Home | History | Annotate | Line # | Download | only in stdlib
jemalloc.c revision 1.57
      1  1.57        ad /*	$NetBSD: jemalloc.c,v 1.57 2023/10/13 19:30:28 ad Exp $	*/
      2   1.2        ad 
      3   1.1        ad /*-
      4   1.1        ad  * Copyright (C) 2006,2007 Jason Evans <jasone (at) FreeBSD.org>.
      5   1.1        ad  * All rights reserved.
      6   1.1        ad  *
      7   1.1        ad  * Redistribution and use in source and binary forms, with or without
      8   1.1        ad  * modification, are permitted provided that the following conditions
      9   1.1        ad  * are met:
     10   1.1        ad  * 1. Redistributions of source code must retain the above copyright
     11   1.1        ad  *    notice(s), this list of conditions and the following disclaimer as
     12   1.1        ad  *    the first lines of this file unmodified other than the possible
     13   1.1        ad  *    addition of one or more copyright notices.
     14   1.1        ad  * 2. Redistributions in binary form must reproduce the above copyright
     15   1.1        ad  *    notice(s), this list of conditions and the following disclaimer in
     16   1.1        ad  *    the documentation and/or other materials provided with the
     17   1.1        ad  *    distribution.
     18   1.1        ad  *
     19   1.1        ad  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY
     20   1.1        ad  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21   1.1        ad  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22   1.1        ad  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE
     23   1.1        ad  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24   1.1        ad  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25   1.1        ad  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
     26   1.1        ad  * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
     27   1.1        ad  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
     28   1.1        ad  * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
     29   1.1        ad  * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     30   1.1        ad  *
     31   1.1        ad  *******************************************************************************
     32   1.1        ad  *
     33   1.1        ad  * This allocator implementation is designed to provide scalable performance
     34   1.1        ad  * for multi-threaded programs on multi-processor systems.  The following
     35   1.1        ad  * features are included for this purpose:
     36   1.1        ad  *
     37   1.1        ad  *   + Multiple arenas are used if there are multiple CPUs, which reduces lock
     38   1.1        ad  *     contention and cache sloshing.
     39   1.1        ad  *
     40   1.1        ad  *   + Cache line sharing between arenas is avoided for internal data
     41   1.1        ad  *     structures.
     42   1.1        ad  *
     43   1.1        ad  *   + Memory is managed in chunks and runs (chunks can be split into runs),
     44   1.1        ad  *     rather than as individual pages.  This provides a constant-time
     45   1.1        ad  *     mechanism for associating allocations with particular arenas.
     46   1.1        ad  *
     47   1.1        ad  * Allocation requests are rounded up to the nearest size class, and no record
     48   1.1        ad  * of the original request size is maintained.  Allocations are broken into
     49   1.1        ad  * categories according to size class.  Assuming runtime defaults, 4 kB pages
     50   1.1        ad  * and a 16 byte quantum, the size classes in each category are as follows:
     51   1.1        ad  *
     52   1.1        ad  *   |=====================================|
     53   1.1        ad  *   | Category | Subcategory    |    Size |
     54   1.1        ad  *   |=====================================|
     55   1.1        ad  *   | Small    | Tiny           |       2 |
     56   1.1        ad  *   |          |                |       4 |
     57   1.1        ad  *   |          |                |       8 |
     58   1.1        ad  *   |          |----------------+---------|
     59   1.1        ad  *   |          | Quantum-spaced |      16 |
     60   1.1        ad  *   |          |                |      32 |
     61   1.1        ad  *   |          |                |      48 |
     62   1.1        ad  *   |          |                |     ... |
     63   1.1        ad  *   |          |                |     480 |
     64   1.1        ad  *   |          |                |     496 |
     65   1.1        ad  *   |          |                |     512 |
     66   1.1        ad  *   |          |----------------+---------|
     67   1.1        ad  *   |          | Sub-page       |    1 kB |
     68   1.1        ad  *   |          |                |    2 kB |
     69   1.1        ad  *   |=====================================|
     70   1.1        ad  *   | Large                     |    4 kB |
     71   1.1        ad  *   |                           |    8 kB |
     72   1.1        ad  *   |                           |   12 kB |
     73   1.1        ad  *   |                           |     ... |
     74   1.1        ad  *   |                           | 1012 kB |
     75   1.1        ad  *   |                           | 1016 kB |
     76   1.1        ad  *   |                           | 1020 kB |
     77   1.1        ad  *   |=====================================|
     78   1.1        ad  *   | Huge                      |    1 MB |
     79   1.1        ad  *   |                           |    2 MB |
     80   1.1        ad  *   |                           |    3 MB |
     81   1.1        ad  *   |                           |     ... |
     82   1.1        ad  *   |=====================================|
     83   1.1        ad  *
     84   1.1        ad  * A different mechanism is used for each category:
     85   1.1        ad  *
     86   1.1        ad  *   Small : Each size class is segregated into its own set of runs.  Each run
     87   1.1        ad  *           maintains a bitmap of which regions are free/allocated.
     88   1.1        ad  *
     89   1.1        ad  *   Large : Each allocation is backed by a dedicated run.  Metadata are stored
     90   1.1        ad  *           in the associated arena chunk header maps.
     91   1.1        ad  *
     92   1.1        ad  *   Huge : Each allocation is backed by a dedicated contiguous set of chunks.
     93   1.1        ad  *          Metadata are stored in a separate red-black tree.
     94   1.1        ad  *
     95   1.1        ad  *******************************************************************************
     96   1.1        ad  */
     97   1.1        ad 
     98   1.2        ad /* LINTLIBRARY */
     99   1.2        ad 
    100   1.1        ad /*
    101   1.1        ad  * MALLOC_PRODUCTION disables assertions and statistics gathering.  It also
    102   1.1        ad  * defaults the A and J runtime options to off.  These settings are appropriate
    103   1.1        ad  * for production systems.
    104   1.1        ad  */
    105   1.2        ad #define MALLOC_PRODUCTION
    106   1.1        ad 
    107   1.1        ad #ifndef MALLOC_PRODUCTION
    108   1.1        ad #  define MALLOC_DEBUG
    109   1.1        ad #endif
    110   1.1        ad 
    111   1.1        ad #include <sys/cdefs.h>
    112  1.55     skrll /* __FBSDID("$FreeBSD: src/lib/libc/stdlib/malloc.c,v 1.147 2007/06/15 22:00:16 jasone Exp $"); */
    113  1.57        ad __RCSID("$NetBSD: jemalloc.c,v 1.57 2023/10/13 19:30:28 ad Exp $");
    114   1.1        ad 
    115   1.1        ad #include "namespace.h"
    116   1.1        ad #include <sys/mman.h>
    117   1.1        ad #include <sys/param.h>
    118   1.1        ad #include <sys/time.h>
    119   1.1        ad #include <sys/types.h>
    120   1.1        ad #include <sys/sysctl.h>
    121   1.1        ad #include <sys/tree.h>
    122   1.1        ad #include <sys/uio.h>
    123   1.1        ad #include <sys/ktrace.h> /* Must come after several other sys/ includes. */
    124   1.1        ad 
    125   1.1        ad #include <errno.h>
    126   1.1        ad #include <limits.h>
    127   1.1        ad #include <pthread.h>
    128   1.1        ad #include <sched.h>
    129   1.1        ad #include <stdarg.h>
    130   1.1        ad #include <stdbool.h>
    131   1.1        ad #include <stdio.h>
    132   1.1        ad #include <stdint.h>
    133   1.1        ad #include <stdlib.h>
    134   1.1        ad #include <string.h>
    135   1.1        ad #include <strings.h>
    136   1.1        ad #include <unistd.h>
    137   1.1        ad 
    138  1.57        ad #include <reentrant.h>
    139  1.57        ad #include "extern.h"
    140  1.16  christos 
    141  1.41  christos #define STRERROR_R(a, b, c)	strerror_r_ss(a, b, c);
    142   1.1        ad 
    143   1.1        ad /* MALLOC_STATS enables statistics calculation. */
    144   1.1        ad #ifndef MALLOC_PRODUCTION
    145   1.1        ad #  define MALLOC_STATS
    146   1.1        ad #endif
    147   1.1        ad 
    148   1.1        ad #ifdef MALLOC_DEBUG
    149   1.1        ad #  ifdef NDEBUG
    150   1.1        ad #    undef NDEBUG
    151   1.1        ad #  endif
    152   1.1        ad #else
    153   1.1        ad #  ifndef NDEBUG
    154   1.1        ad #    define NDEBUG
    155   1.1        ad #  endif
    156   1.1        ad #endif
    157   1.1        ad #include <assert.h>
    158   1.1        ad 
    159   1.1        ad #ifdef MALLOC_DEBUG
    160   1.1        ad    /* Disable inlining to make debugging easier. */
    161   1.1        ad #  define inline
    162   1.1        ad #endif
    163   1.1        ad 
    164   1.1        ad /* Size of stack-allocated buffer passed to strerror_r(). */
    165   1.1        ad #define	STRERROR_BUF		64
    166   1.1        ad 
    167   1.1        ad /* Minimum alignment of allocations is 2^QUANTUM_2POW_MIN bytes. */
    168  1.31    martin 
    169  1.31    martin /*
    170  1.31    martin  * If you touch the TINY_MIN_2POW definition for any architecture, please
    171  1.31    martin  * make sure to adjust the corresponding definition for JEMALLOC_TINY_MIN_2POW
    172  1.31    martin  * in the gcc 4.8 tree in dist/gcc/tree-ssa-ccp.c and verify that a native
    173  1.31    martin  * gcc is still buildable!
    174  1.31    martin  */
    175  1.31    martin 
    176   1.1        ad #ifdef __i386__
    177   1.1        ad #  define QUANTUM_2POW_MIN	4
    178   1.1        ad #  define SIZEOF_PTR_2POW	2
    179   1.1        ad #  define USE_BRK
    180   1.1        ad #endif
    181   1.1        ad #ifdef __ia64__
    182   1.1        ad #  define QUANTUM_2POW_MIN	4
    183   1.1        ad #  define SIZEOF_PTR_2POW	3
    184   1.1        ad #endif
    185  1.34      matt #ifdef __aarch64__
    186  1.34      matt #  define QUANTUM_2POW_MIN	4
    187  1.34      matt #  define SIZEOF_PTR_2POW	3
    188  1.47     joerg #  define TINY_MIN_2POW		3
    189  1.34      matt #endif
    190   1.1        ad #ifdef __alpha__
    191   1.1        ad #  define QUANTUM_2POW_MIN	4
    192   1.1        ad #  define SIZEOF_PTR_2POW	3
    193  1.30     skrll #  define TINY_MIN_2POW		3
    194   1.1        ad #endif
    195   1.1        ad #ifdef __sparc64__
    196   1.1        ad #  define QUANTUM_2POW_MIN	4
    197   1.1        ad #  define SIZEOF_PTR_2POW	3
    198  1.31    martin #  define TINY_MIN_2POW		3
    199   1.1        ad #endif
    200   1.1        ad #ifdef __amd64__
    201   1.1        ad #  define QUANTUM_2POW_MIN	4
    202   1.1        ad #  define SIZEOF_PTR_2POW	3
    203  1.31    martin #  define TINY_MIN_2POW		3
    204   1.1        ad #endif
    205   1.1        ad #ifdef __arm__
    206   1.1        ad #  define QUANTUM_2POW_MIN	3
    207   1.1        ad #  define SIZEOF_PTR_2POW	2
    208   1.1        ad #  define USE_BRK
    209  1.30     skrll #  ifdef __ARM_EABI__
    210  1.30     skrll #    define TINY_MIN_2POW	3
    211  1.30     skrll #  endif
    212   1.1        ad #endif
    213   1.1        ad #ifdef __powerpc__
    214   1.1        ad #  define QUANTUM_2POW_MIN	4
    215   1.1        ad #  define SIZEOF_PTR_2POW	2
    216   1.1        ad #  define USE_BRK
    217  1.32    martin #  define TINY_MIN_2POW		3
    218   1.1        ad #endif
    219   1.3        he #if defined(__sparc__) && !defined(__sparc64__)
    220   1.2        ad #  define QUANTUM_2POW_MIN	4
    221   1.2        ad #  define SIZEOF_PTR_2POW	2
    222   1.2        ad #  define USE_BRK
    223   1.2        ad #endif
    224  1.35      matt #ifdef __or1k__
    225  1.35      matt #  define QUANTUM_2POW_MIN	4
    226  1.35      matt #  define SIZEOF_PTR_2POW	2
    227  1.35      matt #  define USE_BRK
    228  1.35      matt #endif
    229   1.2        ad #ifdef __vax__
    230   1.2        ad #  define QUANTUM_2POW_MIN	4
    231   1.2        ad #  define SIZEOF_PTR_2POW	2
    232   1.2        ad #  define USE_BRK
    233   1.2        ad #endif
    234   1.2        ad #ifdef __sh__
    235   1.2        ad #  define QUANTUM_2POW_MIN	4
    236   1.2        ad #  define SIZEOF_PTR_2POW	2
    237   1.2        ad #  define USE_BRK
    238   1.2        ad #endif
    239   1.2        ad #ifdef __m68k__
    240   1.2        ad #  define QUANTUM_2POW_MIN	4
    241   1.2        ad #  define SIZEOF_PTR_2POW	2
    242   1.2        ad #  define USE_BRK
    243   1.2        ad #endif
    244  1.56     skrll #if defined(__mips__)
    245  1.44       mrg #  ifdef _LP64
    246  1.44       mrg #    define SIZEOF_PTR_2POW	3
    247  1.44       mrg #    define TINY_MIN_2POW	3
    248  1.44       mrg #  else
    249  1.44       mrg #    define SIZEOF_PTR_2POW	2
    250  1.44       mrg #  endif
    251  1.44       mrg #  define QUANTUM_2POW_MIN	4
    252  1.44       mrg #  define USE_BRK
    253   1.2        ad #endif
    254  1.56     skrll #if defined(__riscv__)
    255  1.56     skrll #  ifdef _LP64
    256  1.56     skrll #    define SIZEOF_PTR_2POW	3
    257  1.56     skrll #    define TINY_MIN_2POW	3
    258  1.56     skrll #  else
    259  1.56     skrll #    define SIZEOF_PTR_2POW	2
    260  1.56     skrll #  endif
    261  1.56     skrll #  define QUANTUM_2POW_MIN	4
    262  1.56     skrll #  define USE_BRK
    263  1.56     skrll #endif
    264  1.55     skrll #ifdef __hppa__
    265  1.55     skrll #  define QUANTUM_2POW_MIN	4
    266  1.44       mrg #  define TINY_MIN_2POW		4
    267  1.55     skrll #  define SIZEOF_PTR_2POW	2
    268  1.55     skrll #  define USE_BRK
    269  1.55     skrll #endif
    270   1.1        ad 
    271   1.1        ad #define	SIZEOF_PTR		(1 << SIZEOF_PTR_2POW)
    272   1.1        ad 
    273   1.1        ad /* sizeof(int) == (1 << SIZEOF_INT_2POW). */
    274   1.1        ad #ifndef SIZEOF_INT_2POW
    275   1.1        ad #  define SIZEOF_INT_2POW	2
    276   1.1        ad #endif
    277   1.1        ad 
    278   1.1        ad /*
    279   1.1        ad  * Size and alignment of memory chunks that are allocated by the OS's virtual
    280   1.1        ad  * memory system.
    281   1.1        ad  */
    282   1.1        ad #define	CHUNK_2POW_DEFAULT	20
    283   1.1        ad 
    284   1.1        ad /*
    285   1.1        ad  * Maximum size of L1 cache line.  This is used to avoid cache line aliasing,
    286   1.1        ad  * so over-estimates are okay (up to a point), but under-estimates will
    287   1.1        ad  * negatively affect performance.
    288   1.1        ad  */
    289   1.1        ad #define	CACHELINE_2POW		6
    290   1.1        ad #define	CACHELINE		((size_t)(1 << CACHELINE_2POW))
    291   1.1        ad 
    292   1.1        ad /* Smallest size class to support. */
    293  1.30     skrll #ifndef TINY_MIN_2POW
    294  1.30     skrll #define	TINY_MIN_2POW		2
    295  1.30     skrll #endif
    296   1.1        ad 
    297   1.1        ad /*
    298   1.1        ad  * Maximum size class that is a multiple of the quantum, but not (necessarily)
    299   1.1        ad  * a power of 2.  Above this size, allocations are rounded up to the nearest
    300   1.1        ad  * power of 2.
    301   1.1        ad  */
    302   1.1        ad #define	SMALL_MAX_2POW_DEFAULT	9
    303   1.1        ad #define	SMALL_MAX_DEFAULT	(1 << SMALL_MAX_2POW_DEFAULT)
    304   1.1        ad 
    305   1.1        ad /*
    306  1.22     njoly  * RUN_MAX_OVRHD indicates maximum desired run header overhead.  Runs are sized
    307  1.22     njoly  * as small as possible such that this setting is still honored, without
    308  1.22     njoly  * violating other constraints.  The goal is to make runs as small as possible
    309  1.22     njoly  * without exceeding a per run external fragmentation threshold.
    310   1.1        ad  *
    311  1.22     njoly  * We use binary fixed point math for overhead computations, where the binary
    312  1.22     njoly  * point is implicitly RUN_BFP bits to the left.
    313   1.1        ad  *
    314  1.22     njoly  * Note that it is possible to set RUN_MAX_OVRHD low enough that it cannot be
    315  1.22     njoly  * honored for some/all object sizes, since there is one bit of header overhead
    316  1.22     njoly  * per object (plus a constant).  This constraint is relaxed (ignored) for runs
    317  1.22     njoly  * that are so small that the per-region overhead is greater than:
    318  1.22     njoly  *
    319  1.22     njoly  *   (RUN_MAX_OVRHD / (reg_size << (3+RUN_BFP))
    320   1.1        ad  */
    321  1.22     njoly #define RUN_BFP			12
    322  1.22     njoly /*                              \/   Implicit binary fixed point. */
    323  1.22     njoly #define RUN_MAX_OVRHD		0x0000003dU
    324  1.22     njoly #define RUN_MAX_OVRHD_RELAX	0x00001800U
    325   1.1        ad 
    326   1.1        ad /* Put a cap on small object run size.  This overrides RUN_MAX_OVRHD. */
    327   1.1        ad #define RUN_MAX_SMALL_2POW	15
    328   1.1        ad #define RUN_MAX_SMALL		(1 << RUN_MAX_SMALL_2POW)
    329   1.1        ad 
    330   1.1        ad /******************************************************************************/
    331   1.1        ad 
    332   1.2        ad #define	malloc_mutex_t	mutex_t
    333   1.2        ad 
    334   1.2        ad /* Set to true once the allocator has been initialized. */
    335   1.2        ad static bool malloc_initialized = false;
    336   1.2        ad 
    337  1.37  christos #ifdef _REENTRANT
    338   1.2        ad /* Used to avoid initialization races. */
    339   1.2        ad static mutex_t init_lock = MUTEX_INITIALIZER;
    340   1.2        ad #endif
    341   1.1        ad 
    342   1.1        ad /******************************************************************************/
    343   1.1        ad /*
    344   1.1        ad  * Statistics data structures.
    345   1.1        ad  */
    346   1.1        ad 
    347   1.1        ad #ifdef MALLOC_STATS
    348   1.1        ad 
    349   1.1        ad typedef struct malloc_bin_stats_s malloc_bin_stats_t;
    350   1.1        ad struct malloc_bin_stats_s {
    351   1.1        ad 	/*
    352   1.1        ad 	 * Number of allocation requests that corresponded to the size of this
    353   1.1        ad 	 * bin.
    354   1.1        ad 	 */
    355   1.1        ad 	uint64_t	nrequests;
    356   1.1        ad 
    357   1.1        ad 	/* Total number of runs created for this bin's size class. */
    358   1.1        ad 	uint64_t	nruns;
    359   1.1        ad 
    360   1.1        ad 	/*
    361   1.1        ad 	 * Total number of runs reused by extracting them from the runs tree for
    362   1.1        ad 	 * this bin's size class.
    363   1.1        ad 	 */
    364   1.1        ad 	uint64_t	reruns;
    365   1.1        ad 
    366   1.1        ad 	/* High-water mark for this bin. */
    367   1.1        ad 	unsigned long	highruns;
    368   1.1        ad 
    369   1.1        ad 	/* Current number of runs in this bin. */
    370   1.1        ad 	unsigned long	curruns;
    371   1.1        ad };
    372   1.1        ad 
    373   1.1        ad typedef struct arena_stats_s arena_stats_t;
    374   1.1        ad struct arena_stats_s {
    375   1.1        ad 	/* Number of bytes currently mapped. */
    376   1.1        ad 	size_t		mapped;
    377   1.1        ad 
    378   1.1        ad 	/* Per-size-category statistics. */
    379   1.1        ad 	size_t		allocated_small;
    380   1.1        ad 	uint64_t	nmalloc_small;
    381   1.1        ad 	uint64_t	ndalloc_small;
    382   1.1        ad 
    383   1.1        ad 	size_t		allocated_large;
    384   1.1        ad 	uint64_t	nmalloc_large;
    385   1.1        ad 	uint64_t	ndalloc_large;
    386   1.1        ad };
    387   1.1        ad 
    388   1.1        ad typedef struct chunk_stats_s chunk_stats_t;
    389   1.1        ad struct chunk_stats_s {
    390   1.1        ad 	/* Number of chunks that were allocated. */
    391   1.1        ad 	uint64_t	nchunks;
    392   1.1        ad 
    393   1.1        ad 	/* High-water mark for number of chunks allocated. */
    394   1.1        ad 	unsigned long	highchunks;
    395   1.1        ad 
    396   1.1        ad 	/*
    397   1.1        ad 	 * Current number of chunks allocated.  This value isn't maintained for
    398   1.1        ad 	 * any other purpose, so keep track of it in order to be able to set
    399   1.1        ad 	 * highchunks.
    400   1.1        ad 	 */
    401   1.1        ad 	unsigned long	curchunks;
    402   1.1        ad };
    403   1.1        ad 
    404   1.1        ad #endif /* #ifdef MALLOC_STATS */
    405   1.1        ad 
    406   1.1        ad /******************************************************************************/
    407   1.1        ad /*
    408   1.1        ad  * Chunk data structures.
    409   1.1        ad  */
    410   1.1        ad 
    411   1.1        ad /* Tree of chunks. */
    412   1.1        ad typedef struct chunk_node_s chunk_node_t;
    413   1.1        ad struct chunk_node_s {
    414   1.1        ad 	/* Linkage for the chunk tree. */
    415   1.1        ad 	RB_ENTRY(chunk_node_s) link;
    416   1.1        ad 
    417   1.1        ad 	/*
    418   1.1        ad 	 * Pointer to the chunk that this tree node is responsible for.  In some
    419   1.1        ad 	 * (but certainly not all) cases, this data structure is placed at the
    420   1.1        ad 	 * beginning of the corresponding chunk, so this field may point to this
    421   1.1        ad 	 * node.
    422   1.1        ad 	 */
    423   1.1        ad 	void	*chunk;
    424   1.1        ad 
    425   1.1        ad 	/* Total chunk size. */
    426   1.1        ad 	size_t	size;
    427   1.1        ad };
    428   1.1        ad typedef struct chunk_tree_s chunk_tree_t;
    429   1.1        ad RB_HEAD(chunk_tree_s, chunk_node_s);
    430   1.1        ad 
    431   1.1        ad /******************************************************************************/
    432   1.1        ad /*
    433   1.1        ad  * Arena data structures.
    434   1.1        ad  */
    435   1.1        ad 
    436   1.1        ad typedef struct arena_s arena_t;
    437   1.1        ad typedef struct arena_bin_s arena_bin_t;
    438   1.1        ad 
    439   1.1        ad typedef struct arena_chunk_map_s arena_chunk_map_t;
    440   1.1        ad struct arena_chunk_map_s {
    441   1.1        ad 	/* Number of pages in run. */
    442   1.1        ad 	uint32_t	npages;
    443   1.1        ad 	/*
    444   1.1        ad 	 * Position within run.  For a free run, this is POS_FREE for the first
    445   1.1        ad 	 * and last pages.  The POS_FREE special value makes it possible to
    446   1.1        ad 	 * quickly coalesce free runs.
    447   1.1        ad 	 *
    448   1.1        ad 	 * This is the limiting factor for chunksize; there can be at most 2^31
    449   1.1        ad 	 * pages in a run.
    450   1.1        ad 	 */
    451   1.1        ad #define POS_FREE ((uint32_t)0xffffffffU)
    452   1.1        ad 	uint32_t	pos;
    453   1.1        ad };
    454   1.1        ad 
    455   1.1        ad /* Arena chunk header. */
    456   1.1        ad typedef struct arena_chunk_s arena_chunk_t;
    457   1.1        ad struct arena_chunk_s {
    458   1.1        ad 	/* Arena that owns the chunk. */
    459   1.1        ad 	arena_t *arena;
    460   1.1        ad 
    461   1.1        ad 	/* Linkage for the arena's chunk tree. */
    462   1.1        ad 	RB_ENTRY(arena_chunk_s) link;
    463   1.1        ad 
    464   1.1        ad 	/*
    465   1.1        ad 	 * Number of pages in use.  This is maintained in order to make
    466   1.1        ad 	 * detection of empty chunks fast.
    467   1.1        ad 	 */
    468   1.1        ad 	uint32_t pages_used;
    469   1.1        ad 
    470   1.1        ad 	/*
    471   1.1        ad 	 * Every time a free run larger than this value is created/coalesced,
    472   1.1        ad 	 * this value is increased.  The only way that the value decreases is if
    473   1.1        ad 	 * arena_run_alloc() fails to find a free run as large as advertised by
    474   1.1        ad 	 * this value.
    475   1.1        ad 	 */
    476   1.1        ad 	uint32_t max_frun_npages;
    477   1.1        ad 
    478   1.1        ad 	/*
    479   1.1        ad 	 * Every time a free run that starts at an earlier page than this value
    480   1.1        ad 	 * is created/coalesced, this value is decreased.  It is reset in a
    481   1.1        ad 	 * similar fashion to max_frun_npages.
    482   1.1        ad 	 */
    483   1.1        ad 	uint32_t min_frun_ind;
    484   1.1        ad 
    485   1.1        ad 	/*
    486   1.1        ad 	 * Map of pages within chunk that keeps track of free/large/small.  For
    487   1.1        ad 	 * free runs, only the map entries for the first and last pages are
    488   1.1        ad 	 * kept up to date, so that free runs can be quickly coalesced.
    489   1.1        ad 	 */
    490   1.1        ad 	arena_chunk_map_t map[1]; /* Dynamically sized. */
    491   1.1        ad };
    492   1.1        ad typedef struct arena_chunk_tree_s arena_chunk_tree_t;
    493   1.1        ad RB_HEAD(arena_chunk_tree_s, arena_chunk_s);
    494   1.1        ad 
    495   1.1        ad typedef struct arena_run_s arena_run_t;
    496   1.1        ad struct arena_run_s {
    497   1.1        ad 	/* Linkage for run trees. */
    498   1.1        ad 	RB_ENTRY(arena_run_s) link;
    499   1.1        ad 
    500   1.1        ad #ifdef MALLOC_DEBUG
    501   1.1        ad 	uint32_t	magic;
    502   1.1        ad #  define ARENA_RUN_MAGIC 0x384adf93
    503   1.1        ad #endif
    504   1.1        ad 
    505   1.1        ad 	/* Bin this run is associated with. */
    506   1.1        ad 	arena_bin_t	*bin;
    507   1.1        ad 
    508   1.1        ad 	/* Index of first element that might have a free region. */
    509   1.1        ad 	unsigned	regs_minelm;
    510   1.1        ad 
    511   1.1        ad 	/* Number of free regions in run. */
    512   1.1        ad 	unsigned	nfree;
    513   1.1        ad 
    514   1.1        ad 	/* Bitmask of in-use regions (0: in use, 1: free). */
    515   1.1        ad 	unsigned	regs_mask[1]; /* Dynamically sized. */
    516   1.1        ad };
    517   1.1        ad typedef struct arena_run_tree_s arena_run_tree_t;
    518   1.1        ad RB_HEAD(arena_run_tree_s, arena_run_s);
    519   1.1        ad 
    520   1.1        ad struct arena_bin_s {
    521   1.1        ad 	/*
    522   1.1        ad 	 * Current run being used to service allocations of this bin's size
    523   1.1        ad 	 * class.
    524   1.1        ad 	 */
    525   1.1        ad 	arena_run_t	*runcur;
    526   1.1        ad 
    527   1.1        ad 	/*
    528   1.1        ad 	 * Tree of non-full runs.  This tree is used when looking for an
    529   1.1        ad 	 * existing run when runcur is no longer usable.  We choose the
    530   1.1        ad 	 * non-full run that is lowest in memory; this policy tends to keep
    531   1.1        ad 	 * objects packed well, and it can also help reduce the number of
    532   1.1        ad 	 * almost-empty chunks.
    533   1.1        ad 	 */
    534   1.1        ad 	arena_run_tree_t runs;
    535   1.1        ad 
    536   1.1        ad 	/* Size of regions in a run for this bin's size class. */
    537   1.1        ad 	size_t		reg_size;
    538   1.1        ad 
    539   1.1        ad 	/* Total size of a run for this bin's size class. */
    540   1.1        ad 	size_t		run_size;
    541   1.1        ad 
    542   1.1        ad 	/* Total number of regions in a run for this bin's size class. */
    543   1.1        ad 	uint32_t	nregs;
    544   1.1        ad 
    545   1.1        ad 	/* Number of elements in a run's regs_mask for this bin's size class. */
    546   1.1        ad 	uint32_t	regs_mask_nelms;
    547   1.1        ad 
    548   1.1        ad 	/* Offset of first region in a run for this bin's size class. */
    549   1.1        ad 	uint32_t	reg0_offset;
    550   1.1        ad 
    551   1.1        ad #ifdef MALLOC_STATS
    552   1.1        ad 	/* Bin statistics. */
    553   1.1        ad 	malloc_bin_stats_t stats;
    554   1.1        ad #endif
    555   1.1        ad };
    556   1.1        ad 
    557   1.1        ad struct arena_s {
    558   1.1        ad #ifdef MALLOC_DEBUG
    559   1.1        ad 	uint32_t		magic;
    560   1.1        ad #  define ARENA_MAGIC 0x947d3d24
    561   1.1        ad #endif
    562   1.1        ad 
    563   1.1        ad 	/* All operations on this arena require that mtx be locked. */
    564   1.1        ad 	malloc_mutex_t		mtx;
    565   1.1        ad 
    566   1.1        ad #ifdef MALLOC_STATS
    567   1.1        ad 	arena_stats_t		stats;
    568   1.1        ad #endif
    569   1.1        ad 
    570   1.1        ad 	/*
    571   1.1        ad 	 * Tree of chunks this arena manages.
    572   1.1        ad 	 */
    573   1.1        ad 	arena_chunk_tree_t	chunks;
    574   1.1        ad 
    575   1.1        ad 	/*
    576   1.1        ad 	 * In order to avoid rapid chunk allocation/deallocation when an arena
    577   1.1        ad 	 * oscillates right on the cusp of needing a new chunk, cache the most
    578   1.1        ad 	 * recently freed chunk.  This caching is disabled by opt_hint.
    579   1.1        ad 	 *
    580   1.1        ad 	 * There is one spare chunk per arena, rather than one spare total, in
    581   1.1        ad 	 * order to avoid interactions between multiple threads that could make
    582   1.1        ad 	 * a single spare inadequate.
    583   1.1        ad 	 */
    584   1.1        ad 	arena_chunk_t *spare;
    585   1.1        ad 
    586   1.1        ad 	/*
    587   1.1        ad 	 * bins is used to store rings of free regions of the following sizes,
    588   1.1        ad 	 * assuming a 16-byte quantum, 4kB pagesize, and default MALLOC_OPTIONS.
    589   1.1        ad 	 *
    590   1.1        ad 	 *   bins[i] | size |
    591   1.1        ad 	 *   --------+------+
    592   1.1        ad 	 *        0  |    2 |
    593   1.1        ad 	 *        1  |    4 |
    594   1.1        ad 	 *        2  |    8 |
    595   1.1        ad 	 *   --------+------+
    596   1.1        ad 	 *        3  |   16 |
    597   1.1        ad 	 *        4  |   32 |
    598   1.1        ad 	 *        5  |   48 |
    599   1.1        ad 	 *        6  |   64 |
    600   1.1        ad 	 *           :      :
    601   1.1        ad 	 *           :      :
    602   1.1        ad 	 *       33  |  496 |
    603   1.1        ad 	 *       34  |  512 |
    604   1.1        ad 	 *   --------+------+
    605   1.1        ad 	 *       35  | 1024 |
    606   1.1        ad 	 *       36  | 2048 |
    607   1.1        ad 	 *   --------+------+
    608   1.1        ad 	 */
    609   1.1        ad 	arena_bin_t		bins[1]; /* Dynamically sized. */
    610   1.1        ad };
    611   1.1        ad 
    612   1.1        ad /******************************************************************************/
    613   1.1        ad /*
    614   1.1        ad  * Data.
    615   1.1        ad  */
    616   1.1        ad 
    617   1.1        ad /* Number of CPUs. */
    618   1.1        ad static unsigned		ncpus;
    619   1.1        ad 
    620   1.1        ad /* VM page size. */
    621   1.1        ad static size_t		pagesize;
    622   1.1        ad static size_t		pagesize_mask;
    623   1.9  christos static int		pagesize_2pow;
    624   1.1        ad 
    625   1.1        ad /* Various bin-related settings. */
    626   1.1        ad static size_t		bin_maxclass; /* Max size class for bins. */
    627   1.1        ad static unsigned		ntbins; /* Number of (2^n)-spaced tiny bins. */
    628   1.1        ad static unsigned		nqbins; /* Number of quantum-spaced bins. */
    629   1.1        ad static unsigned		nsbins; /* Number of (2^n)-spaced sub-page bins. */
    630   1.1        ad static size_t		small_min;
    631   1.1        ad static size_t		small_max;
    632   1.1        ad 
    633   1.1        ad /* Various quantum-related settings. */
    634   1.1        ad static size_t		quantum;
    635   1.1        ad static size_t		quantum_mask; /* (quantum - 1). */
    636   1.1        ad 
    637   1.1        ad /* Various chunk-related settings. */
    638   1.1        ad static size_t		chunksize;
    639   1.1        ad static size_t		chunksize_mask; /* (chunksize - 1). */
    640   1.5      yamt static int		chunksize_2pow;
    641   1.1        ad static unsigned		chunk_npages;
    642   1.1        ad static unsigned		arena_chunk_header_npages;
    643   1.1        ad static size_t		arena_maxclass; /* Max size class for arenas. */
    644   1.1        ad 
    645   1.1        ad /********/
    646   1.1        ad /*
    647   1.1        ad  * Chunks.
    648   1.1        ad  */
    649   1.1        ad 
    650  1.37  christos #ifdef _REENTRANT
    651   1.1        ad /* Protects chunk-related data structures. */
    652   1.1        ad static malloc_mutex_t	chunks_mtx;
    653  1.37  christos #endif
    654   1.1        ad 
    655   1.1        ad /* Tree of chunks that are stand-alone huge allocations. */
    656   1.1        ad static chunk_tree_t	huge;
    657   1.1        ad 
    658   1.1        ad #ifdef USE_BRK
    659   1.1        ad /*
    660   1.1        ad  * Try to use brk for chunk-size allocations, due to address space constraints.
    661   1.1        ad  */
    662   1.1        ad /*
    663   1.1        ad  * Protects sbrk() calls.  This must be separate from chunks_mtx, since
    664   1.1        ad  * base_pages_alloc() also uses sbrk(), but cannot lock chunks_mtx (doing so
    665   1.1        ad  * could cause recursive lock acquisition).
    666   1.1        ad  */
    667  1.46  christos #ifdef _REENTRANT
    668   1.1        ad static malloc_mutex_t	brk_mtx;
    669  1.46  christos #endif
    670   1.1        ad /* Result of first sbrk(0) call. */
    671   1.1        ad static void		*brk_base;
    672   1.1        ad /* Current end of brk, or ((void *)-1) if brk is exhausted. */
    673   1.1        ad static void		*brk_prev;
    674   1.1        ad /* Current upper limit on brk addresses. */
    675   1.1        ad static void		*brk_max;
    676   1.1        ad #endif
    677   1.1        ad 
    678   1.1        ad #ifdef MALLOC_STATS
    679   1.1        ad /* Huge allocation statistics. */
    680   1.1        ad static uint64_t		huge_nmalloc;
    681   1.1        ad static uint64_t		huge_ndalloc;
    682   1.8      yamt static uint64_t		huge_nralloc;
    683   1.1        ad static size_t		huge_allocated;
    684   1.1        ad #endif
    685   1.1        ad 
    686   1.1        ad /*
    687   1.1        ad  * Tree of chunks that were previously allocated.  This is used when allocating
    688   1.1        ad  * chunks, in an attempt to re-use address space.
    689   1.1        ad  */
    690   1.1        ad static chunk_tree_t	old_chunks;
    691   1.1        ad 
    692   1.1        ad /****************************/
    693   1.1        ad /*
    694   1.1        ad  * base (internal allocation).
    695   1.1        ad  */
    696   1.1        ad 
    697   1.1        ad /*
    698   1.1        ad  * Current pages that are being used for internal memory allocations.  These
    699   1.1        ad  * pages are carved up in cacheline-size quanta, so that there is no chance of
    700   1.1        ad  * false cache line sharing.
    701   1.1        ad  */
    702   1.1        ad static void		*base_pages;
    703   1.1        ad static void		*base_next_addr;
    704   1.1        ad static void		*base_past_addr; /* Addr immediately past base_pages. */
    705   1.1        ad static chunk_node_t	*base_chunk_nodes; /* LIFO cache of chunk nodes. */
    706  1.37  christos #ifdef _REENTRANT
    707   1.1        ad static malloc_mutex_t	base_mtx;
    708  1.37  christos #endif
    709   1.1        ad #ifdef MALLOC_STATS
    710   1.1        ad static size_t		base_mapped;
    711   1.1        ad #endif
    712   1.1        ad 
    713   1.1        ad /********/
    714   1.1        ad /*
    715   1.1        ad  * Arenas.
    716   1.1        ad  */
    717   1.1        ad 
    718   1.1        ad /*
    719   1.1        ad  * Arenas that are used to service external requests.  Not all elements of the
    720   1.1        ad  * arenas array are necessarily used; arenas are created lazily as needed.
    721   1.1        ad  */
    722   1.1        ad static arena_t		**arenas;
    723  1.37  christos #ifdef _REENTRANT
    724   1.1        ad static malloc_mutex_t	arenas_mtx; /* Protects arenas initialization. */
    725  1.37  christos #endif
    726   1.1        ad 
    727   1.1        ad #ifdef MALLOC_STATS
    728   1.1        ad /* Chunk statistics. */
    729   1.1        ad static chunk_stats_t	stats_chunks;
    730   1.1        ad #endif
    731   1.1        ad 
    732   1.1        ad /*******************************/
    733   1.1        ad /*
    734   1.1        ad  * Runtime configuration options.
    735   1.1        ad  */
    736   1.1        ad const char	*_malloc_options;
    737   1.1        ad 
    738   1.1        ad #ifndef MALLOC_PRODUCTION
    739   1.1        ad static bool	opt_abort = true;
    740   1.1        ad static bool	opt_junk = true;
    741   1.1        ad #else
    742   1.1        ad static bool	opt_abort = false;
    743   1.1        ad static bool	opt_junk = false;
    744   1.1        ad #endif
    745   1.1        ad static bool	opt_hint = false;
    746   1.1        ad static bool	opt_print_stats = false;
    747   1.9  christos static int	opt_quantum_2pow = QUANTUM_2POW_MIN;
    748   1.9  christos static int	opt_small_max_2pow = SMALL_MAX_2POW_DEFAULT;
    749   1.9  christos static int	opt_chunk_2pow = CHUNK_2POW_DEFAULT;
    750   1.1        ad static bool	opt_utrace = false;
    751   1.1        ad static bool	opt_sysv = false;
    752   1.1        ad static bool	opt_xmalloc = false;
    753   1.1        ad static bool	opt_zero = false;
    754   1.1        ad 
    755   1.1        ad typedef struct {
    756   1.1        ad 	void	*p;
    757   1.1        ad 	size_t	s;
    758   1.1        ad 	void	*r;
    759   1.1        ad } malloc_utrace_t;
    760   1.1        ad 
    761  1.57        ad /* Sprinkle branch hints for the compiler and CPU. */
    762  1.57        ad #define	OPT(a)		__predict_false(opt_##a)
    763  1.57        ad #define	NOT_OPT(a)	__predict_true(!opt_##a)
    764  1.57        ad 
    765  1.57        ad /* Trace malloc/free for ktrace/kdump. */
    766   1.1        ad #define	UTRACE(a, b, c)							\
    767  1.57        ad 	if (OPT(utrace)) {						\
    768   1.2        ad 		malloc_utrace_t ut;					\
    769   1.2        ad 		ut.p = a;						\
    770   1.2        ad 		ut.s = b;						\
    771   1.2        ad 		ut.r = c;						\
    772  1.57        ad 		utrace("malloc", &ut, sizeof(ut));			\
    773   1.1        ad 	}
    774   1.1        ad 
    775   1.1        ad /******************************************************************************/
    776   1.1        ad /*
    777   1.1        ad  * Begin function prototypes for non-inline static functions.
    778   1.1        ad  */
    779   1.1        ad 
    780   1.1        ad static void	wrtmessage(const char *p1, const char *p2, const char *p3,
    781   1.1        ad 		const char *p4);
    782   1.1        ad #ifdef MALLOC_STATS
    783   1.1        ad static void	malloc_printf(const char *format, ...);
    784   1.1        ad #endif
    785  1.28  christos static char	*size_t2s(size_t x, char *s);
    786   1.1        ad static bool	base_pages_alloc(size_t minsize);
    787   1.1        ad static void	*base_alloc(size_t size);
    788   1.1        ad static chunk_node_t *base_chunk_node_alloc(void);
    789   1.1        ad static void	base_chunk_node_dealloc(chunk_node_t *node);
    790   1.1        ad #ifdef MALLOC_STATS
    791   1.1        ad static void	stats_print(arena_t *arena);
    792   1.1        ad #endif
    793   1.1        ad static void	*pages_map(void *addr, size_t size);
    794   1.5      yamt static void	*pages_map_align(void *addr, size_t size, int align);
    795   1.1        ad static void	pages_unmap(void *addr, size_t size);
    796   1.1        ad static void	*chunk_alloc(size_t size);
    797   1.1        ad static void	chunk_dealloc(void *chunk, size_t size);
    798   1.1        ad static void	arena_run_split(arena_t *arena, arena_run_t *run, size_t size);
    799   1.1        ad static arena_chunk_t *arena_chunk_alloc(arena_t *arena);
    800   1.1        ad static void	arena_chunk_dealloc(arena_t *arena, arena_chunk_t *chunk);
    801   1.1        ad static arena_run_t *arena_run_alloc(arena_t *arena, size_t size);
    802   1.1        ad static void	arena_run_dalloc(arena_t *arena, arena_run_t *run, size_t size);
    803   1.1        ad static arena_run_t *arena_bin_nonfull_run_get(arena_t *arena, arena_bin_t *bin);
    804   1.1        ad static void *arena_bin_malloc_hard(arena_t *arena, arena_bin_t *bin);
    805   1.1        ad static size_t arena_bin_run_size_calc(arena_bin_t *bin, size_t min_run_size);
    806   1.1        ad static void	*arena_malloc(arena_t *arena, size_t size);
    807   1.1        ad static void	*arena_palloc(arena_t *arena, size_t alignment, size_t size,
    808   1.1        ad     size_t alloc_size);
    809   1.1        ad static size_t	arena_salloc(const void *ptr);
    810   1.1        ad static void	*arena_ralloc(void *ptr, size_t size, size_t oldsize);
    811   1.1        ad static void	arena_dalloc(arena_t *arena, arena_chunk_t *chunk, void *ptr);
    812  1.57        ad static void	arena_new(arena_t *arena);
    813  1.57        ad static arena_t	*arenas_extend(void);
    814   1.1        ad static void	*huge_malloc(size_t size);
    815   1.1        ad static void	*huge_palloc(size_t alignment, size_t size);
    816   1.1        ad static void	*huge_ralloc(void *ptr, size_t size, size_t oldsize);
    817   1.1        ad static void	huge_dalloc(void *ptr);
    818   1.1        ad static void	*imalloc(size_t size);
    819   1.1        ad static void	*ipalloc(size_t alignment, size_t size);
    820   1.1        ad static void	*icalloc(size_t size);
    821   1.1        ad static size_t	isalloc(const void *ptr);
    822   1.1        ad static void	*iralloc(void *ptr, size_t size);
    823   1.1        ad static void	idalloc(void *ptr);
    824   1.1        ad static void	malloc_print_stats(void);
    825   1.1        ad static bool	malloc_init_hard(void);
    826   1.1        ad 
    827   1.1        ad /*
    828   1.1        ad  * End function prototypes.
    829   1.1        ad  */
    830   1.1        ad /******************************************************************************/
    831   1.1        ad /*
    832   1.1        ad  * Begin mutex.
    833   1.1        ad  */
    834   1.1        ad 
    835  1.15        ad #ifdef __NetBSD__
    836   1.2        ad #define	malloc_mutex_init(m)	mutex_init(m, NULL)
    837   1.2        ad #define	malloc_mutex_lock(m)	mutex_lock(m)
    838   1.2        ad #define	malloc_mutex_unlock(m)	mutex_unlock(m)
    839  1.15        ad #else	/* __NetBSD__ */
    840  1.15        ad static inline void
    841  1.15        ad malloc_mutex_init(malloc_mutex_t *a_mutex)
    842  1.15        ad {
    843  1.15        ad 	static const spinlock_t lock = _SPINLOCK_INITIALIZER;
    844  1.15        ad 
    845  1.15        ad 	a_mutex->lock = lock;
    846  1.15        ad }
    847  1.15        ad 
    848  1.15        ad static inline void
    849  1.15        ad malloc_mutex_lock(malloc_mutex_t *a_mutex)
    850  1.15        ad {
    851  1.15        ad 
    852  1.15        ad 	if (__isthreaded)
    853  1.15        ad 		_SPINLOCK(&a_mutex->lock);
    854  1.15        ad }
    855  1.15        ad 
    856  1.15        ad static inline void
    857  1.15        ad malloc_mutex_unlock(malloc_mutex_t *a_mutex)
    858  1.15        ad {
    859  1.15        ad 
    860  1.15        ad 	if (__isthreaded)
    861  1.15        ad 		_SPINUNLOCK(&a_mutex->lock);
    862  1.15        ad }
    863  1.15        ad #endif	/* __NetBSD__ */
    864   1.1        ad 
    865   1.1        ad /*
    866   1.1        ad  * End mutex.
    867   1.1        ad  */
    868   1.1        ad /******************************************************************************/
    869   1.1        ad /*
    870   1.1        ad  * Begin Utility functions/macros.
    871   1.1        ad  */
    872   1.1        ad 
    873   1.1        ad /* Return the chunk address for allocation address a. */
    874   1.1        ad #define	CHUNK_ADDR2BASE(a)						\
    875   1.1        ad 	((void *)((uintptr_t)(a) & ~chunksize_mask))
    876   1.1        ad 
    877   1.1        ad /* Return the chunk offset of address a. */
    878   1.1        ad #define	CHUNK_ADDR2OFFSET(a)						\
    879   1.1        ad 	((size_t)((uintptr_t)(a) & chunksize_mask))
    880   1.1        ad 
    881   1.1        ad /* Return the smallest chunk multiple that is >= s. */
    882   1.1        ad #define	CHUNK_CEILING(s)						\
    883   1.1        ad 	(((s) + chunksize_mask) & ~chunksize_mask)
    884   1.1        ad 
    885   1.1        ad /* Return the smallest cacheline multiple that is >= s. */
    886   1.1        ad #define	CACHELINE_CEILING(s)						\
    887   1.1        ad 	(((s) + (CACHELINE - 1)) & ~(CACHELINE - 1))
    888   1.1        ad 
    889   1.1        ad /* Return the smallest quantum multiple that is >= a. */
    890   1.1        ad #define	QUANTUM_CEILING(a)						\
    891   1.1        ad 	(((a) + quantum_mask) & ~quantum_mask)
    892   1.1        ad 
    893   1.1        ad /* Return the smallest pagesize multiple that is >= s. */
    894   1.1        ad #define	PAGE_CEILING(s)							\
    895   1.1        ad 	(((s) + pagesize_mask) & ~pagesize_mask)
    896   1.1        ad 
    897   1.1        ad /* Compute the smallest power of 2 that is >= x. */
    898   1.1        ad static inline size_t
    899   1.1        ad pow2_ceil(size_t x)
    900   1.1        ad {
    901   1.1        ad 
    902   1.1        ad 	x--;
    903   1.1        ad 	x |= x >> 1;
    904   1.1        ad 	x |= x >> 2;
    905   1.1        ad 	x |= x >> 4;
    906   1.1        ad 	x |= x >> 8;
    907   1.1        ad 	x |= x >> 16;
    908   1.1        ad #if (SIZEOF_PTR == 8)
    909   1.1        ad 	x |= x >> 32;
    910   1.1        ad #endif
    911   1.1        ad 	x++;
    912   1.1        ad 	return (x);
    913   1.1        ad }
    914   1.1        ad 
    915   1.1        ad static void
    916   1.1        ad wrtmessage(const char *p1, const char *p2, const char *p3, const char *p4)
    917   1.1        ad {
    918   1.1        ad 
    919  1.16  christos 	write(STDERR_FILENO, p1, strlen(p1));
    920  1.16  christos 	write(STDERR_FILENO, p2, strlen(p2));
    921  1.16  christos 	write(STDERR_FILENO, p3, strlen(p3));
    922  1.16  christos 	write(STDERR_FILENO, p4, strlen(p4));
    923   1.1        ad }
    924   1.1        ad 
    925   1.1        ad void	(*_malloc_message)(const char *p1, const char *p2, const char *p3,
    926   1.1        ad 	    const char *p4) = wrtmessage;
    927   1.1        ad 
    928   1.1        ad #ifdef MALLOC_STATS
    929   1.1        ad /*
    930   1.1        ad  * Print to stderr in such a way as to (hopefully) avoid memory allocation.
    931   1.1        ad  */
    932   1.1        ad static void
    933   1.1        ad malloc_printf(const char *format, ...)
    934   1.1        ad {
    935   1.1        ad 	char buf[4096];
    936   1.1        ad 	va_list ap;
    937   1.1        ad 
    938   1.1        ad 	va_start(ap, format);
    939   1.1        ad 	vsnprintf(buf, sizeof(buf), format, ap);
    940   1.1        ad 	va_end(ap);
    941   1.1        ad 	_malloc_message(buf, "", "", "");
    942   1.1        ad }
    943   1.1        ad #endif
    944   1.1        ad 
    945   1.1        ad /*
    946   1.1        ad  * We don't want to depend on vsnprintf() for production builds, since that can
    947  1.28  christos  * cause unnecessary bloat for static binaries.  size_t2s() provides minimal
    948   1.1        ad  * integer printing functionality, so that malloc_printf() use can be limited to
    949   1.1        ad  * MALLOC_STATS code.
    950   1.1        ad  */
    951   1.1        ad #define UMAX2S_BUFSIZE	21
    952   1.1        ad static char *
    953  1.28  christos size_t2s(size_t x, char *s)
    954   1.1        ad {
    955   1.1        ad 	unsigned i;
    956   1.1        ad 
    957   1.1        ad 	/* Make sure UMAX2S_BUFSIZE is large enough. */
    958   1.7      yamt 	/* LINTED */
    959  1.25  christos 	assert(sizeof(size_t) <= 8);
    960   1.1        ad 
    961   1.1        ad 	i = UMAX2S_BUFSIZE - 1;
    962   1.1        ad 	s[i] = '\0';
    963   1.1        ad 	do {
    964   1.1        ad 		i--;
    965   1.2        ad 		s[i] = "0123456789"[(int)x % 10];
    966   1.2        ad 		x /= (uintmax_t)10LL;
    967   1.1        ad 	} while (x > 0);
    968   1.1        ad 
    969   1.1        ad 	return (&s[i]);
    970   1.1        ad }
    971   1.1        ad 
    972   1.1        ad /******************************************************************************/
    973   1.1        ad 
    974   1.1        ad static bool
    975   1.1        ad base_pages_alloc(size_t minsize)
    976   1.1        ad {
    977   1.2        ad 	size_t csize = 0;
    978   1.1        ad 
    979   1.1        ad #ifdef USE_BRK
    980   1.1        ad 	/*
    981   1.1        ad 	 * Do special brk allocation here, since base allocations don't need to
    982   1.1        ad 	 * be chunk-aligned.
    983   1.1        ad 	 */
    984   1.1        ad 	if (brk_prev != (void *)-1) {
    985   1.1        ad 		void *brk_cur;
    986   1.1        ad 		intptr_t incr;
    987   1.1        ad 
    988   1.1        ad 		if (minsize != 0)
    989   1.1        ad 			csize = CHUNK_CEILING(minsize);
    990   1.1        ad 
    991   1.1        ad 		malloc_mutex_lock(&brk_mtx);
    992   1.1        ad 		do {
    993   1.1        ad 			/* Get the current end of brk. */
    994   1.1        ad 			brk_cur = sbrk(0);
    995   1.1        ad 
    996   1.1        ad 			/*
    997   1.1        ad 			 * Calculate how much padding is necessary to
    998   1.1        ad 			 * chunk-align the end of brk.  Don't worry about
    999   1.1        ad 			 * brk_cur not being chunk-aligned though.
   1000   1.1        ad 			 */
   1001   1.1        ad 			incr = (intptr_t)chunksize
   1002   1.1        ad 			    - (intptr_t)CHUNK_ADDR2OFFSET(brk_cur);
   1003  1.20     lukem 			assert(incr >= 0);
   1004  1.20     lukem 			if ((size_t)incr < minsize)
   1005   1.1        ad 				incr += csize;
   1006   1.1        ad 
   1007   1.1        ad 			brk_prev = sbrk(incr);
   1008   1.1        ad 			if (brk_prev == brk_cur) {
   1009   1.1        ad 				/* Success. */
   1010   1.1        ad 				malloc_mutex_unlock(&brk_mtx);
   1011   1.1        ad 				base_pages = brk_cur;
   1012   1.1        ad 				base_next_addr = base_pages;
   1013   1.1        ad 				base_past_addr = (void *)((uintptr_t)base_pages
   1014   1.1        ad 				    + incr);
   1015   1.1        ad #ifdef MALLOC_STATS
   1016   1.1        ad 				base_mapped += incr;
   1017   1.1        ad #endif
   1018   1.1        ad 				return (false);
   1019   1.1        ad 			}
   1020   1.1        ad 		} while (brk_prev != (void *)-1);
   1021   1.1        ad 		malloc_mutex_unlock(&brk_mtx);
   1022   1.1        ad 	}
   1023   1.1        ad 	if (minsize == 0) {
   1024   1.1        ad 		/*
   1025   1.1        ad 		 * Failure during initialization doesn't matter, so avoid
   1026   1.1        ad 		 * falling through to the mmap-based page mapping code.
   1027   1.1        ad 		 */
   1028   1.1        ad 		return (true);
   1029   1.1        ad 	}
   1030   1.1        ad #endif
   1031   1.1        ad 	assert(minsize != 0);
   1032   1.1        ad 	csize = PAGE_CEILING(minsize);
   1033   1.1        ad 	base_pages = pages_map(NULL, csize);
   1034   1.1        ad 	if (base_pages == NULL)
   1035   1.1        ad 		return (true);
   1036   1.1        ad 	base_next_addr = base_pages;
   1037   1.1        ad 	base_past_addr = (void *)((uintptr_t)base_pages + csize);
   1038   1.1        ad #ifdef MALLOC_STATS
   1039   1.1        ad 	base_mapped += csize;
   1040   1.1        ad #endif
   1041   1.1        ad 	return (false);
   1042   1.1        ad }
   1043   1.1        ad 
   1044   1.1        ad static void *
   1045   1.1        ad base_alloc(size_t size)
   1046   1.1        ad {
   1047   1.1        ad 	void *ret;
   1048   1.1        ad 	size_t csize;
   1049   1.1        ad 
   1050   1.1        ad 	/* Round size up to nearest multiple of the cacheline size. */
   1051   1.1        ad 	csize = CACHELINE_CEILING(size);
   1052   1.1        ad 
   1053   1.1        ad 	malloc_mutex_lock(&base_mtx);
   1054   1.1        ad 
   1055   1.1        ad 	/* Make sure there's enough space for the allocation. */
   1056   1.1        ad 	if ((uintptr_t)base_next_addr + csize > (uintptr_t)base_past_addr) {
   1057   1.1        ad 		if (base_pages_alloc(csize)) {
   1058   1.1        ad 			ret = NULL;
   1059   1.1        ad 			goto RETURN;
   1060   1.1        ad 		}
   1061   1.1        ad 	}
   1062   1.1        ad 
   1063   1.1        ad 	/* Allocate. */
   1064   1.1        ad 	ret = base_next_addr;
   1065   1.1        ad 	base_next_addr = (void *)((uintptr_t)base_next_addr + csize);
   1066   1.1        ad 
   1067   1.1        ad RETURN:
   1068   1.1        ad 	malloc_mutex_unlock(&base_mtx);
   1069   1.1        ad 	return (ret);
   1070   1.1        ad }
   1071   1.1        ad 
   1072   1.1        ad static chunk_node_t *
   1073   1.1        ad base_chunk_node_alloc(void)
   1074   1.1        ad {
   1075   1.1        ad 	chunk_node_t *ret;
   1076   1.1        ad 
   1077   1.1        ad 	malloc_mutex_lock(&base_mtx);
   1078   1.1        ad 	if (base_chunk_nodes != NULL) {
   1079   1.1        ad 		ret = base_chunk_nodes;
   1080   1.2        ad 		/* LINTED */
   1081   1.1        ad 		base_chunk_nodes = *(chunk_node_t **)ret;
   1082   1.1        ad 		malloc_mutex_unlock(&base_mtx);
   1083   1.1        ad 	} else {
   1084   1.1        ad 		malloc_mutex_unlock(&base_mtx);
   1085   1.1        ad 		ret = (chunk_node_t *)base_alloc(sizeof(chunk_node_t));
   1086   1.1        ad 	}
   1087   1.1        ad 
   1088   1.1        ad 	return (ret);
   1089   1.1        ad }
   1090   1.1        ad 
   1091   1.1        ad static void
   1092   1.1        ad base_chunk_node_dealloc(chunk_node_t *node)
   1093   1.1        ad {
   1094   1.1        ad 
   1095   1.1        ad 	malloc_mutex_lock(&base_mtx);
   1096   1.2        ad 	/* LINTED */
   1097   1.1        ad 	*(chunk_node_t **)node = base_chunk_nodes;
   1098   1.1        ad 	base_chunk_nodes = node;
   1099   1.1        ad 	malloc_mutex_unlock(&base_mtx);
   1100   1.1        ad }
   1101   1.1        ad 
   1102   1.1        ad /******************************************************************************/
   1103   1.1        ad 
   1104   1.1        ad #ifdef MALLOC_STATS
   1105   1.1        ad static void
   1106   1.1        ad stats_print(arena_t *arena)
   1107   1.1        ad {
   1108  1.57        ad 	const unsigned minusone = (unsigned)-1;
   1109  1.57        ad 	unsigned i, gap_start;
   1110   1.1        ad 
   1111   1.1        ad 	malloc_printf(
   1112   1.1        ad 	    "          allocated/mapped            nmalloc      ndalloc\n");
   1113   1.2        ad 
   1114   1.2        ad 	malloc_printf("small: %12zu %-12s %12llu %12llu\n",
   1115   1.1        ad 	    arena->stats.allocated_small, "", arena->stats.nmalloc_small,
   1116   1.1        ad 	    arena->stats.ndalloc_small);
   1117   1.2        ad 	malloc_printf("large: %12zu %-12s %12llu %12llu\n",
   1118   1.1        ad 	    arena->stats.allocated_large, "", arena->stats.nmalloc_large,
   1119   1.1        ad 	    arena->stats.ndalloc_large);
   1120   1.2        ad 	malloc_printf("total: %12zu/%-12zu %12llu %12llu\n",
   1121   1.1        ad 	    arena->stats.allocated_small + arena->stats.allocated_large,
   1122   1.1        ad 	    arena->stats.mapped,
   1123   1.1        ad 	    arena->stats.nmalloc_small + arena->stats.nmalloc_large,
   1124   1.1        ad 	    arena->stats.ndalloc_small + arena->stats.ndalloc_large);
   1125   1.1        ad 
   1126   1.1        ad 	malloc_printf("bins:     bin   size regs pgs  requests   newruns"
   1127   1.1        ad 	    "    reruns maxruns curruns\n");
   1128  1.57        ad 	for (i = 0, gap_start = minusone; i < ntbins + nqbins + nsbins; i++) {
   1129   1.1        ad 		if (arena->bins[i].stats.nrequests == 0) {
   1130  1.57        ad 			if (gap_start == minusone)
   1131   1.1        ad 				gap_start = i;
   1132   1.1        ad 		} else {
   1133  1.57        ad 			if (gap_start != minusone) {
   1134   1.1        ad 				if (i > gap_start + 1) {
   1135   1.1        ad 					/* Gap of more than one size class. */
   1136   1.1        ad 					malloc_printf("[%u..%u]\n",
   1137   1.1        ad 					    gap_start, i - 1);
   1138   1.1        ad 				} else {
   1139   1.1        ad 					/* Gap of one size class. */
   1140   1.1        ad 					malloc_printf("[%u]\n", gap_start);
   1141   1.1        ad 				}
   1142  1.57        ad 				gap_start = minusone;
   1143   1.1        ad 			}
   1144   1.1        ad 			malloc_printf(
   1145   1.1        ad 			    "%13u %1s %4u %4u %3u %9llu %9llu"
   1146   1.1        ad 			    " %9llu %7lu %7lu\n",
   1147   1.1        ad 			    i,
   1148   1.1        ad 			    i < ntbins ? "T" : i < ntbins + nqbins ? "Q" : "S",
   1149   1.1        ad 			    arena->bins[i].reg_size,
   1150   1.1        ad 			    arena->bins[i].nregs,
   1151   1.1        ad 			    arena->bins[i].run_size >> pagesize_2pow,
   1152   1.1        ad 			    arena->bins[i].stats.nrequests,
   1153   1.1        ad 			    arena->bins[i].stats.nruns,
   1154   1.1        ad 			    arena->bins[i].stats.reruns,
   1155   1.1        ad 			    arena->bins[i].stats.highruns,
   1156   1.1        ad 			    arena->bins[i].stats.curruns);
   1157   1.1        ad 		}
   1158   1.1        ad 	}
   1159  1.57        ad 	if (gap_start != minusone) {
   1160   1.1        ad 		if (i > gap_start + 1) {
   1161   1.1        ad 			/* Gap of more than one size class. */
   1162   1.1        ad 			malloc_printf("[%u..%u]\n", gap_start, i - 1);
   1163   1.1        ad 		} else {
   1164   1.1        ad 			/* Gap of one size class. */
   1165   1.1        ad 			malloc_printf("[%u]\n", gap_start);
   1166   1.1        ad 		}
   1167   1.1        ad 	}
   1168   1.1        ad }
   1169   1.1        ad #endif
   1170   1.1        ad 
   1171   1.1        ad /*
   1172   1.1        ad  * End Utility functions/macros.
   1173   1.1        ad  */
   1174   1.1        ad /******************************************************************************/
   1175   1.1        ad /*
   1176   1.1        ad  * Begin chunk management functions.
   1177   1.1        ad  */
   1178   1.1        ad 
   1179   1.1        ad static inline int
   1180   1.1        ad chunk_comp(chunk_node_t *a, chunk_node_t *b)
   1181   1.1        ad {
   1182   1.1        ad 
   1183   1.1        ad 	assert(a != NULL);
   1184   1.1        ad 	assert(b != NULL);
   1185   1.1        ad 
   1186   1.1        ad 	if ((uintptr_t)a->chunk < (uintptr_t)b->chunk)
   1187   1.1        ad 		return (-1);
   1188   1.1        ad 	else if (a->chunk == b->chunk)
   1189   1.1        ad 		return (0);
   1190   1.1        ad 	else
   1191   1.1        ad 		return (1);
   1192   1.1        ad }
   1193   1.1        ad 
   1194   1.1        ad /* Generate red-black tree code for chunks. */
   1195  1.54  christos RB_GENERATE_STATIC(chunk_tree_s, chunk_node_s, link, chunk_comp)
   1196   1.1        ad 
   1197   1.1        ad static void *
   1198   1.5      yamt pages_map_align(void *addr, size_t size, int align)
   1199   1.1        ad {
   1200   1.1        ad 	void *ret;
   1201   1.1        ad 
   1202   1.1        ad 	/*
   1203   1.1        ad 	 * We don't use MAP_FIXED here, because it can cause the *replacement*
   1204   1.1        ad 	 * of existing mappings, and we only want to create new mappings.
   1205   1.1        ad 	 */
   1206   1.5      yamt 	ret = mmap(addr, size, PROT_READ | PROT_WRITE,
   1207   1.5      yamt 	    MAP_PRIVATE | MAP_ANON | MAP_ALIGNED(align), -1, 0);
   1208   1.1        ad 	assert(ret != NULL);
   1209   1.1        ad 
   1210   1.1        ad 	if (ret == MAP_FAILED)
   1211   1.1        ad 		ret = NULL;
   1212   1.1        ad 	else if (addr != NULL && ret != addr) {
   1213   1.1        ad 		/*
   1214   1.1        ad 		 * We succeeded in mapping memory, but not in the right place.
   1215   1.1        ad 		 */
   1216   1.1        ad 		if (munmap(ret, size) == -1) {
   1217   1.1        ad 			char buf[STRERROR_BUF];
   1218   1.1        ad 
   1219  1.16  christos 			STRERROR_R(errno, buf, sizeof(buf));
   1220  1.16  christos 			_malloc_message(getprogname(),
   1221   1.1        ad 			    ": (malloc) Error in munmap(): ", buf, "\n");
   1222  1.57        ad 			if (OPT(abort))
   1223   1.1        ad 				abort();
   1224   1.1        ad 		}
   1225   1.1        ad 		ret = NULL;
   1226   1.1        ad 	}
   1227   1.1        ad 
   1228   1.1        ad 	assert(ret == NULL || (addr == NULL && ret != addr)
   1229   1.1        ad 	    || (addr != NULL && ret == addr));
   1230   1.1        ad 	return (ret);
   1231   1.1        ad }
   1232   1.1        ad 
   1233   1.5      yamt static void *
   1234   1.5      yamt pages_map(void *addr, size_t size)
   1235   1.5      yamt {
   1236   1.5      yamt 
   1237   1.5      yamt 	return pages_map_align(addr, size, 0);
   1238   1.5      yamt }
   1239   1.5      yamt 
   1240   1.1        ad static void
   1241   1.1        ad pages_unmap(void *addr, size_t size)
   1242   1.1        ad {
   1243   1.1        ad 
   1244   1.1        ad 	if (munmap(addr, size) == -1) {
   1245   1.1        ad 		char buf[STRERROR_BUF];
   1246   1.1        ad 
   1247  1.16  christos 		STRERROR_R(errno, buf, sizeof(buf));
   1248  1.16  christos 		_malloc_message(getprogname(),
   1249   1.1        ad 		    ": (malloc) Error in munmap(): ", buf, "\n");
   1250  1.57        ad 		if (OPT(abort))
   1251   1.1        ad 			abort();
   1252   1.1        ad 	}
   1253   1.1        ad }
   1254   1.1        ad 
   1255   1.1        ad static void *
   1256   1.1        ad chunk_alloc(size_t size)
   1257   1.1        ad {
   1258   1.1        ad 	void *ret, *chunk;
   1259   1.1        ad 	chunk_node_t *tchunk, *delchunk;
   1260   1.1        ad 
   1261   1.1        ad 	assert(size != 0);
   1262   1.1        ad 	assert((size & chunksize_mask) == 0);
   1263   1.1        ad 
   1264   1.1        ad 	malloc_mutex_lock(&chunks_mtx);
   1265   1.1        ad 
   1266   1.1        ad 	if (size == chunksize) {
   1267   1.1        ad 		/*
   1268   1.1        ad 		 * Check for address ranges that were previously chunks and try
   1269   1.1        ad 		 * to use them.
   1270   1.1        ad 		 */
   1271   1.1        ad 
   1272   1.1        ad 		tchunk = RB_MIN(chunk_tree_s, &old_chunks);
   1273   1.1        ad 		while (tchunk != NULL) {
   1274   1.1        ad 			/* Found an address range.  Try to recycle it. */
   1275   1.1        ad 
   1276   1.1        ad 			chunk = tchunk->chunk;
   1277   1.1        ad 			delchunk = tchunk;
   1278   1.1        ad 			tchunk = RB_NEXT(chunk_tree_s, &old_chunks, delchunk);
   1279   1.1        ad 
   1280   1.1        ad 			/* Remove delchunk from the tree. */
   1281   1.1        ad 			RB_REMOVE(chunk_tree_s, &old_chunks, delchunk);
   1282   1.1        ad 			base_chunk_node_dealloc(delchunk);
   1283   1.1        ad 
   1284   1.1        ad #ifdef USE_BRK
   1285   1.1        ad 			if ((uintptr_t)chunk >= (uintptr_t)brk_base
   1286   1.1        ad 			    && (uintptr_t)chunk < (uintptr_t)brk_max) {
   1287   1.1        ad 				/* Re-use a previously freed brk chunk. */
   1288   1.1        ad 				ret = chunk;
   1289   1.1        ad 				goto RETURN;
   1290   1.1        ad 			}
   1291   1.1        ad #endif
   1292   1.1        ad 			if ((ret = pages_map(chunk, size)) != NULL) {
   1293   1.1        ad 				/* Success. */
   1294   1.1        ad 				goto RETURN;
   1295   1.1        ad 			}
   1296   1.1        ad 		}
   1297   1.1        ad 	}
   1298   1.1        ad 
   1299   1.1        ad 	/*
   1300   1.1        ad 	 * Try to over-allocate, but allow the OS to place the allocation
   1301   1.1        ad 	 * anywhere.  Beware of size_t wrap-around.
   1302   1.1        ad 	 */
   1303   1.1        ad 	if (size + chunksize > size) {
   1304   1.5      yamt 		if ((ret = pages_map_align(NULL, size, chunksize_2pow))
   1305   1.5      yamt 		    != NULL) {
   1306   1.1        ad 			goto RETURN;
   1307   1.1        ad 		}
   1308   1.1        ad 	}
   1309   1.1        ad 
   1310   1.1        ad #ifdef USE_BRK
   1311   1.1        ad 	/*
   1312   1.1        ad 	 * Try to create allocations in brk, in order to make full use of
   1313   1.1        ad 	 * limited address space.
   1314   1.1        ad 	 */
   1315   1.1        ad 	if (brk_prev != (void *)-1) {
   1316   1.1        ad 		void *brk_cur;
   1317   1.1        ad 		intptr_t incr;
   1318   1.1        ad 
   1319   1.1        ad 		/*
   1320   1.1        ad 		 * The loop is necessary to recover from races with other
   1321   1.1        ad 		 * threads that are using brk for something other than malloc.
   1322   1.1        ad 		 */
   1323   1.1        ad 		malloc_mutex_lock(&brk_mtx);
   1324   1.1        ad 		do {
   1325   1.1        ad 			/* Get the current end of brk. */
   1326   1.1        ad 			brk_cur = sbrk(0);
   1327   1.1        ad 
   1328   1.1        ad 			/*
   1329   1.1        ad 			 * Calculate how much padding is necessary to
   1330   1.1        ad 			 * chunk-align the end of brk.
   1331   1.1        ad 			 */
   1332   1.1        ad 			incr = (intptr_t)size
   1333   1.1        ad 			    - (intptr_t)CHUNK_ADDR2OFFSET(brk_cur);
   1334  1.20     lukem 			if (incr == (intptr_t)size) {
   1335   1.1        ad 				ret = brk_cur;
   1336   1.1        ad 			} else {
   1337   1.1        ad 				ret = (void *)((intptr_t)brk_cur + incr);
   1338   1.1        ad 				incr += size;
   1339   1.1        ad 			}
   1340   1.1        ad 
   1341   1.1        ad 			brk_prev = sbrk(incr);
   1342   1.1        ad 			if (brk_prev == brk_cur) {
   1343   1.1        ad 				/* Success. */
   1344   1.1        ad 				malloc_mutex_unlock(&brk_mtx);
   1345   1.1        ad 				brk_max = (void *)((intptr_t)ret + size);
   1346   1.1        ad 				goto RETURN;
   1347   1.1        ad 			}
   1348   1.1        ad 		} while (brk_prev != (void *)-1);
   1349   1.1        ad 		malloc_mutex_unlock(&brk_mtx);
   1350   1.1        ad 	}
   1351   1.1        ad #endif
   1352   1.1        ad 
   1353   1.1        ad 	/* All strategies for allocation failed. */
   1354   1.1        ad 	ret = NULL;
   1355   1.1        ad RETURN:
   1356   1.1        ad 	if (ret != NULL) {
   1357   1.1        ad 		chunk_node_t key;
   1358   1.1        ad 		/*
   1359   1.1        ad 		 * Clean out any entries in old_chunks that overlap with the
   1360   1.1        ad 		 * memory we just allocated.
   1361   1.1        ad 		 */
   1362   1.1        ad 		key.chunk = ret;
   1363   1.1        ad 		tchunk = RB_NFIND(chunk_tree_s, &old_chunks, &key);
   1364   1.1        ad 		while (tchunk != NULL
   1365   1.1        ad 		    && (uintptr_t)tchunk->chunk >= (uintptr_t)ret
   1366   1.1        ad 		    && (uintptr_t)tchunk->chunk < (uintptr_t)ret + size) {
   1367   1.1        ad 			delchunk = tchunk;
   1368   1.1        ad 			tchunk = RB_NEXT(chunk_tree_s, &old_chunks, delchunk);
   1369   1.1        ad 			RB_REMOVE(chunk_tree_s, &old_chunks, delchunk);
   1370   1.1        ad 			base_chunk_node_dealloc(delchunk);
   1371   1.1        ad 		}
   1372   1.1        ad 
   1373   1.1        ad 	}
   1374   1.1        ad #ifdef MALLOC_STATS
   1375   1.1        ad 	if (ret != NULL) {
   1376   1.1        ad 		stats_chunks.nchunks += (size / chunksize);
   1377   1.1        ad 		stats_chunks.curchunks += (size / chunksize);
   1378   1.1        ad 	}
   1379   1.1        ad 	if (stats_chunks.curchunks > stats_chunks.highchunks)
   1380   1.1        ad 		stats_chunks.highchunks = stats_chunks.curchunks;
   1381   1.1        ad #endif
   1382   1.1        ad 	malloc_mutex_unlock(&chunks_mtx);
   1383   1.1        ad 
   1384   1.1        ad 	assert(CHUNK_ADDR2BASE(ret) == ret);
   1385   1.1        ad 	return (ret);
   1386   1.1        ad }
   1387   1.1        ad 
   1388   1.1        ad static void
   1389   1.1        ad chunk_dealloc(void *chunk, size_t size)
   1390   1.1        ad {
   1391   1.1        ad 	chunk_node_t *node;
   1392   1.1        ad 
   1393   1.1        ad 	assert(chunk != NULL);
   1394   1.1        ad 	assert(CHUNK_ADDR2BASE(chunk) == chunk);
   1395   1.1        ad 	assert(size != 0);
   1396   1.1        ad 	assert((size & chunksize_mask) == 0);
   1397   1.1        ad 
   1398   1.1        ad 	malloc_mutex_lock(&chunks_mtx);
   1399   1.1        ad 
   1400   1.1        ad #ifdef USE_BRK
   1401   1.1        ad 	if ((uintptr_t)chunk >= (uintptr_t)brk_base
   1402   1.1        ad 	    && (uintptr_t)chunk < (uintptr_t)brk_max) {
   1403   1.1        ad 		void *brk_cur;
   1404   1.1        ad 
   1405   1.1        ad 		malloc_mutex_lock(&brk_mtx);
   1406   1.1        ad 		/* Get the current end of brk. */
   1407   1.1        ad 		brk_cur = sbrk(0);
   1408   1.1        ad 
   1409   1.1        ad 		/*
   1410   1.1        ad 		 * Try to shrink the data segment if this chunk is at the end
   1411   1.1        ad 		 * of the data segment.  The sbrk() call here is subject to a
   1412   1.1        ad 		 * race condition with threads that use brk(2) or sbrk(2)
   1413   1.1        ad 		 * directly, but the alternative would be to leak memory for
   1414   1.1        ad 		 * the sake of poorly designed multi-threaded programs.
   1415   1.1        ad 		 */
   1416   1.1        ad 		if (brk_cur == brk_max
   1417   1.1        ad 		    && (void *)((uintptr_t)chunk + size) == brk_max
   1418   1.1        ad 		    && sbrk(-(intptr_t)size) == brk_max) {
   1419   1.1        ad 			malloc_mutex_unlock(&brk_mtx);
   1420   1.1        ad 			if (brk_prev == brk_max) {
   1421   1.1        ad 				/* Success. */
   1422   1.1        ad 				brk_prev = (void *)((intptr_t)brk_max
   1423   1.1        ad 				    - (intptr_t)size);
   1424   1.1        ad 				brk_max = brk_prev;
   1425   1.1        ad 			}
   1426   1.1        ad 		} else {
   1427   1.1        ad 			size_t offset;
   1428   1.1        ad 
   1429   1.1        ad 			malloc_mutex_unlock(&brk_mtx);
   1430   1.1        ad 			madvise(chunk, size, MADV_FREE);
   1431   1.1        ad 
   1432   1.1        ad 			/*
   1433   1.1        ad 			 * Iteratively create records of each chunk-sized
   1434   1.1        ad 			 * memory region that 'chunk' is comprised of, so that
   1435   1.1        ad 			 * the address range can be recycled if memory usage
   1436   1.1        ad 			 * increases later on.
   1437   1.1        ad 			 */
   1438   1.1        ad 			for (offset = 0; offset < size; offset += chunksize) {
   1439   1.1        ad 				node = base_chunk_node_alloc();
   1440   1.1        ad 				if (node == NULL)
   1441   1.1        ad 					break;
   1442   1.1        ad 
   1443   1.1        ad 				node->chunk = (void *)((uintptr_t)chunk
   1444   1.1        ad 				    + (uintptr_t)offset);
   1445   1.1        ad 				node->size = chunksize;
   1446   1.1        ad 				RB_INSERT(chunk_tree_s, &old_chunks, node);
   1447   1.1        ad 			}
   1448   1.1        ad 		}
   1449   1.1        ad 	} else {
   1450   1.1        ad #endif
   1451   1.1        ad 		pages_unmap(chunk, size);
   1452   1.1        ad 
   1453   1.1        ad 		/*
   1454   1.1        ad 		 * Make a record of the chunk's address, so that the address
   1455   1.1        ad 		 * range can be recycled if memory usage increases later on.
   1456   1.1        ad 		 * Don't bother to create entries if (size > chunksize), since
   1457   1.1        ad 		 * doing so could cause scalability issues for truly gargantuan
   1458   1.1        ad 		 * objects (many gigabytes or larger).
   1459   1.1        ad 		 */
   1460   1.1        ad 		if (size == chunksize) {
   1461   1.1        ad 			node = base_chunk_node_alloc();
   1462   1.1        ad 			if (node != NULL) {
   1463   1.1        ad 				node->chunk = (void *)(uintptr_t)chunk;
   1464   1.1        ad 				node->size = chunksize;
   1465   1.1        ad 				RB_INSERT(chunk_tree_s, &old_chunks, node);
   1466   1.1        ad 			}
   1467   1.1        ad 		}
   1468   1.1        ad #ifdef USE_BRK
   1469   1.1        ad 	}
   1470   1.1        ad #endif
   1471   1.1        ad 
   1472   1.1        ad #ifdef MALLOC_STATS
   1473   1.1        ad 	stats_chunks.curchunks -= (size / chunksize);
   1474   1.1        ad #endif
   1475   1.1        ad 	malloc_mutex_unlock(&chunks_mtx);
   1476   1.1        ad }
   1477   1.1        ad 
   1478   1.1        ad /*
   1479   1.1        ad  * End chunk management functions.
   1480   1.1        ad  */
   1481   1.1        ad /******************************************************************************/
   1482   1.1        ad /*
   1483   1.1        ad  * Begin arena.
   1484   1.1        ad  */
   1485   1.1        ad 
   1486   1.1        ad /*
   1487  1.57        ad  * Choose a per-CPU arena.
   1488   1.1        ad  */
   1489  1.19        ad static __noinline arena_t *
   1490  1.19        ad choose_arena_hard(void)
   1491   1.1        ad {
   1492   1.1        ad 
   1493  1.57        ad 	assert(arenas[0] != NULL);
   1494  1.57        ad 
   1495   1.1        ad 	malloc_mutex_lock(&arenas_mtx);
   1496  1.57        ad 	for (unsigned i = 1; i < ncpus; i++)
   1497  1.57        ad 		if (arenas[i] == NULL)
   1498  1.57        ad 			arenas[i] = arenas_extend();
   1499   1.1        ad 	malloc_mutex_unlock(&arenas_mtx);
   1500   1.1        ad 
   1501  1.57        ad 	return arenas[thr_curcpu()];
   1502   1.1        ad }
   1503   1.1        ad 
   1504  1.19        ad static inline arena_t *
   1505  1.19        ad choose_arena(void)
   1506  1.19        ad {
   1507  1.57        ad 	arena_t *arena;
   1508  1.19        ad 
   1509  1.57        ad 	/* NB: when libpthread is absent, thr_curcpu() always returns zero. */
   1510  1.57        ad 	arena = arenas[thr_curcpu()];
   1511  1.57        ad 	if (__predict_true(arena != NULL))
   1512  1.57        ad 		return arena;
   1513  1.19        ad 
   1514  1.57        ad 	return choose_arena_hard();
   1515  1.19        ad }
   1516  1.19        ad 
   1517   1.1        ad static inline int
   1518   1.1        ad arena_chunk_comp(arena_chunk_t *a, arena_chunk_t *b)
   1519   1.1        ad {
   1520   1.1        ad 
   1521   1.1        ad 	assert(a != NULL);
   1522   1.1        ad 	assert(b != NULL);
   1523   1.1        ad 
   1524  1.40     joerg 	if (a->max_frun_npages < b->max_frun_npages)
   1525  1.40     joerg 		return -1;
   1526  1.40     joerg 	if (a->max_frun_npages > b->max_frun_npages)
   1527  1.40     joerg 		return 1;
   1528  1.40     joerg 
   1529   1.1        ad 	if ((uintptr_t)a < (uintptr_t)b)
   1530   1.1        ad 		return (-1);
   1531   1.1        ad 	else if (a == b)
   1532   1.1        ad 		return (0);
   1533   1.1        ad 	else
   1534   1.1        ad 		return (1);
   1535   1.1        ad }
   1536   1.1        ad 
   1537   1.1        ad /* Generate red-black tree code for arena chunks. */
   1538  1.54  christos RB_GENERATE_STATIC(arena_chunk_tree_s, arena_chunk_s, link, arena_chunk_comp)
   1539   1.1        ad 
   1540   1.1        ad static inline int
   1541   1.1        ad arena_run_comp(arena_run_t *a, arena_run_t *b)
   1542   1.1        ad {
   1543   1.1        ad 
   1544   1.1        ad 	assert(a != NULL);
   1545   1.1        ad 	assert(b != NULL);
   1546   1.1        ad 
   1547   1.1        ad 	if ((uintptr_t)a < (uintptr_t)b)
   1548   1.1        ad 		return (-1);
   1549   1.1        ad 	else if (a == b)
   1550   1.1        ad 		return (0);
   1551   1.1        ad 	else
   1552   1.1        ad 		return (1);
   1553   1.1        ad }
   1554   1.1        ad 
   1555   1.1        ad /* Generate red-black tree code for arena runs. */
   1556  1.54  christos RB_GENERATE_STATIC(arena_run_tree_s, arena_run_s, link, arena_run_comp)
   1557   1.1        ad 
   1558   1.1        ad static inline void *
   1559   1.1        ad arena_run_reg_alloc(arena_run_t *run, arena_bin_t *bin)
   1560   1.1        ad {
   1561   1.1        ad 	void *ret;
   1562   1.1        ad 	unsigned i, mask, bit, regind;
   1563   1.1        ad 
   1564   1.1        ad 	assert(run->magic == ARENA_RUN_MAGIC);
   1565   1.1        ad 	assert(run->regs_minelm < bin->regs_mask_nelms);
   1566   1.1        ad 
   1567   1.1        ad 	/*
   1568   1.1        ad 	 * Move the first check outside the loop, so that run->regs_minelm can
   1569   1.1        ad 	 * be updated unconditionally, without the possibility of updating it
   1570   1.1        ad 	 * multiple times.
   1571   1.1        ad 	 */
   1572   1.1        ad 	i = run->regs_minelm;
   1573   1.1        ad 	mask = run->regs_mask[i];
   1574   1.1        ad 	if (mask != 0) {
   1575   1.1        ad 		/* Usable allocation found. */
   1576   1.1        ad 		bit = ffs((int)mask) - 1;
   1577   1.1        ad 
   1578   1.1        ad 		regind = ((i << (SIZEOF_INT_2POW + 3)) + bit);
   1579   1.1        ad 		ret = (void *)(((uintptr_t)run) + bin->reg0_offset
   1580   1.1        ad 		    + (bin->reg_size * regind));
   1581   1.1        ad 
   1582   1.1        ad 		/* Clear bit. */
   1583  1.45     kamil 		mask ^= (1U << bit);
   1584   1.1        ad 		run->regs_mask[i] = mask;
   1585   1.1        ad 
   1586   1.1        ad 		return (ret);
   1587   1.1        ad 	}
   1588   1.1        ad 
   1589   1.1        ad 	for (i++; i < bin->regs_mask_nelms; i++) {
   1590   1.1        ad 		mask = run->regs_mask[i];
   1591   1.1        ad 		if (mask != 0) {
   1592   1.1        ad 			/* Usable allocation found. */
   1593   1.1        ad 			bit = ffs((int)mask) - 1;
   1594   1.1        ad 
   1595   1.1        ad 			regind = ((i << (SIZEOF_INT_2POW + 3)) + bit);
   1596   1.1        ad 			ret = (void *)(((uintptr_t)run) + bin->reg0_offset
   1597   1.1        ad 			    + (bin->reg_size * regind));
   1598   1.1        ad 
   1599   1.1        ad 			/* Clear bit. */
   1600  1.45     kamil 			mask ^= (1U << bit);
   1601   1.1        ad 			run->regs_mask[i] = mask;
   1602   1.1        ad 
   1603   1.1        ad 			/*
   1604   1.1        ad 			 * Make a note that nothing before this element
   1605   1.1        ad 			 * contains a free region.
   1606   1.1        ad 			 */
   1607   1.1        ad 			run->regs_minelm = i; /* Low payoff: + (mask == 0); */
   1608   1.1        ad 
   1609   1.1        ad 			return (ret);
   1610   1.1        ad 		}
   1611   1.1        ad 	}
   1612   1.1        ad 	/* Not reached. */
   1613   1.7      yamt 	/* LINTED */
   1614   1.1        ad 	assert(0);
   1615   1.1        ad 	return (NULL);
   1616   1.1        ad }
   1617   1.1        ad 
   1618   1.1        ad static inline void
   1619   1.1        ad arena_run_reg_dalloc(arena_run_t *run, arena_bin_t *bin, void *ptr, size_t size)
   1620   1.1        ad {
   1621   1.1        ad 	/*
   1622   1.1        ad 	 * To divide by a number D that is not a power of two we multiply
   1623   1.1        ad 	 * by (2^21 / D) and then right shift by 21 positions.
   1624   1.1        ad 	 *
   1625   1.1        ad 	 *   X / D
   1626   1.1        ad 	 *
   1627   1.1        ad 	 * becomes
   1628   1.1        ad 	 *
   1629   1.1        ad 	 *   (X * size_invs[(D >> QUANTUM_2POW_MIN) - 3]) >> SIZE_INV_SHIFT
   1630   1.1        ad 	 */
   1631   1.1        ad #define SIZE_INV_SHIFT 21
   1632   1.1        ad #define SIZE_INV(s) (((1 << SIZE_INV_SHIFT) / (s << QUANTUM_2POW_MIN)) + 1)
   1633   1.1        ad 	static const unsigned size_invs[] = {
   1634   1.1        ad 	    SIZE_INV(3),
   1635   1.1        ad 	    SIZE_INV(4), SIZE_INV(5), SIZE_INV(6), SIZE_INV(7),
   1636   1.1        ad 	    SIZE_INV(8), SIZE_INV(9), SIZE_INV(10), SIZE_INV(11),
   1637   1.1        ad 	    SIZE_INV(12),SIZE_INV(13), SIZE_INV(14), SIZE_INV(15),
   1638   1.1        ad 	    SIZE_INV(16),SIZE_INV(17), SIZE_INV(18), SIZE_INV(19),
   1639   1.1        ad 	    SIZE_INV(20),SIZE_INV(21), SIZE_INV(22), SIZE_INV(23),
   1640   1.1        ad 	    SIZE_INV(24),SIZE_INV(25), SIZE_INV(26), SIZE_INV(27),
   1641   1.1        ad 	    SIZE_INV(28),SIZE_INV(29), SIZE_INV(30), SIZE_INV(31)
   1642   1.1        ad #if (QUANTUM_2POW_MIN < 4)
   1643   1.1        ad 	    ,
   1644   1.1        ad 	    SIZE_INV(32), SIZE_INV(33), SIZE_INV(34), SIZE_INV(35),
   1645   1.1        ad 	    SIZE_INV(36), SIZE_INV(37), SIZE_INV(38), SIZE_INV(39),
   1646   1.1        ad 	    SIZE_INV(40), SIZE_INV(41), SIZE_INV(42), SIZE_INV(43),
   1647   1.1        ad 	    SIZE_INV(44), SIZE_INV(45), SIZE_INV(46), SIZE_INV(47),
   1648   1.1        ad 	    SIZE_INV(48), SIZE_INV(49), SIZE_INV(50), SIZE_INV(51),
   1649   1.1        ad 	    SIZE_INV(52), SIZE_INV(53), SIZE_INV(54), SIZE_INV(55),
   1650   1.1        ad 	    SIZE_INV(56), SIZE_INV(57), SIZE_INV(58), SIZE_INV(59),
   1651   1.1        ad 	    SIZE_INV(60), SIZE_INV(61), SIZE_INV(62), SIZE_INV(63)
   1652   1.1        ad #endif
   1653   1.1        ad 	};
   1654   1.1        ad 	unsigned diff, regind, elm, bit;
   1655   1.1        ad 
   1656   1.7      yamt 	/* LINTED */
   1657   1.1        ad 	assert(run->magic == ARENA_RUN_MAGIC);
   1658   1.1        ad 	assert(((sizeof(size_invs)) / sizeof(unsigned)) + 3
   1659   1.1        ad 	    >= (SMALL_MAX_DEFAULT >> QUANTUM_2POW_MIN));
   1660   1.1        ad 
   1661   1.1        ad 	/*
   1662   1.1        ad 	 * Avoid doing division with a variable divisor if possible.  Using
   1663   1.1        ad 	 * actual division here can reduce allocator throughput by over 20%!
   1664   1.1        ad 	 */
   1665   1.1        ad 	diff = (unsigned)((uintptr_t)ptr - (uintptr_t)run - bin->reg0_offset);
   1666   1.1        ad 	if ((size & (size - 1)) == 0) {
   1667   1.1        ad 		/*
   1668   1.1        ad 		 * log2_table allows fast division of a power of two in the
   1669   1.1        ad 		 * [1..128] range.
   1670   1.1        ad 		 *
   1671   1.1        ad 		 * (x / divisor) becomes (x >> log2_table[divisor - 1]).
   1672   1.1        ad 		 */
   1673   1.1        ad 		static const unsigned char log2_table[] = {
   1674   1.1        ad 		    0, 1, 0, 2, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 4,
   1675   1.1        ad 		    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5,
   1676   1.1        ad 		    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
   1677   1.1        ad 		    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6,
   1678   1.1        ad 		    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
   1679   1.1        ad 		    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
   1680   1.1        ad 		    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
   1681   1.1        ad 		    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7
   1682   1.1        ad 		};
   1683   1.1        ad 
   1684   1.1        ad 		if (size <= 128)
   1685   1.1        ad 			regind = (diff >> log2_table[size - 1]);
   1686   1.1        ad 		else if (size <= 32768)
   1687   1.1        ad 			regind = diff >> (8 + log2_table[(size >> 8) - 1]);
   1688   1.1        ad 		else {
   1689   1.1        ad 			/*
   1690   1.1        ad 			 * The page size is too large for us to use the lookup
   1691   1.1        ad 			 * table.  Use real division.
   1692   1.1        ad 			 */
   1693   1.9  christos 			regind = (unsigned)(diff / size);
   1694   1.1        ad 		}
   1695   1.1        ad 	} else if (size <= ((sizeof(size_invs) / sizeof(unsigned))
   1696   1.1        ad 	    << QUANTUM_2POW_MIN) + 2) {
   1697   1.1        ad 		regind = size_invs[(size >> QUANTUM_2POW_MIN) - 3] * diff;
   1698   1.1        ad 		regind >>= SIZE_INV_SHIFT;
   1699   1.1        ad 	} else {
   1700   1.1        ad 		/*
   1701   1.1        ad 		 * size_invs isn't large enough to handle this size class, so
   1702   1.1        ad 		 * calculate regind using actual division.  This only happens
   1703   1.1        ad 		 * if the user increases small_max via the 'S' runtime
   1704   1.1        ad 		 * configuration option.
   1705   1.1        ad 		 */
   1706   1.9  christos 		regind = (unsigned)(diff / size);
   1707   1.1        ad 	};
   1708   1.1        ad 	assert(diff == regind * size);
   1709   1.1        ad 	assert(regind < bin->nregs);
   1710   1.1        ad 
   1711   1.1        ad 	elm = regind >> (SIZEOF_INT_2POW + 3);
   1712   1.1        ad 	if (elm < run->regs_minelm)
   1713   1.1        ad 		run->regs_minelm = elm;
   1714   1.1        ad 	bit = regind - (elm << (SIZEOF_INT_2POW + 3));
   1715  1.45     kamil 	assert((run->regs_mask[elm] & (1U << bit)) == 0);
   1716  1.45     kamil 	run->regs_mask[elm] |= (1U << bit);
   1717   1.1        ad #undef SIZE_INV
   1718   1.1        ad #undef SIZE_INV_SHIFT
   1719   1.1        ad }
   1720   1.1        ad 
   1721   1.1        ad static void
   1722   1.1        ad arena_run_split(arena_t *arena, arena_run_t *run, size_t size)
   1723   1.1        ad {
   1724   1.1        ad 	arena_chunk_t *chunk;
   1725   1.1        ad 	unsigned run_ind, map_offset, total_pages, need_pages, rem_pages;
   1726   1.1        ad 	unsigned i;
   1727   1.1        ad 
   1728   1.1        ad 	chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(run);
   1729   1.1        ad 	run_ind = (unsigned)(((uintptr_t)run - (uintptr_t)chunk)
   1730   1.1        ad 	    >> pagesize_2pow);
   1731   1.1        ad 	total_pages = chunk->map[run_ind].npages;
   1732   1.9  christos 	need_pages = (unsigned)(size >> pagesize_2pow);
   1733   1.1        ad 	assert(need_pages <= total_pages);
   1734   1.1        ad 	rem_pages = total_pages - need_pages;
   1735   1.1        ad 
   1736   1.1        ad 	/* Split enough pages from the front of run to fit allocation size. */
   1737   1.1        ad 	map_offset = run_ind;
   1738   1.1        ad 	for (i = 0; i < need_pages; i++) {
   1739   1.1        ad 		chunk->map[map_offset + i].npages = need_pages;
   1740   1.1        ad 		chunk->map[map_offset + i].pos = i;
   1741   1.1        ad 	}
   1742   1.1        ad 
   1743   1.1        ad 	/* Keep track of trailing unused pages for later use. */
   1744   1.1        ad 	if (rem_pages > 0) {
   1745   1.1        ad 		/* Update map for trailing pages. */
   1746   1.1        ad 		map_offset += need_pages;
   1747   1.1        ad 		chunk->map[map_offset].npages = rem_pages;
   1748   1.1        ad 		chunk->map[map_offset].pos = POS_FREE;
   1749   1.1        ad 		chunk->map[map_offset + rem_pages - 1].npages = rem_pages;
   1750   1.1        ad 		chunk->map[map_offset + rem_pages - 1].pos = POS_FREE;
   1751   1.1        ad 	}
   1752   1.1        ad 
   1753   1.1        ad 	chunk->pages_used += need_pages;
   1754   1.1        ad }
   1755   1.1        ad 
   1756   1.1        ad static arena_chunk_t *
   1757   1.1        ad arena_chunk_alloc(arena_t *arena)
   1758   1.1        ad {
   1759   1.1        ad 	arena_chunk_t *chunk;
   1760   1.1        ad 
   1761   1.1        ad 	if (arena->spare != NULL) {
   1762   1.1        ad 		chunk = arena->spare;
   1763   1.1        ad 		arena->spare = NULL;
   1764   1.1        ad 
   1765   1.1        ad 		RB_INSERT(arena_chunk_tree_s, &arena->chunks, chunk);
   1766   1.1        ad 	} else {
   1767   1.1        ad 		chunk = (arena_chunk_t *)chunk_alloc(chunksize);
   1768   1.1        ad 		if (chunk == NULL)
   1769   1.1        ad 			return (NULL);
   1770   1.1        ad #ifdef MALLOC_STATS
   1771   1.1        ad 		arena->stats.mapped += chunksize;
   1772   1.1        ad #endif
   1773   1.1        ad 
   1774   1.1        ad 		chunk->arena = arena;
   1775   1.1        ad 
   1776   1.1        ad 		/*
   1777   1.1        ad 		 * Claim that no pages are in use, since the header is merely
   1778   1.1        ad 		 * overhead.
   1779   1.1        ad 		 */
   1780   1.1        ad 		chunk->pages_used = 0;
   1781   1.1        ad 
   1782   1.1        ad 		chunk->max_frun_npages = chunk_npages -
   1783   1.1        ad 		    arena_chunk_header_npages;
   1784   1.1        ad 		chunk->min_frun_ind = arena_chunk_header_npages;
   1785   1.1        ad 
   1786   1.1        ad 		/*
   1787   1.1        ad 		 * Initialize enough of the map to support one maximal free run.
   1788   1.1        ad 		 */
   1789   1.1        ad 		chunk->map[arena_chunk_header_npages].npages = chunk_npages -
   1790   1.1        ad 		    arena_chunk_header_npages;
   1791   1.1        ad 		chunk->map[arena_chunk_header_npages].pos = POS_FREE;
   1792   1.1        ad 		chunk->map[chunk_npages - 1].npages = chunk_npages -
   1793   1.1        ad 		    arena_chunk_header_npages;
   1794   1.1        ad 		chunk->map[chunk_npages - 1].pos = POS_FREE;
   1795  1.40     joerg 
   1796  1.40     joerg 		RB_INSERT(arena_chunk_tree_s, &arena->chunks, chunk);
   1797   1.1        ad 	}
   1798   1.1        ad 
   1799   1.1        ad 	return (chunk);
   1800   1.1        ad }
   1801   1.1        ad 
   1802   1.1        ad static void
   1803   1.1        ad arena_chunk_dealloc(arena_t *arena, arena_chunk_t *chunk)
   1804   1.1        ad {
   1805   1.1        ad 
   1806   1.1        ad 	/*
   1807   1.1        ad 	 * Remove chunk from the chunk tree, regardless of whether this chunk
   1808   1.1        ad 	 * will be cached, so that the arena does not use it.
   1809   1.1        ad 	 */
   1810   1.1        ad 	RB_REMOVE(arena_chunk_tree_s, &chunk->arena->chunks, chunk);
   1811   1.1        ad 
   1812  1.57        ad 	if (NOT_OPT(hint)) {
   1813   1.1        ad 		if (arena->spare != NULL) {
   1814   1.1        ad 			chunk_dealloc((void *)arena->spare, chunksize);
   1815   1.1        ad #ifdef MALLOC_STATS
   1816   1.1        ad 			arena->stats.mapped -= chunksize;
   1817   1.1        ad #endif
   1818   1.1        ad 		}
   1819   1.1        ad 		arena->spare = chunk;
   1820   1.1        ad 	} else {
   1821   1.1        ad 		assert(arena->spare == NULL);
   1822   1.1        ad 		chunk_dealloc((void *)chunk, chunksize);
   1823   1.1        ad #ifdef MALLOC_STATS
   1824   1.1        ad 		arena->stats.mapped -= chunksize;
   1825   1.1        ad #endif
   1826   1.1        ad 	}
   1827   1.1        ad }
   1828   1.1        ad 
   1829   1.1        ad static arena_run_t *
   1830   1.1        ad arena_run_alloc(arena_t *arena, size_t size)
   1831   1.1        ad {
   1832  1.40     joerg 	arena_chunk_t *chunk, *chunk_tmp;
   1833   1.1        ad 	arena_run_t *run;
   1834  1.40     joerg 	unsigned need_npages;
   1835   1.1        ad 
   1836   1.1        ad 	assert(size <= (chunksize - (arena_chunk_header_npages <<
   1837   1.1        ad 	    pagesize_2pow)));
   1838   1.1        ad 	assert((size & pagesize_mask) == 0);
   1839   1.1        ad 
   1840   1.1        ad 	/*
   1841  1.40     joerg 	 * Search through the arena chunk tree for a large enough free run.
   1842  1.40     joerg 	 * Tree order ensures that any exact fit is picked immediately or
   1843  1.40     joerg 	 * otherwise the lowest address of the next size.
   1844   1.1        ad 	 */
   1845   1.9  christos 	need_npages = (unsigned)(size >> pagesize_2pow);
   1846   1.2        ad 	/* LINTED */
   1847  1.40     joerg 	for (;;) {
   1848  1.40     joerg 		chunk_tmp = RB_ROOT(&arena->chunks);
   1849  1.40     joerg 		chunk = NULL;
   1850  1.40     joerg 		while (chunk_tmp) {
   1851  1.40     joerg 			if (chunk_tmp->max_frun_npages == need_npages) {
   1852  1.40     joerg 				chunk = chunk_tmp;
   1853  1.40     joerg 				break;
   1854  1.40     joerg 			}
   1855  1.40     joerg 			if (chunk_tmp->max_frun_npages < need_npages) {
   1856  1.40     joerg 				chunk_tmp = RB_RIGHT(chunk_tmp, link);
   1857  1.40     joerg 				continue;
   1858  1.40     joerg 			}
   1859  1.40     joerg 			chunk = chunk_tmp;
   1860  1.40     joerg 			chunk_tmp = RB_LEFT(chunk, link);
   1861  1.40     joerg 		}
   1862  1.40     joerg 		if (chunk == NULL)
   1863  1.40     joerg 			break;
   1864   1.1        ad 		/*
   1865  1.40     joerg 		 * At this point, the chunk must have a cached run size large
   1866  1.40     joerg 		 * enough to fit the allocation.
   1867   1.1        ad 		 */
   1868  1.40     joerg 		assert(need_npages <= chunk->max_frun_npages);
   1869  1.40     joerg 		{
   1870   1.1        ad 			arena_chunk_map_t *mapelm;
   1871   1.1        ad 			unsigned i;
   1872   1.1        ad 			unsigned max_frun_npages = 0;
   1873   1.1        ad 			unsigned min_frun_ind = chunk_npages;
   1874   1.1        ad 
   1875   1.1        ad 			assert(chunk->min_frun_ind >=
   1876   1.1        ad 			    arena_chunk_header_npages);
   1877   1.1        ad 			for (i = chunk->min_frun_ind; i < chunk_npages;) {
   1878   1.1        ad 				mapelm = &chunk->map[i];
   1879   1.1        ad 				if (mapelm->pos == POS_FREE) {
   1880   1.1        ad 					if (mapelm->npages >= need_npages) {
   1881   1.1        ad 						run = (arena_run_t *)
   1882   1.1        ad 						    ((uintptr_t)chunk + (i <<
   1883   1.1        ad 						    pagesize_2pow));
   1884   1.1        ad 						/* Update page map. */
   1885   1.1        ad 						arena_run_split(arena, run,
   1886   1.1        ad 						    size);
   1887   1.1        ad 						return (run);
   1888   1.1        ad 					}
   1889   1.1        ad 					if (mapelm->npages >
   1890   1.1        ad 					    max_frun_npages) {
   1891   1.1        ad 						max_frun_npages =
   1892   1.1        ad 						    mapelm->npages;
   1893   1.1        ad 					}
   1894   1.1        ad 					if (i < min_frun_ind) {
   1895   1.1        ad 						min_frun_ind = i;
   1896   1.1        ad 						if (i < chunk->min_frun_ind)
   1897   1.1        ad 							chunk->min_frun_ind = i;
   1898   1.1        ad 					}
   1899   1.1        ad 				}
   1900   1.1        ad 				i += mapelm->npages;
   1901   1.1        ad 			}
   1902   1.1        ad 			/*
   1903   1.1        ad 			 * Search failure.  Reset cached chunk->max_frun_npages.
   1904   1.1        ad 			 * chunk->min_frun_ind was already reset above (if
   1905   1.1        ad 			 * necessary).
   1906   1.1        ad 			 */
   1907  1.40     joerg 			RB_REMOVE(arena_chunk_tree_s, &arena->chunks, chunk);
   1908   1.1        ad 			chunk->max_frun_npages = max_frun_npages;
   1909  1.40     joerg 			RB_INSERT(arena_chunk_tree_s, &arena->chunks, chunk);
   1910   1.1        ad 		}
   1911   1.1        ad 	}
   1912   1.1        ad 
   1913   1.1        ad 	/*
   1914   1.1        ad 	 * No usable runs.  Create a new chunk from which to allocate the run.
   1915   1.1        ad 	 */
   1916   1.1        ad 	chunk = arena_chunk_alloc(arena);
   1917   1.1        ad 	if (chunk == NULL)
   1918   1.1        ad 		return (NULL);
   1919   1.1        ad 	run = (arena_run_t *)((uintptr_t)chunk + (arena_chunk_header_npages <<
   1920   1.1        ad 	    pagesize_2pow));
   1921   1.1        ad 	/* Update page map. */
   1922   1.1        ad 	arena_run_split(arena, run, size);
   1923   1.1        ad 	return (run);
   1924   1.1        ad }
   1925   1.1        ad 
   1926   1.1        ad static void
   1927   1.1        ad arena_run_dalloc(arena_t *arena, arena_run_t *run, size_t size)
   1928   1.1        ad {
   1929   1.1        ad 	arena_chunk_t *chunk;
   1930   1.1        ad 	unsigned run_ind, run_pages;
   1931   1.1        ad 
   1932   1.1        ad 	chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(run);
   1933   1.1        ad 
   1934   1.1        ad 	run_ind = (unsigned)(((uintptr_t)run - (uintptr_t)chunk)
   1935   1.1        ad 	    >> pagesize_2pow);
   1936   1.1        ad 	assert(run_ind >= arena_chunk_header_npages);
   1937   1.1        ad 	assert(run_ind < (chunksize >> pagesize_2pow));
   1938   1.9  christos 	run_pages = (unsigned)(size >> pagesize_2pow);
   1939   1.1        ad 	assert(run_pages == chunk->map[run_ind].npages);
   1940   1.1        ad 
   1941   1.1        ad 	/* Subtract pages from count of pages used in chunk. */
   1942   1.1        ad 	chunk->pages_used -= run_pages;
   1943   1.1        ad 
   1944   1.1        ad 	/* Mark run as deallocated. */
   1945   1.1        ad 	assert(chunk->map[run_ind].npages == run_pages);
   1946   1.1        ad 	chunk->map[run_ind].pos = POS_FREE;
   1947   1.1        ad 	assert(chunk->map[run_ind + run_pages - 1].npages == run_pages);
   1948   1.1        ad 	chunk->map[run_ind + run_pages - 1].pos = POS_FREE;
   1949   1.1        ad 
   1950   1.1        ad 	/*
   1951   1.1        ad 	 * Tell the kernel that we don't need the data in this run, but only if
   1952   1.1        ad 	 * requested via runtime configuration.
   1953   1.1        ad 	 */
   1954  1.57        ad 	if (OPT(hint))
   1955   1.1        ad 		madvise(run, size, MADV_FREE);
   1956   1.1        ad 
   1957   1.1        ad 	/* Try to coalesce with neighboring runs. */
   1958   1.1        ad 	if (run_ind > arena_chunk_header_npages &&
   1959   1.1        ad 	    chunk->map[run_ind - 1].pos == POS_FREE) {
   1960   1.1        ad 		unsigned prev_npages;
   1961   1.1        ad 
   1962   1.1        ad 		/* Coalesce with previous run. */
   1963   1.1        ad 		prev_npages = chunk->map[run_ind - 1].npages;
   1964   1.1        ad 		run_ind -= prev_npages;
   1965   1.1        ad 		assert(chunk->map[run_ind].npages == prev_npages);
   1966   1.1        ad 		assert(chunk->map[run_ind].pos == POS_FREE);
   1967   1.1        ad 		run_pages += prev_npages;
   1968   1.1        ad 
   1969   1.1        ad 		chunk->map[run_ind].npages = run_pages;
   1970   1.1        ad 		assert(chunk->map[run_ind].pos == POS_FREE);
   1971   1.1        ad 		chunk->map[run_ind + run_pages - 1].npages = run_pages;
   1972   1.1        ad 		assert(chunk->map[run_ind + run_pages - 1].pos == POS_FREE);
   1973   1.1        ad 	}
   1974   1.1        ad 
   1975   1.1        ad 	if (run_ind + run_pages < chunk_npages &&
   1976   1.1        ad 	    chunk->map[run_ind + run_pages].pos == POS_FREE) {
   1977   1.1        ad 		unsigned next_npages;
   1978   1.1        ad 
   1979   1.1        ad 		/* Coalesce with next run. */
   1980   1.1        ad 		next_npages = chunk->map[run_ind + run_pages].npages;
   1981   1.1        ad 		run_pages += next_npages;
   1982   1.1        ad 		assert(chunk->map[run_ind + run_pages - 1].npages ==
   1983   1.1        ad 		    next_npages);
   1984   1.1        ad 		assert(chunk->map[run_ind + run_pages - 1].pos == POS_FREE);
   1985   1.1        ad 
   1986   1.1        ad 		chunk->map[run_ind].npages = run_pages;
   1987   1.1        ad 		chunk->map[run_ind].pos = POS_FREE;
   1988   1.1        ad 		chunk->map[run_ind + run_pages - 1].npages = run_pages;
   1989   1.1        ad 		assert(chunk->map[run_ind + run_pages - 1].pos == POS_FREE);
   1990   1.1        ad 	}
   1991   1.1        ad 
   1992  1.40     joerg 	if (chunk->map[run_ind].npages > chunk->max_frun_npages) {
   1993  1.40     joerg 		RB_REMOVE(arena_chunk_tree_s, &arena->chunks, chunk);
   1994   1.1        ad 		chunk->max_frun_npages = chunk->map[run_ind].npages;
   1995  1.40     joerg 		RB_INSERT(arena_chunk_tree_s, &arena->chunks, chunk);
   1996  1.40     joerg 	}
   1997   1.1        ad 	if (run_ind < chunk->min_frun_ind)
   1998   1.1        ad 		chunk->min_frun_ind = run_ind;
   1999   1.1        ad 
   2000   1.1        ad 	/* Deallocate chunk if it is now completely unused. */
   2001   1.1        ad 	if (chunk->pages_used == 0)
   2002   1.1        ad 		arena_chunk_dealloc(arena, chunk);
   2003   1.1        ad }
   2004   1.1        ad 
   2005   1.1        ad static arena_run_t *
   2006   1.1        ad arena_bin_nonfull_run_get(arena_t *arena, arena_bin_t *bin)
   2007   1.1        ad {
   2008   1.1        ad 	arena_run_t *run;
   2009   1.1        ad 	unsigned i, remainder;
   2010   1.1        ad 
   2011   1.1        ad 	/* Look for a usable run. */
   2012   1.1        ad 	if ((run = RB_MIN(arena_run_tree_s, &bin->runs)) != NULL) {
   2013   1.1        ad 		/* run is guaranteed to have available space. */
   2014   1.1        ad 		RB_REMOVE(arena_run_tree_s, &bin->runs, run);
   2015   1.1        ad #ifdef MALLOC_STATS
   2016   1.1        ad 		bin->stats.reruns++;
   2017   1.1        ad #endif
   2018   1.1        ad 		return (run);
   2019   1.1        ad 	}
   2020   1.1        ad 	/* No existing runs have any space available. */
   2021   1.1        ad 
   2022   1.1        ad 	/* Allocate a new run. */
   2023   1.1        ad 	run = arena_run_alloc(arena, bin->run_size);
   2024   1.1        ad 	if (run == NULL)
   2025   1.1        ad 		return (NULL);
   2026   1.1        ad 
   2027   1.1        ad 	/* Initialize run internals. */
   2028   1.1        ad 	run->bin = bin;
   2029   1.1        ad 
   2030   1.1        ad 	for (i = 0; i < bin->regs_mask_nelms; i++)
   2031   1.1        ad 		run->regs_mask[i] = UINT_MAX;
   2032   1.1        ad 	remainder = bin->nregs & ((1 << (SIZEOF_INT_2POW + 3)) - 1);
   2033   1.1        ad 	if (remainder != 0) {
   2034   1.1        ad 		/* The last element has spare bits that need to be unset. */
   2035   1.1        ad 		run->regs_mask[i] = (UINT_MAX >> ((1 << (SIZEOF_INT_2POW + 3))
   2036   1.1        ad 		    - remainder));
   2037   1.1        ad 	}
   2038   1.1        ad 
   2039   1.1        ad 	run->regs_minelm = 0;
   2040   1.1        ad 
   2041   1.1        ad 	run->nfree = bin->nregs;
   2042   1.1        ad #ifdef MALLOC_DEBUG
   2043   1.1        ad 	run->magic = ARENA_RUN_MAGIC;
   2044   1.1        ad #endif
   2045   1.1        ad 
   2046   1.1        ad #ifdef MALLOC_STATS
   2047   1.1        ad 	bin->stats.nruns++;
   2048   1.1        ad 	bin->stats.curruns++;
   2049   1.1        ad 	if (bin->stats.curruns > bin->stats.highruns)
   2050   1.1        ad 		bin->stats.highruns = bin->stats.curruns;
   2051   1.1        ad #endif
   2052   1.1        ad 	return (run);
   2053   1.1        ad }
   2054   1.1        ad 
   2055   1.1        ad /* bin->runcur must have space available before this function is called. */
   2056   1.1        ad static inline void *
   2057   1.1        ad arena_bin_malloc_easy(arena_t *arena, arena_bin_t *bin, arena_run_t *run)
   2058   1.1        ad {
   2059   1.1        ad 	void *ret;
   2060   1.1        ad 
   2061   1.1        ad 	assert(run->magic == ARENA_RUN_MAGIC);
   2062   1.1        ad 	assert(run->nfree > 0);
   2063   1.1        ad 
   2064   1.1        ad 	ret = arena_run_reg_alloc(run, bin);
   2065   1.1        ad 	assert(ret != NULL);
   2066   1.1        ad 	run->nfree--;
   2067   1.1        ad 
   2068   1.1        ad 	return (ret);
   2069   1.1        ad }
   2070   1.1        ad 
   2071   1.1        ad /* Re-fill bin->runcur, then call arena_bin_malloc_easy(). */
   2072   1.1        ad static void *
   2073   1.1        ad arena_bin_malloc_hard(arena_t *arena, arena_bin_t *bin)
   2074   1.1        ad {
   2075   1.1        ad 
   2076   1.1        ad 	bin->runcur = arena_bin_nonfull_run_get(arena, bin);
   2077   1.1        ad 	if (bin->runcur == NULL)
   2078   1.1        ad 		return (NULL);
   2079   1.1        ad 	assert(bin->runcur->magic == ARENA_RUN_MAGIC);
   2080   1.1        ad 	assert(bin->runcur->nfree > 0);
   2081   1.1        ad 
   2082   1.1        ad 	return (arena_bin_malloc_easy(arena, bin, bin->runcur));
   2083   1.1        ad }
   2084   1.1        ad 
   2085   1.1        ad /*
   2086   1.1        ad  * Calculate bin->run_size such that it meets the following constraints:
   2087   1.1        ad  *
   2088   1.1        ad  *   *) bin->run_size >= min_run_size
   2089   1.1        ad  *   *) bin->run_size <= arena_maxclass
   2090   1.1        ad  *   *) bin->run_size <= RUN_MAX_SMALL
   2091   1.1        ad  *   *) run header overhead <= RUN_MAX_OVRHD (or header overhead relaxed).
   2092   1.1        ad  *
   2093   1.1        ad  * bin->nregs, bin->regs_mask_nelms, and bin->reg0_offset are
   2094   1.1        ad  * also calculated here, since these settings are all interdependent.
   2095   1.1        ad  */
   2096   1.1        ad static size_t
   2097   1.1        ad arena_bin_run_size_calc(arena_bin_t *bin, size_t min_run_size)
   2098   1.1        ad {
   2099   1.1        ad 	size_t try_run_size, good_run_size;
   2100   1.1        ad 	unsigned good_nregs, good_mask_nelms, good_reg0_offset;
   2101   1.1        ad 	unsigned try_nregs, try_mask_nelms, try_reg0_offset;
   2102   1.1        ad 
   2103   1.1        ad 	assert(min_run_size >= pagesize);
   2104   1.1        ad 	assert(min_run_size <= arena_maxclass);
   2105   1.1        ad 	assert(min_run_size <= RUN_MAX_SMALL);
   2106   1.1        ad 
   2107   1.1        ad 	/*
   2108   1.1        ad 	 * Calculate known-valid settings before entering the run_size
   2109   1.1        ad 	 * expansion loop, so that the first part of the loop always copies
   2110   1.1        ad 	 * valid settings.
   2111   1.1        ad 	 *
   2112   1.1        ad 	 * The do..while loop iteratively reduces the number of regions until
   2113   1.1        ad 	 * the run header and the regions no longer overlap.  A closed formula
   2114   1.1        ad 	 * would be quite messy, since there is an interdependency between the
   2115   1.1        ad 	 * header's mask length and the number of regions.
   2116   1.1        ad 	 */
   2117   1.1        ad 	try_run_size = min_run_size;
   2118   1.9  christos 	try_nregs = (unsigned)(((try_run_size - sizeof(arena_run_t)) /
   2119  1.22     njoly 	    bin->reg_size) + 1); /* Counter-act try_nregs-- in loop. */
   2120   1.1        ad 	do {
   2121   1.1        ad 		try_nregs--;
   2122   1.1        ad 		try_mask_nelms = (try_nregs >> (SIZEOF_INT_2POW + 3)) +
   2123   1.1        ad 		    ((try_nregs & ((1 << (SIZEOF_INT_2POW + 3)) - 1)) ? 1 : 0);
   2124   1.9  christos 		try_reg0_offset = (unsigned)(try_run_size -
   2125   1.9  christos 		    (try_nregs * bin->reg_size));
   2126   1.1        ad 	} while (sizeof(arena_run_t) + (sizeof(unsigned) * (try_mask_nelms - 1))
   2127   1.1        ad 	    > try_reg0_offset);
   2128   1.1        ad 
   2129   1.1        ad 	/* run_size expansion loop. */
   2130   1.1        ad 	do {
   2131   1.1        ad 		/*
   2132   1.1        ad 		 * Copy valid settings before trying more aggressive settings.
   2133   1.1        ad 		 */
   2134   1.1        ad 		good_run_size = try_run_size;
   2135   1.1        ad 		good_nregs = try_nregs;
   2136   1.1        ad 		good_mask_nelms = try_mask_nelms;
   2137   1.1        ad 		good_reg0_offset = try_reg0_offset;
   2138   1.1        ad 
   2139   1.1        ad 		/* Try more aggressive settings. */
   2140   1.1        ad 		try_run_size += pagesize;
   2141   1.9  christos 		try_nregs = (unsigned)(((try_run_size - sizeof(arena_run_t)) /
   2142   1.9  christos 		    bin->reg_size) + 1); /* Counter-act try_nregs-- in loop. */
   2143   1.1        ad 		do {
   2144   1.1        ad 			try_nregs--;
   2145   1.1        ad 			try_mask_nelms = (try_nregs >> (SIZEOF_INT_2POW + 3)) +
   2146   1.1        ad 			    ((try_nregs & ((1 << (SIZEOF_INT_2POW + 3)) - 1)) ?
   2147   1.1        ad 			    1 : 0);
   2148   1.9  christos 			try_reg0_offset = (unsigned)(try_run_size - (try_nregs *
   2149   1.9  christos 			    bin->reg_size));
   2150   1.1        ad 		} while (sizeof(arena_run_t) + (sizeof(unsigned) *
   2151   1.1        ad 		    (try_mask_nelms - 1)) > try_reg0_offset);
   2152   1.1        ad 	} while (try_run_size <= arena_maxclass && try_run_size <= RUN_MAX_SMALL
   2153  1.22     njoly 	    && RUN_MAX_OVRHD * (bin->reg_size << 3) > RUN_MAX_OVRHD_RELAX
   2154  1.22     njoly 	    && (try_reg0_offset << RUN_BFP) > RUN_MAX_OVRHD * try_run_size);
   2155   1.1        ad 
   2156   1.1        ad 	assert(sizeof(arena_run_t) + (sizeof(unsigned) * (good_mask_nelms - 1))
   2157   1.1        ad 	    <= good_reg0_offset);
   2158   1.1        ad 	assert((good_mask_nelms << (SIZEOF_INT_2POW + 3)) >= good_nregs);
   2159   1.1        ad 
   2160   1.1        ad 	/* Copy final settings. */
   2161   1.1        ad 	bin->run_size = good_run_size;
   2162   1.1        ad 	bin->nregs = good_nregs;
   2163   1.1        ad 	bin->regs_mask_nelms = good_mask_nelms;
   2164   1.1        ad 	bin->reg0_offset = good_reg0_offset;
   2165   1.1        ad 
   2166   1.1        ad 	return (good_run_size);
   2167   1.1        ad }
   2168   1.1        ad 
   2169   1.1        ad static void *
   2170   1.1        ad arena_malloc(arena_t *arena, size_t size)
   2171   1.1        ad {
   2172   1.1        ad 	void *ret;
   2173   1.1        ad 
   2174   1.1        ad 	assert(arena != NULL);
   2175   1.1        ad 	assert(arena->magic == ARENA_MAGIC);
   2176   1.1        ad 	assert(size != 0);
   2177   1.1        ad 	assert(QUANTUM_CEILING(size) <= arena_maxclass);
   2178   1.1        ad 
   2179   1.1        ad 	if (size <= bin_maxclass) {
   2180   1.1        ad 		arena_bin_t *bin;
   2181   1.1        ad 		arena_run_t *run;
   2182   1.1        ad 
   2183   1.1        ad 		/* Small allocation. */
   2184   1.1        ad 
   2185   1.1        ad 		if (size < small_min) {
   2186   1.1        ad 			/* Tiny. */
   2187   1.1        ad 			size = pow2_ceil(size);
   2188   1.1        ad 			bin = &arena->bins[ffs((int)(size >> (TINY_MIN_2POW +
   2189   1.1        ad 			    1)))];
   2190   1.1        ad #if (!defined(NDEBUG) || defined(MALLOC_STATS))
   2191   1.1        ad 			/*
   2192   1.1        ad 			 * Bin calculation is always correct, but we may need
   2193   1.1        ad 			 * to fix size for the purposes of assertions and/or
   2194   1.1        ad 			 * stats accuracy.
   2195   1.1        ad 			 */
   2196   1.1        ad 			if (size < (1 << TINY_MIN_2POW))
   2197   1.1        ad 				size = (1 << TINY_MIN_2POW);
   2198   1.1        ad #endif
   2199   1.1        ad 		} else if (size <= small_max) {
   2200   1.1        ad 			/* Quantum-spaced. */
   2201   1.1        ad 			size = QUANTUM_CEILING(size);
   2202   1.1        ad 			bin = &arena->bins[ntbins + (size >> opt_quantum_2pow)
   2203   1.1        ad 			    - 1];
   2204   1.1        ad 		} else {
   2205   1.1        ad 			/* Sub-page. */
   2206   1.1        ad 			size = pow2_ceil(size);
   2207   1.1        ad 			bin = &arena->bins[ntbins + nqbins
   2208   1.1        ad 			    + (ffs((int)(size >> opt_small_max_2pow)) - 2)];
   2209   1.1        ad 		}
   2210   1.1        ad 		assert(size == bin->reg_size);
   2211   1.1        ad 
   2212   1.1        ad 		malloc_mutex_lock(&arena->mtx);
   2213   1.1        ad 		if ((run = bin->runcur) != NULL && run->nfree > 0)
   2214   1.1        ad 			ret = arena_bin_malloc_easy(arena, bin, run);
   2215   1.1        ad 		else
   2216   1.1        ad 			ret = arena_bin_malloc_hard(arena, bin);
   2217   1.1        ad 
   2218   1.1        ad 		if (ret == NULL) {
   2219   1.1        ad 			malloc_mutex_unlock(&arena->mtx);
   2220   1.1        ad 			return (NULL);
   2221   1.1        ad 		}
   2222   1.1        ad 
   2223   1.1        ad #ifdef MALLOC_STATS
   2224   1.1        ad 		bin->stats.nrequests++;
   2225   1.1        ad 		arena->stats.nmalloc_small++;
   2226   1.1        ad 		arena->stats.allocated_small += size;
   2227   1.1        ad #endif
   2228   1.1        ad 	} else {
   2229   1.1        ad 		/* Large allocation. */
   2230   1.1        ad 		size = PAGE_CEILING(size);
   2231   1.1        ad 		malloc_mutex_lock(&arena->mtx);
   2232   1.1        ad 		ret = (void *)arena_run_alloc(arena, size);
   2233   1.1        ad 		if (ret == NULL) {
   2234   1.1        ad 			malloc_mutex_unlock(&arena->mtx);
   2235   1.1        ad 			return (NULL);
   2236   1.1        ad 		}
   2237   1.1        ad #ifdef MALLOC_STATS
   2238   1.1        ad 		arena->stats.nmalloc_large++;
   2239   1.1        ad 		arena->stats.allocated_large += size;
   2240   1.1        ad #endif
   2241   1.1        ad 	}
   2242   1.1        ad 
   2243   1.1        ad 	malloc_mutex_unlock(&arena->mtx);
   2244   1.1        ad 
   2245  1.57        ad 	if (OPT(junk))
   2246   1.1        ad 		memset(ret, 0xa5, size);
   2247  1.57        ad 	else if (OPT(zero))
   2248   1.1        ad 		memset(ret, 0, size);
   2249   1.1        ad 	return (ret);
   2250   1.1        ad }
   2251   1.1        ad 
   2252   1.1        ad static inline void
   2253   1.1        ad arena_palloc_trim(arena_t *arena, arena_chunk_t *chunk, unsigned pageind,
   2254   1.1        ad     unsigned npages)
   2255   1.1        ad {
   2256   1.1        ad 	unsigned i;
   2257   1.1        ad 
   2258   1.1        ad 	assert(npages > 0);
   2259   1.1        ad 
   2260   1.1        ad 	/*
   2261   1.1        ad 	 * Modifiy the map such that arena_run_dalloc() sees the run as
   2262   1.1        ad 	 * separately allocated.
   2263   1.1        ad 	 */
   2264   1.1        ad 	for (i = 0; i < npages; i++) {
   2265   1.1        ad 		chunk->map[pageind + i].npages = npages;
   2266   1.1        ad 		chunk->map[pageind + i].pos = i;
   2267   1.1        ad 	}
   2268   1.1        ad 	arena_run_dalloc(arena, (arena_run_t *)((uintptr_t)chunk + (pageind <<
   2269   1.1        ad 	    pagesize_2pow)), npages << pagesize_2pow);
   2270   1.1        ad }
   2271   1.1        ad 
   2272   1.1        ad /* Only handles large allocations that require more than page alignment. */
   2273   1.1        ad static void *
   2274   1.1        ad arena_palloc(arena_t *arena, size_t alignment, size_t size, size_t alloc_size)
   2275   1.1        ad {
   2276   1.1        ad 	void *ret;
   2277   1.1        ad 	size_t offset;
   2278   1.1        ad 	arena_chunk_t *chunk;
   2279   1.1        ad 	unsigned pageind, i, npages;
   2280   1.1        ad 
   2281   1.1        ad 	assert((size & pagesize_mask) == 0);
   2282   1.1        ad 	assert((alignment & pagesize_mask) == 0);
   2283   1.1        ad 
   2284   1.9  christos 	npages = (unsigned)(size >> pagesize_2pow);
   2285   1.1        ad 
   2286   1.1        ad 	malloc_mutex_lock(&arena->mtx);
   2287   1.1        ad 	ret = (void *)arena_run_alloc(arena, alloc_size);
   2288   1.1        ad 	if (ret == NULL) {
   2289   1.1        ad 		malloc_mutex_unlock(&arena->mtx);
   2290   1.1        ad 		return (NULL);
   2291   1.1        ad 	}
   2292   1.1        ad 
   2293   1.1        ad 	chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ret);
   2294   1.1        ad 
   2295   1.1        ad 	offset = (uintptr_t)ret & (alignment - 1);
   2296   1.1        ad 	assert((offset & pagesize_mask) == 0);
   2297   1.1        ad 	assert(offset < alloc_size);
   2298   1.1        ad 	if (offset == 0) {
   2299   1.9  christos 		pageind = (unsigned)(((uintptr_t)ret - (uintptr_t)chunk) >>
   2300   1.1        ad 		    pagesize_2pow);
   2301   1.1        ad 
   2302   1.1        ad 		/* Update the map for the run to be kept. */
   2303   1.1        ad 		for (i = 0; i < npages; i++) {
   2304   1.1        ad 			chunk->map[pageind + i].npages = npages;
   2305   1.1        ad 			assert(chunk->map[pageind + i].pos == i);
   2306   1.1        ad 		}
   2307   1.1        ad 
   2308   1.1        ad 		/* Trim trailing space. */
   2309   1.1        ad 		arena_palloc_trim(arena, chunk, pageind + npages,
   2310   1.9  christos 		    (unsigned)((alloc_size - size) >> pagesize_2pow));
   2311   1.1        ad 	} else {
   2312   1.1        ad 		size_t leadsize, trailsize;
   2313   1.1        ad 
   2314   1.1        ad 		leadsize = alignment - offset;
   2315   1.1        ad 		ret = (void *)((uintptr_t)ret + leadsize);
   2316   1.9  christos 		pageind = (unsigned)(((uintptr_t)ret - (uintptr_t)chunk) >>
   2317   1.1        ad 		    pagesize_2pow);
   2318   1.1        ad 
   2319   1.1        ad 		/* Update the map for the run to be kept. */
   2320   1.1        ad 		for (i = 0; i < npages; i++) {
   2321   1.1        ad 			chunk->map[pageind + i].npages = npages;
   2322   1.1        ad 			chunk->map[pageind + i].pos = i;
   2323   1.1        ad 		}
   2324   1.1        ad 
   2325   1.1        ad 		/* Trim leading space. */
   2326   1.9  christos 		arena_palloc_trim(arena, chunk,
   2327   1.9  christos 		    (unsigned)(pageind - (leadsize >> pagesize_2pow)),
   2328   1.9  christos 		    (unsigned)(leadsize >> pagesize_2pow));
   2329   1.1        ad 
   2330   1.1        ad 		trailsize = alloc_size - leadsize - size;
   2331   1.1        ad 		if (trailsize != 0) {
   2332   1.1        ad 			/* Trim trailing space. */
   2333   1.1        ad 			assert(trailsize < alloc_size);
   2334   1.1        ad 			arena_palloc_trim(arena, chunk, pageind + npages,
   2335   1.9  christos 			    (unsigned)(trailsize >> pagesize_2pow));
   2336   1.1        ad 		}
   2337   1.1        ad 	}
   2338   1.1        ad 
   2339   1.1        ad #ifdef MALLOC_STATS
   2340   1.1        ad 	arena->stats.nmalloc_large++;
   2341   1.1        ad 	arena->stats.allocated_large += size;
   2342   1.1        ad #endif
   2343   1.1        ad 	malloc_mutex_unlock(&arena->mtx);
   2344   1.1        ad 
   2345  1.57        ad 	if (OPT(junk))
   2346   1.1        ad 		memset(ret, 0xa5, size);
   2347  1.57        ad 	else if (OPT(zero))
   2348   1.1        ad 		memset(ret, 0, size);
   2349   1.1        ad 	return (ret);
   2350   1.1        ad }
   2351   1.1        ad 
   2352   1.1        ad /* Return the size of the allocation pointed to by ptr. */
   2353   1.1        ad static size_t
   2354   1.1        ad arena_salloc(const void *ptr)
   2355   1.1        ad {
   2356   1.1        ad 	size_t ret;
   2357   1.1        ad 	arena_chunk_t *chunk;
   2358   1.1        ad 	arena_chunk_map_t *mapelm;
   2359   1.1        ad 	unsigned pageind;
   2360   1.1        ad 
   2361   1.1        ad 	assert(ptr != NULL);
   2362   1.1        ad 	assert(CHUNK_ADDR2BASE(ptr) != ptr);
   2363   1.1        ad 
   2364   1.1        ad 	/*
   2365   1.1        ad 	 * No arena data structures that we query here can change in a way that
   2366   1.1        ad 	 * affects this function, so we don't need to lock.
   2367   1.1        ad 	 */
   2368   1.1        ad 	chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
   2369   1.9  christos 	pageind = (unsigned)(((uintptr_t)ptr - (uintptr_t)chunk) >>
   2370   1.9  christos 	    pagesize_2pow);
   2371   1.1        ad 	mapelm = &chunk->map[pageind];
   2372  1.10    simonb 	if (mapelm->pos != 0 || ptr != (char *)((uintptr_t)chunk) + (pageind <<
   2373  1.10    simonb 	    pagesize_2pow)) {
   2374  1.10    simonb 		arena_run_t *run;
   2375   1.1        ad 
   2376   1.1        ad 		pageind -= mapelm->pos;
   2377   1.1        ad 
   2378  1.10    simonb 		run = (arena_run_t *)((uintptr_t)chunk + (pageind <<
   2379  1.10    simonb 		    pagesize_2pow));
   2380   1.1        ad 		assert(run->magic == ARENA_RUN_MAGIC);
   2381   1.1        ad 		ret = run->bin->reg_size;
   2382   1.1        ad 	} else
   2383   1.1        ad 		ret = mapelm->npages << pagesize_2pow;
   2384   1.1        ad 
   2385   1.1        ad 	return (ret);
   2386   1.1        ad }
   2387   1.1        ad 
   2388   1.1        ad static void *
   2389   1.1        ad arena_ralloc(void *ptr, size_t size, size_t oldsize)
   2390   1.1        ad {
   2391   1.1        ad 	void *ret;
   2392   1.1        ad 
   2393   1.1        ad 	/* Avoid moving the allocation if the size class would not change. */
   2394   1.1        ad 	if (size < small_min) {
   2395   1.1        ad 		if (oldsize < small_min &&
   2396   1.1        ad 		    ffs((int)(pow2_ceil(size) >> (TINY_MIN_2POW + 1)))
   2397   1.1        ad 		    == ffs((int)(pow2_ceil(oldsize) >> (TINY_MIN_2POW + 1))))
   2398   1.1        ad 			goto IN_PLACE;
   2399   1.1        ad 	} else if (size <= small_max) {
   2400   1.1        ad 		if (oldsize >= small_min && oldsize <= small_max &&
   2401   1.1        ad 		    (QUANTUM_CEILING(size) >> opt_quantum_2pow)
   2402   1.1        ad 		    == (QUANTUM_CEILING(oldsize) >> opt_quantum_2pow))
   2403   1.1        ad 			goto IN_PLACE;
   2404   1.1        ad 	} else {
   2405   1.1        ad 		/*
   2406   1.1        ad 		 * We make no attempt to resize runs here, though it would be
   2407   1.1        ad 		 * possible to do so.
   2408   1.1        ad 		 */
   2409   1.1        ad 		if (oldsize > small_max && PAGE_CEILING(size) == oldsize)
   2410   1.1        ad 			goto IN_PLACE;
   2411   1.1        ad 	}
   2412   1.1        ad 
   2413   1.1        ad 	/*
   2414   1.1        ad 	 * If we get here, then size and oldsize are different enough that we
   2415   1.1        ad 	 * need to use a different size class.  In that case, fall back to
   2416   1.1        ad 	 * allocating new space and copying.
   2417   1.1        ad 	 */
   2418   1.1        ad 	ret = arena_malloc(choose_arena(), size);
   2419   1.1        ad 	if (ret == NULL)
   2420   1.1        ad 		return (NULL);
   2421   1.1        ad 
   2422   1.1        ad 	/* Junk/zero-filling were already done by arena_malloc(). */
   2423   1.1        ad 	if (size < oldsize)
   2424   1.1        ad 		memcpy(ret, ptr, size);
   2425   1.1        ad 	else
   2426   1.1        ad 		memcpy(ret, ptr, oldsize);
   2427   1.1        ad 	idalloc(ptr);
   2428   1.1        ad 	return (ret);
   2429   1.1        ad IN_PLACE:
   2430  1.57        ad 	if (OPT(junk) && size < oldsize)
   2431   1.1        ad 		memset((void *)((uintptr_t)ptr + size), 0x5a, oldsize - size);
   2432  1.57        ad 	else if (OPT(zero) && size > oldsize)
   2433   1.1        ad 		memset((void *)((uintptr_t)ptr + oldsize), 0, size - oldsize);
   2434   1.1        ad 	return (ptr);
   2435   1.1        ad }
   2436   1.1        ad 
   2437   1.1        ad static void
   2438   1.1        ad arena_dalloc(arena_t *arena, arena_chunk_t *chunk, void *ptr)
   2439   1.1        ad {
   2440   1.1        ad 	unsigned pageind;
   2441   1.1        ad 	arena_chunk_map_t *mapelm;
   2442   1.1        ad 	size_t size;
   2443   1.1        ad 
   2444   1.1        ad 	assert(arena != NULL);
   2445   1.1        ad 	assert(arena->magic == ARENA_MAGIC);
   2446   1.1        ad 	assert(chunk->arena == arena);
   2447   1.1        ad 	assert(ptr != NULL);
   2448   1.1        ad 	assert(CHUNK_ADDR2BASE(ptr) != ptr);
   2449   1.1        ad 
   2450   1.9  christos 	pageind = (unsigned)(((uintptr_t)ptr - (uintptr_t)chunk) >>
   2451   1.9  christos 	    pagesize_2pow);
   2452   1.1        ad 	mapelm = &chunk->map[pageind];
   2453  1.10    simonb 	if (mapelm->pos != 0 || ptr != (char *)((uintptr_t)chunk) + (pageind <<
   2454  1.10    simonb 	    pagesize_2pow)) {
   2455  1.10    simonb 		arena_run_t *run;
   2456   1.1        ad 		arena_bin_t *bin;
   2457   1.1        ad 
   2458   1.1        ad 		/* Small allocation. */
   2459   1.1        ad 
   2460   1.1        ad 		pageind -= mapelm->pos;
   2461   1.1        ad 
   2462  1.10    simonb 		run = (arena_run_t *)((uintptr_t)chunk + (pageind <<
   2463  1.10    simonb 		    pagesize_2pow));
   2464   1.1        ad 		assert(run->magic == ARENA_RUN_MAGIC);
   2465   1.1        ad 		bin = run->bin;
   2466   1.1        ad 		size = bin->reg_size;
   2467   1.1        ad 
   2468  1.57        ad 		if (OPT(junk))
   2469   1.1        ad 			memset(ptr, 0x5a, size);
   2470   1.1        ad 
   2471   1.1        ad 		malloc_mutex_lock(&arena->mtx);
   2472   1.1        ad 		arena_run_reg_dalloc(run, bin, ptr, size);
   2473   1.1        ad 		run->nfree++;
   2474   1.1        ad 
   2475   1.1        ad 		if (run->nfree == bin->nregs) {
   2476   1.1        ad 			/* Deallocate run. */
   2477   1.1        ad 			if (run == bin->runcur)
   2478   1.1        ad 				bin->runcur = NULL;
   2479   1.1        ad 			else if (bin->nregs != 1) {
   2480   1.1        ad 				/*
   2481   1.1        ad 				 * This block's conditional is necessary because
   2482   1.1        ad 				 * if the run only contains one region, then it
   2483   1.1        ad 				 * never gets inserted into the non-full runs
   2484   1.1        ad 				 * tree.
   2485   1.1        ad 				 */
   2486   1.1        ad 				RB_REMOVE(arena_run_tree_s, &bin->runs, run);
   2487   1.1        ad 			}
   2488   1.1        ad #ifdef MALLOC_DEBUG
   2489   1.1        ad 			run->magic = 0;
   2490   1.1        ad #endif
   2491   1.1        ad 			arena_run_dalloc(arena, run, bin->run_size);
   2492   1.1        ad #ifdef MALLOC_STATS
   2493   1.1        ad 			bin->stats.curruns--;
   2494   1.1        ad #endif
   2495   1.1        ad 		} else if (run->nfree == 1 && run != bin->runcur) {
   2496   1.1        ad 			/*
   2497   1.1        ad 			 * Make sure that bin->runcur always refers to the
   2498   1.1        ad 			 * lowest non-full run, if one exists.
   2499   1.1        ad 			 */
   2500   1.1        ad 			if (bin->runcur == NULL)
   2501   1.1        ad 				bin->runcur = run;
   2502   1.1        ad 			else if ((uintptr_t)run < (uintptr_t)bin->runcur) {
   2503   1.1        ad 				/* Switch runcur. */
   2504   1.1        ad 				if (bin->runcur->nfree > 0) {
   2505   1.1        ad 					/* Insert runcur. */
   2506   1.1        ad 					RB_INSERT(arena_run_tree_s, &bin->runs,
   2507   1.1        ad 					    bin->runcur);
   2508   1.1        ad 				}
   2509   1.1        ad 				bin->runcur = run;
   2510   1.2        ad 			} else {
   2511   1.1        ad 				RB_INSERT(arena_run_tree_s, &bin->runs, run);
   2512   1.2        ad 			}
   2513   1.1        ad 		}
   2514   1.1        ad #ifdef MALLOC_STATS
   2515   1.1        ad 		arena->stats.allocated_small -= size;
   2516   1.1        ad 		arena->stats.ndalloc_small++;
   2517   1.1        ad #endif
   2518   1.1        ad 	} else {
   2519   1.1        ad 		/* Large allocation. */
   2520   1.1        ad 
   2521   1.1        ad 		size = mapelm->npages << pagesize_2pow;
   2522   1.1        ad 		assert((((uintptr_t)ptr) & pagesize_mask) == 0);
   2523   1.1        ad 
   2524  1.57        ad 		if (OPT(junk))
   2525   1.1        ad 			memset(ptr, 0x5a, size);
   2526   1.1        ad 
   2527   1.1        ad 		malloc_mutex_lock(&arena->mtx);
   2528   1.1        ad 		arena_run_dalloc(arena, (arena_run_t *)ptr, size);
   2529   1.1        ad #ifdef MALLOC_STATS
   2530   1.1        ad 		arena->stats.allocated_large -= size;
   2531   1.1        ad 		arena->stats.ndalloc_large++;
   2532   1.1        ad #endif
   2533   1.1        ad 	}
   2534   1.1        ad 
   2535   1.1        ad 	malloc_mutex_unlock(&arena->mtx);
   2536   1.1        ad }
   2537   1.1        ad 
   2538  1.57        ad static void
   2539   1.1        ad arena_new(arena_t *arena)
   2540   1.1        ad {
   2541   1.1        ad 	unsigned i;
   2542   1.1        ad 	arena_bin_t *bin;
   2543   1.2        ad 	size_t prev_run_size;
   2544   1.1        ad 
   2545   1.1        ad 	malloc_mutex_init(&arena->mtx);
   2546   1.1        ad 
   2547   1.1        ad #ifdef MALLOC_STATS
   2548   1.1        ad 	memset(&arena->stats, 0, sizeof(arena_stats_t));
   2549   1.1        ad #endif
   2550   1.1        ad 
   2551   1.1        ad 	/* Initialize chunks. */
   2552   1.1        ad 	RB_INIT(&arena->chunks);
   2553   1.1        ad 	arena->spare = NULL;
   2554   1.1        ad 
   2555   1.1        ad 	/* Initialize bins. */
   2556   1.1        ad 	prev_run_size = pagesize;
   2557   1.1        ad 
   2558   1.1        ad 	/* (2^n)-spaced tiny bins. */
   2559   1.1        ad 	for (i = 0; i < ntbins; i++) {
   2560   1.1        ad 		bin = &arena->bins[i];
   2561   1.1        ad 		bin->runcur = NULL;
   2562   1.1        ad 		RB_INIT(&bin->runs);
   2563   1.1        ad 
   2564   1.1        ad 		bin->reg_size = (1 << (TINY_MIN_2POW + i));
   2565   1.1        ad 		prev_run_size = arena_bin_run_size_calc(bin, prev_run_size);
   2566   1.1        ad 
   2567   1.1        ad #ifdef MALLOC_STATS
   2568   1.1        ad 		memset(&bin->stats, 0, sizeof(malloc_bin_stats_t));
   2569   1.1        ad #endif
   2570   1.1        ad 	}
   2571   1.1        ad 
   2572   1.1        ad 	/* Quantum-spaced bins. */
   2573   1.1        ad 	for (; i < ntbins + nqbins; i++) {
   2574   1.1        ad 		bin = &arena->bins[i];
   2575   1.1        ad 		bin->runcur = NULL;
   2576   1.1        ad 		RB_INIT(&bin->runs);
   2577   1.1        ad 
   2578   1.1        ad 		bin->reg_size = quantum * (i - ntbins + 1);
   2579   1.2        ad /*
   2580   1.1        ad 		pow2_size = pow2_ceil(quantum * (i - ntbins + 1));
   2581   1.2        ad */
   2582   1.1        ad 		prev_run_size = arena_bin_run_size_calc(bin, prev_run_size);
   2583   1.1        ad 
   2584   1.1        ad #ifdef MALLOC_STATS
   2585   1.1        ad 		memset(&bin->stats, 0, sizeof(malloc_bin_stats_t));
   2586   1.1        ad #endif
   2587   1.1        ad 	}
   2588   1.1        ad 
   2589   1.1        ad 	/* (2^n)-spaced sub-page bins. */
   2590   1.1        ad 	for (; i < ntbins + nqbins + nsbins; i++) {
   2591   1.1        ad 		bin = &arena->bins[i];
   2592   1.1        ad 		bin->runcur = NULL;
   2593   1.1        ad 		RB_INIT(&bin->runs);
   2594   1.1        ad 
   2595   1.1        ad 		bin->reg_size = (small_max << (i - (ntbins + nqbins) + 1));
   2596   1.1        ad 
   2597   1.1        ad 		prev_run_size = arena_bin_run_size_calc(bin, prev_run_size);
   2598   1.1        ad 
   2599   1.1        ad #ifdef MALLOC_STATS
   2600   1.1        ad 		memset(&bin->stats, 0, sizeof(malloc_bin_stats_t));
   2601   1.1        ad #endif
   2602   1.1        ad 	}
   2603   1.1        ad 
   2604   1.1        ad #ifdef MALLOC_DEBUG
   2605   1.1        ad 	arena->magic = ARENA_MAGIC;
   2606   1.1        ad #endif
   2607   1.1        ad }
   2608   1.1        ad 
   2609   1.1        ad /* Create a new arena and insert it into the arenas array at index ind. */
   2610   1.1        ad static arena_t *
   2611  1.57        ad arenas_extend(void)
   2612   1.1        ad {
   2613   1.1        ad 	arena_t *ret;
   2614   1.1        ad 
   2615   1.1        ad 	/* Allocate enough space for trailing bins. */
   2616   1.1        ad 	ret = (arena_t *)base_alloc(sizeof(arena_t)
   2617   1.1        ad 	    + (sizeof(arena_bin_t) * (ntbins + nqbins + nsbins - 1)));
   2618  1.57        ad 	if (ret != NULL) {
   2619  1.57        ad 		arena_new(ret);
   2620   1.1        ad 		return (ret);
   2621   1.1        ad 	}
   2622   1.1        ad 	/* Only reached if there is an OOM error. */
   2623   1.1        ad 
   2624   1.1        ad 	/*
   2625   1.1        ad 	 * OOM here is quite inconvenient to propagate, since dealing with it
   2626   1.1        ad 	 * would require a check for failure in the fast path.  Instead, punt
   2627   1.1        ad 	 * by using arenas[0].  In practice, this is an extremely unlikely
   2628   1.1        ad 	 * failure.
   2629   1.1        ad 	 */
   2630  1.16  christos 	_malloc_message(getprogname(),
   2631   1.1        ad 	    ": (malloc) Error initializing arena\n", "", "");
   2632  1.57        ad 	if (OPT(abort))
   2633   1.1        ad 		abort();
   2634   1.1        ad 
   2635   1.1        ad 	return (arenas[0]);
   2636   1.1        ad }
   2637   1.1        ad 
   2638   1.1        ad /*
   2639   1.1        ad  * End arena.
   2640   1.1        ad  */
   2641   1.1        ad /******************************************************************************/
   2642   1.1        ad /*
   2643   1.1        ad  * Begin general internal functions.
   2644   1.1        ad  */
   2645   1.1        ad 
   2646   1.1        ad static void *
   2647   1.1        ad huge_malloc(size_t size)
   2648   1.1        ad {
   2649   1.1        ad 	void *ret;
   2650   1.1        ad 	size_t csize;
   2651   1.1        ad 	chunk_node_t *node;
   2652   1.1        ad 
   2653   1.1        ad 	/* Allocate one or more contiguous chunks for this request. */
   2654   1.1        ad 
   2655   1.1        ad 	csize = CHUNK_CEILING(size);
   2656   1.1        ad 	if (csize == 0) {
   2657   1.1        ad 		/* size is large enough to cause size_t wrap-around. */
   2658   1.1        ad 		return (NULL);
   2659   1.1        ad 	}
   2660   1.1        ad 
   2661   1.1        ad 	/* Allocate a chunk node with which to track the chunk. */
   2662   1.1        ad 	node = base_chunk_node_alloc();
   2663   1.1        ad 	if (node == NULL)
   2664   1.1        ad 		return (NULL);
   2665   1.1        ad 
   2666   1.1        ad 	ret = chunk_alloc(csize);
   2667   1.1        ad 	if (ret == NULL) {
   2668   1.1        ad 		base_chunk_node_dealloc(node);
   2669   1.1        ad 		return (NULL);
   2670   1.1        ad 	}
   2671   1.1        ad 
   2672   1.1        ad 	/* Insert node into huge. */
   2673   1.1        ad 	node->chunk = ret;
   2674   1.1        ad 	node->size = csize;
   2675   1.1        ad 
   2676   1.1        ad 	malloc_mutex_lock(&chunks_mtx);
   2677   1.1        ad 	RB_INSERT(chunk_tree_s, &huge, node);
   2678   1.1        ad #ifdef MALLOC_STATS
   2679   1.1        ad 	huge_nmalloc++;
   2680   1.1        ad 	huge_allocated += csize;
   2681   1.1        ad #endif
   2682   1.1        ad 	malloc_mutex_unlock(&chunks_mtx);
   2683   1.1        ad 
   2684  1.57        ad 	if (OPT(junk))
   2685   1.1        ad 		memset(ret, 0xa5, csize);
   2686  1.57        ad 	else if (OPT(zero))
   2687   1.1        ad 		memset(ret, 0, csize);
   2688   1.1        ad 
   2689   1.1        ad 	return (ret);
   2690   1.1        ad }
   2691   1.1        ad 
   2692   1.1        ad /* Only handles large allocations that require more than chunk alignment. */
   2693   1.1        ad static void *
   2694   1.1        ad huge_palloc(size_t alignment, size_t size)
   2695   1.1        ad {
   2696   1.1        ad 	void *ret;
   2697   1.1        ad 	size_t alloc_size, chunk_size, offset;
   2698   1.1        ad 	chunk_node_t *node;
   2699   1.1        ad 
   2700   1.1        ad 	/*
   2701   1.1        ad 	 * This allocation requires alignment that is even larger than chunk
   2702   1.1        ad 	 * alignment.  This means that huge_malloc() isn't good enough.
   2703   1.1        ad 	 *
   2704   1.1        ad 	 * Allocate almost twice as many chunks as are demanded by the size or
   2705   1.1        ad 	 * alignment, in order to assure the alignment can be achieved, then
   2706   1.1        ad 	 * unmap leading and trailing chunks.
   2707   1.1        ad 	 */
   2708   1.1        ad 	assert(alignment >= chunksize);
   2709   1.1        ad 
   2710   1.1        ad 	chunk_size = CHUNK_CEILING(size);
   2711   1.1        ad 
   2712   1.1        ad 	if (size >= alignment)
   2713   1.1        ad 		alloc_size = chunk_size + alignment - chunksize;
   2714   1.1        ad 	else
   2715   1.1        ad 		alloc_size = (alignment << 1) - chunksize;
   2716   1.1        ad 
   2717   1.1        ad 	/* Allocate a chunk node with which to track the chunk. */
   2718   1.1        ad 	node = base_chunk_node_alloc();
   2719   1.1        ad 	if (node == NULL)
   2720   1.1        ad 		return (NULL);
   2721   1.1        ad 
   2722   1.1        ad 	ret = chunk_alloc(alloc_size);
   2723   1.1        ad 	if (ret == NULL) {
   2724   1.1        ad 		base_chunk_node_dealloc(node);
   2725   1.1        ad 		return (NULL);
   2726   1.1        ad 	}
   2727   1.1        ad 
   2728   1.1        ad 	offset = (uintptr_t)ret & (alignment - 1);
   2729   1.1        ad 	assert((offset & chunksize_mask) == 0);
   2730   1.1        ad 	assert(offset < alloc_size);
   2731   1.1        ad 	if (offset == 0) {
   2732   1.1        ad 		/* Trim trailing space. */
   2733   1.1        ad 		chunk_dealloc((void *)((uintptr_t)ret + chunk_size), alloc_size
   2734   1.1        ad 		    - chunk_size);
   2735   1.1        ad 	} else {
   2736   1.1        ad 		size_t trailsize;
   2737   1.1        ad 
   2738   1.1        ad 		/* Trim leading space. */
   2739   1.1        ad 		chunk_dealloc(ret, alignment - offset);
   2740   1.1        ad 
   2741   1.1        ad 		ret = (void *)((uintptr_t)ret + (alignment - offset));
   2742   1.1        ad 
   2743   1.1        ad 		trailsize = alloc_size - (alignment - offset) - chunk_size;
   2744   1.1        ad 		if (trailsize != 0) {
   2745   1.1        ad 		    /* Trim trailing space. */
   2746   1.1        ad 		    assert(trailsize < alloc_size);
   2747   1.1        ad 		    chunk_dealloc((void *)((uintptr_t)ret + chunk_size),
   2748   1.1        ad 			trailsize);
   2749   1.1        ad 		}
   2750   1.1        ad 	}
   2751   1.1        ad 
   2752   1.1        ad 	/* Insert node into huge. */
   2753   1.1        ad 	node->chunk = ret;
   2754   1.1        ad 	node->size = chunk_size;
   2755   1.1        ad 
   2756   1.1        ad 	malloc_mutex_lock(&chunks_mtx);
   2757   1.1        ad 	RB_INSERT(chunk_tree_s, &huge, node);
   2758   1.1        ad #ifdef MALLOC_STATS
   2759   1.1        ad 	huge_nmalloc++;
   2760   1.1        ad 	huge_allocated += chunk_size;
   2761   1.1        ad #endif
   2762   1.1        ad 	malloc_mutex_unlock(&chunks_mtx);
   2763   1.1        ad 
   2764  1.57        ad 	if (OPT(junk))
   2765   1.1        ad 		memset(ret, 0xa5, chunk_size);
   2766  1.57        ad 	else if (OPT(zero))
   2767   1.1        ad 		memset(ret, 0, chunk_size);
   2768   1.1        ad 
   2769   1.1        ad 	return (ret);
   2770   1.1        ad }
   2771   1.1        ad 
   2772   1.1        ad static void *
   2773   1.1        ad huge_ralloc(void *ptr, size_t size, size_t oldsize)
   2774   1.1        ad {
   2775   1.1        ad 	void *ret;
   2776   1.1        ad 
   2777   1.1        ad 	/* Avoid moving the allocation if the size class would not change. */
   2778   1.1        ad 	if (oldsize > arena_maxclass &&
   2779   1.1        ad 	    CHUNK_CEILING(size) == CHUNK_CEILING(oldsize)) {
   2780  1.57        ad 		if (OPT(junk) && size < oldsize) {
   2781   1.1        ad 			memset((void *)((uintptr_t)ptr + size), 0x5a, oldsize
   2782   1.1        ad 			    - size);
   2783  1.57        ad 		} else if (OPT(zero) && size > oldsize) {
   2784   1.1        ad 			memset((void *)((uintptr_t)ptr + oldsize), 0, size
   2785   1.1        ad 			    - oldsize);
   2786   1.1        ad 		}
   2787   1.1        ad 		return (ptr);
   2788   1.1        ad 	}
   2789   1.1        ad 
   2790   1.8      yamt 	if (CHUNK_ADDR2BASE(ptr) == ptr
   2791   1.8      yamt #ifdef USE_BRK
   2792   1.8      yamt 	    && ((uintptr_t)ptr < (uintptr_t)brk_base
   2793   1.8      yamt 	    || (uintptr_t)ptr >= (uintptr_t)brk_max)
   2794   1.8      yamt #endif
   2795   1.8      yamt 	    ) {
   2796   1.8      yamt 		chunk_node_t *node, key;
   2797   1.8      yamt 		void *newptr;
   2798   1.8      yamt 		size_t oldcsize;
   2799   1.8      yamt 		size_t newcsize;
   2800   1.8      yamt 
   2801   1.8      yamt 		newcsize = CHUNK_CEILING(size);
   2802   1.8      yamt 		oldcsize = CHUNK_CEILING(oldsize);
   2803   1.8      yamt 		assert(oldcsize != newcsize);
   2804   1.8      yamt 		if (newcsize == 0) {
   2805   1.8      yamt 			/* size_t wrap-around */
   2806   1.8      yamt 			return (NULL);
   2807   1.8      yamt 		}
   2808  1.21     enami 
   2809  1.21     enami 		/*
   2810  1.21     enami 		 * Remove the old region from the tree now.  If mremap()
   2811  1.21     enami 		 * returns the region to the system, other thread may
   2812  1.21     enami 		 * map it for same huge allocation and insert it to the
   2813  1.21     enami 		 * tree before we acquire the mutex lock again.
   2814  1.21     enami 		 */
   2815  1.21     enami 		malloc_mutex_lock(&chunks_mtx);
   2816  1.57        ad 		key.chunk = __UNCONST(ptr);
   2817  1.21     enami 		node = RB_FIND(chunk_tree_s, &huge, &key);
   2818  1.21     enami 		assert(node != NULL);
   2819  1.21     enami 		assert(node->chunk == ptr);
   2820  1.21     enami 		assert(node->size == oldcsize);
   2821  1.21     enami 		RB_REMOVE(chunk_tree_s, &huge, node);
   2822  1.21     enami 		malloc_mutex_unlock(&chunks_mtx);
   2823  1.21     enami 
   2824   1.8      yamt 		newptr = mremap(ptr, oldcsize, NULL, newcsize,
   2825   1.8      yamt 		    MAP_ALIGNED(chunksize_2pow));
   2826  1.21     enami 		if (newptr == MAP_FAILED) {
   2827  1.21     enami 			/* We still own the old region. */
   2828  1.21     enami 			malloc_mutex_lock(&chunks_mtx);
   2829  1.21     enami 			RB_INSERT(chunk_tree_s, &huge, node);
   2830  1.21     enami 			malloc_mutex_unlock(&chunks_mtx);
   2831  1.21     enami 		} else {
   2832   1.8      yamt 			assert(CHUNK_ADDR2BASE(newptr) == newptr);
   2833   1.8      yamt 
   2834  1.21     enami 			/* Insert new or resized old region. */
   2835   1.8      yamt 			malloc_mutex_lock(&chunks_mtx);
   2836   1.8      yamt 			node->size = newcsize;
   2837  1.21     enami 			node->chunk = newptr;
   2838  1.21     enami 			RB_INSERT(chunk_tree_s, &huge, node);
   2839   1.8      yamt #ifdef MALLOC_STATS
   2840   1.8      yamt 			huge_nralloc++;
   2841   1.8      yamt 			huge_allocated += newcsize - oldcsize;
   2842   1.8      yamt 			if (newcsize > oldcsize) {
   2843   1.8      yamt 				stats_chunks.curchunks +=
   2844   1.8      yamt 				    (newcsize - oldcsize) / chunksize;
   2845   1.8      yamt 				if (stats_chunks.curchunks >
   2846   1.8      yamt 				    stats_chunks.highchunks)
   2847   1.8      yamt 					stats_chunks.highchunks =
   2848   1.8      yamt 					    stats_chunks.curchunks;
   2849   1.8      yamt 			} else {
   2850   1.8      yamt 				stats_chunks.curchunks -=
   2851   1.8      yamt 				    (oldcsize - newcsize) / chunksize;
   2852   1.8      yamt 			}
   2853   1.8      yamt #endif
   2854   1.8      yamt 			malloc_mutex_unlock(&chunks_mtx);
   2855   1.8      yamt 
   2856  1.57        ad 			if (OPT(junk) && size < oldsize) {
   2857   1.8      yamt 				memset((void *)((uintptr_t)newptr + size), 0x5a,
   2858   1.8      yamt 				    newcsize - size);
   2859  1.57        ad 			} else if (OPT(zero) && size > oldsize) {
   2860   1.8      yamt 				memset((void *)((uintptr_t)newptr + oldsize), 0,
   2861   1.8      yamt 				    size - oldsize);
   2862   1.8      yamt 			}
   2863   1.8      yamt 			return (newptr);
   2864   1.8      yamt 		}
   2865   1.8      yamt 	}
   2866   1.8      yamt 
   2867   1.1        ad 	/*
   2868   1.1        ad 	 * If we get here, then size and oldsize are different enough that we
   2869   1.1        ad 	 * need to use a different size class.  In that case, fall back to
   2870   1.1        ad 	 * allocating new space and copying.
   2871   1.1        ad 	 */
   2872   1.1        ad 	ret = huge_malloc(size);
   2873   1.1        ad 	if (ret == NULL)
   2874   1.1        ad 		return (NULL);
   2875   1.1        ad 
   2876   1.1        ad 	if (CHUNK_ADDR2BASE(ptr) == ptr) {
   2877   1.1        ad 		/* The old allocation is a chunk. */
   2878   1.1        ad 		if (size < oldsize)
   2879   1.1        ad 			memcpy(ret, ptr, size);
   2880   1.1        ad 		else
   2881   1.1        ad 			memcpy(ret, ptr, oldsize);
   2882   1.1        ad 	} else {
   2883   1.1        ad 		/* The old allocation is a region. */
   2884   1.1        ad 		assert(oldsize < size);
   2885   1.1        ad 		memcpy(ret, ptr, oldsize);
   2886   1.1        ad 	}
   2887   1.1        ad 	idalloc(ptr);
   2888   1.1        ad 	return (ret);
   2889   1.1        ad }
   2890   1.1        ad 
   2891   1.1        ad static void
   2892   1.1        ad huge_dalloc(void *ptr)
   2893   1.1        ad {
   2894   1.1        ad 	chunk_node_t key;
   2895   1.1        ad 	chunk_node_t *node;
   2896   1.1        ad 
   2897   1.1        ad 	malloc_mutex_lock(&chunks_mtx);
   2898   1.1        ad 
   2899   1.1        ad 	/* Extract from tree of huge allocations. */
   2900   1.1        ad 	key.chunk = ptr;
   2901   1.1        ad 	node = RB_FIND(chunk_tree_s, &huge, &key);
   2902   1.1        ad 	assert(node != NULL);
   2903   1.1        ad 	assert(node->chunk == ptr);
   2904   1.1        ad 	RB_REMOVE(chunk_tree_s, &huge, node);
   2905   1.1        ad 
   2906   1.1        ad #ifdef MALLOC_STATS
   2907   1.1        ad 	huge_ndalloc++;
   2908   1.1        ad 	huge_allocated -= node->size;
   2909   1.1        ad #endif
   2910   1.1        ad 
   2911   1.1        ad 	malloc_mutex_unlock(&chunks_mtx);
   2912   1.1        ad 
   2913   1.1        ad 	/* Unmap chunk. */
   2914   1.1        ad #ifdef USE_BRK
   2915  1.57        ad 	if (OPT(junk))
   2916   1.1        ad 		memset(node->chunk, 0x5a, node->size);
   2917   1.1        ad #endif
   2918   1.1        ad 	chunk_dealloc(node->chunk, node->size);
   2919   1.1        ad 
   2920   1.1        ad 	base_chunk_node_dealloc(node);
   2921   1.1        ad }
   2922   1.1        ad 
   2923   1.1        ad static void *
   2924   1.1        ad imalloc(size_t size)
   2925   1.1        ad {
   2926   1.1        ad 	void *ret;
   2927   1.1        ad 
   2928   1.1        ad 	assert(size != 0);
   2929   1.1        ad 
   2930   1.1        ad 	if (size <= arena_maxclass)
   2931   1.1        ad 		ret = arena_malloc(choose_arena(), size);
   2932   1.1        ad 	else
   2933   1.1        ad 		ret = huge_malloc(size);
   2934   1.1        ad 
   2935   1.1        ad 	return (ret);
   2936   1.1        ad }
   2937   1.1        ad 
   2938   1.1        ad static void *
   2939   1.1        ad ipalloc(size_t alignment, size_t size)
   2940   1.1        ad {
   2941   1.1        ad 	void *ret;
   2942   1.1        ad 	size_t ceil_size;
   2943   1.1        ad 
   2944   1.1        ad 	/*
   2945   1.1        ad 	 * Round size up to the nearest multiple of alignment.
   2946   1.1        ad 	 *
   2947   1.1        ad 	 * This done, we can take advantage of the fact that for each small
   2948   1.1        ad 	 * size class, every object is aligned at the smallest power of two
   2949   1.1        ad 	 * that is non-zero in the base two representation of the size.  For
   2950   1.1        ad 	 * example:
   2951   1.1        ad 	 *
   2952   1.1        ad 	 *   Size |   Base 2 | Minimum alignment
   2953   1.1        ad 	 *   -----+----------+------------------
   2954   1.1        ad 	 *     96 |  1100000 |  32
   2955   1.1        ad 	 *    144 | 10100000 |  32
   2956   1.1        ad 	 *    192 | 11000000 |  64
   2957   1.1        ad 	 *
   2958   1.1        ad 	 * Depending on runtime settings, it is possible that arena_malloc()
   2959   1.1        ad 	 * will further round up to a power of two, but that never causes
   2960   1.1        ad 	 * correctness issues.
   2961   1.1        ad 	 */
   2962   1.1        ad 	ceil_size = (size + (alignment - 1)) & (-alignment);
   2963   1.1        ad 	/*
   2964   1.1        ad 	 * (ceil_size < size) protects against the combination of maximal
   2965   1.1        ad 	 * alignment and size greater than maximal alignment.
   2966   1.1        ad 	 */
   2967   1.1        ad 	if (ceil_size < size) {
   2968   1.1        ad 		/* size_t overflow. */
   2969   1.1        ad 		return (NULL);
   2970   1.1        ad 	}
   2971   1.1        ad 
   2972   1.1        ad 	if (ceil_size <= pagesize || (alignment <= pagesize
   2973   1.1        ad 	    && ceil_size <= arena_maxclass))
   2974   1.1        ad 		ret = arena_malloc(choose_arena(), ceil_size);
   2975   1.1        ad 	else {
   2976   1.1        ad 		size_t run_size;
   2977   1.1        ad 
   2978   1.1        ad 		/*
   2979   1.1        ad 		 * We can't achieve sub-page alignment, so round up alignment
   2980   1.1        ad 		 * permanently; it makes later calculations simpler.
   2981   1.1        ad 		 */
   2982   1.1        ad 		alignment = PAGE_CEILING(alignment);
   2983   1.1        ad 		ceil_size = PAGE_CEILING(size);
   2984   1.1        ad 		/*
   2985   1.1        ad 		 * (ceil_size < size) protects against very large sizes within
   2986   1.1        ad 		 * pagesize of SIZE_T_MAX.
   2987   1.1        ad 		 *
   2988   1.1        ad 		 * (ceil_size + alignment < ceil_size) protects against the
   2989   1.1        ad 		 * combination of maximal alignment and ceil_size large enough
   2990   1.1        ad 		 * to cause overflow.  This is similar to the first overflow
   2991   1.1        ad 		 * check above, but it needs to be repeated due to the new
   2992   1.1        ad 		 * ceil_size value, which may now be *equal* to maximal
   2993   1.1        ad 		 * alignment, whereas before we only detected overflow if the
   2994   1.1        ad 		 * original size was *greater* than maximal alignment.
   2995   1.1        ad 		 */
   2996   1.1        ad 		if (ceil_size < size || ceil_size + alignment < ceil_size) {
   2997   1.1        ad 			/* size_t overflow. */
   2998   1.1        ad 			return (NULL);
   2999   1.1        ad 		}
   3000   1.1        ad 
   3001   1.1        ad 		/*
   3002   1.1        ad 		 * Calculate the size of the over-size run that arena_palloc()
   3003   1.1        ad 		 * would need to allocate in order to guarantee the alignment.
   3004   1.1        ad 		 */
   3005   1.1        ad 		if (ceil_size >= alignment)
   3006   1.1        ad 			run_size = ceil_size + alignment - pagesize;
   3007   1.1        ad 		else {
   3008   1.1        ad 			/*
   3009   1.1        ad 			 * It is possible that (alignment << 1) will cause
   3010   1.1        ad 			 * overflow, but it doesn't matter because we also
   3011   1.1        ad 			 * subtract pagesize, which in the case of overflow
   3012   1.1        ad 			 * leaves us with a very large run_size.  That causes
   3013   1.1        ad 			 * the first conditional below to fail, which means
   3014   1.1        ad 			 * that the bogus run_size value never gets used for
   3015   1.1        ad 			 * anything important.
   3016   1.1        ad 			 */
   3017   1.1        ad 			run_size = (alignment << 1) - pagesize;
   3018   1.1        ad 		}
   3019   1.1        ad 
   3020   1.1        ad 		if (run_size <= arena_maxclass) {
   3021   1.1        ad 			ret = arena_palloc(choose_arena(), alignment, ceil_size,
   3022   1.1        ad 			    run_size);
   3023   1.1        ad 		} else if (alignment <= chunksize)
   3024   1.1        ad 			ret = huge_malloc(ceil_size);
   3025   1.1        ad 		else
   3026   1.1        ad 			ret = huge_palloc(alignment, ceil_size);
   3027   1.1        ad 	}
   3028   1.1        ad 
   3029   1.1        ad 	assert(((uintptr_t)ret & (alignment - 1)) == 0);
   3030   1.1        ad 	return (ret);
   3031   1.1        ad }
   3032   1.1        ad 
   3033   1.1        ad static void *
   3034   1.1        ad icalloc(size_t size)
   3035   1.1        ad {
   3036   1.1        ad 	void *ret;
   3037   1.1        ad 
   3038   1.1        ad 	if (size <= arena_maxclass) {
   3039   1.1        ad 		ret = arena_malloc(choose_arena(), size);
   3040   1.1        ad 		if (ret == NULL)
   3041   1.1        ad 			return (NULL);
   3042   1.1        ad 		memset(ret, 0, size);
   3043   1.1        ad 	} else {
   3044   1.1        ad 		/*
   3045   1.1        ad 		 * The virtual memory system provides zero-filled pages, so
   3046   1.1        ad 		 * there is no need to do so manually, unless opt_junk is
   3047   1.1        ad 		 * enabled, in which case huge_malloc() fills huge allocations
   3048   1.1        ad 		 * with junk.
   3049   1.1        ad 		 */
   3050   1.1        ad 		ret = huge_malloc(size);
   3051   1.1        ad 		if (ret == NULL)
   3052   1.1        ad 			return (NULL);
   3053   1.1        ad 
   3054  1.57        ad 		if (OPT(junk))
   3055   1.1        ad 			memset(ret, 0, size);
   3056   1.1        ad #ifdef USE_BRK
   3057   1.1        ad 		else if ((uintptr_t)ret >= (uintptr_t)brk_base
   3058   1.1        ad 		    && (uintptr_t)ret < (uintptr_t)brk_max) {
   3059   1.1        ad 			/*
   3060   1.1        ad 			 * This may be a re-used brk chunk.  Therefore, zero
   3061   1.1        ad 			 * the memory.
   3062   1.1        ad 			 */
   3063   1.1        ad 			memset(ret, 0, size);
   3064   1.1        ad 		}
   3065   1.1        ad #endif
   3066   1.1        ad 	}
   3067   1.1        ad 
   3068   1.1        ad 	return (ret);
   3069   1.1        ad }
   3070   1.1        ad 
   3071   1.1        ad static size_t
   3072   1.1        ad isalloc(const void *ptr)
   3073   1.1        ad {
   3074   1.1        ad 	size_t ret;
   3075   1.1        ad 	arena_chunk_t *chunk;
   3076   1.1        ad 
   3077   1.1        ad 	assert(ptr != NULL);
   3078   1.1        ad 
   3079   1.1        ad 	chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
   3080   1.1        ad 	if (chunk != ptr) {
   3081   1.1        ad 		/* Region. */
   3082   1.1        ad 		assert(chunk->arena->magic == ARENA_MAGIC);
   3083   1.1        ad 
   3084   1.1        ad 		ret = arena_salloc(ptr);
   3085   1.1        ad 	} else {
   3086   1.1        ad 		chunk_node_t *node, key;
   3087   1.1        ad 
   3088   1.1        ad 		/* Chunk (huge allocation). */
   3089   1.1        ad 
   3090   1.1        ad 		malloc_mutex_lock(&chunks_mtx);
   3091   1.1        ad 
   3092   1.1        ad 		/* Extract from tree of huge allocations. */
   3093  1.57        ad 		key.chunk = __UNCONST(ptr);
   3094   1.1        ad 		node = RB_FIND(chunk_tree_s, &huge, &key);
   3095   1.1        ad 		assert(node != NULL);
   3096   1.1        ad 
   3097   1.1        ad 		ret = node->size;
   3098   1.1        ad 
   3099   1.1        ad 		malloc_mutex_unlock(&chunks_mtx);
   3100   1.1        ad 	}
   3101   1.1        ad 
   3102   1.1        ad 	return (ret);
   3103   1.1        ad }
   3104   1.1        ad 
   3105   1.1        ad static void *
   3106   1.1        ad iralloc(void *ptr, size_t size)
   3107   1.1        ad {
   3108   1.1        ad 	void *ret;
   3109   1.1        ad 	size_t oldsize;
   3110   1.1        ad 
   3111   1.1        ad 	assert(ptr != NULL);
   3112   1.1        ad 	assert(size != 0);
   3113   1.1        ad 
   3114   1.1        ad 	oldsize = isalloc(ptr);
   3115   1.1        ad 
   3116   1.1        ad 	if (size <= arena_maxclass)
   3117   1.1        ad 		ret = arena_ralloc(ptr, size, oldsize);
   3118   1.1        ad 	else
   3119   1.1        ad 		ret = huge_ralloc(ptr, size, oldsize);
   3120   1.1        ad 
   3121   1.1        ad 	return (ret);
   3122   1.1        ad }
   3123   1.1        ad 
   3124   1.1        ad static void
   3125   1.1        ad idalloc(void *ptr)
   3126   1.1        ad {
   3127   1.1        ad 	arena_chunk_t *chunk;
   3128   1.1        ad 
   3129   1.1        ad 	assert(ptr != NULL);
   3130   1.1        ad 
   3131   1.1        ad 	chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
   3132   1.1        ad 	if (chunk != ptr) {
   3133   1.1        ad 		/* Region. */
   3134   1.1        ad 		arena_dalloc(chunk->arena, chunk, ptr);
   3135   1.1        ad 	} else
   3136   1.1        ad 		huge_dalloc(ptr);
   3137   1.1        ad }
   3138   1.1        ad 
   3139   1.1        ad static void
   3140   1.1        ad malloc_print_stats(void)
   3141   1.1        ad {
   3142   1.1        ad 
   3143  1.57        ad 	if (OPT(print_stats)) {
   3144   1.1        ad 		char s[UMAX2S_BUFSIZE];
   3145   1.1        ad 		_malloc_message("___ Begin malloc statistics ___\n", "", "",
   3146   1.1        ad 		    "");
   3147   1.1        ad 		_malloc_message("Assertions ",
   3148   1.1        ad #ifdef NDEBUG
   3149   1.1        ad 		    "disabled",
   3150   1.1        ad #else
   3151   1.1        ad 		    "enabled",
   3152   1.1        ad #endif
   3153   1.1        ad 		    "\n", "");
   3154   1.1        ad 		_malloc_message("Boolean MALLOC_OPTIONS: ",
   3155   1.1        ad 		    opt_abort ? "A" : "a",
   3156   1.1        ad 		    opt_junk ? "J" : "j",
   3157   1.1        ad 		    opt_hint ? "H" : "h");
   3158  1.57        ad 		_malloc_message(OPT(utrace) ? "PU" : "Pu",
   3159   1.1        ad 		    opt_sysv ? "V" : "v",
   3160   1.1        ad 		    opt_xmalloc ? "X" : "x",
   3161   1.1        ad 		    opt_zero ? "Z\n" : "z\n");
   3162   1.1        ad 
   3163  1.28  christos 		_malloc_message("CPUs: ", size_t2s(ncpus, s), "\n", "");
   3164  1.28  christos 		_malloc_message("Pointer size: ", size_t2s(sizeof(void *), s),
   3165   1.1        ad 		    "\n", "");
   3166  1.28  christos 		_malloc_message("Quantum size: ", size_t2s(quantum, s), "\n", "");
   3167  1.28  christos 		_malloc_message("Max small size: ", size_t2s(small_max, s), "\n",
   3168   1.1        ad 		    "");
   3169   1.1        ad 
   3170  1.28  christos 		_malloc_message("Chunk size: ", size_t2s(chunksize, s), "", "");
   3171  1.28  christos 		_malloc_message(" (2^", size_t2s((size_t)opt_chunk_2pow, s),
   3172  1.27      matt 		    ")\n", "");
   3173   1.1        ad 
   3174   1.1        ad #ifdef MALLOC_STATS
   3175   1.1        ad 		{
   3176   1.1        ad 			size_t allocated, mapped;
   3177   1.1        ad 			unsigned i;
   3178   1.1        ad 			arena_t *arena;
   3179   1.1        ad 
   3180   1.1        ad 			/* Calculate and print allocated/mapped stats. */
   3181   1.1        ad 
   3182   1.1        ad 			/* arenas. */
   3183  1.57        ad 			for (i = 0, allocated = 0; i < ncpus; i++) {
   3184   1.1        ad 				if (arenas[i] != NULL) {
   3185   1.1        ad 					malloc_mutex_lock(&arenas[i]->mtx);
   3186   1.1        ad 					allocated +=
   3187   1.1        ad 					    arenas[i]->stats.allocated_small;
   3188   1.1        ad 					allocated +=
   3189   1.1        ad 					    arenas[i]->stats.allocated_large;
   3190   1.1        ad 					malloc_mutex_unlock(&arenas[i]->mtx);
   3191   1.1        ad 				}
   3192   1.1        ad 			}
   3193   1.1        ad 
   3194   1.1        ad 			/* huge/base. */
   3195   1.1        ad 			malloc_mutex_lock(&chunks_mtx);
   3196   1.1        ad 			allocated += huge_allocated;
   3197   1.1        ad 			mapped = stats_chunks.curchunks * chunksize;
   3198   1.1        ad 			malloc_mutex_unlock(&chunks_mtx);
   3199   1.1        ad 
   3200   1.1        ad 			malloc_mutex_lock(&base_mtx);
   3201   1.1        ad 			mapped += base_mapped;
   3202   1.1        ad 			malloc_mutex_unlock(&base_mtx);
   3203   1.1        ad 
   3204   1.1        ad 			malloc_printf("Allocated: %zu, mapped: %zu\n",
   3205   1.1        ad 			    allocated, mapped);
   3206   1.1        ad 
   3207   1.1        ad 			/* Print chunk stats. */
   3208   1.1        ad 			{
   3209   1.1        ad 				chunk_stats_t chunks_stats;
   3210   1.1        ad 
   3211   1.1        ad 				malloc_mutex_lock(&chunks_mtx);
   3212   1.1        ad 				chunks_stats = stats_chunks;
   3213   1.1        ad 				malloc_mutex_unlock(&chunks_mtx);
   3214   1.1        ad 
   3215   1.1        ad 				malloc_printf("chunks: nchunks   "
   3216   1.1        ad 				    "highchunks    curchunks\n");
   3217   1.1        ad 				malloc_printf("  %13llu%13lu%13lu\n",
   3218   1.1        ad 				    chunks_stats.nchunks,
   3219   1.1        ad 				    chunks_stats.highchunks,
   3220   1.1        ad 				    chunks_stats.curchunks);
   3221   1.1        ad 			}
   3222   1.1        ad 
   3223   1.1        ad 			/* Print chunk stats. */
   3224   1.1        ad 			malloc_printf(
   3225   1.8      yamt 			    "huge: nmalloc      ndalloc      "
   3226   1.8      yamt 			    "nralloc    allocated\n");
   3227   1.8      yamt 			malloc_printf(" %12llu %12llu %12llu %12zu\n",
   3228   1.8      yamt 			    huge_nmalloc, huge_ndalloc, huge_nralloc,
   3229   1.8      yamt 			    huge_allocated);
   3230   1.1        ad 
   3231   1.1        ad 			/* Print stats for each arena. */
   3232  1.57        ad 			for (i = 0; i < ncpus; i++) {
   3233   1.1        ad 				arena = arenas[i];
   3234   1.1        ad 				if (arena != NULL) {
   3235   1.1        ad 					malloc_printf(
   3236   1.2        ad 					    "\narenas[%u] @ %p\n", i, arena);
   3237   1.1        ad 					malloc_mutex_lock(&arena->mtx);
   3238   1.1        ad 					stats_print(arena);
   3239   1.1        ad 					malloc_mutex_unlock(&arena->mtx);
   3240   1.1        ad 				}
   3241   1.1        ad 			}
   3242   1.1        ad 		}
   3243   1.1        ad #endif /* #ifdef MALLOC_STATS */
   3244   1.1        ad 		_malloc_message("--- End malloc statistics ---\n", "", "", "");
   3245   1.1        ad 	}
   3246   1.1        ad }
   3247   1.1        ad 
   3248   1.1        ad /*
   3249  1.57        ad  * libpthread might call malloc(3), so the malloc implementation has to take
   3250  1.57        ad  * pains to avoid infinite recursion during initialization.
   3251   1.1        ad  */
   3252   1.1        ad static inline bool
   3253   1.1        ad malloc_init(void)
   3254   1.1        ad {
   3255   1.1        ad 
   3256  1.57        ad 	if (__predict_false(malloc_initialized == false))
   3257   1.1        ad 		return (malloc_init_hard());
   3258   1.1        ad 
   3259   1.1        ad 	return (false);
   3260   1.1        ad }
   3261   1.1        ad 
   3262   1.1        ad static bool
   3263   1.1        ad malloc_init_hard(void)
   3264   1.1        ad {
   3265   1.1        ad 	unsigned i, j;
   3266   1.9  christos 	ssize_t linklen;
   3267   1.1        ad 	char buf[PATH_MAX + 1];
   3268   1.2        ad 	const char *opts = "";
   3269  1.23  christos 	int serrno;
   3270   1.1        ad 
   3271   1.1        ad 	malloc_mutex_lock(&init_lock);
   3272   1.1        ad 	if (malloc_initialized) {
   3273   1.1        ad 		/*
   3274   1.1        ad 		 * Another thread initialized the allocator before this one
   3275   1.1        ad 		 * acquired init_lock.
   3276   1.1        ad 		 */
   3277   1.1        ad 		malloc_mutex_unlock(&init_lock);
   3278   1.1        ad 		return (false);
   3279   1.1        ad 	}
   3280   1.1        ad 
   3281  1.24  christos 	serrno = errno;
   3282   1.1        ad 	/* Get number of CPUs. */
   3283   1.1        ad 	{
   3284   1.1        ad 		int mib[2];
   3285   1.1        ad 		size_t len;
   3286   1.1        ad 
   3287   1.1        ad 		mib[0] = CTL_HW;
   3288   1.1        ad 		mib[1] = HW_NCPU;
   3289   1.1        ad 		len = sizeof(ncpus);
   3290   1.1        ad 		if (sysctl(mib, 2, &ncpus, &len, (void *) 0, 0) == -1) {
   3291   1.1        ad 			/* Error. */
   3292   1.1        ad 			ncpus = 1;
   3293   1.1        ad 		}
   3294   1.1        ad 	}
   3295   1.1        ad 
   3296   1.1        ad 	/* Get page size. */
   3297   1.1        ad 	{
   3298   1.1        ad 		long result;
   3299   1.1        ad 
   3300  1.57        ad 		result = getpagesize();
   3301   1.1        ad 		assert(result != -1);
   3302   1.1        ad 		pagesize = (unsigned) result;
   3303   1.1        ad 
   3304   1.1        ad 		/*
   3305   1.1        ad 		 * We assume that pagesize is a power of 2 when calculating
   3306   1.1        ad 		 * pagesize_mask and pagesize_2pow.
   3307   1.1        ad 		 */
   3308   1.1        ad 		assert(((result - 1) & result) == 0);
   3309   1.1        ad 		pagesize_mask = result - 1;
   3310   1.1        ad 		pagesize_2pow = ffs((int)result) - 1;
   3311   1.1        ad 	}
   3312   1.1        ad 
   3313   1.1        ad 	for (i = 0; i < 3; i++) {
   3314   1.1        ad 		/* Get runtime configuration. */
   3315   1.1        ad 		switch (i) {
   3316   1.1        ad 		case 0:
   3317   1.1        ad 			if ((linklen = readlink("/etc/malloc.conf", buf,
   3318  1.57        ad 			    sizeof(buf) - 1)) != -1) {
   3319   1.1        ad 				/*
   3320   1.1        ad 				 * Use the contents of the "/etc/malloc.conf"
   3321   1.1        ad 				 * symbolic link's name.
   3322   1.1        ad 				 */
   3323   1.1        ad 				buf[linklen] = '\0';
   3324   1.1        ad 				opts = buf;
   3325   1.1        ad 			} else {
   3326   1.1        ad 				/* No configuration specified. */
   3327   1.1        ad 				buf[0] = '\0';
   3328   1.1        ad 				opts = buf;
   3329   1.1        ad 			}
   3330   1.1        ad 			break;
   3331   1.1        ad 		case 1:
   3332  1.18        ad 			if ((opts = getenv("MALLOC_OPTIONS")) != NULL &&
   3333  1.18        ad 			    issetugid() == 0) {
   3334   1.1        ad 				/*
   3335   1.1        ad 				 * Do nothing; opts is already initialized to
   3336   1.1        ad 				 * the value of the MALLOC_OPTIONS environment
   3337   1.1        ad 				 * variable.
   3338   1.1        ad 				 */
   3339   1.1        ad 			} else {
   3340   1.1        ad 				/* No configuration specified. */
   3341   1.1        ad 				buf[0] = '\0';
   3342   1.1        ad 				opts = buf;
   3343   1.1        ad 			}
   3344   1.1        ad 			break;
   3345   1.1        ad 		case 2:
   3346   1.1        ad 			if (_malloc_options != NULL) {
   3347  1.57        ad 				/*
   3348  1.57        ad 				 * Use options that were compiled into the program.
   3349  1.57        ad 				 */
   3350  1.57        ad 				opts = _malloc_options;
   3351   1.1        ad 			} else {
   3352   1.1        ad 				/* No configuration specified. */
   3353   1.1        ad 				buf[0] = '\0';
   3354   1.1        ad 				opts = buf;
   3355   1.1        ad 			}
   3356   1.1        ad 			break;
   3357   1.1        ad 		default:
   3358   1.1        ad 			/* NOTREACHED */
   3359   1.7      yamt 			/* LINTED */
   3360   1.1        ad 			assert(false);
   3361   1.1        ad 		}
   3362   1.1        ad 
   3363   1.1        ad 		for (j = 0; opts[j] != '\0'; j++) {
   3364   1.1        ad 			switch (opts[j]) {
   3365   1.1        ad 			case 'a':
   3366   1.1        ad 				opt_abort = false;
   3367   1.1        ad 				break;
   3368   1.1        ad 			case 'A':
   3369   1.1        ad 				opt_abort = true;
   3370   1.1        ad 				break;
   3371   1.1        ad 			case 'h':
   3372   1.1        ad 				opt_hint = false;
   3373   1.1        ad 				break;
   3374   1.1        ad 			case 'H':
   3375   1.1        ad 				opt_hint = true;
   3376   1.1        ad 				break;
   3377   1.1        ad 			case 'j':
   3378   1.1        ad 				opt_junk = false;
   3379   1.1        ad 				break;
   3380   1.1        ad 			case 'J':
   3381   1.1        ad 				opt_junk = true;
   3382   1.1        ad 				break;
   3383   1.1        ad 			case 'k':
   3384   1.1        ad 				/*
   3385   1.1        ad 				 * Chunks always require at least one header
   3386   1.1        ad 				 * page, so chunks can never be smaller than
   3387   1.1        ad 				 * two pages.
   3388   1.1        ad 				 */
   3389   1.1        ad 				if (opt_chunk_2pow > pagesize_2pow + 1)
   3390   1.1        ad 					opt_chunk_2pow--;
   3391   1.1        ad 				break;
   3392   1.1        ad 			case 'K':
   3393  1.20     lukem 				if (opt_chunk_2pow + 1 <
   3394  1.20     lukem 				    (int)(sizeof(size_t) << 3))
   3395   1.1        ad 					opt_chunk_2pow++;
   3396   1.1        ad 				break;
   3397   1.1        ad 			case 'p':
   3398   1.1        ad 				opt_print_stats = false;
   3399   1.1        ad 				break;
   3400   1.1        ad 			case 'P':
   3401   1.1        ad 				opt_print_stats = true;
   3402   1.1        ad 				break;
   3403   1.1        ad 			case 'q':
   3404   1.1        ad 				if (opt_quantum_2pow > QUANTUM_2POW_MIN)
   3405   1.1        ad 					opt_quantum_2pow--;
   3406   1.1        ad 				break;
   3407   1.1        ad 			case 'Q':
   3408   1.1        ad 				if (opt_quantum_2pow < pagesize_2pow - 1)
   3409   1.1        ad 					opt_quantum_2pow++;
   3410   1.1        ad 				break;
   3411   1.1        ad 			case 's':
   3412   1.1        ad 				if (opt_small_max_2pow > QUANTUM_2POW_MIN)
   3413   1.1        ad 					opt_small_max_2pow--;
   3414   1.1        ad 				break;
   3415   1.1        ad 			case 'S':
   3416   1.1        ad 				if (opt_small_max_2pow < pagesize_2pow - 1)
   3417   1.1        ad 					opt_small_max_2pow++;
   3418   1.1        ad 				break;
   3419   1.1        ad 			case 'u':
   3420   1.1        ad 				opt_utrace = false;
   3421   1.1        ad 				break;
   3422   1.1        ad 			case 'U':
   3423   1.1        ad 				opt_utrace = true;
   3424   1.1        ad 				break;
   3425   1.1        ad 			case 'v':
   3426   1.1        ad 				opt_sysv = false;
   3427   1.1        ad 				break;
   3428   1.1        ad 			case 'V':
   3429   1.1        ad 				opt_sysv = true;
   3430   1.1        ad 				break;
   3431   1.1        ad 			case 'x':
   3432   1.1        ad 				opt_xmalloc = false;
   3433   1.1        ad 				break;
   3434   1.1        ad 			case 'X':
   3435   1.1        ad 				opt_xmalloc = true;
   3436   1.1        ad 				break;
   3437   1.1        ad 			case 'z':
   3438   1.1        ad 				opt_zero = false;
   3439   1.1        ad 				break;
   3440   1.1        ad 			case 'Z':
   3441   1.1        ad 				opt_zero = true;
   3442   1.1        ad 				break;
   3443   1.1        ad 			default: {
   3444   1.1        ad 				char cbuf[2];
   3445  1.55     skrll 
   3446   1.1        ad 				cbuf[0] = opts[j];
   3447   1.1        ad 				cbuf[1] = '\0';
   3448  1.16  christos 				_malloc_message(getprogname(),
   3449   1.1        ad 				    ": (malloc) Unsupported character in "
   3450   1.1        ad 				    "malloc options: '", cbuf, "'\n");
   3451   1.1        ad 			}
   3452   1.1        ad 			}
   3453   1.1        ad 		}
   3454   1.1        ad 	}
   3455  1.24  christos 	errno = serrno;
   3456   1.1        ad 
   3457   1.1        ad 	/* Take care to call atexit() only once. */
   3458  1.57        ad 	if (OPT(print_stats)) {
   3459   1.1        ad 		/* Print statistics at exit. */
   3460   1.1        ad 		atexit(malloc_print_stats);
   3461   1.1        ad 	}
   3462   1.1        ad 
   3463   1.1        ad 	/* Set variables according to the value of opt_small_max_2pow. */
   3464   1.1        ad 	if (opt_small_max_2pow < opt_quantum_2pow)
   3465   1.1        ad 		opt_small_max_2pow = opt_quantum_2pow;
   3466  1.57        ad 	small_max = (1U << opt_small_max_2pow);
   3467   1.1        ad 
   3468   1.1        ad 	/* Set bin-related variables. */
   3469   1.1        ad 	bin_maxclass = (pagesize >> 1);
   3470   1.1        ad 	assert(opt_quantum_2pow >= TINY_MIN_2POW);
   3471   1.9  christos 	ntbins = (unsigned)(opt_quantum_2pow - TINY_MIN_2POW);
   3472  1.57        ad 	assert(ntbins <= (unsigned)opt_quantum_2pow);
   3473   1.9  christos 	nqbins = (unsigned)(small_max >> opt_quantum_2pow);
   3474   1.9  christos 	nsbins = (unsigned)(pagesize_2pow - opt_small_max_2pow - 1);
   3475   1.1        ad 
   3476   1.1        ad 	/* Set variables according to the value of opt_quantum_2pow. */
   3477   1.1        ad 	quantum = (1 << opt_quantum_2pow);
   3478   1.1        ad 	quantum_mask = quantum - 1;
   3479   1.1        ad 	if (ntbins > 0)
   3480   1.1        ad 		small_min = (quantum >> 1) + 1;
   3481   1.1        ad 	else
   3482   1.1        ad 		small_min = 1;
   3483   1.1        ad 	assert(small_min <= quantum);
   3484   1.1        ad 
   3485   1.1        ad 	/* Set variables according to the value of opt_chunk_2pow. */
   3486   1.1        ad 	chunksize = (1LU << opt_chunk_2pow);
   3487   1.1        ad 	chunksize_mask = chunksize - 1;
   3488   1.9  christos 	chunksize_2pow = (unsigned)opt_chunk_2pow;
   3489   1.9  christos 	chunk_npages = (unsigned)(chunksize >> pagesize_2pow);
   3490   1.1        ad 	{
   3491   1.1        ad 		unsigned header_size;
   3492   1.1        ad 
   3493   1.9  christos 		header_size = (unsigned)(sizeof(arena_chunk_t) +
   3494   1.9  christos 		    (sizeof(arena_chunk_map_t) * (chunk_npages - 1)));
   3495   1.1        ad 		arena_chunk_header_npages = (header_size >> pagesize_2pow);
   3496   1.1        ad 		if ((header_size & pagesize_mask) != 0)
   3497   1.1        ad 			arena_chunk_header_npages++;
   3498   1.1        ad 	}
   3499   1.1        ad 	arena_maxclass = chunksize - (arena_chunk_header_npages <<
   3500   1.1        ad 	    pagesize_2pow);
   3501   1.1        ad 
   3502   1.1        ad 	UTRACE(0, 0, 0);
   3503   1.1        ad 
   3504   1.1        ad #ifdef MALLOC_STATS
   3505   1.1        ad 	memset(&stats_chunks, 0, sizeof(chunk_stats_t));
   3506   1.1        ad #endif
   3507   1.1        ad 
   3508   1.1        ad 	/* Various sanity checks that regard configuration. */
   3509   1.1        ad 	assert(quantum >= sizeof(void *));
   3510   1.1        ad 	assert(quantum <= pagesize);
   3511   1.1        ad 	assert(chunksize >= pagesize);
   3512   1.1        ad 	assert(quantum * 4 <= chunksize);
   3513   1.1        ad 
   3514   1.1        ad 	/* Initialize chunks data. */
   3515   1.1        ad 	malloc_mutex_init(&chunks_mtx);
   3516   1.1        ad 	RB_INIT(&huge);
   3517   1.1        ad #ifdef USE_BRK
   3518   1.1        ad 	malloc_mutex_init(&brk_mtx);
   3519   1.1        ad 	brk_base = sbrk(0);
   3520   1.1        ad 	brk_prev = brk_base;
   3521   1.1        ad 	brk_max = brk_base;
   3522   1.1        ad #endif
   3523   1.1        ad #ifdef MALLOC_STATS
   3524   1.1        ad 	huge_nmalloc = 0;
   3525   1.1        ad 	huge_ndalloc = 0;
   3526   1.8      yamt 	huge_nralloc = 0;
   3527   1.1        ad 	huge_allocated = 0;
   3528   1.1        ad #endif
   3529   1.1        ad 	RB_INIT(&old_chunks);
   3530   1.1        ad 
   3531   1.1        ad 	/* Initialize base allocation data structures. */
   3532   1.1        ad #ifdef MALLOC_STATS
   3533   1.1        ad 	base_mapped = 0;
   3534   1.1        ad #endif
   3535   1.1        ad #ifdef USE_BRK
   3536   1.1        ad 	/*
   3537   1.1        ad 	 * Allocate a base chunk here, since it doesn't actually have to be
   3538   1.1        ad 	 * chunk-aligned.  Doing this before allocating any other chunks allows
   3539   1.1        ad 	 * the use of space that would otherwise be wasted.
   3540   1.1        ad 	 */
   3541   1.1        ad 	base_pages_alloc(0);
   3542   1.1        ad #endif
   3543   1.1        ad 	base_chunk_nodes = NULL;
   3544   1.1        ad 	malloc_mutex_init(&base_mtx);
   3545   1.1        ad 
   3546   1.1        ad 	/* Allocate and initialize arenas. */
   3547  1.57        ad 	arenas = (arena_t **)base_alloc(sizeof(arena_t *) * ncpus);
   3548   1.1        ad 	if (arenas == NULL) {
   3549   1.1        ad 		malloc_mutex_unlock(&init_lock);
   3550   1.1        ad 		return (true);
   3551   1.1        ad 	}
   3552   1.1        ad 	/*
   3553   1.1        ad 	 * Zero the array.  In practice, this should always be pre-zeroed,
   3554   1.1        ad 	 * since it was just mmap()ed, but let's be sure.
   3555   1.1        ad 	 */
   3556  1.57        ad 	memset(arenas, 0, sizeof(arena_t *) * ncpus);
   3557   1.1        ad 
   3558   1.1        ad 	/*
   3559   1.1        ad 	 * Initialize one arena here.  The rest are lazily created in
   3560   1.1        ad 	 * arena_choose_hard().
   3561   1.1        ad 	 */
   3562  1.57        ad 	if ((arenas[0] = arenas_extend()) == NULL) {
   3563   1.1        ad 		malloc_mutex_unlock(&init_lock);
   3564   1.1        ad 		return (true);
   3565   1.1        ad 	}
   3566   1.1        ad 
   3567   1.1        ad 	malloc_mutex_init(&arenas_mtx);
   3568   1.1        ad 
   3569   1.1        ad 	malloc_initialized = true;
   3570   1.1        ad 	malloc_mutex_unlock(&init_lock);
   3571   1.1        ad 	return (false);
   3572   1.1        ad }
   3573   1.1        ad 
   3574   1.1        ad /*
   3575   1.1        ad  * End general internal functions.
   3576   1.1        ad  */
   3577   1.1        ad /******************************************************************************/
   3578   1.1        ad /*
   3579   1.1        ad  * Begin malloc(3)-compatible functions.
   3580   1.1        ad  */
   3581   1.1        ad 
   3582   1.1        ad void *
   3583   1.1        ad malloc(size_t size)
   3584   1.1        ad {
   3585   1.1        ad 	void *ret;
   3586   1.1        ad 
   3587  1.57        ad 	if (__predict_false(malloc_init())) {
   3588   1.1        ad 		ret = NULL;
   3589   1.1        ad 		goto RETURN;
   3590   1.1        ad 	}
   3591   1.1        ad 
   3592  1.57        ad 	if (__predict_false(size == 0)) {
   3593  1.57        ad 		if (NOT_OPT(sysv))
   3594   1.1        ad 			size = 1;
   3595   1.1        ad 		else {
   3596   1.1        ad 			ret = NULL;
   3597   1.1        ad 			goto RETURN;
   3598   1.1        ad 		}
   3599   1.1        ad 	}
   3600   1.1        ad 
   3601   1.1        ad 	ret = imalloc(size);
   3602   1.1        ad 
   3603   1.1        ad RETURN:
   3604  1.57        ad 	if (__predict_false(ret == NULL)) {
   3605  1.57        ad 		if (OPT(xmalloc)) {
   3606  1.16  christos 			_malloc_message(getprogname(),
   3607   1.1        ad 			    ": (malloc) Error in malloc(): out of memory\n", "",
   3608   1.1        ad 			    "");
   3609   1.1        ad 			abort();
   3610   1.1        ad 		}
   3611   1.1        ad 		errno = ENOMEM;
   3612   1.1        ad 	}
   3613   1.1        ad 
   3614   1.1        ad 	UTRACE(0, size, ret);
   3615   1.1        ad 	return (ret);
   3616   1.1        ad }
   3617   1.1        ad 
   3618   1.1        ad int
   3619   1.1        ad posix_memalign(void **memptr, size_t alignment, size_t size)
   3620   1.1        ad {
   3621   1.1        ad 	int ret;
   3622   1.1        ad 	void *result;
   3623   1.1        ad 
   3624  1.57        ad 	if (__predict_false(malloc_init()))
   3625   1.1        ad 		result = NULL;
   3626   1.1        ad 	else {
   3627   1.1        ad 		/* Make sure that alignment is a large enough power of 2. */
   3628   1.1        ad 		if (((alignment - 1) & alignment) != 0
   3629   1.1        ad 		    || alignment < sizeof(void *)) {
   3630  1.57        ad 			if (OPT(xmalloc)) {
   3631  1.16  christos 				_malloc_message(getprogname(),
   3632   1.1        ad 				    ": (malloc) Error in posix_memalign(): "
   3633   1.1        ad 				    "invalid alignment\n", "", "");
   3634   1.1        ad 				abort();
   3635   1.1        ad 			}
   3636   1.1        ad 			result = NULL;
   3637   1.1        ad 			ret = EINVAL;
   3638   1.1        ad 			goto RETURN;
   3639   1.1        ad 		}
   3640   1.1        ad 
   3641   1.1        ad 		result = ipalloc(alignment, size);
   3642   1.1        ad 	}
   3643   1.1        ad 
   3644  1.57        ad 	if (__predict_false(result == NULL)) {
   3645  1.57        ad 		if (OPT(xmalloc)) {
   3646  1.16  christos 			_malloc_message(getprogname(),
   3647   1.1        ad 			": (malloc) Error in posix_memalign(): out of memory\n",
   3648   1.1        ad 			"", "");
   3649   1.1        ad 			abort();
   3650   1.1        ad 		}
   3651   1.1        ad 		ret = ENOMEM;
   3652   1.1        ad 		goto RETURN;
   3653   1.1        ad 	}
   3654   1.1        ad 
   3655   1.1        ad 	*memptr = result;
   3656   1.1        ad 	ret = 0;
   3657   1.1        ad 
   3658   1.1        ad RETURN:
   3659   1.1        ad 	UTRACE(0, size, result);
   3660   1.1        ad 	return (ret);
   3661   1.1        ad }
   3662   1.1        ad 
   3663   1.1        ad void *
   3664   1.1        ad calloc(size_t num, size_t size)
   3665   1.1        ad {
   3666   1.1        ad 	void *ret;
   3667   1.1        ad 	size_t num_size;
   3668   1.1        ad 
   3669  1.57        ad 	if (__predict_false(malloc_init())) {
   3670   1.1        ad 		num_size = 0;
   3671   1.1        ad 		ret = NULL;
   3672   1.1        ad 		goto RETURN;
   3673   1.1        ad 	}
   3674   1.1        ad 
   3675   1.1        ad 	num_size = num * size;
   3676  1.57        ad 	if (__predict_false(num_size == 0)) {
   3677  1.57        ad 		if (NOT_OPT(sysv) && ((num == 0) || (size == 0)))
   3678   1.1        ad 			num_size = 1;
   3679   1.1        ad 		else {
   3680   1.1        ad 			ret = NULL;
   3681   1.1        ad 			goto RETURN;
   3682   1.1        ad 		}
   3683   1.1        ad 	/*
   3684   1.1        ad 	 * Try to avoid division here.  We know that it isn't possible to
   3685   1.1        ad 	 * overflow during multiplication if neither operand uses any of the
   3686   1.1        ad 	 * most significant half of the bits in a size_t.
   3687   1.1        ad 	 */
   3688   1.2        ad 	} else if ((unsigned long long)((num | size) &
   3689   1.2        ad 	   ((unsigned long long)SIZE_T_MAX << (sizeof(size_t) << 2))) &&
   3690   1.2        ad 	   (num_size / size != num)) {
   3691   1.1        ad 		/* size_t overflow. */
   3692   1.1        ad 		ret = NULL;
   3693   1.1        ad 		goto RETURN;
   3694   1.1        ad 	}
   3695   1.1        ad 
   3696   1.1        ad 	ret = icalloc(num_size);
   3697   1.1        ad 
   3698   1.1        ad RETURN:
   3699   1.1        ad 	if (ret == NULL) {
   3700  1.57        ad 		if (OPT(xmalloc)) {
   3701  1.16  christos 			_malloc_message(getprogname(),
   3702   1.1        ad 			    ": (malloc) Error in calloc(): out of memory\n", "",
   3703   1.1        ad 			    "");
   3704   1.1        ad 			abort();
   3705   1.1        ad 		}
   3706   1.1        ad 		errno = ENOMEM;
   3707   1.1        ad 	}
   3708   1.1        ad 
   3709   1.1        ad 	UTRACE(0, num_size, ret);
   3710   1.1        ad 	return (ret);
   3711   1.1        ad }
   3712   1.1        ad 
   3713   1.1        ad void *
   3714   1.1        ad realloc(void *ptr, size_t size)
   3715   1.1        ad {
   3716   1.1        ad 	void *ret;
   3717   1.1        ad 
   3718  1.57        ad 	if (__predict_false(size == 0)) {
   3719  1.57        ad 		if (NOT_OPT(sysv))
   3720   1.1        ad 			size = 1;
   3721   1.1        ad 		else {
   3722   1.1        ad 			if (ptr != NULL)
   3723   1.1        ad 				idalloc(ptr);
   3724   1.1        ad 			ret = NULL;
   3725   1.1        ad 			goto RETURN;
   3726   1.1        ad 		}
   3727   1.1        ad 	}
   3728   1.1        ad 
   3729  1.57        ad 	if (__predict_true(ptr != NULL)) {
   3730   1.1        ad 		assert(malloc_initialized);
   3731   1.1        ad 
   3732   1.1        ad 		ret = iralloc(ptr, size);
   3733   1.1        ad 
   3734   1.1        ad 		if (ret == NULL) {
   3735  1.57        ad 			if (OPT(xmalloc)) {
   3736  1.16  christos 				_malloc_message(getprogname(),
   3737   1.1        ad 				    ": (malloc) Error in realloc(): out of "
   3738   1.1        ad 				    "memory\n", "", "");
   3739   1.1        ad 				abort();
   3740   1.1        ad 			}
   3741   1.1        ad 			errno = ENOMEM;
   3742   1.1        ad 		}
   3743   1.1        ad 	} else {
   3744  1.57        ad 		if (__predict_false(malloc_init()))
   3745   1.1        ad 			ret = NULL;
   3746   1.1        ad 		else
   3747   1.1        ad 			ret = imalloc(size);
   3748   1.1        ad 
   3749   1.1        ad 		if (ret == NULL) {
   3750  1.57        ad 			if (OPT(xmalloc)) {
   3751  1.16  christos 				_malloc_message(getprogname(),
   3752   1.1        ad 				    ": (malloc) Error in realloc(): out of "
   3753   1.1        ad 				    "memory\n", "", "");
   3754   1.1        ad 				abort();
   3755   1.1        ad 			}
   3756   1.1        ad 			errno = ENOMEM;
   3757   1.1        ad 		}
   3758   1.1        ad 	}
   3759   1.1        ad 
   3760   1.1        ad RETURN:
   3761   1.1        ad 	UTRACE(ptr, size, ret);
   3762   1.1        ad 	return (ret);
   3763   1.1        ad }
   3764   1.1        ad 
   3765   1.1        ad void
   3766   1.1        ad free(void *ptr)
   3767   1.1        ad {
   3768   1.1        ad 
   3769   1.1        ad 	UTRACE(ptr, 0, 0);
   3770   1.1        ad 	if (ptr != NULL) {
   3771   1.1        ad 		assert(malloc_initialized);
   3772   1.1        ad 
   3773   1.1        ad 		idalloc(ptr);
   3774   1.1        ad 	}
   3775   1.1        ad }
   3776   1.1        ad 
   3777   1.1        ad /*
   3778   1.1        ad  * End malloc(3)-compatible functions.
   3779   1.1        ad  */
   3780   1.1        ad /******************************************************************************/
   3781   1.1        ad /*
   3782   1.1        ad  * Begin non-standard functions.
   3783   1.1        ad  */
   3784   1.2        ad #ifndef __NetBSD__
   3785   1.1        ad size_t
   3786   1.1        ad malloc_usable_size(const void *ptr)
   3787   1.1        ad {
   3788   1.1        ad 
   3789   1.1        ad 	assert(ptr != NULL);
   3790   1.1        ad 
   3791   1.1        ad 	return (isalloc(ptr));
   3792   1.1        ad }
   3793   1.2        ad #endif
   3794   1.1        ad 
   3795   1.1        ad /*
   3796   1.1        ad  * End non-standard functions.
   3797   1.1        ad  */
   3798   1.1        ad /******************************************************************************/
   3799   1.1        ad /*
   3800   1.1        ad  * Begin library-private functions, used by threading libraries for protection
   3801   1.1        ad  * of malloc during fork().  These functions are only called if the program is
   3802   1.1        ad  * running in threaded mode, so there is no need to check whether the program
   3803   1.1        ad  * is threaded here.
   3804   1.1        ad  */
   3805   1.1        ad 
   3806   1.1        ad void
   3807   1.1        ad _malloc_prefork(void)
   3808   1.1        ad {
   3809   1.1        ad 	unsigned i;
   3810   1.1        ad 
   3811   1.1        ad 	/* Acquire all mutexes in a safe order. */
   3812  1.48     joerg 	malloc_mutex_lock(&init_lock);
   3813   1.1        ad 	malloc_mutex_lock(&arenas_mtx);
   3814  1.57        ad 	for (i = 0; i < ncpus; i++) {
   3815   1.1        ad 		if (arenas[i] != NULL)
   3816   1.1        ad 			malloc_mutex_lock(&arenas[i]->mtx);
   3817   1.1        ad 	}
   3818  1.48     joerg 	malloc_mutex_lock(&chunks_mtx);
   3819   1.1        ad 	malloc_mutex_lock(&base_mtx);
   3820  1.48     joerg #ifdef USE_BRK
   3821  1.48     joerg 	malloc_mutex_lock(&brk_mtx);
   3822  1.48     joerg #endif
   3823   1.1        ad }
   3824   1.1        ad 
   3825   1.1        ad void
   3826   1.1        ad _malloc_postfork(void)
   3827   1.1        ad {
   3828   1.1        ad 	unsigned i;
   3829   1.1        ad 
   3830   1.1        ad 	/* Release all mutexes, now that fork() has completed. */
   3831  1.48     joerg #ifdef USE_BRK
   3832  1.48     joerg 	malloc_mutex_unlock(&brk_mtx);
   3833  1.48     joerg #endif
   3834  1.48     joerg 	malloc_mutex_unlock(&base_mtx);
   3835   1.1        ad 	malloc_mutex_unlock(&chunks_mtx);
   3836   1.1        ad 
   3837  1.57        ad 	for (i = ncpus; i-- > 0; ) {
   3838   1.1        ad 		if (arenas[i] != NULL)
   3839   1.1        ad 			malloc_mutex_unlock(&arenas[i]->mtx);
   3840   1.1        ad 	}
   3841   1.1        ad 	malloc_mutex_unlock(&arenas_mtx);
   3842  1.48     joerg 	malloc_mutex_unlock(&init_lock);
   3843   1.1        ad }
   3844   1.1        ad 
   3845  1.53     joerg void
   3846  1.53     joerg _malloc_postfork_child(void)
   3847  1.53     joerg {
   3848  1.53     joerg 	unsigned i;
   3849  1.53     joerg 
   3850  1.53     joerg 	/* Release all mutexes, now that fork() has completed. */
   3851  1.53     joerg #ifdef USE_BRK
   3852  1.53     joerg 	malloc_mutex_init(&brk_mtx);
   3853  1.53     joerg #endif
   3854  1.53     joerg 	malloc_mutex_init(&base_mtx);
   3855  1.53     joerg 	malloc_mutex_init(&chunks_mtx);
   3856  1.53     joerg 
   3857  1.57        ad 	for (i = ncpus; i-- > 0; ) {
   3858  1.53     joerg 		if (arenas[i] != NULL)
   3859  1.53     joerg 			malloc_mutex_init(&arenas[i]->mtx);
   3860  1.53     joerg 	}
   3861  1.53     joerg 	malloc_mutex_init(&arenas_mtx);
   3862  1.53     joerg 	malloc_mutex_init(&init_lock);
   3863  1.53     joerg }
   3864  1.53     joerg 
   3865   1.1        ad /*
   3866   1.1        ad  * End library-private functions.
   3867   1.1        ad  */
   3868   1.1        ad /******************************************************************************/
   3869