child(void)
4018 1.53 joerg {
4019 1.53 joerg unsigned i;
4020 1.53 joerg
4021 1.53 joerg /* Release all mutexes, now that fork() has completed. */
4022 1.53 joerg #ifdef USE_BRK
4023 1.53 joerg malloc_mutex_init(&brk_mtx);
4024 1.53 joerg #endif
4025 1.53 joerg malloc_mutex_init(&base_mtx);
4026 1.53 joerg malloc_mutex_init(&chunks_mtx);
4027 1.53 joerg
4028 1.53 joerg for (i = narenas; i-- > 0; ) {
4029 1.53 joerg if (arenas[i] != NULL)
4030 1.53 joerg malloc_mutex_init(&arenas[i]->mtx);
4031 1.53 joerg }
4032 1.53 joerg malloc_mutex_init(&arenas_mtx);
4033 1.53 joerg malloc_mutex_init(&init_lock);
4034 1.53 joerg }
4035 1.53 joerg
4036 1.1 ad /*
4037 1.1 ad * End library-private functions.
4038 1.1 ad */
4039 1.1 ad /******************************************************************************/
4040