jemalloc.c revision 1.63 1 1.63 ad /* $NetBSD: jemalloc.c,v 1.63 2023/10/14 19:39:33 ad Exp $ */
2 1.2 ad
3 1.1 ad /*-
4 1.1 ad * Copyright (C) 2006,2007 Jason Evans <jasone (at) FreeBSD.org>.
5 1.58 ad * Copyright (C) 2023 Andrew Doran <ad (at) NetBSD.org>.
6 1.1 ad * All rights reserved.
7 1.1 ad *
8 1.1 ad * Redistribution and use in source and binary forms, with or without
9 1.1 ad * modification, are permitted provided that the following conditions
10 1.1 ad * are met:
11 1.1 ad * 1. Redistributions of source code must retain the above copyright
12 1.1 ad * notice(s), this list of conditions and the following disclaimer as
13 1.1 ad * the first lines of this file unmodified other than the possible
14 1.1 ad * addition of one or more copyright notices.
15 1.1 ad * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 ad * notice(s), this list of conditions and the following disclaimer in
17 1.1 ad * the documentation and/or other materials provided with the
18 1.1 ad * distribution.
19 1.1 ad *
20 1.1 ad * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY
21 1.1 ad * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 1.1 ad * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 1.1 ad * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE
24 1.1 ad * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 1.1 ad * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 1.1 ad * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
27 1.1 ad * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
28 1.1 ad * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
29 1.1 ad * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
30 1.1 ad * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31 1.1 ad *
32 1.1 ad *******************************************************************************
33 1.1 ad *
34 1.1 ad * This allocator implementation is designed to provide scalable performance
35 1.1 ad * for multi-threaded programs on multi-processor systems. The following
36 1.1 ad * features are included for this purpose:
37 1.1 ad *
38 1.1 ad * + Multiple arenas are used if there are multiple CPUs, which reduces lock
39 1.1 ad * contention and cache sloshing.
40 1.1 ad *
41 1.1 ad * + Cache line sharing between arenas is avoided for internal data
42 1.1 ad * structures.
43 1.1 ad *
44 1.1 ad * + Memory is managed in chunks and runs (chunks can be split into runs),
45 1.1 ad * rather than as individual pages. This provides a constant-time
46 1.1 ad * mechanism for associating allocations with particular arenas.
47 1.1 ad *
48 1.1 ad * Allocation requests are rounded up to the nearest size class, and no record
49 1.1 ad * of the original request size is maintained. Allocations are broken into
50 1.1 ad * categories according to size class. Assuming runtime defaults, 4 kB pages
51 1.1 ad * and a 16 byte quantum, the size classes in each category are as follows:
52 1.1 ad *
53 1.1 ad * |=====================================|
54 1.1 ad * | Category | Subcategory | Size |
55 1.1 ad * |=====================================|
56 1.1 ad * | Small | Tiny | 2 |
57 1.1 ad * | | | 4 |
58 1.1 ad * | | | 8 |
59 1.1 ad * | |----------------+---------|
60 1.1 ad * | | Quantum-spaced | 16 |
61 1.1 ad * | | | 32 |
62 1.1 ad * | | | 48 |
63 1.1 ad * | | | ... |
64 1.1 ad * | | | 480 |
65 1.1 ad * | | | 496 |
66 1.1 ad * | | | 512 |
67 1.1 ad * | |----------------+---------|
68 1.1 ad * | | Sub-page | 1 kB |
69 1.1 ad * | | | 2 kB |
70 1.1 ad * |=====================================|
71 1.1 ad * | Large | 4 kB |
72 1.1 ad * | | 8 kB |
73 1.1 ad * | | 12 kB |
74 1.1 ad * | | ... |
75 1.1 ad * | | 1012 kB |
76 1.1 ad * | | 1016 kB |
77 1.1 ad * | | 1020 kB |
78 1.1 ad * |=====================================|
79 1.1 ad * | Huge | 1 MB |
80 1.1 ad * | | 2 MB |
81 1.1 ad * | | 3 MB |
82 1.1 ad * | | ... |
83 1.1 ad * |=====================================|
84 1.1 ad *
85 1.1 ad * A different mechanism is used for each category:
86 1.1 ad *
87 1.1 ad * Small : Each size class is segregated into its own set of runs. Each run
88 1.1 ad * maintains a bitmap of which regions are free/allocated.
89 1.1 ad *
90 1.1 ad * Large : Each allocation is backed by a dedicated run. Metadata are stored
91 1.1 ad * in the associated arena chunk header maps.
92 1.1 ad *
93 1.1 ad * Huge : Each allocation is backed by a dedicated contiguous set of chunks.
94 1.1 ad * Metadata are stored in a separate red-black tree.
95 1.1 ad *
96 1.1 ad *******************************************************************************
97 1.1 ad */
98 1.1 ad
99 1.2 ad /* LINTLIBRARY */
100 1.2 ad
101 1.1 ad /*
102 1.1 ad * MALLOC_PRODUCTION disables assertions and statistics gathering. It also
103 1.1 ad * defaults the A and J runtime options to off. These settings are appropriate
104 1.1 ad * for production systems.
105 1.1 ad */
106 1.2 ad #define MALLOC_PRODUCTION
107 1.1 ad
108 1.1 ad #ifndef MALLOC_PRODUCTION
109 1.1 ad # define MALLOC_DEBUG
110 1.1 ad #endif
111 1.1 ad
112 1.1 ad #include <sys/cdefs.h>
113 1.55 skrll /* __FBSDID("$FreeBSD: src/lib/libc/stdlib/malloc.c,v 1.147 2007/06/15 22:00:16 jasone Exp $"); */
114 1.63 ad __RCSID("$NetBSD: jemalloc.c,v 1.63 2023/10/14 19:39:33 ad Exp $");
115 1.1 ad
116 1.1 ad #include "namespace.h"
117 1.1 ad #include <sys/mman.h>
118 1.1 ad #include <sys/param.h>
119 1.1 ad #include <sys/time.h>
120 1.1 ad #include <sys/types.h>
121 1.1 ad #include <sys/sysctl.h>
122 1.58 ad #include <sys/rbtree.h>
123 1.1 ad #include <sys/uio.h>
124 1.1 ad #include <sys/ktrace.h> /* Must come after several other sys/ includes. */
125 1.1 ad
126 1.1 ad #include <errno.h>
127 1.1 ad #include <limits.h>
128 1.1 ad #include <pthread.h>
129 1.1 ad #include <sched.h>
130 1.1 ad #include <stdarg.h>
131 1.1 ad #include <stdbool.h>
132 1.1 ad #include <stdio.h>
133 1.1 ad #include <stdint.h>
134 1.1 ad #include <stdlib.h>
135 1.1 ad #include <string.h>
136 1.1 ad #include <strings.h>
137 1.1 ad #include <unistd.h>
138 1.1 ad
139 1.57 ad #include <reentrant.h>
140 1.57 ad #include "extern.h"
141 1.16 christos
142 1.41 christos #define STRERROR_R(a, b, c) strerror_r_ss(a, b, c);
143 1.1 ad
144 1.1 ad /* MALLOC_STATS enables statistics calculation. */
145 1.1 ad #ifndef MALLOC_PRODUCTION
146 1.1 ad # define MALLOC_STATS
147 1.1 ad #endif
148 1.1 ad
149 1.1 ad #ifdef MALLOC_DEBUG
150 1.1 ad # ifdef NDEBUG
151 1.1 ad # undef NDEBUG
152 1.1 ad # endif
153 1.1 ad #else
154 1.1 ad # ifndef NDEBUG
155 1.1 ad # define NDEBUG
156 1.1 ad # endif
157 1.1 ad #endif
158 1.1 ad #include <assert.h>
159 1.1 ad
160 1.1 ad #ifdef MALLOC_DEBUG
161 1.1 ad /* Disable inlining to make debugging easier. */
162 1.1 ad # define inline
163 1.1 ad #endif
164 1.1 ad
165 1.58 ad /*
166 1.58 ad * Compare two pointers of 64/32 bit width and produce a ternary 32-bit
167 1.58 ad * indicator without using conditionals that maintains the expected
168 1.58 ad * ordering: [negative, equal, positive].
169 1.58 ad *
170 1.58 ad * XXX it depends on twos complement arithemetic.
171 1.58 ad * XXX maybe should be a built-in for rbtree?
172 1.58 ad */
173 1.58 ad static inline int
174 1.58 ad ptrcmp(const void *pa, const void *pb)
175 1.58 ad {
176 1.58 ad #ifdef _LP64
177 1.60 ad const uintptr_t a = (uintptr_t)pa, b = (uintptr_t)pb;
178 1.60 ad const uintptr_t diff = a - b;
179 1.58 ad assert(((a | b) & 1) == 0);
180 1.60 ad return (int)(diff >> 32) | ((unsigned)diff >> 1);
181 1.58 ad #else
182 1.59 mrg return (intptr_t)pa - (intptr_t)pb;
183 1.58 ad #endif
184 1.58 ad }
185 1.58 ad
186 1.1 ad /* Size of stack-allocated buffer passed to strerror_r(). */
187 1.1 ad #define STRERROR_BUF 64
188 1.1 ad
189 1.1 ad /* Minimum alignment of allocations is 2^QUANTUM_2POW_MIN bytes. */
190 1.31 martin
191 1.31 martin /*
192 1.31 martin * If you touch the TINY_MIN_2POW definition for any architecture, please
193 1.31 martin * make sure to adjust the corresponding definition for JEMALLOC_TINY_MIN_2POW
194 1.31 martin * in the gcc 4.8 tree in dist/gcc/tree-ssa-ccp.c and verify that a native
195 1.31 martin * gcc is still buildable!
196 1.31 martin */
197 1.31 martin
198 1.1 ad #ifdef __i386__
199 1.1 ad # define QUANTUM_2POW_MIN 4
200 1.1 ad # define SIZEOF_PTR_2POW 2
201 1.1 ad # define USE_BRK
202 1.1 ad #endif
203 1.1 ad #ifdef __ia64__
204 1.1 ad # define QUANTUM_2POW_MIN 4
205 1.1 ad # define SIZEOF_PTR_2POW 3
206 1.1 ad #endif
207 1.34 matt #ifdef __aarch64__
208 1.34 matt # define QUANTUM_2POW_MIN 4
209 1.34 matt # define SIZEOF_PTR_2POW 3
210 1.47 joerg # define TINY_MIN_2POW 3
211 1.34 matt #endif
212 1.1 ad #ifdef __alpha__
213 1.1 ad # define QUANTUM_2POW_MIN 4
214 1.1 ad # define SIZEOF_PTR_2POW 3
215 1.30 skrll # define TINY_MIN_2POW 3
216 1.1 ad #endif
217 1.1 ad #ifdef __sparc64__
218 1.1 ad # define QUANTUM_2POW_MIN 4
219 1.1 ad # define SIZEOF_PTR_2POW 3
220 1.31 martin # define TINY_MIN_2POW 3
221 1.1 ad #endif
222 1.1 ad #ifdef __amd64__
223 1.1 ad # define QUANTUM_2POW_MIN 4
224 1.1 ad # define SIZEOF_PTR_2POW 3
225 1.31 martin # define TINY_MIN_2POW 3
226 1.1 ad #endif
227 1.1 ad #ifdef __arm__
228 1.1 ad # define QUANTUM_2POW_MIN 3
229 1.1 ad # define SIZEOF_PTR_2POW 2
230 1.1 ad # define USE_BRK
231 1.30 skrll # ifdef __ARM_EABI__
232 1.30 skrll # define TINY_MIN_2POW 3
233 1.30 skrll # endif
234 1.1 ad #endif
235 1.1 ad #ifdef __powerpc__
236 1.1 ad # define QUANTUM_2POW_MIN 4
237 1.1 ad # define SIZEOF_PTR_2POW 2
238 1.1 ad # define USE_BRK
239 1.32 martin # define TINY_MIN_2POW 3
240 1.1 ad #endif
241 1.3 he #if defined(__sparc__) && !defined(__sparc64__)
242 1.2 ad # define QUANTUM_2POW_MIN 4
243 1.2 ad # define SIZEOF_PTR_2POW 2
244 1.2 ad # define USE_BRK
245 1.2 ad #endif
246 1.35 matt #ifdef __or1k__
247 1.35 matt # define QUANTUM_2POW_MIN 4
248 1.35 matt # define SIZEOF_PTR_2POW 2
249 1.35 matt # define USE_BRK
250 1.35 matt #endif
251 1.2 ad #ifdef __vax__
252 1.2 ad # define QUANTUM_2POW_MIN 4
253 1.2 ad # define SIZEOF_PTR_2POW 2
254 1.2 ad # define USE_BRK
255 1.2 ad #endif
256 1.2 ad #ifdef __sh__
257 1.2 ad # define QUANTUM_2POW_MIN 4
258 1.2 ad # define SIZEOF_PTR_2POW 2
259 1.2 ad # define USE_BRK
260 1.2 ad #endif
261 1.2 ad #ifdef __m68k__
262 1.2 ad # define QUANTUM_2POW_MIN 4
263 1.2 ad # define SIZEOF_PTR_2POW 2
264 1.2 ad # define USE_BRK
265 1.2 ad #endif
266 1.56 skrll #if defined(__mips__)
267 1.44 mrg # ifdef _LP64
268 1.44 mrg # define SIZEOF_PTR_2POW 3
269 1.44 mrg # define TINY_MIN_2POW 3
270 1.44 mrg # else
271 1.44 mrg # define SIZEOF_PTR_2POW 2
272 1.44 mrg # endif
273 1.44 mrg # define QUANTUM_2POW_MIN 4
274 1.44 mrg # define USE_BRK
275 1.2 ad #endif
276 1.56 skrll #if defined(__riscv__)
277 1.56 skrll # ifdef _LP64
278 1.56 skrll # define SIZEOF_PTR_2POW 3
279 1.56 skrll # define TINY_MIN_2POW 3
280 1.56 skrll # else
281 1.56 skrll # define SIZEOF_PTR_2POW 2
282 1.56 skrll # endif
283 1.56 skrll # define QUANTUM_2POW_MIN 4
284 1.56 skrll # define USE_BRK
285 1.56 skrll #endif
286 1.55 skrll #ifdef __hppa__
287 1.55 skrll # define QUANTUM_2POW_MIN 4
288 1.44 mrg # define TINY_MIN_2POW 4
289 1.55 skrll # define SIZEOF_PTR_2POW 2
290 1.55 skrll # define USE_BRK
291 1.55 skrll #endif
292 1.1 ad
293 1.1 ad #define SIZEOF_PTR (1 << SIZEOF_PTR_2POW)
294 1.1 ad
295 1.1 ad /* sizeof(int) == (1 << SIZEOF_INT_2POW). */
296 1.1 ad #ifndef SIZEOF_INT_2POW
297 1.1 ad # define SIZEOF_INT_2POW 2
298 1.1 ad #endif
299 1.1 ad
300 1.1 ad /*
301 1.1 ad * Size and alignment of memory chunks that are allocated by the OS's virtual
302 1.1 ad * memory system.
303 1.1 ad */
304 1.1 ad #define CHUNK_2POW_DEFAULT 20
305 1.1 ad
306 1.1 ad /*
307 1.1 ad * Maximum size of L1 cache line. This is used to avoid cache line aliasing,
308 1.1 ad * so over-estimates are okay (up to a point), but under-estimates will
309 1.1 ad * negatively affect performance.
310 1.1 ad */
311 1.1 ad #define CACHELINE_2POW 6
312 1.1 ad #define CACHELINE ((size_t)(1 << CACHELINE_2POW))
313 1.1 ad
314 1.1 ad /* Smallest size class to support. */
315 1.30 skrll #ifndef TINY_MIN_2POW
316 1.30 skrll #define TINY_MIN_2POW 2
317 1.30 skrll #endif
318 1.1 ad
319 1.1 ad /*
320 1.1 ad * Maximum size class that is a multiple of the quantum, but not (necessarily)
321 1.1 ad * a power of 2. Above this size, allocations are rounded up to the nearest
322 1.1 ad * power of 2.
323 1.1 ad */
324 1.1 ad #define SMALL_MAX_2POW_DEFAULT 9
325 1.1 ad #define SMALL_MAX_DEFAULT (1 << SMALL_MAX_2POW_DEFAULT)
326 1.1 ad
327 1.1 ad /*
328 1.22 njoly * RUN_MAX_OVRHD indicates maximum desired run header overhead. Runs are sized
329 1.22 njoly * as small as possible such that this setting is still honored, without
330 1.22 njoly * violating other constraints. The goal is to make runs as small as possible
331 1.22 njoly * without exceeding a per run external fragmentation threshold.
332 1.1 ad *
333 1.22 njoly * We use binary fixed point math for overhead computations, where the binary
334 1.22 njoly * point is implicitly RUN_BFP bits to the left.
335 1.1 ad *
336 1.22 njoly * Note that it is possible to set RUN_MAX_OVRHD low enough that it cannot be
337 1.22 njoly * honored for some/all object sizes, since there is one bit of header overhead
338 1.22 njoly * per object (plus a constant). This constraint is relaxed (ignored) for runs
339 1.22 njoly * that are so small that the per-region overhead is greater than:
340 1.22 njoly *
341 1.22 njoly * (RUN_MAX_OVRHD / (reg_size << (3+RUN_BFP))
342 1.1 ad */
343 1.22 njoly #define RUN_BFP 12
344 1.22 njoly /* \/ Implicit binary fixed point. */
345 1.22 njoly #define RUN_MAX_OVRHD 0x0000003dU
346 1.22 njoly #define RUN_MAX_OVRHD_RELAX 0x00001800U
347 1.1 ad
348 1.1 ad /* Put a cap on small object run size. This overrides RUN_MAX_OVRHD. */
349 1.1 ad #define RUN_MAX_SMALL_2POW 15
350 1.1 ad #define RUN_MAX_SMALL (1 << RUN_MAX_SMALL_2POW)
351 1.1 ad
352 1.1 ad /******************************************************************************/
353 1.1 ad
354 1.2 ad #define malloc_mutex_t mutex_t
355 1.2 ad
356 1.2 ad /* Set to true once the allocator has been initialized. */
357 1.2 ad static bool malloc_initialized = false;
358 1.2 ad
359 1.37 christos #ifdef _REENTRANT
360 1.2 ad /* Used to avoid initialization races. */
361 1.2 ad static mutex_t init_lock = MUTEX_INITIALIZER;
362 1.2 ad #endif
363 1.1 ad
364 1.1 ad /******************************************************************************/
365 1.1 ad /*
366 1.1 ad * Statistics data structures.
367 1.1 ad */
368 1.1 ad
369 1.1 ad #ifdef MALLOC_STATS
370 1.1 ad
371 1.1 ad typedef struct malloc_bin_stats_s malloc_bin_stats_t;
372 1.1 ad struct malloc_bin_stats_s {
373 1.1 ad /*
374 1.1 ad * Number of allocation requests that corresponded to the size of this
375 1.1 ad * bin.
376 1.1 ad */
377 1.1 ad uint64_t nrequests;
378 1.1 ad
379 1.1 ad /* Total number of runs created for this bin's size class. */
380 1.1 ad uint64_t nruns;
381 1.1 ad
382 1.1 ad /*
383 1.1 ad * Total number of runs reused by extracting them from the runs tree for
384 1.1 ad * this bin's size class.
385 1.1 ad */
386 1.1 ad uint64_t reruns;
387 1.1 ad
388 1.1 ad /* High-water mark for this bin. */
389 1.1 ad unsigned long highruns;
390 1.1 ad
391 1.1 ad /* Current number of runs in this bin. */
392 1.1 ad unsigned long curruns;
393 1.1 ad };
394 1.1 ad
395 1.1 ad typedef struct arena_stats_s arena_stats_t;
396 1.1 ad struct arena_stats_s {
397 1.1 ad /* Number of bytes currently mapped. */
398 1.1 ad size_t mapped;
399 1.1 ad
400 1.1 ad /* Per-size-category statistics. */
401 1.1 ad size_t allocated_small;
402 1.1 ad uint64_t nmalloc_small;
403 1.1 ad uint64_t ndalloc_small;
404 1.1 ad
405 1.1 ad size_t allocated_large;
406 1.1 ad uint64_t nmalloc_large;
407 1.1 ad uint64_t ndalloc_large;
408 1.1 ad };
409 1.1 ad
410 1.1 ad typedef struct chunk_stats_s chunk_stats_t;
411 1.1 ad struct chunk_stats_s {
412 1.1 ad /* Number of chunks that were allocated. */
413 1.1 ad uint64_t nchunks;
414 1.1 ad
415 1.1 ad /* High-water mark for number of chunks allocated. */
416 1.1 ad unsigned long highchunks;
417 1.1 ad
418 1.1 ad /*
419 1.1 ad * Current number of chunks allocated. This value isn't maintained for
420 1.1 ad * any other purpose, so keep track of it in order to be able to set
421 1.1 ad * highchunks.
422 1.1 ad */
423 1.1 ad unsigned long curchunks;
424 1.1 ad };
425 1.1 ad
426 1.1 ad #endif /* #ifdef MALLOC_STATS */
427 1.1 ad
428 1.1 ad /******************************************************************************/
429 1.1 ad /*
430 1.1 ad * Chunk data structures.
431 1.1 ad */
432 1.1 ad
433 1.1 ad /* Tree of chunks. */
434 1.1 ad typedef struct chunk_node_s chunk_node_t;
435 1.1 ad struct chunk_node_s {
436 1.1 ad /* Linkage for the chunk tree. */
437 1.58 ad rb_node_t link;
438 1.1 ad
439 1.1 ad /*
440 1.1 ad * Pointer to the chunk that this tree node is responsible for. In some
441 1.1 ad * (but certainly not all) cases, this data structure is placed at the
442 1.1 ad * beginning of the corresponding chunk, so this field may point to this
443 1.1 ad * node.
444 1.1 ad */
445 1.1 ad void *chunk;
446 1.1 ad
447 1.1 ad /* Total chunk size. */
448 1.1 ad size_t size;
449 1.1 ad };
450 1.1 ad typedef struct chunk_tree_s chunk_tree_t;
451 1.58 ad
452 1.58 ad static int chunk_comp(void *, const void *, const void *);
453 1.58 ad
454 1.58 ad static const rb_tree_ops_t chunk_tree_ops = {
455 1.58 ad .rbto_compare_nodes = chunk_comp,
456 1.58 ad .rbto_compare_key = chunk_comp,
457 1.58 ad .rbto_node_offset = offsetof(struct chunk_node_s, link),
458 1.58 ad };
459 1.1 ad
460 1.1 ad /******************************************************************************/
461 1.1 ad /*
462 1.1 ad * Arena data structures.
463 1.1 ad */
464 1.1 ad
465 1.1 ad typedef struct arena_s arena_t;
466 1.1 ad typedef struct arena_bin_s arena_bin_t;
467 1.1 ad
468 1.1 ad typedef struct arena_chunk_map_s arena_chunk_map_t;
469 1.1 ad struct arena_chunk_map_s {
470 1.1 ad /* Number of pages in run. */
471 1.1 ad uint32_t npages;
472 1.1 ad /*
473 1.1 ad * Position within run. For a free run, this is POS_FREE for the first
474 1.1 ad * and last pages. The POS_FREE special value makes it possible to
475 1.1 ad * quickly coalesce free runs.
476 1.1 ad *
477 1.1 ad * This is the limiting factor for chunksize; there can be at most 2^31
478 1.1 ad * pages in a run.
479 1.1 ad */
480 1.1 ad #define POS_FREE ((uint32_t)0xffffffffU)
481 1.1 ad uint32_t pos;
482 1.1 ad };
483 1.1 ad
484 1.1 ad /* Arena chunk header. */
485 1.1 ad typedef struct arena_chunk_s arena_chunk_t;
486 1.1 ad struct arena_chunk_s {
487 1.58 ad /* Linkage for the arena's chunk tree. */
488 1.58 ad rb_node_t link;
489 1.58 ad
490 1.1 ad /* Arena that owns the chunk. */
491 1.1 ad arena_t *arena;
492 1.1 ad
493 1.1 ad /*
494 1.1 ad * Number of pages in use. This is maintained in order to make
495 1.1 ad * detection of empty chunks fast.
496 1.1 ad */
497 1.1 ad uint32_t pages_used;
498 1.1 ad
499 1.1 ad /*
500 1.1 ad * Every time a free run larger than this value is created/coalesced,
501 1.1 ad * this value is increased. The only way that the value decreases is if
502 1.1 ad * arena_run_alloc() fails to find a free run as large as advertised by
503 1.1 ad * this value.
504 1.1 ad */
505 1.1 ad uint32_t max_frun_npages;
506 1.1 ad
507 1.1 ad /*
508 1.1 ad * Every time a free run that starts at an earlier page than this value
509 1.1 ad * is created/coalesced, this value is decreased. It is reset in a
510 1.1 ad * similar fashion to max_frun_npages.
511 1.1 ad */
512 1.1 ad uint32_t min_frun_ind;
513 1.1 ad
514 1.1 ad /*
515 1.1 ad * Map of pages within chunk that keeps track of free/large/small. For
516 1.1 ad * free runs, only the map entries for the first and last pages are
517 1.1 ad * kept up to date, so that free runs can be quickly coalesced.
518 1.1 ad */
519 1.1 ad arena_chunk_map_t map[1]; /* Dynamically sized. */
520 1.1 ad };
521 1.1 ad typedef struct arena_chunk_tree_s arena_chunk_tree_t;
522 1.58 ad
523 1.58 ad static int arena_chunk_comp(void *, const void *, const void *);
524 1.58 ad
525 1.58 ad static const rb_tree_ops_t arena_chunk_tree_ops = {
526 1.58 ad .rbto_compare_nodes = arena_chunk_comp,
527 1.58 ad .rbto_compare_key = arena_chunk_comp,
528 1.58 ad .rbto_node_offset = offsetof(struct arena_chunk_s, link),
529 1.58 ad };
530 1.1 ad
531 1.1 ad typedef struct arena_run_s arena_run_t;
532 1.1 ad struct arena_run_s {
533 1.1 ad /* Linkage for run trees. */
534 1.58 ad rb_node_t link;
535 1.1 ad
536 1.1 ad #ifdef MALLOC_DEBUG
537 1.1 ad uint32_t magic;
538 1.1 ad # define ARENA_RUN_MAGIC 0x384adf93
539 1.1 ad #endif
540 1.1 ad
541 1.1 ad /* Bin this run is associated with. */
542 1.1 ad arena_bin_t *bin;
543 1.1 ad
544 1.1 ad /* Index of first element that might have a free region. */
545 1.1 ad unsigned regs_minelm;
546 1.1 ad
547 1.1 ad /* Number of free regions in run. */
548 1.1 ad unsigned nfree;
549 1.1 ad
550 1.1 ad /* Bitmask of in-use regions (0: in use, 1: free). */
551 1.1 ad unsigned regs_mask[1]; /* Dynamically sized. */
552 1.1 ad };
553 1.1 ad typedef struct arena_run_tree_s arena_run_tree_t;
554 1.58 ad
555 1.58 ad static int arena_run_comp(void *, const void *, const void *);
556 1.58 ad
557 1.58 ad static const rb_tree_ops_t arena_run_tree_ops = {
558 1.58 ad .rbto_compare_nodes = arena_run_comp,
559 1.58 ad .rbto_compare_key = arena_run_comp,
560 1.58 ad .rbto_node_offset = offsetof(struct arena_run_s, link),
561 1.58 ad };
562 1.1 ad
563 1.1 ad struct arena_bin_s {
564 1.1 ad /*
565 1.1 ad * Current run being used to service allocations of this bin's size
566 1.1 ad * class.
567 1.1 ad */
568 1.1 ad arena_run_t *runcur;
569 1.1 ad
570 1.1 ad /*
571 1.1 ad * Tree of non-full runs. This tree is used when looking for an
572 1.1 ad * existing run when runcur is no longer usable. We choose the
573 1.1 ad * non-full run that is lowest in memory; this policy tends to keep
574 1.1 ad * objects packed well, and it can also help reduce the number of
575 1.1 ad * almost-empty chunks.
576 1.1 ad */
577 1.58 ad rb_tree_t runs;
578 1.1 ad
579 1.1 ad /* Size of regions in a run for this bin's size class. */
580 1.1 ad size_t reg_size;
581 1.1 ad
582 1.1 ad /* Total size of a run for this bin's size class. */
583 1.1 ad size_t run_size;
584 1.1 ad
585 1.1 ad /* Total number of regions in a run for this bin's size class. */
586 1.1 ad uint32_t nregs;
587 1.1 ad
588 1.1 ad /* Number of elements in a run's regs_mask for this bin's size class. */
589 1.1 ad uint32_t regs_mask_nelms;
590 1.1 ad
591 1.1 ad /* Offset of first region in a run for this bin's size class. */
592 1.1 ad uint32_t reg0_offset;
593 1.1 ad
594 1.1 ad #ifdef MALLOC_STATS
595 1.1 ad /* Bin statistics. */
596 1.1 ad malloc_bin_stats_t stats;
597 1.1 ad #endif
598 1.1 ad };
599 1.1 ad
600 1.1 ad struct arena_s {
601 1.1 ad #ifdef MALLOC_DEBUG
602 1.1 ad uint32_t magic;
603 1.1 ad # define ARENA_MAGIC 0x947d3d24
604 1.1 ad #endif
605 1.1 ad
606 1.1 ad /* All operations on this arena require that mtx be locked. */
607 1.1 ad malloc_mutex_t mtx;
608 1.1 ad
609 1.1 ad #ifdef MALLOC_STATS
610 1.1 ad arena_stats_t stats;
611 1.1 ad #endif
612 1.1 ad
613 1.1 ad /*
614 1.1 ad * Tree of chunks this arena manages.
615 1.1 ad */
616 1.58 ad rb_tree_t chunks;
617 1.1 ad
618 1.1 ad /*
619 1.1 ad * In order to avoid rapid chunk allocation/deallocation when an arena
620 1.1 ad * oscillates right on the cusp of needing a new chunk, cache the most
621 1.1 ad * recently freed chunk. This caching is disabled by opt_hint.
622 1.1 ad *
623 1.1 ad * There is one spare chunk per arena, rather than one spare total, in
624 1.1 ad * order to avoid interactions between multiple threads that could make
625 1.1 ad * a single spare inadequate.
626 1.1 ad */
627 1.1 ad arena_chunk_t *spare;
628 1.1 ad
629 1.1 ad /*
630 1.1 ad * bins is used to store rings of free regions of the following sizes,
631 1.1 ad * assuming a 16-byte quantum, 4kB pagesize, and default MALLOC_OPTIONS.
632 1.1 ad *
633 1.1 ad * bins[i] | size |
634 1.1 ad * --------+------+
635 1.1 ad * 0 | 2 |
636 1.1 ad * 1 | 4 |
637 1.1 ad * 2 | 8 |
638 1.1 ad * --------+------+
639 1.1 ad * 3 | 16 |
640 1.1 ad * 4 | 32 |
641 1.1 ad * 5 | 48 |
642 1.1 ad * 6 | 64 |
643 1.1 ad * : :
644 1.1 ad * : :
645 1.1 ad * 33 | 496 |
646 1.1 ad * 34 | 512 |
647 1.1 ad * --------+------+
648 1.1 ad * 35 | 1024 |
649 1.1 ad * 36 | 2048 |
650 1.1 ad * --------+------+
651 1.1 ad */
652 1.1 ad arena_bin_t bins[1]; /* Dynamically sized. */
653 1.1 ad };
654 1.1 ad
655 1.1 ad /******************************************************************************/
656 1.1 ad /*
657 1.1 ad * Data.
658 1.1 ad */
659 1.1 ad
660 1.1 ad /* Number of CPUs. */
661 1.1 ad static unsigned ncpus;
662 1.1 ad
663 1.1 ad /* VM page size. */
664 1.1 ad static size_t pagesize;
665 1.1 ad static size_t pagesize_mask;
666 1.9 christos static int pagesize_2pow;
667 1.1 ad
668 1.1 ad /* Various bin-related settings. */
669 1.1 ad static size_t bin_maxclass; /* Max size class for bins. */
670 1.1 ad static unsigned ntbins; /* Number of (2^n)-spaced tiny bins. */
671 1.1 ad static unsigned nqbins; /* Number of quantum-spaced bins. */
672 1.1 ad static unsigned nsbins; /* Number of (2^n)-spaced sub-page bins. */
673 1.1 ad static size_t small_min;
674 1.1 ad static size_t small_max;
675 1.1 ad
676 1.1 ad /* Various quantum-related settings. */
677 1.1 ad static size_t quantum;
678 1.1 ad static size_t quantum_mask; /* (quantum - 1). */
679 1.1 ad
680 1.1 ad /* Various chunk-related settings. */
681 1.1 ad static size_t chunksize;
682 1.1 ad static size_t chunksize_mask; /* (chunksize - 1). */
683 1.5 yamt static int chunksize_2pow;
684 1.1 ad static unsigned chunk_npages;
685 1.1 ad static unsigned arena_chunk_header_npages;
686 1.1 ad static size_t arena_maxclass; /* Max size class for arenas. */
687 1.1 ad
688 1.1 ad /********/
689 1.1 ad /*
690 1.1 ad * Chunks.
691 1.1 ad */
692 1.1 ad
693 1.37 christos #ifdef _REENTRANT
694 1.1 ad /* Protects chunk-related data structures. */
695 1.1 ad static malloc_mutex_t chunks_mtx;
696 1.37 christos #endif
697 1.1 ad
698 1.1 ad /* Tree of chunks that are stand-alone huge allocations. */
699 1.58 ad static rb_tree_t huge;
700 1.1 ad
701 1.1 ad #ifdef USE_BRK
702 1.1 ad /*
703 1.1 ad * Try to use brk for chunk-size allocations, due to address space constraints.
704 1.1 ad */
705 1.1 ad /*
706 1.1 ad * Protects sbrk() calls. This must be separate from chunks_mtx, since
707 1.1 ad * base_pages_alloc() also uses sbrk(), but cannot lock chunks_mtx (doing so
708 1.1 ad * could cause recursive lock acquisition).
709 1.1 ad */
710 1.46 christos #ifdef _REENTRANT
711 1.1 ad static malloc_mutex_t brk_mtx;
712 1.46 christos #endif
713 1.1 ad /* Result of first sbrk(0) call. */
714 1.1 ad static void *brk_base;
715 1.1 ad /* Current end of brk, or ((void *)-1) if brk is exhausted. */
716 1.1 ad static void *brk_prev;
717 1.1 ad /* Current upper limit on brk addresses. */
718 1.1 ad static void *brk_max;
719 1.1 ad #endif
720 1.1 ad
721 1.1 ad #ifdef MALLOC_STATS
722 1.1 ad /* Huge allocation statistics. */
723 1.1 ad static uint64_t huge_nmalloc;
724 1.1 ad static uint64_t huge_ndalloc;
725 1.8 yamt static uint64_t huge_nralloc;
726 1.1 ad static size_t huge_allocated;
727 1.1 ad #endif
728 1.1 ad
729 1.1 ad /*
730 1.1 ad * Tree of chunks that were previously allocated. This is used when allocating
731 1.1 ad * chunks, in an attempt to re-use address space.
732 1.1 ad */
733 1.58 ad static rb_tree_t old_chunks;
734 1.1 ad
735 1.1 ad /****************************/
736 1.1 ad /*
737 1.1 ad * base (internal allocation).
738 1.1 ad */
739 1.1 ad
740 1.1 ad /*
741 1.1 ad * Current pages that are being used for internal memory allocations. These
742 1.1 ad * pages are carved up in cacheline-size quanta, so that there is no chance of
743 1.1 ad * false cache line sharing.
744 1.1 ad */
745 1.1 ad static void *base_pages;
746 1.1 ad static void *base_next_addr;
747 1.1 ad static void *base_past_addr; /* Addr immediately past base_pages. */
748 1.1 ad static chunk_node_t *base_chunk_nodes; /* LIFO cache of chunk nodes. */
749 1.37 christos #ifdef _REENTRANT
750 1.1 ad static malloc_mutex_t base_mtx;
751 1.37 christos #endif
752 1.1 ad #ifdef MALLOC_STATS
753 1.1 ad static size_t base_mapped;
754 1.1 ad #endif
755 1.1 ad
756 1.1 ad /********/
757 1.1 ad /*
758 1.1 ad * Arenas.
759 1.1 ad */
760 1.1 ad
761 1.1 ad /*
762 1.1 ad * Arenas that are used to service external requests. Not all elements of the
763 1.1 ad * arenas array are necessarily used; arenas are created lazily as needed.
764 1.1 ad */
765 1.1 ad static arena_t **arenas;
766 1.37 christos #ifdef _REENTRANT
767 1.1 ad static malloc_mutex_t arenas_mtx; /* Protects arenas initialization. */
768 1.37 christos #endif
769 1.1 ad
770 1.1 ad #ifdef MALLOC_STATS
771 1.1 ad /* Chunk statistics. */
772 1.1 ad static chunk_stats_t stats_chunks;
773 1.1 ad #endif
774 1.1 ad
775 1.1 ad /*******************************/
776 1.1 ad /*
777 1.1 ad * Runtime configuration options.
778 1.1 ad */
779 1.1 ad const char *_malloc_options;
780 1.1 ad
781 1.1 ad #ifndef MALLOC_PRODUCTION
782 1.1 ad static bool opt_abort = true;
783 1.1 ad static bool opt_junk = true;
784 1.1 ad #else
785 1.1 ad static bool opt_abort = false;
786 1.1 ad static bool opt_junk = false;
787 1.1 ad #endif
788 1.1 ad static bool opt_hint = false;
789 1.1 ad static bool opt_print_stats = false;
790 1.9 christos static int opt_quantum_2pow = QUANTUM_2POW_MIN;
791 1.9 christos static int opt_small_max_2pow = SMALL_MAX_2POW_DEFAULT;
792 1.9 christos static int opt_chunk_2pow = CHUNK_2POW_DEFAULT;
793 1.1 ad static bool opt_utrace = false;
794 1.1 ad static bool opt_sysv = false;
795 1.1 ad static bool opt_xmalloc = false;
796 1.1 ad static bool opt_zero = false;
797 1.1 ad
798 1.1 ad typedef struct {
799 1.1 ad void *p;
800 1.1 ad size_t s;
801 1.1 ad void *r;
802 1.1 ad } malloc_utrace_t;
803 1.1 ad
804 1.57 ad /* Sprinkle branch hints for the compiler and CPU. */
805 1.57 ad #define OPT(a) __predict_false(opt_##a)
806 1.57 ad #define NOT_OPT(a) __predict_true(!opt_##a)
807 1.57 ad
808 1.57 ad /* Trace malloc/free for ktrace/kdump. */
809 1.1 ad #define UTRACE(a, b, c) \
810 1.57 ad if (OPT(utrace)) { \
811 1.2 ad malloc_utrace_t ut; \
812 1.2 ad ut.p = a; \
813 1.2 ad ut.s = b; \
814 1.2 ad ut.r = c; \
815 1.57 ad utrace("malloc", &ut, sizeof(ut)); \
816 1.1 ad }
817 1.1 ad
818 1.1 ad /******************************************************************************/
819 1.1 ad /*
820 1.1 ad * Begin function prototypes for non-inline static functions.
821 1.1 ad */
822 1.1 ad
823 1.1 ad static void wrtmessage(const char *p1, const char *p2, const char *p3,
824 1.1 ad const char *p4);
825 1.1 ad #ifdef MALLOC_STATS
826 1.1 ad static void malloc_printf(const char *format, ...);
827 1.1 ad #endif
828 1.28 christos static char *size_t2s(size_t x, char *s);
829 1.1 ad static bool base_pages_alloc(size_t minsize);
830 1.1 ad static void *base_alloc(size_t size);
831 1.1 ad static chunk_node_t *base_chunk_node_alloc(void);
832 1.1 ad static void base_chunk_node_dealloc(chunk_node_t *node);
833 1.1 ad #ifdef MALLOC_STATS
834 1.1 ad static void stats_print(arena_t *arena);
835 1.1 ad #endif
836 1.1 ad static void *pages_map(void *addr, size_t size);
837 1.5 yamt static void *pages_map_align(void *addr, size_t size, int align);
838 1.1 ad static void pages_unmap(void *addr, size_t size);
839 1.1 ad static void *chunk_alloc(size_t size);
840 1.1 ad static void chunk_dealloc(void *chunk, size_t size);
841 1.1 ad static void arena_run_split(arena_t *arena, arena_run_t *run, size_t size);
842 1.1 ad static arena_chunk_t *arena_chunk_alloc(arena_t *arena);
843 1.1 ad static void arena_chunk_dealloc(arena_t *arena, arena_chunk_t *chunk);
844 1.1 ad static arena_run_t *arena_run_alloc(arena_t *arena, size_t size);
845 1.1 ad static void arena_run_dalloc(arena_t *arena, arena_run_t *run, size_t size);
846 1.1 ad static arena_run_t *arena_bin_nonfull_run_get(arena_t *arena, arena_bin_t *bin);
847 1.1 ad static void *arena_bin_malloc_hard(arena_t *arena, arena_bin_t *bin);
848 1.1 ad static size_t arena_bin_run_size_calc(arena_bin_t *bin, size_t min_run_size);
849 1.1 ad static void *arena_malloc(arena_t *arena, size_t size);
850 1.1 ad static void *arena_palloc(arena_t *arena, size_t alignment, size_t size,
851 1.1 ad size_t alloc_size);
852 1.1 ad static size_t arena_salloc(const void *ptr);
853 1.1 ad static void *arena_ralloc(void *ptr, size_t size, size_t oldsize);
854 1.1 ad static void arena_dalloc(arena_t *arena, arena_chunk_t *chunk, void *ptr);
855 1.57 ad static void arena_new(arena_t *arena);
856 1.57 ad static arena_t *arenas_extend(void);
857 1.1 ad static void *huge_malloc(size_t size);
858 1.1 ad static void *huge_palloc(size_t alignment, size_t size);
859 1.1 ad static void *huge_ralloc(void *ptr, size_t size, size_t oldsize);
860 1.1 ad static void huge_dalloc(void *ptr);
861 1.1 ad static void *imalloc(size_t size);
862 1.1 ad static void *ipalloc(size_t alignment, size_t size);
863 1.1 ad static void *icalloc(size_t size);
864 1.1 ad static size_t isalloc(const void *ptr);
865 1.1 ad static void *iralloc(void *ptr, size_t size);
866 1.1 ad static void idalloc(void *ptr);
867 1.1 ad static void malloc_print_stats(void);
868 1.1 ad static bool malloc_init_hard(void);
869 1.1 ad
870 1.1 ad /*
871 1.1 ad * End function prototypes.
872 1.1 ad */
873 1.1 ad /******************************************************************************/
874 1.1 ad /*
875 1.1 ad * Begin mutex.
876 1.1 ad */
877 1.1 ad
878 1.2 ad #define malloc_mutex_init(m) mutex_init(m, NULL)
879 1.2 ad #define malloc_mutex_lock(m) mutex_lock(m)
880 1.2 ad #define malloc_mutex_unlock(m) mutex_unlock(m)
881 1.1 ad
882 1.1 ad /*
883 1.1 ad * End mutex.
884 1.1 ad */
885 1.1 ad /******************************************************************************/
886 1.1 ad /*
887 1.1 ad * Begin Utility functions/macros.
888 1.1 ad */
889 1.1 ad
890 1.1 ad /* Return the chunk address for allocation address a. */
891 1.1 ad #define CHUNK_ADDR2BASE(a) \
892 1.1 ad ((void *)((uintptr_t)(a) & ~chunksize_mask))
893 1.1 ad
894 1.1 ad /* Return the chunk offset of address a. */
895 1.1 ad #define CHUNK_ADDR2OFFSET(a) \
896 1.1 ad ((size_t)((uintptr_t)(a) & chunksize_mask))
897 1.1 ad
898 1.1 ad /* Return the smallest chunk multiple that is >= s. */
899 1.1 ad #define CHUNK_CEILING(s) \
900 1.1 ad (((s) + chunksize_mask) & ~chunksize_mask)
901 1.1 ad
902 1.1 ad /* Return the smallest cacheline multiple that is >= s. */
903 1.1 ad #define CACHELINE_CEILING(s) \
904 1.1 ad (((s) + (CACHELINE - 1)) & ~(CACHELINE - 1))
905 1.1 ad
906 1.1 ad /* Return the smallest quantum multiple that is >= a. */
907 1.1 ad #define QUANTUM_CEILING(a) \
908 1.1 ad (((a) + quantum_mask) & ~quantum_mask)
909 1.1 ad
910 1.1 ad /* Return the smallest pagesize multiple that is >= s. */
911 1.1 ad #define PAGE_CEILING(s) \
912 1.1 ad (((s) + pagesize_mask) & ~pagesize_mask)
913 1.1 ad
914 1.1 ad /* Compute the smallest power of 2 that is >= x. */
915 1.1 ad static inline size_t
916 1.1 ad pow2_ceil(size_t x)
917 1.1 ad {
918 1.1 ad
919 1.1 ad x--;
920 1.1 ad x |= x >> 1;
921 1.1 ad x |= x >> 2;
922 1.1 ad x |= x >> 4;
923 1.1 ad x |= x >> 8;
924 1.1 ad x |= x >> 16;
925 1.1 ad #if (SIZEOF_PTR == 8)
926 1.1 ad x |= x >> 32;
927 1.1 ad #endif
928 1.1 ad x++;
929 1.1 ad return (x);
930 1.1 ad }
931 1.1 ad
932 1.1 ad static void
933 1.1 ad wrtmessage(const char *p1, const char *p2, const char *p3, const char *p4)
934 1.1 ad {
935 1.1 ad
936 1.16 christos write(STDERR_FILENO, p1, strlen(p1));
937 1.16 christos write(STDERR_FILENO, p2, strlen(p2));
938 1.16 christos write(STDERR_FILENO, p3, strlen(p3));
939 1.16 christos write(STDERR_FILENO, p4, strlen(p4));
940 1.1 ad }
941 1.1 ad
942 1.1 ad void (*_malloc_message)(const char *p1, const char *p2, const char *p3,
943 1.1 ad const char *p4) = wrtmessage;
944 1.1 ad
945 1.1 ad #ifdef MALLOC_STATS
946 1.1 ad /*
947 1.1 ad * Print to stderr in such a way as to (hopefully) avoid memory allocation.
948 1.1 ad */
949 1.1 ad static void
950 1.1 ad malloc_printf(const char *format, ...)
951 1.1 ad {
952 1.1 ad char buf[4096];
953 1.1 ad va_list ap;
954 1.1 ad
955 1.1 ad va_start(ap, format);
956 1.1 ad vsnprintf(buf, sizeof(buf), format, ap);
957 1.1 ad va_end(ap);
958 1.1 ad _malloc_message(buf, "", "", "");
959 1.1 ad }
960 1.1 ad #endif
961 1.1 ad
962 1.1 ad /*
963 1.1 ad * We don't want to depend on vsnprintf() for production builds, since that can
964 1.28 christos * cause unnecessary bloat for static binaries. size_t2s() provides minimal
965 1.1 ad * integer printing functionality, so that malloc_printf() use can be limited to
966 1.1 ad * MALLOC_STATS code.
967 1.1 ad */
968 1.1 ad #define UMAX2S_BUFSIZE 21
969 1.1 ad static char *
970 1.28 christos size_t2s(size_t x, char *s)
971 1.1 ad {
972 1.1 ad unsigned i;
973 1.1 ad
974 1.1 ad /* Make sure UMAX2S_BUFSIZE is large enough. */
975 1.7 yamt /* LINTED */
976 1.25 christos assert(sizeof(size_t) <= 8);
977 1.1 ad
978 1.1 ad i = UMAX2S_BUFSIZE - 1;
979 1.1 ad s[i] = '\0';
980 1.1 ad do {
981 1.1 ad i--;
982 1.2 ad s[i] = "0123456789"[(int)x % 10];
983 1.2 ad x /= (uintmax_t)10LL;
984 1.1 ad } while (x > 0);
985 1.1 ad
986 1.1 ad return (&s[i]);
987 1.1 ad }
988 1.1 ad
989 1.1 ad /******************************************************************************/
990 1.1 ad
991 1.1 ad static bool
992 1.1 ad base_pages_alloc(size_t minsize)
993 1.1 ad {
994 1.2 ad size_t csize = 0;
995 1.1 ad
996 1.1 ad #ifdef USE_BRK
997 1.1 ad /*
998 1.1 ad * Do special brk allocation here, since base allocations don't need to
999 1.1 ad * be chunk-aligned.
1000 1.1 ad */
1001 1.1 ad if (brk_prev != (void *)-1) {
1002 1.1 ad void *brk_cur;
1003 1.1 ad intptr_t incr;
1004 1.1 ad
1005 1.1 ad if (minsize != 0)
1006 1.1 ad csize = CHUNK_CEILING(minsize);
1007 1.1 ad
1008 1.1 ad malloc_mutex_lock(&brk_mtx);
1009 1.1 ad do {
1010 1.1 ad /* Get the current end of brk. */
1011 1.1 ad brk_cur = sbrk(0);
1012 1.1 ad
1013 1.1 ad /*
1014 1.1 ad * Calculate how much padding is necessary to
1015 1.1 ad * chunk-align the end of brk. Don't worry about
1016 1.1 ad * brk_cur not being chunk-aligned though.
1017 1.1 ad */
1018 1.1 ad incr = (intptr_t)chunksize
1019 1.1 ad - (intptr_t)CHUNK_ADDR2OFFSET(brk_cur);
1020 1.20 lukem assert(incr >= 0);
1021 1.20 lukem if ((size_t)incr < minsize)
1022 1.1 ad incr += csize;
1023 1.1 ad
1024 1.1 ad brk_prev = sbrk(incr);
1025 1.1 ad if (brk_prev == brk_cur) {
1026 1.1 ad /* Success. */
1027 1.1 ad malloc_mutex_unlock(&brk_mtx);
1028 1.1 ad base_pages = brk_cur;
1029 1.1 ad base_next_addr = base_pages;
1030 1.1 ad base_past_addr = (void *)((uintptr_t)base_pages
1031 1.1 ad + incr);
1032 1.1 ad #ifdef MALLOC_STATS
1033 1.1 ad base_mapped += incr;
1034 1.1 ad #endif
1035 1.1 ad return (false);
1036 1.1 ad }
1037 1.1 ad } while (brk_prev != (void *)-1);
1038 1.1 ad malloc_mutex_unlock(&brk_mtx);
1039 1.1 ad }
1040 1.1 ad if (minsize == 0) {
1041 1.1 ad /*
1042 1.1 ad * Failure during initialization doesn't matter, so avoid
1043 1.1 ad * falling through to the mmap-based page mapping code.
1044 1.1 ad */
1045 1.1 ad return (true);
1046 1.1 ad }
1047 1.1 ad #endif
1048 1.1 ad assert(minsize != 0);
1049 1.1 ad csize = PAGE_CEILING(minsize);
1050 1.1 ad base_pages = pages_map(NULL, csize);
1051 1.1 ad if (base_pages == NULL)
1052 1.1 ad return (true);
1053 1.1 ad base_next_addr = base_pages;
1054 1.1 ad base_past_addr = (void *)((uintptr_t)base_pages + csize);
1055 1.1 ad #ifdef MALLOC_STATS
1056 1.1 ad base_mapped += csize;
1057 1.1 ad #endif
1058 1.1 ad return (false);
1059 1.1 ad }
1060 1.1 ad
1061 1.1 ad static void *
1062 1.1 ad base_alloc(size_t size)
1063 1.1 ad {
1064 1.1 ad void *ret;
1065 1.1 ad size_t csize;
1066 1.1 ad
1067 1.1 ad /* Round size up to nearest multiple of the cacheline size. */
1068 1.1 ad csize = CACHELINE_CEILING(size);
1069 1.1 ad
1070 1.1 ad malloc_mutex_lock(&base_mtx);
1071 1.1 ad
1072 1.1 ad /* Make sure there's enough space for the allocation. */
1073 1.1 ad if ((uintptr_t)base_next_addr + csize > (uintptr_t)base_past_addr) {
1074 1.1 ad if (base_pages_alloc(csize)) {
1075 1.1 ad ret = NULL;
1076 1.1 ad goto RETURN;
1077 1.1 ad }
1078 1.1 ad }
1079 1.1 ad
1080 1.1 ad /* Allocate. */
1081 1.1 ad ret = base_next_addr;
1082 1.1 ad base_next_addr = (void *)((uintptr_t)base_next_addr + csize);
1083 1.1 ad
1084 1.1 ad RETURN:
1085 1.1 ad malloc_mutex_unlock(&base_mtx);
1086 1.1 ad return (ret);
1087 1.1 ad }
1088 1.1 ad
1089 1.1 ad static chunk_node_t *
1090 1.1 ad base_chunk_node_alloc(void)
1091 1.1 ad {
1092 1.1 ad chunk_node_t *ret;
1093 1.1 ad
1094 1.1 ad malloc_mutex_lock(&base_mtx);
1095 1.1 ad if (base_chunk_nodes != NULL) {
1096 1.1 ad ret = base_chunk_nodes;
1097 1.2 ad /* LINTED */
1098 1.1 ad base_chunk_nodes = *(chunk_node_t **)ret;
1099 1.1 ad malloc_mutex_unlock(&base_mtx);
1100 1.1 ad } else {
1101 1.1 ad malloc_mutex_unlock(&base_mtx);
1102 1.1 ad ret = (chunk_node_t *)base_alloc(sizeof(chunk_node_t));
1103 1.1 ad }
1104 1.1 ad
1105 1.1 ad return (ret);
1106 1.1 ad }
1107 1.1 ad
1108 1.1 ad static void
1109 1.1 ad base_chunk_node_dealloc(chunk_node_t *node)
1110 1.1 ad {
1111 1.1 ad
1112 1.1 ad malloc_mutex_lock(&base_mtx);
1113 1.2 ad /* LINTED */
1114 1.1 ad *(chunk_node_t **)node = base_chunk_nodes;
1115 1.1 ad base_chunk_nodes = node;
1116 1.1 ad malloc_mutex_unlock(&base_mtx);
1117 1.1 ad }
1118 1.1 ad
1119 1.1 ad /******************************************************************************/
1120 1.1 ad
1121 1.1 ad #ifdef MALLOC_STATS
1122 1.1 ad static void
1123 1.1 ad stats_print(arena_t *arena)
1124 1.1 ad {
1125 1.57 ad const unsigned minusone = (unsigned)-1;
1126 1.57 ad unsigned i, gap_start;
1127 1.1 ad
1128 1.1 ad malloc_printf(
1129 1.1 ad " allocated/mapped nmalloc ndalloc\n");
1130 1.2 ad
1131 1.2 ad malloc_printf("small: %12zu %-12s %12llu %12llu\n",
1132 1.1 ad arena->stats.allocated_small, "", arena->stats.nmalloc_small,
1133 1.1 ad arena->stats.ndalloc_small);
1134 1.2 ad malloc_printf("large: %12zu %-12s %12llu %12llu\n",
1135 1.1 ad arena->stats.allocated_large, "", arena->stats.nmalloc_large,
1136 1.1 ad arena->stats.ndalloc_large);
1137 1.2 ad malloc_printf("total: %12zu/%-12zu %12llu %12llu\n",
1138 1.1 ad arena->stats.allocated_small + arena->stats.allocated_large,
1139 1.1 ad arena->stats.mapped,
1140 1.1 ad arena->stats.nmalloc_small + arena->stats.nmalloc_large,
1141 1.1 ad arena->stats.ndalloc_small + arena->stats.ndalloc_large);
1142 1.1 ad
1143 1.1 ad malloc_printf("bins: bin size regs pgs requests newruns"
1144 1.1 ad " reruns maxruns curruns\n");
1145 1.57 ad for (i = 0, gap_start = minusone; i < ntbins + nqbins + nsbins; i++) {
1146 1.1 ad if (arena->bins[i].stats.nrequests == 0) {
1147 1.57 ad if (gap_start == minusone)
1148 1.1 ad gap_start = i;
1149 1.1 ad } else {
1150 1.57 ad if (gap_start != minusone) {
1151 1.1 ad if (i > gap_start + 1) {
1152 1.1 ad /* Gap of more than one size class. */
1153 1.1 ad malloc_printf("[%u..%u]\n",
1154 1.1 ad gap_start, i - 1);
1155 1.1 ad } else {
1156 1.1 ad /* Gap of one size class. */
1157 1.1 ad malloc_printf("[%u]\n", gap_start);
1158 1.1 ad }
1159 1.57 ad gap_start = minusone;
1160 1.1 ad }
1161 1.1 ad malloc_printf(
1162 1.1 ad "%13u %1s %4u %4u %3u %9llu %9llu"
1163 1.1 ad " %9llu %7lu %7lu\n",
1164 1.1 ad i,
1165 1.1 ad i < ntbins ? "T" : i < ntbins + nqbins ? "Q" : "S",
1166 1.1 ad arena->bins[i].reg_size,
1167 1.1 ad arena->bins[i].nregs,
1168 1.1 ad arena->bins[i].run_size >> pagesize_2pow,
1169 1.1 ad arena->bins[i].stats.nrequests,
1170 1.1 ad arena->bins[i].stats.nruns,
1171 1.1 ad arena->bins[i].stats.reruns,
1172 1.1 ad arena->bins[i].stats.highruns,
1173 1.1 ad arena->bins[i].stats.curruns);
1174 1.1 ad }
1175 1.1 ad }
1176 1.57 ad if (gap_start != minusone) {
1177 1.1 ad if (i > gap_start + 1) {
1178 1.1 ad /* Gap of more than one size class. */
1179 1.1 ad malloc_printf("[%u..%u]\n", gap_start, i - 1);
1180 1.1 ad } else {
1181 1.1 ad /* Gap of one size class. */
1182 1.1 ad malloc_printf("[%u]\n", gap_start);
1183 1.1 ad }
1184 1.1 ad }
1185 1.1 ad }
1186 1.1 ad #endif
1187 1.1 ad
1188 1.1 ad /*
1189 1.1 ad * End Utility functions/macros.
1190 1.1 ad */
1191 1.1 ad /******************************************************************************/
1192 1.1 ad /*
1193 1.1 ad * Begin chunk management functions.
1194 1.1 ad */
1195 1.1 ad
1196 1.58 ad static int
1197 1.58 ad chunk_comp(void *context, const void *va, const void *vb)
1198 1.1 ad {
1199 1.58 ad const chunk_node_t *a = va, *b = vb;
1200 1.1 ad
1201 1.1 ad assert(a != NULL);
1202 1.1 ad assert(b != NULL);
1203 1.1 ad
1204 1.58 ad return ptrcmp(a->chunk, b->chunk);
1205 1.1 ad }
1206 1.1 ad
1207 1.1 ad static void *
1208 1.5 yamt pages_map_align(void *addr, size_t size, int align)
1209 1.1 ad {
1210 1.1 ad void *ret;
1211 1.1 ad
1212 1.1 ad /*
1213 1.1 ad * We don't use MAP_FIXED here, because it can cause the *replacement*
1214 1.1 ad * of existing mappings, and we only want to create new mappings.
1215 1.1 ad */
1216 1.5 yamt ret = mmap(addr, size, PROT_READ | PROT_WRITE,
1217 1.5 yamt MAP_PRIVATE | MAP_ANON | MAP_ALIGNED(align), -1, 0);
1218 1.1 ad assert(ret != NULL);
1219 1.1 ad
1220 1.1 ad if (ret == MAP_FAILED)
1221 1.1 ad ret = NULL;
1222 1.1 ad else if (addr != NULL && ret != addr) {
1223 1.1 ad /*
1224 1.1 ad * We succeeded in mapping memory, but not in the right place.
1225 1.1 ad */
1226 1.1 ad if (munmap(ret, size) == -1) {
1227 1.1 ad char buf[STRERROR_BUF];
1228 1.1 ad
1229 1.16 christos STRERROR_R(errno, buf, sizeof(buf));
1230 1.16 christos _malloc_message(getprogname(),
1231 1.1 ad ": (malloc) Error in munmap(): ", buf, "\n");
1232 1.57 ad if (OPT(abort))
1233 1.1 ad abort();
1234 1.1 ad }
1235 1.1 ad ret = NULL;
1236 1.1 ad }
1237 1.1 ad
1238 1.1 ad assert(ret == NULL || (addr == NULL && ret != addr)
1239 1.1 ad || (addr != NULL && ret == addr));
1240 1.1 ad return (ret);
1241 1.1 ad }
1242 1.1 ad
1243 1.5 yamt static void *
1244 1.5 yamt pages_map(void *addr, size_t size)
1245 1.5 yamt {
1246 1.5 yamt
1247 1.5 yamt return pages_map_align(addr, size, 0);
1248 1.5 yamt }
1249 1.5 yamt
1250 1.1 ad static void
1251 1.1 ad pages_unmap(void *addr, size_t size)
1252 1.1 ad {
1253 1.1 ad
1254 1.1 ad if (munmap(addr, size) == -1) {
1255 1.1 ad char buf[STRERROR_BUF];
1256 1.1 ad
1257 1.16 christos STRERROR_R(errno, buf, sizeof(buf));
1258 1.16 christos _malloc_message(getprogname(),
1259 1.1 ad ": (malloc) Error in munmap(): ", buf, "\n");
1260 1.57 ad if (OPT(abort))
1261 1.1 ad abort();
1262 1.1 ad }
1263 1.1 ad }
1264 1.1 ad
1265 1.1 ad static void *
1266 1.1 ad chunk_alloc(size_t size)
1267 1.1 ad {
1268 1.1 ad void *ret, *chunk;
1269 1.1 ad chunk_node_t *tchunk, *delchunk;
1270 1.1 ad
1271 1.1 ad assert(size != 0);
1272 1.1 ad assert((size & chunksize_mask) == 0);
1273 1.1 ad
1274 1.1 ad malloc_mutex_lock(&chunks_mtx);
1275 1.1 ad
1276 1.1 ad if (size == chunksize) {
1277 1.1 ad /*
1278 1.1 ad * Check for address ranges that were previously chunks and try
1279 1.1 ad * to use them.
1280 1.1 ad */
1281 1.1 ad
1282 1.58 ad tchunk = RB_TREE_MIN(&old_chunks);
1283 1.1 ad while (tchunk != NULL) {
1284 1.1 ad /* Found an address range. Try to recycle it. */
1285 1.1 ad
1286 1.1 ad chunk = tchunk->chunk;
1287 1.1 ad delchunk = tchunk;
1288 1.58 ad tchunk = RB_TREE_NEXT(&old_chunks, delchunk);
1289 1.1 ad
1290 1.1 ad /* Remove delchunk from the tree. */
1291 1.58 ad rb_tree_remove_node(&old_chunks, delchunk);
1292 1.1 ad base_chunk_node_dealloc(delchunk);
1293 1.1 ad
1294 1.1 ad #ifdef USE_BRK
1295 1.1 ad if ((uintptr_t)chunk >= (uintptr_t)brk_base
1296 1.1 ad && (uintptr_t)chunk < (uintptr_t)brk_max) {
1297 1.1 ad /* Re-use a previously freed brk chunk. */
1298 1.1 ad ret = chunk;
1299 1.1 ad goto RETURN;
1300 1.1 ad }
1301 1.1 ad #endif
1302 1.1 ad if ((ret = pages_map(chunk, size)) != NULL) {
1303 1.1 ad /* Success. */
1304 1.1 ad goto RETURN;
1305 1.1 ad }
1306 1.1 ad }
1307 1.1 ad }
1308 1.1 ad
1309 1.1 ad /*
1310 1.1 ad * Try to over-allocate, but allow the OS to place the allocation
1311 1.1 ad * anywhere. Beware of size_t wrap-around.
1312 1.1 ad */
1313 1.1 ad if (size + chunksize > size) {
1314 1.5 yamt if ((ret = pages_map_align(NULL, size, chunksize_2pow))
1315 1.5 yamt != NULL) {
1316 1.1 ad goto RETURN;
1317 1.1 ad }
1318 1.1 ad }
1319 1.1 ad
1320 1.1 ad #ifdef USE_BRK
1321 1.1 ad /*
1322 1.1 ad * Try to create allocations in brk, in order to make full use of
1323 1.1 ad * limited address space.
1324 1.1 ad */
1325 1.1 ad if (brk_prev != (void *)-1) {
1326 1.1 ad void *brk_cur;
1327 1.1 ad intptr_t incr;
1328 1.1 ad
1329 1.1 ad /*
1330 1.1 ad * The loop is necessary to recover from races with other
1331 1.1 ad * threads that are using brk for something other than malloc.
1332 1.1 ad */
1333 1.1 ad malloc_mutex_lock(&brk_mtx);
1334 1.1 ad do {
1335 1.1 ad /* Get the current end of brk. */
1336 1.1 ad brk_cur = sbrk(0);
1337 1.1 ad
1338 1.1 ad /*
1339 1.1 ad * Calculate how much padding is necessary to
1340 1.1 ad * chunk-align the end of brk.
1341 1.1 ad */
1342 1.1 ad incr = (intptr_t)size
1343 1.1 ad - (intptr_t)CHUNK_ADDR2OFFSET(brk_cur);
1344 1.20 lukem if (incr == (intptr_t)size) {
1345 1.1 ad ret = brk_cur;
1346 1.1 ad } else {
1347 1.1 ad ret = (void *)((intptr_t)brk_cur + incr);
1348 1.1 ad incr += size;
1349 1.1 ad }
1350 1.1 ad
1351 1.1 ad brk_prev = sbrk(incr);
1352 1.1 ad if (brk_prev == brk_cur) {
1353 1.1 ad /* Success. */
1354 1.1 ad malloc_mutex_unlock(&brk_mtx);
1355 1.1 ad brk_max = (void *)((intptr_t)ret + size);
1356 1.1 ad goto RETURN;
1357 1.1 ad }
1358 1.1 ad } while (brk_prev != (void *)-1);
1359 1.1 ad malloc_mutex_unlock(&brk_mtx);
1360 1.1 ad }
1361 1.1 ad #endif
1362 1.1 ad
1363 1.1 ad /* All strategies for allocation failed. */
1364 1.1 ad ret = NULL;
1365 1.1 ad RETURN:
1366 1.1 ad if (ret != NULL) {
1367 1.1 ad chunk_node_t key;
1368 1.1 ad /*
1369 1.1 ad * Clean out any entries in old_chunks that overlap with the
1370 1.1 ad * memory we just allocated.
1371 1.1 ad */
1372 1.1 ad key.chunk = ret;
1373 1.58 ad tchunk = rb_tree_find_node_geq(&old_chunks, &key);
1374 1.1 ad while (tchunk != NULL
1375 1.1 ad && (uintptr_t)tchunk->chunk >= (uintptr_t)ret
1376 1.1 ad && (uintptr_t)tchunk->chunk < (uintptr_t)ret + size) {
1377 1.1 ad delchunk = tchunk;
1378 1.58 ad tchunk = RB_TREE_NEXT(&old_chunks, delchunk);
1379 1.58 ad rb_tree_remove_node(&old_chunks, delchunk);
1380 1.1 ad base_chunk_node_dealloc(delchunk);
1381 1.1 ad }
1382 1.1 ad
1383 1.1 ad }
1384 1.1 ad #ifdef MALLOC_STATS
1385 1.1 ad if (ret != NULL) {
1386 1.1 ad stats_chunks.nchunks += (size / chunksize);
1387 1.1 ad stats_chunks.curchunks += (size / chunksize);
1388 1.1 ad }
1389 1.1 ad if (stats_chunks.curchunks > stats_chunks.highchunks)
1390 1.1 ad stats_chunks.highchunks = stats_chunks.curchunks;
1391 1.1 ad #endif
1392 1.1 ad malloc_mutex_unlock(&chunks_mtx);
1393 1.1 ad
1394 1.1 ad assert(CHUNK_ADDR2BASE(ret) == ret);
1395 1.1 ad return (ret);
1396 1.1 ad }
1397 1.1 ad
1398 1.1 ad static void
1399 1.1 ad chunk_dealloc(void *chunk, size_t size)
1400 1.1 ad {
1401 1.1 ad chunk_node_t *node;
1402 1.1 ad
1403 1.1 ad assert(chunk != NULL);
1404 1.1 ad assert(CHUNK_ADDR2BASE(chunk) == chunk);
1405 1.1 ad assert(size != 0);
1406 1.1 ad assert((size & chunksize_mask) == 0);
1407 1.1 ad
1408 1.1 ad malloc_mutex_lock(&chunks_mtx);
1409 1.1 ad
1410 1.1 ad #ifdef USE_BRK
1411 1.1 ad if ((uintptr_t)chunk >= (uintptr_t)brk_base
1412 1.1 ad && (uintptr_t)chunk < (uintptr_t)brk_max) {
1413 1.1 ad void *brk_cur;
1414 1.1 ad
1415 1.1 ad malloc_mutex_lock(&brk_mtx);
1416 1.1 ad /* Get the current end of brk. */
1417 1.1 ad brk_cur = sbrk(0);
1418 1.1 ad
1419 1.1 ad /*
1420 1.1 ad * Try to shrink the data segment if this chunk is at the end
1421 1.1 ad * of the data segment. The sbrk() call here is subject to a
1422 1.1 ad * race condition with threads that use brk(2) or sbrk(2)
1423 1.1 ad * directly, but the alternative would be to leak memory for
1424 1.1 ad * the sake of poorly designed multi-threaded programs.
1425 1.1 ad */
1426 1.1 ad if (brk_cur == brk_max
1427 1.1 ad && (void *)((uintptr_t)chunk + size) == brk_max
1428 1.1 ad && sbrk(-(intptr_t)size) == brk_max) {
1429 1.1 ad malloc_mutex_unlock(&brk_mtx);
1430 1.1 ad if (brk_prev == brk_max) {
1431 1.1 ad /* Success. */
1432 1.1 ad brk_prev = (void *)((intptr_t)brk_max
1433 1.1 ad - (intptr_t)size);
1434 1.1 ad brk_max = brk_prev;
1435 1.1 ad }
1436 1.1 ad } else {
1437 1.1 ad size_t offset;
1438 1.1 ad
1439 1.1 ad malloc_mutex_unlock(&brk_mtx);
1440 1.1 ad madvise(chunk, size, MADV_FREE);
1441 1.1 ad
1442 1.1 ad /*
1443 1.1 ad * Iteratively create records of each chunk-sized
1444 1.1 ad * memory region that 'chunk' is comprised of, so that
1445 1.1 ad * the address range can be recycled if memory usage
1446 1.1 ad * increases later on.
1447 1.1 ad */
1448 1.1 ad for (offset = 0; offset < size; offset += chunksize) {
1449 1.1 ad node = base_chunk_node_alloc();
1450 1.1 ad if (node == NULL)
1451 1.1 ad break;
1452 1.1 ad
1453 1.1 ad node->chunk = (void *)((uintptr_t)chunk
1454 1.1 ad + (uintptr_t)offset);
1455 1.1 ad node->size = chunksize;
1456 1.58 ad rb_tree_insert_node(&old_chunks, node);
1457 1.1 ad }
1458 1.1 ad }
1459 1.1 ad } else {
1460 1.1 ad #endif
1461 1.1 ad pages_unmap(chunk, size);
1462 1.1 ad
1463 1.1 ad /*
1464 1.1 ad * Make a record of the chunk's address, so that the address
1465 1.1 ad * range can be recycled if memory usage increases later on.
1466 1.1 ad * Don't bother to create entries if (size > chunksize), since
1467 1.1 ad * doing so could cause scalability issues for truly gargantuan
1468 1.1 ad * objects (many gigabytes or larger).
1469 1.1 ad */
1470 1.1 ad if (size == chunksize) {
1471 1.1 ad node = base_chunk_node_alloc();
1472 1.1 ad if (node != NULL) {
1473 1.1 ad node->chunk = (void *)(uintptr_t)chunk;
1474 1.1 ad node->size = chunksize;
1475 1.58 ad rb_tree_insert_node(&old_chunks, node);
1476 1.1 ad }
1477 1.1 ad }
1478 1.1 ad #ifdef USE_BRK
1479 1.1 ad }
1480 1.1 ad #endif
1481 1.1 ad
1482 1.1 ad #ifdef MALLOC_STATS
1483 1.1 ad stats_chunks.curchunks -= (size / chunksize);
1484 1.1 ad #endif
1485 1.1 ad malloc_mutex_unlock(&chunks_mtx);
1486 1.1 ad }
1487 1.1 ad
1488 1.1 ad /*
1489 1.1 ad * End chunk management functions.
1490 1.1 ad */
1491 1.1 ad /******************************************************************************/
1492 1.1 ad /*
1493 1.1 ad * Begin arena.
1494 1.1 ad */
1495 1.1 ad
1496 1.1 ad /*
1497 1.57 ad * Choose a per-CPU arena.
1498 1.1 ad */
1499 1.19 ad static __noinline arena_t *
1500 1.19 ad choose_arena_hard(void)
1501 1.1 ad {
1502 1.1 ad
1503 1.57 ad assert(arenas[0] != NULL);
1504 1.57 ad
1505 1.1 ad malloc_mutex_lock(&arenas_mtx);
1506 1.57 ad for (unsigned i = 1; i < ncpus; i++)
1507 1.57 ad if (arenas[i] == NULL)
1508 1.57 ad arenas[i] = arenas_extend();
1509 1.1 ad malloc_mutex_unlock(&arenas_mtx);
1510 1.1 ad
1511 1.57 ad return arenas[thr_curcpu()];
1512 1.1 ad }
1513 1.1 ad
1514 1.19 ad static inline arena_t *
1515 1.19 ad choose_arena(void)
1516 1.19 ad {
1517 1.57 ad arena_t *arena;
1518 1.19 ad
1519 1.57 ad /* NB: when libpthread is absent, thr_curcpu() always returns zero. */
1520 1.57 ad arena = arenas[thr_curcpu()];
1521 1.57 ad if (__predict_true(arena != NULL))
1522 1.57 ad return arena;
1523 1.19 ad
1524 1.57 ad return choose_arena_hard();
1525 1.19 ad }
1526 1.19 ad
1527 1.58 ad static int
1528 1.58 ad arena_chunk_comp(void *context, const void *va, const void *vb)
1529 1.1 ad {
1530 1.58 ad const arena_chunk_t *a = va, *b = vb;
1531 1.58 ad int diff;
1532 1.1 ad
1533 1.1 ad assert(a != NULL);
1534 1.1 ad assert(b != NULL);
1535 1.1 ad
1536 1.58 ad if ((diff = a->max_frun_npages - b->max_frun_npages) != 0)
1537 1.58 ad return diff;
1538 1.58 ad return ptrcmp(a, b);
1539 1.1 ad }
1540 1.1 ad
1541 1.58 ad static int
1542 1.58 ad arena_run_comp(void *context, const void *a, const void *b)
1543 1.1 ad {
1544 1.1 ad
1545 1.1 ad assert(a != NULL);
1546 1.1 ad assert(b != NULL);
1547 1.1 ad
1548 1.58 ad return ptrcmp(a, b);
1549 1.1 ad }
1550 1.1 ad
1551 1.1 ad static inline void *
1552 1.1 ad arena_run_reg_alloc(arena_run_t *run, arena_bin_t *bin)
1553 1.1 ad {
1554 1.1 ad void *ret;
1555 1.1 ad unsigned i, mask, bit, regind;
1556 1.1 ad
1557 1.1 ad assert(run->magic == ARENA_RUN_MAGIC);
1558 1.1 ad assert(run->regs_minelm < bin->regs_mask_nelms);
1559 1.1 ad
1560 1.1 ad /*
1561 1.1 ad * Move the first check outside the loop, so that run->regs_minelm can
1562 1.1 ad * be updated unconditionally, without the possibility of updating it
1563 1.1 ad * multiple times.
1564 1.1 ad */
1565 1.1 ad i = run->regs_minelm;
1566 1.1 ad mask = run->regs_mask[i];
1567 1.1 ad if (mask != 0) {
1568 1.1 ad /* Usable allocation found. */
1569 1.1 ad bit = ffs((int)mask) - 1;
1570 1.1 ad
1571 1.1 ad regind = ((i << (SIZEOF_INT_2POW + 3)) + bit);
1572 1.1 ad ret = (void *)(((uintptr_t)run) + bin->reg0_offset
1573 1.1 ad + (bin->reg_size * regind));
1574 1.1 ad
1575 1.1 ad /* Clear bit. */
1576 1.45 kamil mask ^= (1U << bit);
1577 1.1 ad run->regs_mask[i] = mask;
1578 1.1 ad
1579 1.1 ad return (ret);
1580 1.1 ad }
1581 1.1 ad
1582 1.1 ad for (i++; i < bin->regs_mask_nelms; i++) {
1583 1.1 ad mask = run->regs_mask[i];
1584 1.1 ad if (mask != 0) {
1585 1.1 ad /* Usable allocation found. */
1586 1.1 ad bit = ffs((int)mask) - 1;
1587 1.1 ad
1588 1.1 ad regind = ((i << (SIZEOF_INT_2POW + 3)) + bit);
1589 1.1 ad ret = (void *)(((uintptr_t)run) + bin->reg0_offset
1590 1.1 ad + (bin->reg_size * regind));
1591 1.1 ad
1592 1.1 ad /* Clear bit. */
1593 1.45 kamil mask ^= (1U << bit);
1594 1.1 ad run->regs_mask[i] = mask;
1595 1.1 ad
1596 1.1 ad /*
1597 1.1 ad * Make a note that nothing before this element
1598 1.1 ad * contains a free region.
1599 1.1 ad */
1600 1.1 ad run->regs_minelm = i; /* Low payoff: + (mask == 0); */
1601 1.1 ad
1602 1.1 ad return (ret);
1603 1.1 ad }
1604 1.1 ad }
1605 1.1 ad /* Not reached. */
1606 1.7 yamt /* LINTED */
1607 1.1 ad assert(0);
1608 1.1 ad return (NULL);
1609 1.1 ad }
1610 1.1 ad
1611 1.1 ad static inline void
1612 1.1 ad arena_run_reg_dalloc(arena_run_t *run, arena_bin_t *bin, void *ptr, size_t size)
1613 1.1 ad {
1614 1.1 ad /*
1615 1.1 ad * To divide by a number D that is not a power of two we multiply
1616 1.1 ad * by (2^21 / D) and then right shift by 21 positions.
1617 1.1 ad *
1618 1.1 ad * X / D
1619 1.1 ad *
1620 1.1 ad * becomes
1621 1.1 ad *
1622 1.1 ad * (X * size_invs[(D >> QUANTUM_2POW_MIN) - 3]) >> SIZE_INV_SHIFT
1623 1.1 ad */
1624 1.1 ad #define SIZE_INV_SHIFT 21
1625 1.1 ad #define SIZE_INV(s) (((1 << SIZE_INV_SHIFT) / (s << QUANTUM_2POW_MIN)) + 1)
1626 1.1 ad static const unsigned size_invs[] = {
1627 1.1 ad SIZE_INV(3),
1628 1.1 ad SIZE_INV(4), SIZE_INV(5), SIZE_INV(6), SIZE_INV(7),
1629 1.1 ad SIZE_INV(8), SIZE_INV(9), SIZE_INV(10), SIZE_INV(11),
1630 1.1 ad SIZE_INV(12),SIZE_INV(13), SIZE_INV(14), SIZE_INV(15),
1631 1.1 ad SIZE_INV(16),SIZE_INV(17), SIZE_INV(18), SIZE_INV(19),
1632 1.1 ad SIZE_INV(20),SIZE_INV(21), SIZE_INV(22), SIZE_INV(23),
1633 1.1 ad SIZE_INV(24),SIZE_INV(25), SIZE_INV(26), SIZE_INV(27),
1634 1.1 ad SIZE_INV(28),SIZE_INV(29), SIZE_INV(30), SIZE_INV(31)
1635 1.1 ad #if (QUANTUM_2POW_MIN < 4)
1636 1.1 ad ,
1637 1.1 ad SIZE_INV(32), SIZE_INV(33), SIZE_INV(34), SIZE_INV(35),
1638 1.1 ad SIZE_INV(36), SIZE_INV(37), SIZE_INV(38), SIZE_INV(39),
1639 1.1 ad SIZE_INV(40), SIZE_INV(41), SIZE_INV(42), SIZE_INV(43),
1640 1.1 ad SIZE_INV(44), SIZE_INV(45), SIZE_INV(46), SIZE_INV(47),
1641 1.1 ad SIZE_INV(48), SIZE_INV(49), SIZE_INV(50), SIZE_INV(51),
1642 1.1 ad SIZE_INV(52), SIZE_INV(53), SIZE_INV(54), SIZE_INV(55),
1643 1.1 ad SIZE_INV(56), SIZE_INV(57), SIZE_INV(58), SIZE_INV(59),
1644 1.1 ad SIZE_INV(60), SIZE_INV(61), SIZE_INV(62), SIZE_INV(63)
1645 1.1 ad #endif
1646 1.1 ad };
1647 1.1 ad unsigned diff, regind, elm, bit;
1648 1.1 ad
1649 1.7 yamt /* LINTED */
1650 1.1 ad assert(run->magic == ARENA_RUN_MAGIC);
1651 1.1 ad assert(((sizeof(size_invs)) / sizeof(unsigned)) + 3
1652 1.1 ad >= (SMALL_MAX_DEFAULT >> QUANTUM_2POW_MIN));
1653 1.1 ad
1654 1.1 ad /*
1655 1.1 ad * Avoid doing division with a variable divisor if possible. Using
1656 1.1 ad * actual division here can reduce allocator throughput by over 20%!
1657 1.1 ad */
1658 1.1 ad diff = (unsigned)((uintptr_t)ptr - (uintptr_t)run - bin->reg0_offset);
1659 1.1 ad if ((size & (size - 1)) == 0) {
1660 1.1 ad /*
1661 1.1 ad * log2_table allows fast division of a power of two in the
1662 1.1 ad * [1..128] range.
1663 1.1 ad *
1664 1.1 ad * (x / divisor) becomes (x >> log2_table[divisor - 1]).
1665 1.1 ad */
1666 1.1 ad static const unsigned char log2_table[] = {
1667 1.1 ad 0, 1, 0, 2, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 4,
1668 1.1 ad 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5,
1669 1.1 ad 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1670 1.1 ad 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6,
1671 1.1 ad 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1672 1.1 ad 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1673 1.1 ad 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1674 1.1 ad 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7
1675 1.1 ad };
1676 1.1 ad
1677 1.1 ad if (size <= 128)
1678 1.1 ad regind = (diff >> log2_table[size - 1]);
1679 1.1 ad else if (size <= 32768)
1680 1.1 ad regind = diff >> (8 + log2_table[(size >> 8) - 1]);
1681 1.1 ad else {
1682 1.1 ad /*
1683 1.1 ad * The page size is too large for us to use the lookup
1684 1.1 ad * table. Use real division.
1685 1.1 ad */
1686 1.9 christos regind = (unsigned)(diff / size);
1687 1.1 ad }
1688 1.61 ad } else if (size <= (((sizeof(size_invs) / sizeof(unsigned)) + 2)
1689 1.61 ad << QUANTUM_2POW_MIN)) {
1690 1.1 ad regind = size_invs[(size >> QUANTUM_2POW_MIN) - 3] * diff;
1691 1.1 ad regind >>= SIZE_INV_SHIFT;
1692 1.1 ad } else {
1693 1.1 ad /*
1694 1.1 ad * size_invs isn't large enough to handle this size class, so
1695 1.1 ad * calculate regind using actual division. This only happens
1696 1.1 ad * if the user increases small_max via the 'S' runtime
1697 1.1 ad * configuration option.
1698 1.1 ad */
1699 1.9 christos regind = (unsigned)(diff / size);
1700 1.1 ad };
1701 1.1 ad assert(diff == regind * size);
1702 1.1 ad assert(regind < bin->nregs);
1703 1.1 ad
1704 1.1 ad elm = regind >> (SIZEOF_INT_2POW + 3);
1705 1.1 ad if (elm < run->regs_minelm)
1706 1.1 ad run->regs_minelm = elm;
1707 1.1 ad bit = regind - (elm << (SIZEOF_INT_2POW + 3));
1708 1.45 kamil assert((run->regs_mask[elm] & (1U << bit)) == 0);
1709 1.45 kamil run->regs_mask[elm] |= (1U << bit);
1710 1.1 ad #undef SIZE_INV
1711 1.1 ad #undef SIZE_INV_SHIFT
1712 1.1 ad }
1713 1.1 ad
1714 1.1 ad static void
1715 1.1 ad arena_run_split(arena_t *arena, arena_run_t *run, size_t size)
1716 1.1 ad {
1717 1.1 ad arena_chunk_t *chunk;
1718 1.1 ad unsigned run_ind, map_offset, total_pages, need_pages, rem_pages;
1719 1.1 ad unsigned i;
1720 1.1 ad
1721 1.1 ad chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(run);
1722 1.1 ad run_ind = (unsigned)(((uintptr_t)run - (uintptr_t)chunk)
1723 1.1 ad >> pagesize_2pow);
1724 1.1 ad total_pages = chunk->map[run_ind].npages;
1725 1.9 christos need_pages = (unsigned)(size >> pagesize_2pow);
1726 1.1 ad assert(need_pages <= total_pages);
1727 1.1 ad rem_pages = total_pages - need_pages;
1728 1.1 ad
1729 1.1 ad /* Split enough pages from the front of run to fit allocation size. */
1730 1.1 ad map_offset = run_ind;
1731 1.1 ad for (i = 0; i < need_pages; i++) {
1732 1.1 ad chunk->map[map_offset + i].npages = need_pages;
1733 1.1 ad chunk->map[map_offset + i].pos = i;
1734 1.1 ad }
1735 1.1 ad
1736 1.1 ad /* Keep track of trailing unused pages for later use. */
1737 1.1 ad if (rem_pages > 0) {
1738 1.1 ad /* Update map for trailing pages. */
1739 1.1 ad map_offset += need_pages;
1740 1.1 ad chunk->map[map_offset].npages = rem_pages;
1741 1.1 ad chunk->map[map_offset].pos = POS_FREE;
1742 1.1 ad chunk->map[map_offset + rem_pages - 1].npages = rem_pages;
1743 1.1 ad chunk->map[map_offset + rem_pages - 1].pos = POS_FREE;
1744 1.1 ad }
1745 1.1 ad
1746 1.1 ad chunk->pages_used += need_pages;
1747 1.1 ad }
1748 1.1 ad
1749 1.1 ad static arena_chunk_t *
1750 1.1 ad arena_chunk_alloc(arena_t *arena)
1751 1.1 ad {
1752 1.1 ad arena_chunk_t *chunk;
1753 1.1 ad
1754 1.1 ad if (arena->spare != NULL) {
1755 1.1 ad chunk = arena->spare;
1756 1.1 ad arena->spare = NULL;
1757 1.1 ad
1758 1.58 ad rb_tree_insert_node(&arena->chunks, chunk);
1759 1.1 ad } else {
1760 1.1 ad chunk = (arena_chunk_t *)chunk_alloc(chunksize);
1761 1.1 ad if (chunk == NULL)
1762 1.1 ad return (NULL);
1763 1.1 ad #ifdef MALLOC_STATS
1764 1.1 ad arena->stats.mapped += chunksize;
1765 1.1 ad #endif
1766 1.1 ad
1767 1.1 ad chunk->arena = arena;
1768 1.1 ad
1769 1.1 ad /*
1770 1.1 ad * Claim that no pages are in use, since the header is merely
1771 1.1 ad * overhead.
1772 1.1 ad */
1773 1.1 ad chunk->pages_used = 0;
1774 1.1 ad
1775 1.1 ad chunk->max_frun_npages = chunk_npages -
1776 1.1 ad arena_chunk_header_npages;
1777 1.1 ad chunk->min_frun_ind = arena_chunk_header_npages;
1778 1.1 ad
1779 1.1 ad /*
1780 1.1 ad * Initialize enough of the map to support one maximal free run.
1781 1.1 ad */
1782 1.1 ad chunk->map[arena_chunk_header_npages].npages = chunk_npages -
1783 1.1 ad arena_chunk_header_npages;
1784 1.1 ad chunk->map[arena_chunk_header_npages].pos = POS_FREE;
1785 1.1 ad chunk->map[chunk_npages - 1].npages = chunk_npages -
1786 1.1 ad arena_chunk_header_npages;
1787 1.1 ad chunk->map[chunk_npages - 1].pos = POS_FREE;
1788 1.40 joerg
1789 1.58 ad rb_tree_insert_node(&arena->chunks, chunk);
1790 1.1 ad }
1791 1.1 ad
1792 1.1 ad return (chunk);
1793 1.1 ad }
1794 1.1 ad
1795 1.1 ad static void
1796 1.1 ad arena_chunk_dealloc(arena_t *arena, arena_chunk_t *chunk)
1797 1.1 ad {
1798 1.1 ad
1799 1.1 ad /*
1800 1.1 ad * Remove chunk from the chunk tree, regardless of whether this chunk
1801 1.1 ad * will be cached, so that the arena does not use it.
1802 1.1 ad */
1803 1.58 ad rb_tree_remove_node(&chunk->arena->chunks, chunk);
1804 1.1 ad
1805 1.57 ad if (NOT_OPT(hint)) {
1806 1.1 ad if (arena->spare != NULL) {
1807 1.1 ad chunk_dealloc((void *)arena->spare, chunksize);
1808 1.1 ad #ifdef MALLOC_STATS
1809 1.1 ad arena->stats.mapped -= chunksize;
1810 1.1 ad #endif
1811 1.1 ad }
1812 1.1 ad arena->spare = chunk;
1813 1.1 ad } else {
1814 1.1 ad assert(arena->spare == NULL);
1815 1.1 ad chunk_dealloc((void *)chunk, chunksize);
1816 1.1 ad #ifdef MALLOC_STATS
1817 1.1 ad arena->stats.mapped -= chunksize;
1818 1.1 ad #endif
1819 1.1 ad }
1820 1.1 ad }
1821 1.1 ad
1822 1.1 ad static arena_run_t *
1823 1.1 ad arena_run_alloc(arena_t *arena, size_t size)
1824 1.1 ad {
1825 1.58 ad arena_chunk_t *chunk;
1826 1.1 ad arena_run_t *run;
1827 1.40 joerg unsigned need_npages;
1828 1.1 ad
1829 1.1 ad assert(size <= (chunksize - (arena_chunk_header_npages <<
1830 1.1 ad pagesize_2pow)));
1831 1.1 ad assert((size & pagesize_mask) == 0);
1832 1.1 ad
1833 1.1 ad /*
1834 1.40 joerg * Search through the arena chunk tree for a large enough free run.
1835 1.40 joerg * Tree order ensures that any exact fit is picked immediately or
1836 1.40 joerg * otherwise the lowest address of the next size.
1837 1.1 ad */
1838 1.9 christos need_npages = (unsigned)(size >> pagesize_2pow);
1839 1.2 ad /* LINTED */
1840 1.40 joerg for (;;) {
1841 1.58 ad rb_node_t *node = arena->chunks.rbt_root;
1842 1.40 joerg chunk = NULL;
1843 1.58 ad while (!RB_SENTINEL_P(node)) {
1844 1.58 ad assert(offsetof(struct arena_chunk_s, link) == 0);
1845 1.58 ad arena_chunk_t *chunk_tmp = (arena_chunk_t *)node;
1846 1.40 joerg if (chunk_tmp->max_frun_npages == need_npages) {
1847 1.40 joerg chunk = chunk_tmp;
1848 1.40 joerg break;
1849 1.40 joerg }
1850 1.40 joerg if (chunk_tmp->max_frun_npages < need_npages) {
1851 1.58 ad node = node->rb_nodes[1];
1852 1.40 joerg continue;
1853 1.40 joerg }
1854 1.40 joerg chunk = chunk_tmp;
1855 1.58 ad node = node->rb_nodes[0];
1856 1.40 joerg }
1857 1.40 joerg if (chunk == NULL)
1858 1.40 joerg break;
1859 1.1 ad /*
1860 1.40 joerg * At this point, the chunk must have a cached run size large
1861 1.40 joerg * enough to fit the allocation.
1862 1.1 ad */
1863 1.40 joerg assert(need_npages <= chunk->max_frun_npages);
1864 1.40 joerg {
1865 1.1 ad arena_chunk_map_t *mapelm;
1866 1.1 ad unsigned i;
1867 1.1 ad unsigned max_frun_npages = 0;
1868 1.1 ad unsigned min_frun_ind = chunk_npages;
1869 1.1 ad
1870 1.1 ad assert(chunk->min_frun_ind >=
1871 1.1 ad arena_chunk_header_npages);
1872 1.1 ad for (i = chunk->min_frun_ind; i < chunk_npages;) {
1873 1.1 ad mapelm = &chunk->map[i];
1874 1.1 ad if (mapelm->pos == POS_FREE) {
1875 1.1 ad if (mapelm->npages >= need_npages) {
1876 1.1 ad run = (arena_run_t *)
1877 1.1 ad ((uintptr_t)chunk + (i <<
1878 1.1 ad pagesize_2pow));
1879 1.1 ad /* Update page map. */
1880 1.1 ad arena_run_split(arena, run,
1881 1.1 ad size);
1882 1.1 ad return (run);
1883 1.1 ad }
1884 1.1 ad if (mapelm->npages >
1885 1.1 ad max_frun_npages) {
1886 1.1 ad max_frun_npages =
1887 1.1 ad mapelm->npages;
1888 1.1 ad }
1889 1.1 ad if (i < min_frun_ind) {
1890 1.1 ad min_frun_ind = i;
1891 1.1 ad if (i < chunk->min_frun_ind)
1892 1.1 ad chunk->min_frun_ind = i;
1893 1.1 ad }
1894 1.1 ad }
1895 1.1 ad i += mapelm->npages;
1896 1.1 ad }
1897 1.1 ad /*
1898 1.1 ad * Search failure. Reset cached chunk->max_frun_npages.
1899 1.1 ad * chunk->min_frun_ind was already reset above (if
1900 1.1 ad * necessary).
1901 1.1 ad */
1902 1.58 ad rb_tree_remove_node(&arena->chunks, chunk);
1903 1.1 ad chunk->max_frun_npages = max_frun_npages;
1904 1.58 ad rb_tree_insert_node(&arena->chunks, chunk);
1905 1.1 ad }
1906 1.1 ad }
1907 1.1 ad
1908 1.1 ad /*
1909 1.1 ad * No usable runs. Create a new chunk from which to allocate the run.
1910 1.1 ad */
1911 1.1 ad chunk = arena_chunk_alloc(arena);
1912 1.1 ad if (chunk == NULL)
1913 1.1 ad return (NULL);
1914 1.1 ad run = (arena_run_t *)((uintptr_t)chunk + (arena_chunk_header_npages <<
1915 1.1 ad pagesize_2pow));
1916 1.1 ad /* Update page map. */
1917 1.1 ad arena_run_split(arena, run, size);
1918 1.1 ad return (run);
1919 1.1 ad }
1920 1.1 ad
1921 1.1 ad static void
1922 1.1 ad arena_run_dalloc(arena_t *arena, arena_run_t *run, size_t size)
1923 1.1 ad {
1924 1.1 ad arena_chunk_t *chunk;
1925 1.1 ad unsigned run_ind, run_pages;
1926 1.1 ad
1927 1.1 ad chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(run);
1928 1.1 ad
1929 1.1 ad run_ind = (unsigned)(((uintptr_t)run - (uintptr_t)chunk)
1930 1.1 ad >> pagesize_2pow);
1931 1.1 ad assert(run_ind >= arena_chunk_header_npages);
1932 1.1 ad assert(run_ind < (chunksize >> pagesize_2pow));
1933 1.9 christos run_pages = (unsigned)(size >> pagesize_2pow);
1934 1.1 ad assert(run_pages == chunk->map[run_ind].npages);
1935 1.1 ad
1936 1.1 ad /* Subtract pages from count of pages used in chunk. */
1937 1.1 ad chunk->pages_used -= run_pages;
1938 1.1 ad
1939 1.1 ad /* Mark run as deallocated. */
1940 1.1 ad assert(chunk->map[run_ind].npages == run_pages);
1941 1.1 ad chunk->map[run_ind].pos = POS_FREE;
1942 1.1 ad assert(chunk->map[run_ind + run_pages - 1].npages == run_pages);
1943 1.1 ad chunk->map[run_ind + run_pages - 1].pos = POS_FREE;
1944 1.1 ad
1945 1.1 ad /*
1946 1.1 ad * Tell the kernel that we don't need the data in this run, but only if
1947 1.1 ad * requested via runtime configuration.
1948 1.1 ad */
1949 1.57 ad if (OPT(hint))
1950 1.1 ad madvise(run, size, MADV_FREE);
1951 1.1 ad
1952 1.1 ad /* Try to coalesce with neighboring runs. */
1953 1.1 ad if (run_ind > arena_chunk_header_npages &&
1954 1.1 ad chunk->map[run_ind - 1].pos == POS_FREE) {
1955 1.1 ad unsigned prev_npages;
1956 1.1 ad
1957 1.1 ad /* Coalesce with previous run. */
1958 1.1 ad prev_npages = chunk->map[run_ind - 1].npages;
1959 1.1 ad run_ind -= prev_npages;
1960 1.1 ad assert(chunk->map[run_ind].npages == prev_npages);
1961 1.1 ad assert(chunk->map[run_ind].pos == POS_FREE);
1962 1.1 ad run_pages += prev_npages;
1963 1.1 ad
1964 1.1 ad chunk->map[run_ind].npages = run_pages;
1965 1.1 ad assert(chunk->map[run_ind].pos == POS_FREE);
1966 1.1 ad chunk->map[run_ind + run_pages - 1].npages = run_pages;
1967 1.1 ad assert(chunk->map[run_ind + run_pages - 1].pos == POS_FREE);
1968 1.1 ad }
1969 1.1 ad
1970 1.1 ad if (run_ind + run_pages < chunk_npages &&
1971 1.1 ad chunk->map[run_ind + run_pages].pos == POS_FREE) {
1972 1.1 ad unsigned next_npages;
1973 1.1 ad
1974 1.1 ad /* Coalesce with next run. */
1975 1.1 ad next_npages = chunk->map[run_ind + run_pages].npages;
1976 1.1 ad run_pages += next_npages;
1977 1.1 ad assert(chunk->map[run_ind + run_pages - 1].npages ==
1978 1.1 ad next_npages);
1979 1.1 ad assert(chunk->map[run_ind + run_pages - 1].pos == POS_FREE);
1980 1.1 ad
1981 1.1 ad chunk->map[run_ind].npages = run_pages;
1982 1.1 ad chunk->map[run_ind].pos = POS_FREE;
1983 1.1 ad chunk->map[run_ind + run_pages - 1].npages = run_pages;
1984 1.1 ad assert(chunk->map[run_ind + run_pages - 1].pos == POS_FREE);
1985 1.1 ad }
1986 1.1 ad
1987 1.40 joerg if (chunk->map[run_ind].npages > chunk->max_frun_npages) {
1988 1.58 ad rb_tree_remove_node(&arena->chunks, chunk);
1989 1.1 ad chunk->max_frun_npages = chunk->map[run_ind].npages;
1990 1.58 ad rb_tree_insert_node(&arena->chunks, chunk);
1991 1.40 joerg }
1992 1.1 ad if (run_ind < chunk->min_frun_ind)
1993 1.1 ad chunk->min_frun_ind = run_ind;
1994 1.1 ad
1995 1.1 ad /* Deallocate chunk if it is now completely unused. */
1996 1.1 ad if (chunk->pages_used == 0)
1997 1.1 ad arena_chunk_dealloc(arena, chunk);
1998 1.1 ad }
1999 1.1 ad
2000 1.1 ad static arena_run_t *
2001 1.1 ad arena_bin_nonfull_run_get(arena_t *arena, arena_bin_t *bin)
2002 1.1 ad {
2003 1.1 ad arena_run_t *run;
2004 1.1 ad unsigned i, remainder;
2005 1.1 ad
2006 1.1 ad /* Look for a usable run. */
2007 1.58 ad if ((run = RB_TREE_MIN(&bin->runs)) != NULL) {
2008 1.1 ad /* run is guaranteed to have available space. */
2009 1.58 ad rb_tree_remove_node(&bin->runs, run);
2010 1.1 ad #ifdef MALLOC_STATS
2011 1.1 ad bin->stats.reruns++;
2012 1.1 ad #endif
2013 1.1 ad return (run);
2014 1.1 ad }
2015 1.1 ad /* No existing runs have any space available. */
2016 1.1 ad
2017 1.1 ad /* Allocate a new run. */
2018 1.1 ad run = arena_run_alloc(arena, bin->run_size);
2019 1.1 ad if (run == NULL)
2020 1.1 ad return (NULL);
2021 1.1 ad
2022 1.1 ad /* Initialize run internals. */
2023 1.1 ad run->bin = bin;
2024 1.1 ad
2025 1.1 ad for (i = 0; i < bin->regs_mask_nelms; i++)
2026 1.1 ad run->regs_mask[i] = UINT_MAX;
2027 1.1 ad remainder = bin->nregs & ((1 << (SIZEOF_INT_2POW + 3)) - 1);
2028 1.1 ad if (remainder != 0) {
2029 1.1 ad /* The last element has spare bits that need to be unset. */
2030 1.1 ad run->regs_mask[i] = (UINT_MAX >> ((1 << (SIZEOF_INT_2POW + 3))
2031 1.1 ad - remainder));
2032 1.1 ad }
2033 1.1 ad
2034 1.1 ad run->regs_minelm = 0;
2035 1.1 ad
2036 1.1 ad run->nfree = bin->nregs;
2037 1.1 ad #ifdef MALLOC_DEBUG
2038 1.1 ad run->magic = ARENA_RUN_MAGIC;
2039 1.1 ad #endif
2040 1.1 ad
2041 1.1 ad #ifdef MALLOC_STATS
2042 1.1 ad bin->stats.nruns++;
2043 1.1 ad bin->stats.curruns++;
2044 1.1 ad if (bin->stats.curruns > bin->stats.highruns)
2045 1.1 ad bin->stats.highruns = bin->stats.curruns;
2046 1.1 ad #endif
2047 1.1 ad return (run);
2048 1.1 ad }
2049 1.1 ad
2050 1.1 ad /* bin->runcur must have space available before this function is called. */
2051 1.1 ad static inline void *
2052 1.1 ad arena_bin_malloc_easy(arena_t *arena, arena_bin_t *bin, arena_run_t *run)
2053 1.1 ad {
2054 1.1 ad void *ret;
2055 1.1 ad
2056 1.1 ad assert(run->magic == ARENA_RUN_MAGIC);
2057 1.1 ad assert(run->nfree > 0);
2058 1.1 ad
2059 1.1 ad ret = arena_run_reg_alloc(run, bin);
2060 1.1 ad assert(ret != NULL);
2061 1.1 ad run->nfree--;
2062 1.1 ad
2063 1.1 ad return (ret);
2064 1.1 ad }
2065 1.1 ad
2066 1.1 ad /* Re-fill bin->runcur, then call arena_bin_malloc_easy(). */
2067 1.1 ad static void *
2068 1.1 ad arena_bin_malloc_hard(arena_t *arena, arena_bin_t *bin)
2069 1.1 ad {
2070 1.1 ad
2071 1.1 ad bin->runcur = arena_bin_nonfull_run_get(arena, bin);
2072 1.1 ad if (bin->runcur == NULL)
2073 1.1 ad return (NULL);
2074 1.1 ad assert(bin->runcur->magic == ARENA_RUN_MAGIC);
2075 1.1 ad assert(bin->runcur->nfree > 0);
2076 1.1 ad
2077 1.1 ad return (arena_bin_malloc_easy(arena, bin, bin->runcur));
2078 1.1 ad }
2079 1.1 ad
2080 1.1 ad /*
2081 1.1 ad * Calculate bin->run_size such that it meets the following constraints:
2082 1.1 ad *
2083 1.1 ad * *) bin->run_size >= min_run_size
2084 1.1 ad * *) bin->run_size <= arena_maxclass
2085 1.1 ad * *) bin->run_size <= RUN_MAX_SMALL
2086 1.1 ad * *) run header overhead <= RUN_MAX_OVRHD (or header overhead relaxed).
2087 1.1 ad *
2088 1.1 ad * bin->nregs, bin->regs_mask_nelms, and bin->reg0_offset are
2089 1.1 ad * also calculated here, since these settings are all interdependent.
2090 1.1 ad */
2091 1.1 ad static size_t
2092 1.1 ad arena_bin_run_size_calc(arena_bin_t *bin, size_t min_run_size)
2093 1.1 ad {
2094 1.1 ad size_t try_run_size, good_run_size;
2095 1.1 ad unsigned good_nregs, good_mask_nelms, good_reg0_offset;
2096 1.1 ad unsigned try_nregs, try_mask_nelms, try_reg0_offset;
2097 1.1 ad
2098 1.1 ad assert(min_run_size >= pagesize);
2099 1.1 ad assert(min_run_size <= arena_maxclass);
2100 1.1 ad assert(min_run_size <= RUN_MAX_SMALL);
2101 1.1 ad
2102 1.1 ad /*
2103 1.1 ad * Calculate known-valid settings before entering the run_size
2104 1.1 ad * expansion loop, so that the first part of the loop always copies
2105 1.1 ad * valid settings.
2106 1.1 ad *
2107 1.1 ad * The do..while loop iteratively reduces the number of regions until
2108 1.1 ad * the run header and the regions no longer overlap. A closed formula
2109 1.1 ad * would be quite messy, since there is an interdependency between the
2110 1.1 ad * header's mask length and the number of regions.
2111 1.1 ad */
2112 1.1 ad try_run_size = min_run_size;
2113 1.9 christos try_nregs = (unsigned)(((try_run_size - sizeof(arena_run_t)) /
2114 1.22 njoly bin->reg_size) + 1); /* Counter-act try_nregs-- in loop. */
2115 1.1 ad do {
2116 1.1 ad try_nregs--;
2117 1.1 ad try_mask_nelms = (try_nregs >> (SIZEOF_INT_2POW + 3)) +
2118 1.1 ad ((try_nregs & ((1 << (SIZEOF_INT_2POW + 3)) - 1)) ? 1 : 0);
2119 1.9 christos try_reg0_offset = (unsigned)(try_run_size -
2120 1.9 christos (try_nregs * bin->reg_size));
2121 1.1 ad } while (sizeof(arena_run_t) + (sizeof(unsigned) * (try_mask_nelms - 1))
2122 1.1 ad > try_reg0_offset);
2123 1.1 ad
2124 1.1 ad /* run_size expansion loop. */
2125 1.1 ad do {
2126 1.1 ad /*
2127 1.1 ad * Copy valid settings before trying more aggressive settings.
2128 1.1 ad */
2129 1.1 ad good_run_size = try_run_size;
2130 1.1 ad good_nregs = try_nregs;
2131 1.1 ad good_mask_nelms = try_mask_nelms;
2132 1.1 ad good_reg0_offset = try_reg0_offset;
2133 1.1 ad
2134 1.1 ad /* Try more aggressive settings. */
2135 1.1 ad try_run_size += pagesize;
2136 1.9 christos try_nregs = (unsigned)(((try_run_size - sizeof(arena_run_t)) /
2137 1.9 christos bin->reg_size) + 1); /* Counter-act try_nregs-- in loop. */
2138 1.1 ad do {
2139 1.1 ad try_nregs--;
2140 1.1 ad try_mask_nelms = (try_nregs >> (SIZEOF_INT_2POW + 3)) +
2141 1.1 ad ((try_nregs & ((1 << (SIZEOF_INT_2POW + 3)) - 1)) ?
2142 1.1 ad 1 : 0);
2143 1.9 christos try_reg0_offset = (unsigned)(try_run_size - (try_nregs *
2144 1.9 christos bin->reg_size));
2145 1.1 ad } while (sizeof(arena_run_t) + (sizeof(unsigned) *
2146 1.1 ad (try_mask_nelms - 1)) > try_reg0_offset);
2147 1.1 ad } while (try_run_size <= arena_maxclass && try_run_size <= RUN_MAX_SMALL
2148 1.22 njoly && RUN_MAX_OVRHD * (bin->reg_size << 3) > RUN_MAX_OVRHD_RELAX
2149 1.22 njoly && (try_reg0_offset << RUN_BFP) > RUN_MAX_OVRHD * try_run_size);
2150 1.1 ad
2151 1.1 ad assert(sizeof(arena_run_t) + (sizeof(unsigned) * (good_mask_nelms - 1))
2152 1.1 ad <= good_reg0_offset);
2153 1.1 ad assert((good_mask_nelms << (SIZEOF_INT_2POW + 3)) >= good_nregs);
2154 1.1 ad
2155 1.1 ad /* Copy final settings. */
2156 1.1 ad bin->run_size = good_run_size;
2157 1.1 ad bin->nregs = good_nregs;
2158 1.1 ad bin->regs_mask_nelms = good_mask_nelms;
2159 1.1 ad bin->reg0_offset = good_reg0_offset;
2160 1.1 ad
2161 1.1 ad return (good_run_size);
2162 1.1 ad }
2163 1.1 ad
2164 1.1 ad static void *
2165 1.1 ad arena_malloc(arena_t *arena, size_t size)
2166 1.1 ad {
2167 1.1 ad void *ret;
2168 1.1 ad
2169 1.1 ad assert(arena != NULL);
2170 1.1 ad assert(arena->magic == ARENA_MAGIC);
2171 1.1 ad assert(size != 0);
2172 1.1 ad assert(QUANTUM_CEILING(size) <= arena_maxclass);
2173 1.1 ad
2174 1.1 ad if (size <= bin_maxclass) {
2175 1.1 ad arena_bin_t *bin;
2176 1.1 ad arena_run_t *run;
2177 1.1 ad
2178 1.1 ad /* Small allocation. */
2179 1.1 ad
2180 1.1 ad if (size < small_min) {
2181 1.1 ad /* Tiny. */
2182 1.1 ad size = pow2_ceil(size);
2183 1.1 ad bin = &arena->bins[ffs((int)(size >> (TINY_MIN_2POW +
2184 1.1 ad 1)))];
2185 1.1 ad #if (!defined(NDEBUG) || defined(MALLOC_STATS))
2186 1.1 ad /*
2187 1.1 ad * Bin calculation is always correct, but we may need
2188 1.1 ad * to fix size for the purposes of assertions and/or
2189 1.1 ad * stats accuracy.
2190 1.1 ad */
2191 1.1 ad if (size < (1 << TINY_MIN_2POW))
2192 1.1 ad size = (1 << TINY_MIN_2POW);
2193 1.1 ad #endif
2194 1.1 ad } else if (size <= small_max) {
2195 1.1 ad /* Quantum-spaced. */
2196 1.1 ad size = QUANTUM_CEILING(size);
2197 1.1 ad bin = &arena->bins[ntbins + (size >> opt_quantum_2pow)
2198 1.1 ad - 1];
2199 1.1 ad } else {
2200 1.1 ad /* Sub-page. */
2201 1.1 ad size = pow2_ceil(size);
2202 1.1 ad bin = &arena->bins[ntbins + nqbins
2203 1.1 ad + (ffs((int)(size >> opt_small_max_2pow)) - 2)];
2204 1.1 ad }
2205 1.1 ad assert(size == bin->reg_size);
2206 1.1 ad
2207 1.1 ad malloc_mutex_lock(&arena->mtx);
2208 1.1 ad if ((run = bin->runcur) != NULL && run->nfree > 0)
2209 1.1 ad ret = arena_bin_malloc_easy(arena, bin, run);
2210 1.1 ad else
2211 1.1 ad ret = arena_bin_malloc_hard(arena, bin);
2212 1.1 ad
2213 1.1 ad if (ret == NULL) {
2214 1.1 ad malloc_mutex_unlock(&arena->mtx);
2215 1.1 ad return (NULL);
2216 1.1 ad }
2217 1.1 ad
2218 1.1 ad #ifdef MALLOC_STATS
2219 1.1 ad bin->stats.nrequests++;
2220 1.1 ad arena->stats.nmalloc_small++;
2221 1.1 ad arena->stats.allocated_small += size;
2222 1.1 ad #endif
2223 1.1 ad } else {
2224 1.1 ad /* Large allocation. */
2225 1.1 ad size = PAGE_CEILING(size);
2226 1.1 ad malloc_mutex_lock(&arena->mtx);
2227 1.1 ad ret = (void *)arena_run_alloc(arena, size);
2228 1.1 ad if (ret == NULL) {
2229 1.1 ad malloc_mutex_unlock(&arena->mtx);
2230 1.1 ad return (NULL);
2231 1.1 ad }
2232 1.1 ad #ifdef MALLOC_STATS
2233 1.1 ad arena->stats.nmalloc_large++;
2234 1.1 ad arena->stats.allocated_large += size;
2235 1.1 ad #endif
2236 1.1 ad }
2237 1.1 ad
2238 1.1 ad malloc_mutex_unlock(&arena->mtx);
2239 1.1 ad
2240 1.57 ad if (OPT(junk))
2241 1.1 ad memset(ret, 0xa5, size);
2242 1.57 ad else if (OPT(zero))
2243 1.1 ad memset(ret, 0, size);
2244 1.1 ad return (ret);
2245 1.1 ad }
2246 1.1 ad
2247 1.1 ad static inline void
2248 1.1 ad arena_palloc_trim(arena_t *arena, arena_chunk_t *chunk, unsigned pageind,
2249 1.1 ad unsigned npages)
2250 1.1 ad {
2251 1.1 ad unsigned i;
2252 1.1 ad
2253 1.1 ad assert(npages > 0);
2254 1.1 ad
2255 1.1 ad /*
2256 1.1 ad * Modifiy the map such that arena_run_dalloc() sees the run as
2257 1.1 ad * separately allocated.
2258 1.1 ad */
2259 1.1 ad for (i = 0; i < npages; i++) {
2260 1.1 ad chunk->map[pageind + i].npages = npages;
2261 1.1 ad chunk->map[pageind + i].pos = i;
2262 1.1 ad }
2263 1.1 ad arena_run_dalloc(arena, (arena_run_t *)((uintptr_t)chunk + (pageind <<
2264 1.1 ad pagesize_2pow)), npages << pagesize_2pow);
2265 1.1 ad }
2266 1.1 ad
2267 1.1 ad /* Only handles large allocations that require more than page alignment. */
2268 1.1 ad static void *
2269 1.1 ad arena_palloc(arena_t *arena, size_t alignment, size_t size, size_t alloc_size)
2270 1.1 ad {
2271 1.1 ad void *ret;
2272 1.1 ad size_t offset;
2273 1.1 ad arena_chunk_t *chunk;
2274 1.1 ad unsigned pageind, i, npages;
2275 1.1 ad
2276 1.1 ad assert((size & pagesize_mask) == 0);
2277 1.1 ad assert((alignment & pagesize_mask) == 0);
2278 1.1 ad
2279 1.9 christos npages = (unsigned)(size >> pagesize_2pow);
2280 1.1 ad
2281 1.1 ad malloc_mutex_lock(&arena->mtx);
2282 1.1 ad ret = (void *)arena_run_alloc(arena, alloc_size);
2283 1.1 ad if (ret == NULL) {
2284 1.1 ad malloc_mutex_unlock(&arena->mtx);
2285 1.1 ad return (NULL);
2286 1.1 ad }
2287 1.1 ad
2288 1.1 ad chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ret);
2289 1.1 ad
2290 1.1 ad offset = (uintptr_t)ret & (alignment - 1);
2291 1.1 ad assert((offset & pagesize_mask) == 0);
2292 1.1 ad assert(offset < alloc_size);
2293 1.1 ad if (offset == 0) {
2294 1.9 christos pageind = (unsigned)(((uintptr_t)ret - (uintptr_t)chunk) >>
2295 1.1 ad pagesize_2pow);
2296 1.1 ad
2297 1.1 ad /* Update the map for the run to be kept. */
2298 1.1 ad for (i = 0; i < npages; i++) {
2299 1.1 ad chunk->map[pageind + i].npages = npages;
2300 1.1 ad assert(chunk->map[pageind + i].pos == i);
2301 1.1 ad }
2302 1.1 ad
2303 1.1 ad /* Trim trailing space. */
2304 1.1 ad arena_palloc_trim(arena, chunk, pageind + npages,
2305 1.9 christos (unsigned)((alloc_size - size) >> pagesize_2pow));
2306 1.1 ad } else {
2307 1.1 ad size_t leadsize, trailsize;
2308 1.1 ad
2309 1.1 ad leadsize = alignment - offset;
2310 1.1 ad ret = (void *)((uintptr_t)ret + leadsize);
2311 1.9 christos pageind = (unsigned)(((uintptr_t)ret - (uintptr_t)chunk) >>
2312 1.1 ad pagesize_2pow);
2313 1.1 ad
2314 1.1 ad /* Update the map for the run to be kept. */
2315 1.1 ad for (i = 0; i < npages; i++) {
2316 1.1 ad chunk->map[pageind + i].npages = npages;
2317 1.1 ad chunk->map[pageind + i].pos = i;
2318 1.1 ad }
2319 1.1 ad
2320 1.1 ad /* Trim leading space. */
2321 1.9 christos arena_palloc_trim(arena, chunk,
2322 1.9 christos (unsigned)(pageind - (leadsize >> pagesize_2pow)),
2323 1.9 christos (unsigned)(leadsize >> pagesize_2pow));
2324 1.1 ad
2325 1.1 ad trailsize = alloc_size - leadsize - size;
2326 1.1 ad if (trailsize != 0) {
2327 1.1 ad /* Trim trailing space. */
2328 1.1 ad assert(trailsize < alloc_size);
2329 1.1 ad arena_palloc_trim(arena, chunk, pageind + npages,
2330 1.9 christos (unsigned)(trailsize >> pagesize_2pow));
2331 1.1 ad }
2332 1.1 ad }
2333 1.1 ad
2334 1.1 ad #ifdef MALLOC_STATS
2335 1.1 ad arena->stats.nmalloc_large++;
2336 1.1 ad arena->stats.allocated_large += size;
2337 1.1 ad #endif
2338 1.1 ad malloc_mutex_unlock(&arena->mtx);
2339 1.1 ad
2340 1.57 ad if (OPT(junk))
2341 1.1 ad memset(ret, 0xa5, size);
2342 1.57 ad else if (OPT(zero))
2343 1.1 ad memset(ret, 0, size);
2344 1.1 ad return (ret);
2345 1.1 ad }
2346 1.1 ad
2347 1.1 ad /* Return the size of the allocation pointed to by ptr. */
2348 1.1 ad static size_t
2349 1.1 ad arena_salloc(const void *ptr)
2350 1.1 ad {
2351 1.1 ad size_t ret;
2352 1.1 ad arena_chunk_t *chunk;
2353 1.1 ad arena_chunk_map_t *mapelm;
2354 1.1 ad unsigned pageind;
2355 1.1 ad
2356 1.1 ad assert(ptr != NULL);
2357 1.1 ad assert(CHUNK_ADDR2BASE(ptr) != ptr);
2358 1.1 ad
2359 1.1 ad /*
2360 1.1 ad * No arena data structures that we query here can change in a way that
2361 1.1 ad * affects this function, so we don't need to lock.
2362 1.1 ad */
2363 1.1 ad chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
2364 1.9 christos pageind = (unsigned)(((uintptr_t)ptr - (uintptr_t)chunk) >>
2365 1.9 christos pagesize_2pow);
2366 1.1 ad mapelm = &chunk->map[pageind];
2367 1.10 simonb if (mapelm->pos != 0 || ptr != (char *)((uintptr_t)chunk) + (pageind <<
2368 1.10 simonb pagesize_2pow)) {
2369 1.10 simonb arena_run_t *run;
2370 1.1 ad
2371 1.1 ad pageind -= mapelm->pos;
2372 1.1 ad
2373 1.10 simonb run = (arena_run_t *)((uintptr_t)chunk + (pageind <<
2374 1.10 simonb pagesize_2pow));
2375 1.1 ad assert(run->magic == ARENA_RUN_MAGIC);
2376 1.1 ad ret = run->bin->reg_size;
2377 1.1 ad } else
2378 1.1 ad ret = mapelm->npages << pagesize_2pow;
2379 1.1 ad
2380 1.1 ad return (ret);
2381 1.1 ad }
2382 1.1 ad
2383 1.1 ad static void *
2384 1.1 ad arena_ralloc(void *ptr, size_t size, size_t oldsize)
2385 1.1 ad {
2386 1.1 ad void *ret;
2387 1.1 ad
2388 1.1 ad /* Avoid moving the allocation if the size class would not change. */
2389 1.1 ad if (size < small_min) {
2390 1.1 ad if (oldsize < small_min &&
2391 1.1 ad ffs((int)(pow2_ceil(size) >> (TINY_MIN_2POW + 1)))
2392 1.1 ad == ffs((int)(pow2_ceil(oldsize) >> (TINY_MIN_2POW + 1))))
2393 1.1 ad goto IN_PLACE;
2394 1.1 ad } else if (size <= small_max) {
2395 1.1 ad if (oldsize >= small_min && oldsize <= small_max &&
2396 1.1 ad (QUANTUM_CEILING(size) >> opt_quantum_2pow)
2397 1.1 ad == (QUANTUM_CEILING(oldsize) >> opt_quantum_2pow))
2398 1.1 ad goto IN_PLACE;
2399 1.1 ad } else {
2400 1.1 ad /*
2401 1.1 ad * We make no attempt to resize runs here, though it would be
2402 1.1 ad * possible to do so.
2403 1.1 ad */
2404 1.1 ad if (oldsize > small_max && PAGE_CEILING(size) == oldsize)
2405 1.1 ad goto IN_PLACE;
2406 1.1 ad }
2407 1.1 ad
2408 1.1 ad /*
2409 1.1 ad * If we get here, then size and oldsize are different enough that we
2410 1.1 ad * need to use a different size class. In that case, fall back to
2411 1.1 ad * allocating new space and copying.
2412 1.1 ad */
2413 1.1 ad ret = arena_malloc(choose_arena(), size);
2414 1.1 ad if (ret == NULL)
2415 1.1 ad return (NULL);
2416 1.1 ad
2417 1.1 ad /* Junk/zero-filling were already done by arena_malloc(). */
2418 1.1 ad if (size < oldsize)
2419 1.1 ad memcpy(ret, ptr, size);
2420 1.1 ad else
2421 1.1 ad memcpy(ret, ptr, oldsize);
2422 1.1 ad idalloc(ptr);
2423 1.1 ad return (ret);
2424 1.1 ad IN_PLACE:
2425 1.57 ad if (OPT(junk) && size < oldsize)
2426 1.1 ad memset((void *)((uintptr_t)ptr + size), 0x5a, oldsize - size);
2427 1.57 ad else if (OPT(zero) && size > oldsize)
2428 1.1 ad memset((void *)((uintptr_t)ptr + oldsize), 0, size - oldsize);
2429 1.1 ad return (ptr);
2430 1.1 ad }
2431 1.1 ad
2432 1.1 ad static void
2433 1.1 ad arena_dalloc(arena_t *arena, arena_chunk_t *chunk, void *ptr)
2434 1.1 ad {
2435 1.1 ad unsigned pageind;
2436 1.1 ad arena_chunk_map_t *mapelm;
2437 1.1 ad size_t size;
2438 1.1 ad
2439 1.1 ad assert(arena != NULL);
2440 1.1 ad assert(arena->magic == ARENA_MAGIC);
2441 1.1 ad assert(chunk->arena == arena);
2442 1.1 ad assert(ptr != NULL);
2443 1.1 ad assert(CHUNK_ADDR2BASE(ptr) != ptr);
2444 1.1 ad
2445 1.9 christos pageind = (unsigned)(((uintptr_t)ptr - (uintptr_t)chunk) >>
2446 1.9 christos pagesize_2pow);
2447 1.1 ad mapelm = &chunk->map[pageind];
2448 1.10 simonb if (mapelm->pos != 0 || ptr != (char *)((uintptr_t)chunk) + (pageind <<
2449 1.10 simonb pagesize_2pow)) {
2450 1.10 simonb arena_run_t *run;
2451 1.1 ad arena_bin_t *bin;
2452 1.1 ad
2453 1.1 ad /* Small allocation. */
2454 1.1 ad
2455 1.1 ad pageind -= mapelm->pos;
2456 1.1 ad
2457 1.10 simonb run = (arena_run_t *)((uintptr_t)chunk + (pageind <<
2458 1.10 simonb pagesize_2pow));
2459 1.1 ad assert(run->magic == ARENA_RUN_MAGIC);
2460 1.1 ad bin = run->bin;
2461 1.1 ad size = bin->reg_size;
2462 1.1 ad
2463 1.57 ad if (OPT(junk))
2464 1.1 ad memset(ptr, 0x5a, size);
2465 1.1 ad
2466 1.1 ad malloc_mutex_lock(&arena->mtx);
2467 1.1 ad arena_run_reg_dalloc(run, bin, ptr, size);
2468 1.1 ad run->nfree++;
2469 1.1 ad
2470 1.1 ad if (run->nfree == bin->nregs) {
2471 1.1 ad /* Deallocate run. */
2472 1.1 ad if (run == bin->runcur)
2473 1.1 ad bin->runcur = NULL;
2474 1.1 ad else if (bin->nregs != 1) {
2475 1.1 ad /*
2476 1.1 ad * This block's conditional is necessary because
2477 1.1 ad * if the run only contains one region, then it
2478 1.1 ad * never gets inserted into the non-full runs
2479 1.1 ad * tree.
2480 1.1 ad */
2481 1.58 ad rb_tree_remove_node(&bin->runs, run);
2482 1.1 ad }
2483 1.1 ad #ifdef MALLOC_DEBUG
2484 1.1 ad run->magic = 0;
2485 1.1 ad #endif
2486 1.1 ad arena_run_dalloc(arena, run, bin->run_size);
2487 1.1 ad #ifdef MALLOC_STATS
2488 1.1 ad bin->stats.curruns--;
2489 1.1 ad #endif
2490 1.1 ad } else if (run->nfree == 1 && run != bin->runcur) {
2491 1.1 ad /*
2492 1.1 ad * Make sure that bin->runcur always refers to the
2493 1.1 ad * lowest non-full run, if one exists.
2494 1.1 ad */
2495 1.1 ad if (bin->runcur == NULL)
2496 1.1 ad bin->runcur = run;
2497 1.1 ad else if ((uintptr_t)run < (uintptr_t)bin->runcur) {
2498 1.1 ad /* Switch runcur. */
2499 1.1 ad if (bin->runcur->nfree > 0) {
2500 1.1 ad /* Insert runcur. */
2501 1.58 ad rb_tree_insert_node(&bin->runs, bin->runcur);
2502 1.1 ad }
2503 1.1 ad bin->runcur = run;
2504 1.2 ad } else {
2505 1.58 ad rb_tree_insert_node(&bin->runs, run);
2506 1.2 ad }
2507 1.1 ad }
2508 1.1 ad #ifdef MALLOC_STATS
2509 1.1 ad arena->stats.allocated_small -= size;
2510 1.1 ad arena->stats.ndalloc_small++;
2511 1.1 ad #endif
2512 1.1 ad } else {
2513 1.1 ad /* Large allocation. */
2514 1.1 ad
2515 1.1 ad size = mapelm->npages << pagesize_2pow;
2516 1.1 ad assert((((uintptr_t)ptr) & pagesize_mask) == 0);
2517 1.1 ad
2518 1.57 ad if (OPT(junk))
2519 1.1 ad memset(ptr, 0x5a, size);
2520 1.1 ad
2521 1.1 ad malloc_mutex_lock(&arena->mtx);
2522 1.1 ad arena_run_dalloc(arena, (arena_run_t *)ptr, size);
2523 1.1 ad #ifdef MALLOC_STATS
2524 1.1 ad arena->stats.allocated_large -= size;
2525 1.1 ad arena->stats.ndalloc_large++;
2526 1.1 ad #endif
2527 1.1 ad }
2528 1.1 ad
2529 1.1 ad malloc_mutex_unlock(&arena->mtx);
2530 1.1 ad }
2531 1.1 ad
2532 1.57 ad static void
2533 1.1 ad arena_new(arena_t *arena)
2534 1.1 ad {
2535 1.1 ad unsigned i;
2536 1.1 ad arena_bin_t *bin;
2537 1.2 ad size_t prev_run_size;
2538 1.1 ad
2539 1.1 ad malloc_mutex_init(&arena->mtx);
2540 1.1 ad
2541 1.1 ad #ifdef MALLOC_STATS
2542 1.1 ad memset(&arena->stats, 0, sizeof(arena_stats_t));
2543 1.1 ad #endif
2544 1.1 ad
2545 1.1 ad /* Initialize chunks. */
2546 1.58 ad rb_tree_init(&arena->chunks, &arena_chunk_tree_ops);
2547 1.1 ad arena->spare = NULL;
2548 1.1 ad
2549 1.1 ad /* Initialize bins. */
2550 1.1 ad prev_run_size = pagesize;
2551 1.1 ad
2552 1.1 ad /* (2^n)-spaced tiny bins. */
2553 1.1 ad for (i = 0; i < ntbins; i++) {
2554 1.1 ad bin = &arena->bins[i];
2555 1.1 ad bin->runcur = NULL;
2556 1.58 ad rb_tree_init(&bin->runs, &arena_run_tree_ops);
2557 1.1 ad
2558 1.1 ad bin->reg_size = (1 << (TINY_MIN_2POW + i));
2559 1.1 ad prev_run_size = arena_bin_run_size_calc(bin, prev_run_size);
2560 1.1 ad
2561 1.1 ad #ifdef MALLOC_STATS
2562 1.1 ad memset(&bin->stats, 0, sizeof(malloc_bin_stats_t));
2563 1.1 ad #endif
2564 1.1 ad }
2565 1.1 ad
2566 1.1 ad /* Quantum-spaced bins. */
2567 1.1 ad for (; i < ntbins + nqbins; i++) {
2568 1.1 ad bin = &arena->bins[i];
2569 1.1 ad bin->runcur = NULL;
2570 1.58 ad rb_tree_init(&bin->runs, &arena_run_tree_ops);
2571 1.1 ad
2572 1.1 ad bin->reg_size = quantum * (i - ntbins + 1);
2573 1.2 ad /*
2574 1.1 ad pow2_size = pow2_ceil(quantum * (i - ntbins + 1));
2575 1.2 ad */
2576 1.1 ad prev_run_size = arena_bin_run_size_calc(bin, prev_run_size);
2577 1.1 ad
2578 1.1 ad #ifdef MALLOC_STATS
2579 1.1 ad memset(&bin->stats, 0, sizeof(malloc_bin_stats_t));
2580 1.1 ad #endif
2581 1.1 ad }
2582 1.1 ad
2583 1.1 ad /* (2^n)-spaced sub-page bins. */
2584 1.1 ad for (; i < ntbins + nqbins + nsbins; i++) {
2585 1.1 ad bin = &arena->bins[i];
2586 1.1 ad bin->runcur = NULL;
2587 1.58 ad rb_tree_init(&bin->runs, &arena_run_tree_ops);
2588 1.1 ad
2589 1.1 ad bin->reg_size = (small_max << (i - (ntbins + nqbins) + 1));
2590 1.1 ad
2591 1.1 ad prev_run_size = arena_bin_run_size_calc(bin, prev_run_size);
2592 1.1 ad
2593 1.1 ad #ifdef MALLOC_STATS
2594 1.1 ad memset(&bin->stats, 0, sizeof(malloc_bin_stats_t));
2595 1.1 ad #endif
2596 1.1 ad }
2597 1.1 ad
2598 1.1 ad #ifdef MALLOC_DEBUG
2599 1.1 ad arena->magic = ARENA_MAGIC;
2600 1.1 ad #endif
2601 1.1 ad }
2602 1.1 ad
2603 1.1 ad /* Create a new arena and insert it into the arenas array at index ind. */
2604 1.1 ad static arena_t *
2605 1.57 ad arenas_extend(void)
2606 1.1 ad {
2607 1.1 ad arena_t *ret;
2608 1.1 ad
2609 1.1 ad /* Allocate enough space for trailing bins. */
2610 1.1 ad ret = (arena_t *)base_alloc(sizeof(arena_t)
2611 1.1 ad + (sizeof(arena_bin_t) * (ntbins + nqbins + nsbins - 1)));
2612 1.57 ad if (ret != NULL) {
2613 1.57 ad arena_new(ret);
2614 1.1 ad return (ret);
2615 1.1 ad }
2616 1.1 ad /* Only reached if there is an OOM error. */
2617 1.1 ad
2618 1.1 ad /*
2619 1.1 ad * OOM here is quite inconvenient to propagate, since dealing with it
2620 1.1 ad * would require a check for failure in the fast path. Instead, punt
2621 1.1 ad * by using arenas[0]. In practice, this is an extremely unlikely
2622 1.1 ad * failure.
2623 1.1 ad */
2624 1.16 christos _malloc_message(getprogname(),
2625 1.1 ad ": (malloc) Error initializing arena\n", "", "");
2626 1.57 ad if (OPT(abort))
2627 1.1 ad abort();
2628 1.1 ad
2629 1.1 ad return (arenas[0]);
2630 1.1 ad }
2631 1.1 ad
2632 1.1 ad /*
2633 1.1 ad * End arena.
2634 1.1 ad */
2635 1.1 ad /******************************************************************************/
2636 1.1 ad /*
2637 1.1 ad * Begin general internal functions.
2638 1.1 ad */
2639 1.1 ad
2640 1.1 ad static void *
2641 1.1 ad huge_malloc(size_t size)
2642 1.1 ad {
2643 1.1 ad void *ret;
2644 1.1 ad size_t csize;
2645 1.1 ad chunk_node_t *node;
2646 1.1 ad
2647 1.1 ad /* Allocate one or more contiguous chunks for this request. */
2648 1.1 ad
2649 1.1 ad csize = CHUNK_CEILING(size);
2650 1.1 ad if (csize == 0) {
2651 1.1 ad /* size is large enough to cause size_t wrap-around. */
2652 1.1 ad return (NULL);
2653 1.1 ad }
2654 1.1 ad
2655 1.1 ad /* Allocate a chunk node with which to track the chunk. */
2656 1.1 ad node = base_chunk_node_alloc();
2657 1.1 ad if (node == NULL)
2658 1.1 ad return (NULL);
2659 1.1 ad
2660 1.1 ad ret = chunk_alloc(csize);
2661 1.1 ad if (ret == NULL) {
2662 1.1 ad base_chunk_node_dealloc(node);
2663 1.1 ad return (NULL);
2664 1.1 ad }
2665 1.1 ad
2666 1.1 ad /* Insert node into huge. */
2667 1.1 ad node->chunk = ret;
2668 1.1 ad node->size = csize;
2669 1.1 ad
2670 1.1 ad malloc_mutex_lock(&chunks_mtx);
2671 1.58 ad rb_tree_insert_node(&huge, node);
2672 1.1 ad #ifdef MALLOC_STATS
2673 1.1 ad huge_nmalloc++;
2674 1.1 ad huge_allocated += csize;
2675 1.1 ad #endif
2676 1.1 ad malloc_mutex_unlock(&chunks_mtx);
2677 1.1 ad
2678 1.57 ad if (OPT(junk))
2679 1.1 ad memset(ret, 0xa5, csize);
2680 1.57 ad else if (OPT(zero))
2681 1.1 ad memset(ret, 0, csize);
2682 1.1 ad
2683 1.1 ad return (ret);
2684 1.1 ad }
2685 1.1 ad
2686 1.1 ad /* Only handles large allocations that require more than chunk alignment. */
2687 1.1 ad static void *
2688 1.1 ad huge_palloc(size_t alignment, size_t size)
2689 1.1 ad {
2690 1.1 ad void *ret;
2691 1.1 ad size_t alloc_size, chunk_size, offset;
2692 1.1 ad chunk_node_t *node;
2693 1.1 ad
2694 1.1 ad /*
2695 1.1 ad * This allocation requires alignment that is even larger than chunk
2696 1.1 ad * alignment. This means that huge_malloc() isn't good enough.
2697 1.1 ad *
2698 1.1 ad * Allocate almost twice as many chunks as are demanded by the size or
2699 1.1 ad * alignment, in order to assure the alignment can be achieved, then
2700 1.1 ad * unmap leading and trailing chunks.
2701 1.1 ad */
2702 1.1 ad assert(alignment >= chunksize);
2703 1.1 ad
2704 1.1 ad chunk_size = CHUNK_CEILING(size);
2705 1.1 ad
2706 1.1 ad if (size >= alignment)
2707 1.1 ad alloc_size = chunk_size + alignment - chunksize;
2708 1.1 ad else
2709 1.1 ad alloc_size = (alignment << 1) - chunksize;
2710 1.1 ad
2711 1.1 ad /* Allocate a chunk node with which to track the chunk. */
2712 1.1 ad node = base_chunk_node_alloc();
2713 1.1 ad if (node == NULL)
2714 1.1 ad return (NULL);
2715 1.1 ad
2716 1.1 ad ret = chunk_alloc(alloc_size);
2717 1.1 ad if (ret == NULL) {
2718 1.1 ad base_chunk_node_dealloc(node);
2719 1.1 ad return (NULL);
2720 1.1 ad }
2721 1.1 ad
2722 1.1 ad offset = (uintptr_t)ret & (alignment - 1);
2723 1.1 ad assert((offset & chunksize_mask) == 0);
2724 1.1 ad assert(offset < alloc_size);
2725 1.1 ad if (offset == 0) {
2726 1.1 ad /* Trim trailing space. */
2727 1.1 ad chunk_dealloc((void *)((uintptr_t)ret + chunk_size), alloc_size
2728 1.1 ad - chunk_size);
2729 1.1 ad } else {
2730 1.1 ad size_t trailsize;
2731 1.1 ad
2732 1.1 ad /* Trim leading space. */
2733 1.1 ad chunk_dealloc(ret, alignment - offset);
2734 1.1 ad
2735 1.1 ad ret = (void *)((uintptr_t)ret + (alignment - offset));
2736 1.1 ad
2737 1.1 ad trailsize = alloc_size - (alignment - offset) - chunk_size;
2738 1.1 ad if (trailsize != 0) {
2739 1.1 ad /* Trim trailing space. */
2740 1.1 ad assert(trailsize < alloc_size);
2741 1.1 ad chunk_dealloc((void *)((uintptr_t)ret + chunk_size),
2742 1.1 ad trailsize);
2743 1.1 ad }
2744 1.1 ad }
2745 1.1 ad
2746 1.1 ad /* Insert node into huge. */
2747 1.1 ad node->chunk = ret;
2748 1.1 ad node->size = chunk_size;
2749 1.1 ad
2750 1.1 ad malloc_mutex_lock(&chunks_mtx);
2751 1.58 ad rb_tree_insert_node(&huge, node);
2752 1.1 ad #ifdef MALLOC_STATS
2753 1.1 ad huge_nmalloc++;
2754 1.1 ad huge_allocated += chunk_size;
2755 1.1 ad #endif
2756 1.1 ad malloc_mutex_unlock(&chunks_mtx);
2757 1.1 ad
2758 1.57 ad if (OPT(junk))
2759 1.1 ad memset(ret, 0xa5, chunk_size);
2760 1.57 ad else if (OPT(zero))
2761 1.1 ad memset(ret, 0, chunk_size);
2762 1.1 ad
2763 1.1 ad return (ret);
2764 1.1 ad }
2765 1.1 ad
2766 1.1 ad static void *
2767 1.1 ad huge_ralloc(void *ptr, size_t size, size_t oldsize)
2768 1.1 ad {
2769 1.1 ad void *ret;
2770 1.1 ad
2771 1.1 ad /* Avoid moving the allocation if the size class would not change. */
2772 1.1 ad if (oldsize > arena_maxclass &&
2773 1.1 ad CHUNK_CEILING(size) == CHUNK_CEILING(oldsize)) {
2774 1.57 ad if (OPT(junk) && size < oldsize) {
2775 1.1 ad memset((void *)((uintptr_t)ptr + size), 0x5a, oldsize
2776 1.1 ad - size);
2777 1.57 ad } else if (OPT(zero) && size > oldsize) {
2778 1.1 ad memset((void *)((uintptr_t)ptr + oldsize), 0, size
2779 1.1 ad - oldsize);
2780 1.1 ad }
2781 1.1 ad return (ptr);
2782 1.1 ad }
2783 1.1 ad
2784 1.8 yamt if (CHUNK_ADDR2BASE(ptr) == ptr
2785 1.8 yamt #ifdef USE_BRK
2786 1.8 yamt && ((uintptr_t)ptr < (uintptr_t)brk_base
2787 1.8 yamt || (uintptr_t)ptr >= (uintptr_t)brk_max)
2788 1.8 yamt #endif
2789 1.8 yamt ) {
2790 1.8 yamt chunk_node_t *node, key;
2791 1.8 yamt void *newptr;
2792 1.8 yamt size_t oldcsize;
2793 1.8 yamt size_t newcsize;
2794 1.8 yamt
2795 1.8 yamt newcsize = CHUNK_CEILING(size);
2796 1.8 yamt oldcsize = CHUNK_CEILING(oldsize);
2797 1.8 yamt assert(oldcsize != newcsize);
2798 1.8 yamt if (newcsize == 0) {
2799 1.8 yamt /* size_t wrap-around */
2800 1.8 yamt return (NULL);
2801 1.8 yamt }
2802 1.21 enami
2803 1.21 enami /*
2804 1.21 enami * Remove the old region from the tree now. If mremap()
2805 1.21 enami * returns the region to the system, other thread may
2806 1.21 enami * map it for same huge allocation and insert it to the
2807 1.21 enami * tree before we acquire the mutex lock again.
2808 1.21 enami */
2809 1.21 enami malloc_mutex_lock(&chunks_mtx);
2810 1.57 ad key.chunk = __UNCONST(ptr);
2811 1.58 ad node = rb_tree_find_node(&huge, &key);
2812 1.21 enami assert(node != NULL);
2813 1.21 enami assert(node->chunk == ptr);
2814 1.21 enami assert(node->size == oldcsize);
2815 1.58 ad rb_tree_remove_node(&huge, node);
2816 1.21 enami malloc_mutex_unlock(&chunks_mtx);
2817 1.21 enami
2818 1.8 yamt newptr = mremap(ptr, oldcsize, NULL, newcsize,
2819 1.8 yamt MAP_ALIGNED(chunksize_2pow));
2820 1.21 enami if (newptr == MAP_FAILED) {
2821 1.21 enami /* We still own the old region. */
2822 1.21 enami malloc_mutex_lock(&chunks_mtx);
2823 1.58 ad rb_tree_insert_node(&huge, node);
2824 1.21 enami malloc_mutex_unlock(&chunks_mtx);
2825 1.21 enami } else {
2826 1.8 yamt assert(CHUNK_ADDR2BASE(newptr) == newptr);
2827 1.8 yamt
2828 1.21 enami /* Insert new or resized old region. */
2829 1.8 yamt malloc_mutex_lock(&chunks_mtx);
2830 1.8 yamt node->size = newcsize;
2831 1.21 enami node->chunk = newptr;
2832 1.58 ad rb_tree_insert_node(&huge, node);
2833 1.8 yamt #ifdef MALLOC_STATS
2834 1.8 yamt huge_nralloc++;
2835 1.8 yamt huge_allocated += newcsize - oldcsize;
2836 1.8 yamt if (newcsize > oldcsize) {
2837 1.8 yamt stats_chunks.curchunks +=
2838 1.8 yamt (newcsize - oldcsize) / chunksize;
2839 1.8 yamt if (stats_chunks.curchunks >
2840 1.8 yamt stats_chunks.highchunks)
2841 1.8 yamt stats_chunks.highchunks =
2842 1.8 yamt stats_chunks.curchunks;
2843 1.8 yamt } else {
2844 1.8 yamt stats_chunks.curchunks -=
2845 1.8 yamt (oldcsize - newcsize) / chunksize;
2846 1.8 yamt }
2847 1.8 yamt #endif
2848 1.8 yamt malloc_mutex_unlock(&chunks_mtx);
2849 1.8 yamt
2850 1.57 ad if (OPT(junk) && size < oldsize) {
2851 1.8 yamt memset((void *)((uintptr_t)newptr + size), 0x5a,
2852 1.8 yamt newcsize - size);
2853 1.57 ad } else if (OPT(zero) && size > oldsize) {
2854 1.8 yamt memset((void *)((uintptr_t)newptr + oldsize), 0,
2855 1.8 yamt size - oldsize);
2856 1.8 yamt }
2857 1.8 yamt return (newptr);
2858 1.8 yamt }
2859 1.8 yamt }
2860 1.8 yamt
2861 1.1 ad /*
2862 1.1 ad * If we get here, then size and oldsize are different enough that we
2863 1.1 ad * need to use a different size class. In that case, fall back to
2864 1.1 ad * allocating new space and copying.
2865 1.1 ad */
2866 1.1 ad ret = huge_malloc(size);
2867 1.1 ad if (ret == NULL)
2868 1.1 ad return (NULL);
2869 1.1 ad
2870 1.1 ad if (CHUNK_ADDR2BASE(ptr) == ptr) {
2871 1.1 ad /* The old allocation is a chunk. */
2872 1.1 ad if (size < oldsize)
2873 1.1 ad memcpy(ret, ptr, size);
2874 1.1 ad else
2875 1.1 ad memcpy(ret, ptr, oldsize);
2876 1.1 ad } else {
2877 1.1 ad /* The old allocation is a region. */
2878 1.1 ad assert(oldsize < size);
2879 1.1 ad memcpy(ret, ptr, oldsize);
2880 1.1 ad }
2881 1.1 ad idalloc(ptr);
2882 1.1 ad return (ret);
2883 1.1 ad }
2884 1.1 ad
2885 1.1 ad static void
2886 1.1 ad huge_dalloc(void *ptr)
2887 1.1 ad {
2888 1.1 ad chunk_node_t key;
2889 1.1 ad chunk_node_t *node;
2890 1.1 ad
2891 1.1 ad malloc_mutex_lock(&chunks_mtx);
2892 1.1 ad
2893 1.1 ad /* Extract from tree of huge allocations. */
2894 1.1 ad key.chunk = ptr;
2895 1.58 ad node = rb_tree_find_node(&huge, &key);
2896 1.1 ad assert(node != NULL);
2897 1.1 ad assert(node->chunk == ptr);
2898 1.58 ad rb_tree_remove_node(&huge, node);
2899 1.1 ad
2900 1.1 ad #ifdef MALLOC_STATS
2901 1.1 ad huge_ndalloc++;
2902 1.1 ad huge_allocated -= node->size;
2903 1.1 ad #endif
2904 1.1 ad
2905 1.1 ad malloc_mutex_unlock(&chunks_mtx);
2906 1.1 ad
2907 1.1 ad /* Unmap chunk. */
2908 1.1 ad #ifdef USE_BRK
2909 1.57 ad if (OPT(junk))
2910 1.1 ad memset(node->chunk, 0x5a, node->size);
2911 1.1 ad #endif
2912 1.1 ad chunk_dealloc(node->chunk, node->size);
2913 1.1 ad
2914 1.1 ad base_chunk_node_dealloc(node);
2915 1.1 ad }
2916 1.1 ad
2917 1.1 ad static void *
2918 1.1 ad imalloc(size_t size)
2919 1.1 ad {
2920 1.1 ad void *ret;
2921 1.1 ad
2922 1.1 ad assert(size != 0);
2923 1.1 ad
2924 1.1 ad if (size <= arena_maxclass)
2925 1.1 ad ret = arena_malloc(choose_arena(), size);
2926 1.1 ad else
2927 1.1 ad ret = huge_malloc(size);
2928 1.1 ad
2929 1.1 ad return (ret);
2930 1.1 ad }
2931 1.1 ad
2932 1.1 ad static void *
2933 1.1 ad ipalloc(size_t alignment, size_t size)
2934 1.1 ad {
2935 1.1 ad void *ret;
2936 1.1 ad size_t ceil_size;
2937 1.1 ad
2938 1.1 ad /*
2939 1.1 ad * Round size up to the nearest multiple of alignment.
2940 1.1 ad *
2941 1.1 ad * This done, we can take advantage of the fact that for each small
2942 1.1 ad * size class, every object is aligned at the smallest power of two
2943 1.1 ad * that is non-zero in the base two representation of the size. For
2944 1.1 ad * example:
2945 1.1 ad *
2946 1.1 ad * Size | Base 2 | Minimum alignment
2947 1.1 ad * -----+----------+------------------
2948 1.1 ad * 96 | 1100000 | 32
2949 1.1 ad * 144 | 10100000 | 32
2950 1.1 ad * 192 | 11000000 | 64
2951 1.1 ad *
2952 1.1 ad * Depending on runtime settings, it is possible that arena_malloc()
2953 1.1 ad * will further round up to a power of two, but that never causes
2954 1.1 ad * correctness issues.
2955 1.1 ad */
2956 1.1 ad ceil_size = (size + (alignment - 1)) & (-alignment);
2957 1.1 ad /*
2958 1.1 ad * (ceil_size < size) protects against the combination of maximal
2959 1.1 ad * alignment and size greater than maximal alignment.
2960 1.1 ad */
2961 1.1 ad if (ceil_size < size) {
2962 1.1 ad /* size_t overflow. */
2963 1.1 ad return (NULL);
2964 1.1 ad }
2965 1.1 ad
2966 1.1 ad if (ceil_size <= pagesize || (alignment <= pagesize
2967 1.1 ad && ceil_size <= arena_maxclass))
2968 1.1 ad ret = arena_malloc(choose_arena(), ceil_size);
2969 1.1 ad else {
2970 1.1 ad size_t run_size;
2971 1.1 ad
2972 1.1 ad /*
2973 1.1 ad * We can't achieve sub-page alignment, so round up alignment
2974 1.1 ad * permanently; it makes later calculations simpler.
2975 1.1 ad */
2976 1.1 ad alignment = PAGE_CEILING(alignment);
2977 1.1 ad ceil_size = PAGE_CEILING(size);
2978 1.1 ad /*
2979 1.1 ad * (ceil_size < size) protects against very large sizes within
2980 1.1 ad * pagesize of SIZE_T_MAX.
2981 1.1 ad *
2982 1.1 ad * (ceil_size + alignment < ceil_size) protects against the
2983 1.1 ad * combination of maximal alignment and ceil_size large enough
2984 1.1 ad * to cause overflow. This is similar to the first overflow
2985 1.1 ad * check above, but it needs to be repeated due to the new
2986 1.1 ad * ceil_size value, which may now be *equal* to maximal
2987 1.1 ad * alignment, whereas before we only detected overflow if the
2988 1.1 ad * original size was *greater* than maximal alignment.
2989 1.1 ad */
2990 1.1 ad if (ceil_size < size || ceil_size + alignment < ceil_size) {
2991 1.1 ad /* size_t overflow. */
2992 1.1 ad return (NULL);
2993 1.1 ad }
2994 1.1 ad
2995 1.1 ad /*
2996 1.1 ad * Calculate the size of the over-size run that arena_palloc()
2997 1.1 ad * would need to allocate in order to guarantee the alignment.
2998 1.1 ad */
2999 1.1 ad if (ceil_size >= alignment)
3000 1.1 ad run_size = ceil_size + alignment - pagesize;
3001 1.1 ad else {
3002 1.1 ad /*
3003 1.1 ad * It is possible that (alignment << 1) will cause
3004 1.1 ad * overflow, but it doesn't matter because we also
3005 1.1 ad * subtract pagesize, which in the case of overflow
3006 1.1 ad * leaves us with a very large run_size. That causes
3007 1.1 ad * the first conditional below to fail, which means
3008 1.1 ad * that the bogus run_size value never gets used for
3009 1.1 ad * anything important.
3010 1.1 ad */
3011 1.1 ad run_size = (alignment << 1) - pagesize;
3012 1.1 ad }
3013 1.1 ad
3014 1.1 ad if (run_size <= arena_maxclass) {
3015 1.1 ad ret = arena_palloc(choose_arena(), alignment, ceil_size,
3016 1.1 ad run_size);
3017 1.1 ad } else if (alignment <= chunksize)
3018 1.1 ad ret = huge_malloc(ceil_size);
3019 1.1 ad else
3020 1.1 ad ret = huge_palloc(alignment, ceil_size);
3021 1.1 ad }
3022 1.1 ad
3023 1.1 ad assert(((uintptr_t)ret & (alignment - 1)) == 0);
3024 1.1 ad return (ret);
3025 1.1 ad }
3026 1.1 ad
3027 1.1 ad static void *
3028 1.1 ad icalloc(size_t size)
3029 1.1 ad {
3030 1.1 ad void *ret;
3031 1.1 ad
3032 1.1 ad if (size <= arena_maxclass) {
3033 1.1 ad ret = arena_malloc(choose_arena(), size);
3034 1.1 ad if (ret == NULL)
3035 1.1 ad return (NULL);
3036 1.1 ad memset(ret, 0, size);
3037 1.1 ad } else {
3038 1.1 ad /*
3039 1.1 ad * The virtual memory system provides zero-filled pages, so
3040 1.1 ad * there is no need to do so manually, unless opt_junk is
3041 1.1 ad * enabled, in which case huge_malloc() fills huge allocations
3042 1.1 ad * with junk.
3043 1.1 ad */
3044 1.1 ad ret = huge_malloc(size);
3045 1.1 ad if (ret == NULL)
3046 1.1 ad return (NULL);
3047 1.1 ad
3048 1.57 ad if (OPT(junk))
3049 1.1 ad memset(ret, 0, size);
3050 1.1 ad #ifdef USE_BRK
3051 1.1 ad else if ((uintptr_t)ret >= (uintptr_t)brk_base
3052 1.1 ad && (uintptr_t)ret < (uintptr_t)brk_max) {
3053 1.1 ad /*
3054 1.1 ad * This may be a re-used brk chunk. Therefore, zero
3055 1.1 ad * the memory.
3056 1.1 ad */
3057 1.1 ad memset(ret, 0, size);
3058 1.1 ad }
3059 1.1 ad #endif
3060 1.1 ad }
3061 1.1 ad
3062 1.1 ad return (ret);
3063 1.1 ad }
3064 1.1 ad
3065 1.1 ad static size_t
3066 1.1 ad isalloc(const void *ptr)
3067 1.1 ad {
3068 1.1 ad size_t ret;
3069 1.1 ad arena_chunk_t *chunk;
3070 1.1 ad
3071 1.1 ad assert(ptr != NULL);
3072 1.1 ad
3073 1.1 ad chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
3074 1.1 ad if (chunk != ptr) {
3075 1.1 ad /* Region. */
3076 1.1 ad assert(chunk->arena->magic == ARENA_MAGIC);
3077 1.1 ad
3078 1.1 ad ret = arena_salloc(ptr);
3079 1.1 ad } else {
3080 1.1 ad chunk_node_t *node, key;
3081 1.1 ad
3082 1.1 ad /* Chunk (huge allocation). */
3083 1.1 ad
3084 1.1 ad malloc_mutex_lock(&chunks_mtx);
3085 1.1 ad
3086 1.1 ad /* Extract from tree of huge allocations. */
3087 1.57 ad key.chunk = __UNCONST(ptr);
3088 1.58 ad node = rb_tree_find_node(&huge, &key);
3089 1.1 ad assert(node != NULL);
3090 1.1 ad
3091 1.1 ad ret = node->size;
3092 1.1 ad
3093 1.1 ad malloc_mutex_unlock(&chunks_mtx);
3094 1.1 ad }
3095 1.1 ad
3096 1.1 ad return (ret);
3097 1.1 ad }
3098 1.1 ad
3099 1.1 ad static void *
3100 1.1 ad iralloc(void *ptr, size_t size)
3101 1.1 ad {
3102 1.1 ad void *ret;
3103 1.1 ad size_t oldsize;
3104 1.1 ad
3105 1.1 ad assert(ptr != NULL);
3106 1.1 ad assert(size != 0);
3107 1.1 ad
3108 1.1 ad oldsize = isalloc(ptr);
3109 1.1 ad
3110 1.1 ad if (size <= arena_maxclass)
3111 1.1 ad ret = arena_ralloc(ptr, size, oldsize);
3112 1.1 ad else
3113 1.1 ad ret = huge_ralloc(ptr, size, oldsize);
3114 1.1 ad
3115 1.1 ad return (ret);
3116 1.1 ad }
3117 1.1 ad
3118 1.1 ad static void
3119 1.1 ad idalloc(void *ptr)
3120 1.1 ad {
3121 1.1 ad arena_chunk_t *chunk;
3122 1.1 ad
3123 1.1 ad assert(ptr != NULL);
3124 1.1 ad
3125 1.1 ad chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
3126 1.1 ad if (chunk != ptr) {
3127 1.1 ad /* Region. */
3128 1.1 ad arena_dalloc(chunk->arena, chunk, ptr);
3129 1.1 ad } else
3130 1.1 ad huge_dalloc(ptr);
3131 1.1 ad }
3132 1.1 ad
3133 1.1 ad static void
3134 1.1 ad malloc_print_stats(void)
3135 1.1 ad {
3136 1.1 ad
3137 1.57 ad if (OPT(print_stats)) {
3138 1.1 ad char s[UMAX2S_BUFSIZE];
3139 1.1 ad _malloc_message("___ Begin malloc statistics ___\n", "", "",
3140 1.1 ad "");
3141 1.1 ad _malloc_message("Assertions ",
3142 1.1 ad #ifdef NDEBUG
3143 1.1 ad "disabled",
3144 1.1 ad #else
3145 1.1 ad "enabled",
3146 1.1 ad #endif
3147 1.1 ad "\n", "");
3148 1.1 ad _malloc_message("Boolean MALLOC_OPTIONS: ",
3149 1.1 ad opt_abort ? "A" : "a",
3150 1.1 ad opt_junk ? "J" : "j",
3151 1.1 ad opt_hint ? "H" : "h");
3152 1.57 ad _malloc_message(OPT(utrace) ? "PU" : "Pu",
3153 1.1 ad opt_sysv ? "V" : "v",
3154 1.1 ad opt_xmalloc ? "X" : "x",
3155 1.1 ad opt_zero ? "Z\n" : "z\n");
3156 1.1 ad
3157 1.28 christos _malloc_message("CPUs: ", size_t2s(ncpus, s), "\n", "");
3158 1.28 christos _malloc_message("Pointer size: ", size_t2s(sizeof(void *), s),
3159 1.1 ad "\n", "");
3160 1.28 christos _malloc_message("Quantum size: ", size_t2s(quantum, s), "\n", "");
3161 1.28 christos _malloc_message("Max small size: ", size_t2s(small_max, s), "\n",
3162 1.1 ad "");
3163 1.1 ad
3164 1.28 christos _malloc_message("Chunk size: ", size_t2s(chunksize, s), "", "");
3165 1.28 christos _malloc_message(" (2^", size_t2s((size_t)opt_chunk_2pow, s),
3166 1.27 matt ")\n", "");
3167 1.1 ad
3168 1.1 ad #ifdef MALLOC_STATS
3169 1.1 ad {
3170 1.1 ad size_t allocated, mapped;
3171 1.1 ad unsigned i;
3172 1.1 ad arena_t *arena;
3173 1.1 ad
3174 1.1 ad /* Calculate and print allocated/mapped stats. */
3175 1.1 ad
3176 1.1 ad /* arenas. */
3177 1.57 ad for (i = 0, allocated = 0; i < ncpus; i++) {
3178 1.1 ad if (arenas[i] != NULL) {
3179 1.1 ad malloc_mutex_lock(&arenas[i]->mtx);
3180 1.1 ad allocated +=
3181 1.1 ad arenas[i]->stats.allocated_small;
3182 1.1 ad allocated +=
3183 1.1 ad arenas[i]->stats.allocated_large;
3184 1.1 ad malloc_mutex_unlock(&arenas[i]->mtx);
3185 1.1 ad }
3186 1.1 ad }
3187 1.1 ad
3188 1.1 ad /* huge/base. */
3189 1.1 ad malloc_mutex_lock(&chunks_mtx);
3190 1.1 ad allocated += huge_allocated;
3191 1.1 ad mapped = stats_chunks.curchunks * chunksize;
3192 1.1 ad malloc_mutex_unlock(&chunks_mtx);
3193 1.1 ad
3194 1.1 ad malloc_mutex_lock(&base_mtx);
3195 1.1 ad mapped += base_mapped;
3196 1.1 ad malloc_mutex_unlock(&base_mtx);
3197 1.1 ad
3198 1.1 ad malloc_printf("Allocated: %zu, mapped: %zu\n",
3199 1.1 ad allocated, mapped);
3200 1.1 ad
3201 1.1 ad /* Print chunk stats. */
3202 1.1 ad {
3203 1.1 ad chunk_stats_t chunks_stats;
3204 1.1 ad
3205 1.1 ad malloc_mutex_lock(&chunks_mtx);
3206 1.1 ad chunks_stats = stats_chunks;
3207 1.1 ad malloc_mutex_unlock(&chunks_mtx);
3208 1.1 ad
3209 1.1 ad malloc_printf("chunks: nchunks "
3210 1.1 ad "highchunks curchunks\n");
3211 1.1 ad malloc_printf(" %13llu%13lu%13lu\n",
3212 1.1 ad chunks_stats.nchunks,
3213 1.1 ad chunks_stats.highchunks,
3214 1.1 ad chunks_stats.curchunks);
3215 1.1 ad }
3216 1.1 ad
3217 1.1 ad /* Print chunk stats. */
3218 1.1 ad malloc_printf(
3219 1.8 yamt "huge: nmalloc ndalloc "
3220 1.8 yamt "nralloc allocated\n");
3221 1.8 yamt malloc_printf(" %12llu %12llu %12llu %12zu\n",
3222 1.8 yamt huge_nmalloc, huge_ndalloc, huge_nralloc,
3223 1.8 yamt huge_allocated);
3224 1.1 ad
3225 1.1 ad /* Print stats for each arena. */
3226 1.57 ad for (i = 0; i < ncpus; i++) {
3227 1.1 ad arena = arenas[i];
3228 1.1 ad if (arena != NULL) {
3229 1.1 ad malloc_printf(
3230 1.2 ad "\narenas[%u] @ %p\n", i, arena);
3231 1.1 ad malloc_mutex_lock(&arena->mtx);
3232 1.1 ad stats_print(arena);
3233 1.1 ad malloc_mutex_unlock(&arena->mtx);
3234 1.1 ad }
3235 1.1 ad }
3236 1.1 ad }
3237 1.1 ad #endif /* #ifdef MALLOC_STATS */
3238 1.1 ad _malloc_message("--- End malloc statistics ---\n", "", "", "");
3239 1.1 ad }
3240 1.1 ad }
3241 1.1 ad
3242 1.1 ad /*
3243 1.57 ad * libpthread might call malloc(3), so the malloc implementation has to take
3244 1.57 ad * pains to avoid infinite recursion during initialization.
3245 1.1 ad */
3246 1.1 ad static inline bool
3247 1.1 ad malloc_init(void)
3248 1.1 ad {
3249 1.1 ad
3250 1.57 ad if (__predict_false(malloc_initialized == false))
3251 1.1 ad return (malloc_init_hard());
3252 1.1 ad
3253 1.1 ad return (false);
3254 1.1 ad }
3255 1.1 ad
3256 1.1 ad static bool
3257 1.1 ad malloc_init_hard(void)
3258 1.1 ad {
3259 1.1 ad unsigned i, j;
3260 1.9 christos ssize_t linklen;
3261 1.1 ad char buf[PATH_MAX + 1];
3262 1.2 ad const char *opts = "";
3263 1.23 christos int serrno;
3264 1.1 ad
3265 1.1 ad malloc_mutex_lock(&init_lock);
3266 1.1 ad if (malloc_initialized) {
3267 1.1 ad /*
3268 1.1 ad * Another thread initialized the allocator before this one
3269 1.1 ad * acquired init_lock.
3270 1.1 ad */
3271 1.1 ad malloc_mutex_unlock(&init_lock);
3272 1.1 ad return (false);
3273 1.1 ad }
3274 1.1 ad
3275 1.24 christos serrno = errno;
3276 1.1 ad /* Get number of CPUs. */
3277 1.1 ad {
3278 1.1 ad int mib[2];
3279 1.1 ad size_t len;
3280 1.1 ad
3281 1.1 ad mib[0] = CTL_HW;
3282 1.1 ad mib[1] = HW_NCPU;
3283 1.1 ad len = sizeof(ncpus);
3284 1.1 ad if (sysctl(mib, 2, &ncpus, &len, (void *) 0, 0) == -1) {
3285 1.1 ad /* Error. */
3286 1.1 ad ncpus = 1;
3287 1.1 ad }
3288 1.1 ad }
3289 1.1 ad
3290 1.1 ad /* Get page size. */
3291 1.1 ad {
3292 1.1 ad long result;
3293 1.1 ad
3294 1.57 ad result = getpagesize();
3295 1.1 ad assert(result != -1);
3296 1.1 ad pagesize = (unsigned) result;
3297 1.1 ad
3298 1.1 ad /*
3299 1.1 ad * We assume that pagesize is a power of 2 when calculating
3300 1.1 ad * pagesize_mask and pagesize_2pow.
3301 1.1 ad */
3302 1.1 ad assert(((result - 1) & result) == 0);
3303 1.1 ad pagesize_mask = result - 1;
3304 1.1 ad pagesize_2pow = ffs((int)result) - 1;
3305 1.1 ad }
3306 1.1 ad
3307 1.1 ad for (i = 0; i < 3; i++) {
3308 1.1 ad /* Get runtime configuration. */
3309 1.1 ad switch (i) {
3310 1.1 ad case 0:
3311 1.1 ad if ((linklen = readlink("/etc/malloc.conf", buf,
3312 1.57 ad sizeof(buf) - 1)) != -1) {
3313 1.1 ad /*
3314 1.1 ad * Use the contents of the "/etc/malloc.conf"
3315 1.1 ad * symbolic link's name.
3316 1.1 ad */
3317 1.1 ad buf[linklen] = '\0';
3318 1.1 ad opts = buf;
3319 1.1 ad } else {
3320 1.1 ad /* No configuration specified. */
3321 1.1 ad buf[0] = '\0';
3322 1.1 ad opts = buf;
3323 1.1 ad }
3324 1.1 ad break;
3325 1.1 ad case 1:
3326 1.18 ad if ((opts = getenv("MALLOC_OPTIONS")) != NULL &&
3327 1.18 ad issetugid() == 0) {
3328 1.1 ad /*
3329 1.1 ad * Do nothing; opts is already initialized to
3330 1.1 ad * the value of the MALLOC_OPTIONS environment
3331 1.1 ad * variable.
3332 1.1 ad */
3333 1.1 ad } else {
3334 1.1 ad /* No configuration specified. */
3335 1.1 ad buf[0] = '\0';
3336 1.1 ad opts = buf;
3337 1.1 ad }
3338 1.1 ad break;
3339 1.1 ad case 2:
3340 1.1 ad if (_malloc_options != NULL) {
3341 1.57 ad /*
3342 1.57 ad * Use options that were compiled into the program.
3343 1.57 ad */
3344 1.57 ad opts = _malloc_options;
3345 1.1 ad } else {
3346 1.1 ad /* No configuration specified. */
3347 1.1 ad buf[0] = '\0';
3348 1.1 ad opts = buf;
3349 1.1 ad }
3350 1.1 ad break;
3351 1.1 ad default:
3352 1.1 ad /* NOTREACHED */
3353 1.7 yamt /* LINTED */
3354 1.1 ad assert(false);
3355 1.1 ad }
3356 1.1 ad
3357 1.1 ad for (j = 0; opts[j] != '\0'; j++) {
3358 1.1 ad switch (opts[j]) {
3359 1.1 ad case 'a':
3360 1.1 ad opt_abort = false;
3361 1.1 ad break;
3362 1.1 ad case 'A':
3363 1.1 ad opt_abort = true;
3364 1.1 ad break;
3365 1.1 ad case 'h':
3366 1.1 ad opt_hint = false;
3367 1.1 ad break;
3368 1.1 ad case 'H':
3369 1.1 ad opt_hint = true;
3370 1.1 ad break;
3371 1.1 ad case 'j':
3372 1.1 ad opt_junk = false;
3373 1.1 ad break;
3374 1.1 ad case 'J':
3375 1.1 ad opt_junk = true;
3376 1.1 ad break;
3377 1.1 ad case 'k':
3378 1.1 ad /*
3379 1.1 ad * Chunks always require at least one header
3380 1.1 ad * page, so chunks can never be smaller than
3381 1.1 ad * two pages.
3382 1.1 ad */
3383 1.1 ad if (opt_chunk_2pow > pagesize_2pow + 1)
3384 1.1 ad opt_chunk_2pow--;
3385 1.1 ad break;
3386 1.1 ad case 'K':
3387 1.20 lukem if (opt_chunk_2pow + 1 <
3388 1.20 lukem (int)(sizeof(size_t) << 3))
3389 1.1 ad opt_chunk_2pow++;
3390 1.1 ad break;
3391 1.1 ad case 'p':
3392 1.1 ad opt_print_stats = false;
3393 1.1 ad break;
3394 1.1 ad case 'P':
3395 1.1 ad opt_print_stats = true;
3396 1.1 ad break;
3397 1.1 ad case 'q':
3398 1.1 ad if (opt_quantum_2pow > QUANTUM_2POW_MIN)
3399 1.1 ad opt_quantum_2pow--;
3400 1.1 ad break;
3401 1.1 ad case 'Q':
3402 1.1 ad if (opt_quantum_2pow < pagesize_2pow - 1)
3403 1.1 ad opt_quantum_2pow++;
3404 1.1 ad break;
3405 1.1 ad case 's':
3406 1.1 ad if (opt_small_max_2pow > QUANTUM_2POW_MIN)
3407 1.1 ad opt_small_max_2pow--;
3408 1.1 ad break;
3409 1.1 ad case 'S':
3410 1.1 ad if (opt_small_max_2pow < pagesize_2pow - 1)
3411 1.1 ad opt_small_max_2pow++;
3412 1.1 ad break;
3413 1.1 ad case 'u':
3414 1.1 ad opt_utrace = false;
3415 1.1 ad break;
3416 1.1 ad case 'U':
3417 1.1 ad opt_utrace = true;
3418 1.1 ad break;
3419 1.1 ad case 'v':
3420 1.1 ad opt_sysv = false;
3421 1.1 ad break;
3422 1.1 ad case 'V':
3423 1.1 ad opt_sysv = true;
3424 1.1 ad break;
3425 1.1 ad case 'x':
3426 1.1 ad opt_xmalloc = false;
3427 1.1 ad break;
3428 1.1 ad case 'X':
3429 1.1 ad opt_xmalloc = true;
3430 1.1 ad break;
3431 1.1 ad case 'z':
3432 1.1 ad opt_zero = false;
3433 1.1 ad break;
3434 1.1 ad case 'Z':
3435 1.1 ad opt_zero = true;
3436 1.1 ad break;
3437 1.1 ad default: {
3438 1.1 ad char cbuf[2];
3439 1.55 skrll
3440 1.1 ad cbuf[0] = opts[j];
3441 1.1 ad cbuf[1] = '\0';
3442 1.16 christos _malloc_message(getprogname(),
3443 1.1 ad ": (malloc) Unsupported character in "
3444 1.1 ad "malloc options: '", cbuf, "'\n");
3445 1.1 ad }
3446 1.1 ad }
3447 1.1 ad }
3448 1.1 ad }
3449 1.24 christos errno = serrno;
3450 1.1 ad
3451 1.1 ad /* Take care to call atexit() only once. */
3452 1.57 ad if (OPT(print_stats)) {
3453 1.1 ad /* Print statistics at exit. */
3454 1.1 ad atexit(malloc_print_stats);
3455 1.1 ad }
3456 1.1 ad
3457 1.1 ad /* Set variables according to the value of opt_small_max_2pow. */
3458 1.1 ad if (opt_small_max_2pow < opt_quantum_2pow)
3459 1.1 ad opt_small_max_2pow = opt_quantum_2pow;
3460 1.57 ad small_max = (1U << opt_small_max_2pow);
3461 1.1 ad
3462 1.1 ad /* Set bin-related variables. */
3463 1.1 ad bin_maxclass = (pagesize >> 1);
3464 1.1 ad assert(opt_quantum_2pow >= TINY_MIN_2POW);
3465 1.9 christos ntbins = (unsigned)(opt_quantum_2pow - TINY_MIN_2POW);
3466 1.57 ad assert(ntbins <= (unsigned)opt_quantum_2pow);
3467 1.9 christos nqbins = (unsigned)(small_max >> opt_quantum_2pow);
3468 1.9 christos nsbins = (unsigned)(pagesize_2pow - opt_small_max_2pow - 1);
3469 1.1 ad
3470 1.1 ad /* Set variables according to the value of opt_quantum_2pow. */
3471 1.1 ad quantum = (1 << opt_quantum_2pow);
3472 1.1 ad quantum_mask = quantum - 1;
3473 1.1 ad if (ntbins > 0)
3474 1.1 ad small_min = (quantum >> 1) + 1;
3475 1.1 ad else
3476 1.1 ad small_min = 1;
3477 1.1 ad assert(small_min <= quantum);
3478 1.1 ad
3479 1.1 ad /* Set variables according to the value of opt_chunk_2pow. */
3480 1.1 ad chunksize = (1LU << opt_chunk_2pow);
3481 1.1 ad chunksize_mask = chunksize - 1;
3482 1.9 christos chunksize_2pow = (unsigned)opt_chunk_2pow;
3483 1.9 christos chunk_npages = (unsigned)(chunksize >> pagesize_2pow);
3484 1.1 ad {
3485 1.1 ad unsigned header_size;
3486 1.1 ad
3487 1.9 christos header_size = (unsigned)(sizeof(arena_chunk_t) +
3488 1.9 christos (sizeof(arena_chunk_map_t) * (chunk_npages - 1)));
3489 1.1 ad arena_chunk_header_npages = (header_size >> pagesize_2pow);
3490 1.1 ad if ((header_size & pagesize_mask) != 0)
3491 1.1 ad arena_chunk_header_npages++;
3492 1.1 ad }
3493 1.1 ad arena_maxclass = chunksize - (arena_chunk_header_npages <<
3494 1.1 ad pagesize_2pow);
3495 1.1 ad
3496 1.1 ad UTRACE(0, 0, 0);
3497 1.1 ad
3498 1.1 ad #ifdef MALLOC_STATS
3499 1.1 ad memset(&stats_chunks, 0, sizeof(chunk_stats_t));
3500 1.1 ad #endif
3501 1.1 ad
3502 1.1 ad /* Various sanity checks that regard configuration. */
3503 1.1 ad assert(quantum >= sizeof(void *));
3504 1.1 ad assert(quantum <= pagesize);
3505 1.1 ad assert(chunksize >= pagesize);
3506 1.1 ad assert(quantum * 4 <= chunksize);
3507 1.1 ad
3508 1.1 ad /* Initialize chunks data. */
3509 1.1 ad malloc_mutex_init(&chunks_mtx);
3510 1.58 ad rb_tree_init(&huge, &chunk_tree_ops);
3511 1.1 ad #ifdef USE_BRK
3512 1.1 ad malloc_mutex_init(&brk_mtx);
3513 1.1 ad brk_base = sbrk(0);
3514 1.1 ad brk_prev = brk_base;
3515 1.1 ad brk_max = brk_base;
3516 1.1 ad #endif
3517 1.1 ad #ifdef MALLOC_STATS
3518 1.1 ad huge_nmalloc = 0;
3519 1.1 ad huge_ndalloc = 0;
3520 1.8 yamt huge_nralloc = 0;
3521 1.1 ad huge_allocated = 0;
3522 1.1 ad #endif
3523 1.58 ad rb_tree_init(&old_chunks, &chunk_tree_ops);
3524 1.1 ad
3525 1.1 ad /* Initialize base allocation data structures. */
3526 1.1 ad #ifdef MALLOC_STATS
3527 1.1 ad base_mapped = 0;
3528 1.1 ad #endif
3529 1.1 ad #ifdef USE_BRK
3530 1.1 ad /*
3531 1.1 ad * Allocate a base chunk here, since it doesn't actually have to be
3532 1.1 ad * chunk-aligned. Doing this before allocating any other chunks allows
3533 1.1 ad * the use of space that would otherwise be wasted.
3534 1.1 ad */
3535 1.1 ad base_pages_alloc(0);
3536 1.1 ad #endif
3537 1.1 ad base_chunk_nodes = NULL;
3538 1.1 ad malloc_mutex_init(&base_mtx);
3539 1.1 ad
3540 1.1 ad /* Allocate and initialize arenas. */
3541 1.57 ad arenas = (arena_t **)base_alloc(sizeof(arena_t *) * ncpus);
3542 1.1 ad if (arenas == NULL) {
3543 1.1 ad malloc_mutex_unlock(&init_lock);
3544 1.1 ad return (true);
3545 1.1 ad }
3546 1.1 ad /*
3547 1.1 ad * Zero the array. In practice, this should always be pre-zeroed,
3548 1.1 ad * since it was just mmap()ed, but let's be sure.
3549 1.1 ad */
3550 1.57 ad memset(arenas, 0, sizeof(arena_t *) * ncpus);
3551 1.1 ad
3552 1.1 ad /*
3553 1.1 ad * Initialize one arena here. The rest are lazily created in
3554 1.1 ad * arena_choose_hard().
3555 1.1 ad */
3556 1.57 ad if ((arenas[0] = arenas_extend()) == NULL) {
3557 1.1 ad malloc_mutex_unlock(&init_lock);
3558 1.1 ad return (true);
3559 1.1 ad }
3560 1.1 ad
3561 1.1 ad malloc_mutex_init(&arenas_mtx);
3562 1.1 ad
3563 1.1 ad malloc_initialized = true;
3564 1.1 ad malloc_mutex_unlock(&init_lock);
3565 1.1 ad return (false);
3566 1.1 ad }
3567 1.1 ad
3568 1.1 ad /*
3569 1.1 ad * End general internal functions.
3570 1.1 ad */
3571 1.1 ad /******************************************************************************/
3572 1.1 ad /*
3573 1.1 ad * Begin malloc(3)-compatible functions.
3574 1.1 ad */
3575 1.1 ad
3576 1.1 ad void *
3577 1.1 ad malloc(size_t size)
3578 1.1 ad {
3579 1.1 ad void *ret;
3580 1.1 ad
3581 1.57 ad if (__predict_false(malloc_init())) {
3582 1.1 ad ret = NULL;
3583 1.1 ad goto RETURN;
3584 1.1 ad }
3585 1.1 ad
3586 1.57 ad if (__predict_false(size == 0)) {
3587 1.57 ad if (NOT_OPT(sysv))
3588 1.1 ad size = 1;
3589 1.1 ad else {
3590 1.1 ad ret = NULL;
3591 1.1 ad goto RETURN;
3592 1.1 ad }
3593 1.1 ad }
3594 1.1 ad
3595 1.1 ad ret = imalloc(size);
3596 1.1 ad
3597 1.1 ad RETURN:
3598 1.57 ad if (__predict_false(ret == NULL)) {
3599 1.57 ad if (OPT(xmalloc)) {
3600 1.16 christos _malloc_message(getprogname(),
3601 1.1 ad ": (malloc) Error in malloc(): out of memory\n", "",
3602 1.1 ad "");
3603 1.1 ad abort();
3604 1.1 ad }
3605 1.1 ad errno = ENOMEM;
3606 1.1 ad }
3607 1.1 ad
3608 1.1 ad UTRACE(0, size, ret);
3609 1.1 ad return (ret);
3610 1.1 ad }
3611 1.1 ad
3612 1.1 ad int
3613 1.1 ad posix_memalign(void **memptr, size_t alignment, size_t size)
3614 1.1 ad {
3615 1.1 ad int ret;
3616 1.1 ad void *result;
3617 1.1 ad
3618 1.57 ad if (__predict_false(malloc_init()))
3619 1.1 ad result = NULL;
3620 1.1 ad else {
3621 1.1 ad /* Make sure that alignment is a large enough power of 2. */
3622 1.1 ad if (((alignment - 1) & alignment) != 0
3623 1.1 ad || alignment < sizeof(void *)) {
3624 1.57 ad if (OPT(xmalloc)) {
3625 1.16 christos _malloc_message(getprogname(),
3626 1.1 ad ": (malloc) Error in posix_memalign(): "
3627 1.1 ad "invalid alignment\n", "", "");
3628 1.1 ad abort();
3629 1.1 ad }
3630 1.1 ad result = NULL;
3631 1.1 ad ret = EINVAL;
3632 1.1 ad goto RETURN;
3633 1.1 ad }
3634 1.1 ad
3635 1.62 ad if (size == 0) {
3636 1.62 ad if (NOT_OPT(sysv))
3637 1.62 ad size = 1;
3638 1.62 ad else {
3639 1.62 ad result = NULL;
3640 1.62 ad ret = 0;
3641 1.62 ad goto RETURN;
3642 1.62 ad }
3643 1.62 ad }
3644 1.1 ad result = ipalloc(alignment, size);
3645 1.1 ad }
3646 1.1 ad
3647 1.57 ad if (__predict_false(result == NULL)) {
3648 1.57 ad if (OPT(xmalloc)) {
3649 1.16 christos _malloc_message(getprogname(),
3650 1.1 ad ": (malloc) Error in posix_memalign(): out of memory\n",
3651 1.1 ad "", "");
3652 1.1 ad abort();
3653 1.1 ad }
3654 1.1 ad ret = ENOMEM;
3655 1.1 ad goto RETURN;
3656 1.1 ad }
3657 1.1 ad
3658 1.1 ad *memptr = result;
3659 1.1 ad ret = 0;
3660 1.1 ad
3661 1.1 ad RETURN:
3662 1.1 ad UTRACE(0, size, result);
3663 1.1 ad return (ret);
3664 1.1 ad }
3665 1.1 ad
3666 1.1 ad void *
3667 1.1 ad calloc(size_t num, size_t size)
3668 1.1 ad {
3669 1.1 ad void *ret;
3670 1.1 ad size_t num_size;
3671 1.1 ad
3672 1.57 ad if (__predict_false(malloc_init())) {
3673 1.1 ad num_size = 0;
3674 1.1 ad ret = NULL;
3675 1.1 ad goto RETURN;
3676 1.1 ad }
3677 1.1 ad
3678 1.1 ad num_size = num * size;
3679 1.57 ad if (__predict_false(num_size == 0)) {
3680 1.57 ad if (NOT_OPT(sysv) && ((num == 0) || (size == 0)))
3681 1.1 ad num_size = 1;
3682 1.1 ad else {
3683 1.1 ad ret = NULL;
3684 1.1 ad goto RETURN;
3685 1.1 ad }
3686 1.1 ad /*
3687 1.1 ad * Try to avoid division here. We know that it isn't possible to
3688 1.1 ad * overflow during multiplication if neither operand uses any of the
3689 1.1 ad * most significant half of the bits in a size_t.
3690 1.1 ad */
3691 1.2 ad } else if ((unsigned long long)((num | size) &
3692 1.2 ad ((unsigned long long)SIZE_T_MAX << (sizeof(size_t) << 2))) &&
3693 1.2 ad (num_size / size != num)) {
3694 1.1 ad /* size_t overflow. */
3695 1.1 ad ret = NULL;
3696 1.1 ad goto RETURN;
3697 1.1 ad }
3698 1.1 ad
3699 1.1 ad ret = icalloc(num_size);
3700 1.1 ad
3701 1.1 ad RETURN:
3702 1.63 ad if (__predict_false(ret == NULL)) {
3703 1.57 ad if (OPT(xmalloc)) {
3704 1.16 christos _malloc_message(getprogname(),
3705 1.1 ad ": (malloc) Error in calloc(): out of memory\n", "",
3706 1.1 ad "");
3707 1.1 ad abort();
3708 1.1 ad }
3709 1.1 ad errno = ENOMEM;
3710 1.1 ad }
3711 1.1 ad
3712 1.1 ad UTRACE(0, num_size, ret);
3713 1.1 ad return (ret);
3714 1.1 ad }
3715 1.1 ad
3716 1.1 ad void *
3717 1.1 ad realloc(void *ptr, size_t size)
3718 1.1 ad {
3719 1.1 ad void *ret;
3720 1.1 ad
3721 1.57 ad if (__predict_false(size == 0)) {
3722 1.57 ad if (NOT_OPT(sysv))
3723 1.1 ad size = 1;
3724 1.1 ad else {
3725 1.1 ad if (ptr != NULL)
3726 1.1 ad idalloc(ptr);
3727 1.1 ad ret = NULL;
3728 1.1 ad goto RETURN;
3729 1.1 ad }
3730 1.1 ad }
3731 1.1 ad
3732 1.57 ad if (__predict_true(ptr != NULL)) {
3733 1.1 ad assert(malloc_initialized);
3734 1.1 ad
3735 1.1 ad ret = iralloc(ptr, size);
3736 1.1 ad
3737 1.63 ad if (__predict_false(ret == NULL)) {
3738 1.57 ad if (OPT(xmalloc)) {
3739 1.16 christos _malloc_message(getprogname(),
3740 1.1 ad ": (malloc) Error in realloc(): out of "
3741 1.1 ad "memory\n", "", "");
3742 1.1 ad abort();
3743 1.1 ad }
3744 1.1 ad errno = ENOMEM;
3745 1.1 ad }
3746 1.1 ad } else {
3747 1.57 ad if (__predict_false(malloc_init()))
3748 1.1 ad ret = NULL;
3749 1.1 ad else
3750 1.1 ad ret = imalloc(size);
3751 1.1 ad
3752 1.63 ad if (__predict_false(ret == NULL)) {
3753 1.57 ad if (OPT(xmalloc)) {
3754 1.16 christos _malloc_message(getprogname(),
3755 1.1 ad ": (malloc) Error in realloc(): out of "
3756 1.1 ad "memory\n", "", "");
3757 1.1 ad abort();
3758 1.1 ad }
3759 1.1 ad errno = ENOMEM;
3760 1.1 ad }
3761 1.1 ad }
3762 1.1 ad
3763 1.1 ad RETURN:
3764 1.1 ad UTRACE(ptr, size, ret);
3765 1.1 ad return (ret);
3766 1.1 ad }
3767 1.1 ad
3768 1.1 ad void
3769 1.1 ad free(void *ptr)
3770 1.1 ad {
3771 1.1 ad
3772 1.1 ad UTRACE(ptr, 0, 0);
3773 1.63 ad if (__predict_true(ptr != NULL)) {
3774 1.1 ad assert(malloc_initialized);
3775 1.1 ad
3776 1.1 ad idalloc(ptr);
3777 1.1 ad }
3778 1.1 ad }
3779 1.1 ad
3780 1.1 ad /*
3781 1.1 ad * End malloc(3)-compatible functions.
3782 1.1 ad */
3783 1.1 ad /******************************************************************************/
3784 1.1 ad /*
3785 1.1 ad * Begin non-standard functions.
3786 1.1 ad */
3787 1.2 ad #ifndef __NetBSD__
3788 1.1 ad size_t
3789 1.1 ad malloc_usable_size(const void *ptr)
3790 1.1 ad {
3791 1.1 ad
3792 1.1 ad assert(ptr != NULL);
3793 1.1 ad
3794 1.1 ad return (isalloc(ptr));
3795 1.1 ad }
3796 1.2 ad #endif
3797 1.1 ad
3798 1.1 ad /*
3799 1.1 ad * End non-standard functions.
3800 1.1 ad */
3801 1.1 ad /******************************************************************************/
3802 1.1 ad /*
3803 1.1 ad * Begin library-private functions, used by threading libraries for protection
3804 1.1 ad * of malloc during fork(). These functions are only called if the program is
3805 1.1 ad * running in threaded mode, so there is no need to check whether the program
3806 1.1 ad * is threaded here.
3807 1.1 ad */
3808 1.1 ad
3809 1.1 ad void
3810 1.1 ad _malloc_prefork(void)
3811 1.1 ad {
3812 1.1 ad unsigned i;
3813 1.1 ad
3814 1.1 ad /* Acquire all mutexes in a safe order. */
3815 1.48 joerg malloc_mutex_lock(&init_lock);
3816 1.1 ad malloc_mutex_lock(&arenas_mtx);
3817 1.57 ad for (i = 0; i < ncpus; i++) {
3818 1.1 ad if (arenas[i] != NULL)
3819 1.1 ad malloc_mutex_lock(&arenas[i]->mtx);
3820 1.1 ad }
3821 1.48 joerg malloc_mutex_lock(&chunks_mtx);
3822 1.1 ad malloc_mutex_lock(&base_mtx);
3823 1.48 joerg #ifdef USE_BRK
3824 1.48 joerg malloc_mutex_lock(&brk_mtx);
3825 1.48 joerg #endif
3826 1.1 ad }
3827 1.1 ad
3828 1.1 ad void
3829 1.1 ad _malloc_postfork(void)
3830 1.1 ad {
3831 1.1 ad unsigned i;
3832 1.1 ad
3833 1.1 ad /* Release all mutexes, now that fork() has completed. */
3834 1.48 joerg #ifdef USE_BRK
3835 1.48 joerg malloc_mutex_unlock(&brk_mtx);
3836 1.48 joerg #endif
3837 1.48 joerg malloc_mutex_unlock(&base_mtx);
3838 1.1 ad malloc_mutex_unlock(&chunks_mtx);
3839 1.1 ad
3840 1.57 ad for (i = ncpus; i-- > 0; ) {
3841 1.1 ad if (arenas[i] != NULL)
3842 1.1 ad malloc_mutex_unlock(&arenas[i]->mtx);
3843 1.1 ad }
3844 1.1 ad malloc_mutex_unlock(&arenas_mtx);
3845 1.48 joerg malloc_mutex_unlock(&init_lock);
3846 1.1 ad }
3847 1.1 ad
3848 1.53 joerg void
3849 1.53 joerg _malloc_postfork_child(void)
3850 1.53 joerg {
3851 1.53 joerg unsigned i;
3852 1.53 joerg
3853 1.53 joerg /* Release all mutexes, now that fork() has completed. */
3854 1.53 joerg #ifdef USE_BRK
3855 1.53 joerg malloc_mutex_init(&brk_mtx);
3856 1.53 joerg #endif
3857 1.53 joerg malloc_mutex_init(&base_mtx);
3858 1.53 joerg malloc_mutex_init(&chunks_mtx);
3859 1.53 joerg
3860 1.57 ad for (i = ncpus; i-- > 0; ) {
3861 1.53 joerg if (arenas[i] != NULL)
3862 1.53 joerg malloc_mutex_init(&arenas[i]->mtx);
3863 1.53 joerg }
3864 1.53 joerg malloc_mutex_init(&arenas_mtx);
3865 1.53 joerg malloc_mutex_init(&init_lock);
3866 1.53 joerg }
3867 1.53 joerg
3868 1.1 ad /*
3869 1.1 ad * End library-private functions.
3870 1.1 ad */
3871 1.1 ad /******************************************************************************/
3872