jemalloc.c revision 1.18 1 /* $NetBSD: jemalloc.c,v 1.18 2008/06/05 00:16:34 ad Exp $ */
2
3 /*-
4 * Copyright (C) 2006,2007 Jason Evans <jasone (at) FreeBSD.org>.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice(s), this list of conditions and the following disclaimer as
12 * the first lines of this file unmodified other than the possible
13 * addition of one or more copyright notices.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice(s), this list of conditions and the following disclaimer in
16 * the documentation and/or other materials provided with the
17 * distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY
20 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE
23 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
26 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
27 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
28 * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
29 * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 *
31 *******************************************************************************
32 *
33 * This allocator implementation is designed to provide scalable performance
34 * for multi-threaded programs on multi-processor systems. The following
35 * features are included for this purpose:
36 *
37 * + Multiple arenas are used if there are multiple CPUs, which reduces lock
38 * contention and cache sloshing.
39 *
40 * + Cache line sharing between arenas is avoided for internal data
41 * structures.
42 *
43 * + Memory is managed in chunks and runs (chunks can be split into runs),
44 * rather than as individual pages. This provides a constant-time
45 * mechanism for associating allocations with particular arenas.
46 *
47 * Allocation requests are rounded up to the nearest size class, and no record
48 * of the original request size is maintained. Allocations are broken into
49 * categories according to size class. Assuming runtime defaults, 4 kB pages
50 * and a 16 byte quantum, the size classes in each category are as follows:
51 *
52 * |=====================================|
53 * | Category | Subcategory | Size |
54 * |=====================================|
55 * | Small | Tiny | 2 |
56 * | | | 4 |
57 * | | | 8 |
58 * | |----------------+---------|
59 * | | Quantum-spaced | 16 |
60 * | | | 32 |
61 * | | | 48 |
62 * | | | ... |
63 * | | | 480 |
64 * | | | 496 |
65 * | | | 512 |
66 * | |----------------+---------|
67 * | | Sub-page | 1 kB |
68 * | | | 2 kB |
69 * |=====================================|
70 * | Large | 4 kB |
71 * | | 8 kB |
72 * | | 12 kB |
73 * | | ... |
74 * | | 1012 kB |
75 * | | 1016 kB |
76 * | | 1020 kB |
77 * |=====================================|
78 * | Huge | 1 MB |
79 * | | 2 MB |
80 * | | 3 MB |
81 * | | ... |
82 * |=====================================|
83 *
84 * A different mechanism is used for each category:
85 *
86 * Small : Each size class is segregated into its own set of runs. Each run
87 * maintains a bitmap of which regions are free/allocated.
88 *
89 * Large : Each allocation is backed by a dedicated run. Metadata are stored
90 * in the associated arena chunk header maps.
91 *
92 * Huge : Each allocation is backed by a dedicated contiguous set of chunks.
93 * Metadata are stored in a separate red-black tree.
94 *
95 *******************************************************************************
96 */
97
98 /* LINTLIBRARY */
99
100 #ifdef __NetBSD__
101 # define xutrace(a, b) utrace("malloc", (a), (b))
102 # define __DECONST(x, y) ((x)__UNCONST(y))
103 # define NO_TLS
104 #else
105 # define xutrace(a, b) utrace((a), (b))
106 #endif /* __NetBSD__ */
107
108 /*
109 * MALLOC_PRODUCTION disables assertions and statistics gathering. It also
110 * defaults the A and J runtime options to off. These settings are appropriate
111 * for production systems.
112 */
113 #define MALLOC_PRODUCTION
114
115 #ifndef MALLOC_PRODUCTION
116 # define MALLOC_DEBUG
117 #endif
118
119 #include <sys/cdefs.h>
120 /* __FBSDID("$FreeBSD: src/lib/libc/stdlib/malloc.c,v 1.147 2007/06/15 22:00:16 jasone Exp $"); */
121 __RCSID("$NetBSD: jemalloc.c,v 1.18 2008/06/05 00:16:34 ad Exp $");
122
123 #ifdef __FreeBSD__
124 #include "libc_private.h"
125 #ifdef MALLOC_DEBUG
126 # define _LOCK_DEBUG
127 #endif
128 #include "spinlock.h"
129 #endif
130 #include "namespace.h"
131 #include <sys/mman.h>
132 #include <sys/param.h>
133 #ifdef __FreeBSD__
134 #include <sys/stddef.h>
135 #endif
136 #include <sys/time.h>
137 #include <sys/types.h>
138 #include <sys/sysctl.h>
139 #include <sys/tree.h>
140 #include <sys/uio.h>
141 #include <sys/ktrace.h> /* Must come after several other sys/ includes. */
142
143 #ifdef __FreeBSD__
144 #include <machine/atomic.h>
145 #include <machine/cpufunc.h>
146 #endif
147 #include <machine/vmparam.h>
148
149 #include <errno.h>
150 #include <limits.h>
151 #include <pthread.h>
152 #include <sched.h>
153 #include <stdarg.h>
154 #include <stdbool.h>
155 #include <stdio.h>
156 #include <stdint.h>
157 #include <stdlib.h>
158 #include <string.h>
159 #include <strings.h>
160 #include <unistd.h>
161
162 #ifdef __NetBSD__
163 # include <reentrant.h>
164 # include "extern.h"
165
166 #define STRERROR_R(a, b, c) __strerror_r(a, b, c);
167 /*
168 * A non localized version of strerror, that avoids bringing in
169 * stdio and the locale code. All the malloc messages are in English
170 * so why bother?
171 */
172 static int
173 __strerror_r(int e, char *s, size_t l)
174 {
175 int rval;
176 size_t slen;
177
178 if (e >= 0 && e < sys_nerr) {
179 slen = strlcpy(s, sys_errlist[e], l);
180 rval = 0;
181 } else {
182 slen = snprintf_ss(s, l, "Unknown error %u", e);
183 rval = EINVAL;
184 }
185 return slen >= l ? ERANGE : rval;
186 }
187 #endif
188
189 #ifdef __FreeBSD__
190 #define STRERROR_R(a, b, c) strerror_r(a, b, c);
191 #include "un-namespace.h"
192 #endif
193
194 /* MALLOC_STATS enables statistics calculation. */
195 #ifndef MALLOC_PRODUCTION
196 # define MALLOC_STATS
197 #endif
198
199 #ifdef MALLOC_DEBUG
200 # ifdef NDEBUG
201 # undef NDEBUG
202 # endif
203 #else
204 # ifndef NDEBUG
205 # define NDEBUG
206 # endif
207 #endif
208 #include <assert.h>
209
210 #ifdef MALLOC_DEBUG
211 /* Disable inlining to make debugging easier. */
212 # define inline
213 #endif
214
215 /* Size of stack-allocated buffer passed to strerror_r(). */
216 #define STRERROR_BUF 64
217
218 /* Minimum alignment of allocations is 2^QUANTUM_2POW_MIN bytes. */
219 #ifdef __i386__
220 # define QUANTUM_2POW_MIN 4
221 # define SIZEOF_PTR_2POW 2
222 # define USE_BRK
223 #endif
224 #ifdef __ia64__
225 # define QUANTUM_2POW_MIN 4
226 # define SIZEOF_PTR_2POW 3
227 #endif
228 #ifdef __alpha__
229 # define QUANTUM_2POW_MIN 4
230 # define SIZEOF_PTR_2POW 3
231 # define NO_TLS
232 #endif
233 #ifdef __sparc64__
234 # define QUANTUM_2POW_MIN 4
235 # define SIZEOF_PTR_2POW 3
236 # define NO_TLS
237 #endif
238 #ifdef __amd64__
239 # define QUANTUM_2POW_MIN 4
240 # define SIZEOF_PTR_2POW 3
241 #endif
242 #ifdef __arm__
243 # define QUANTUM_2POW_MIN 3
244 # define SIZEOF_PTR_2POW 2
245 # define USE_BRK
246 # define NO_TLS
247 #endif
248 #ifdef __powerpc__
249 # define QUANTUM_2POW_MIN 4
250 # define SIZEOF_PTR_2POW 2
251 # define USE_BRK
252 #endif
253 #if defined(__sparc__) && !defined(__sparc64__)
254 # define QUANTUM_2POW_MIN 4
255 # define SIZEOF_PTR_2POW 2
256 # define USE_BRK
257 #endif
258 #ifdef __vax__
259 # define QUANTUM_2POW_MIN 4
260 # define SIZEOF_PTR_2POW 2
261 # define USE_BRK
262 #endif
263 #ifdef __sh__
264 # define QUANTUM_2POW_MIN 4
265 # define SIZEOF_PTR_2POW 2
266 # define USE_BRK
267 #endif
268 #ifdef __m68k__
269 # define QUANTUM_2POW_MIN 4
270 # define SIZEOF_PTR_2POW 2
271 # define USE_BRK
272 #endif
273 #ifdef __mips__
274 # define QUANTUM_2POW_MIN 4
275 # define SIZEOF_PTR_2POW 2
276 # define USE_BRK
277 #endif
278 #ifdef __hppa__
279 # define QUANTUM_2POW_MIN 4
280 # define SIZEOF_PTR_2POW 2
281 # define USE_BRK
282 #endif
283
284 #define SIZEOF_PTR (1 << SIZEOF_PTR_2POW)
285
286 /* sizeof(int) == (1 << SIZEOF_INT_2POW). */
287 #ifndef SIZEOF_INT_2POW
288 # define SIZEOF_INT_2POW 2
289 #endif
290
291 /* We can't use TLS in non-PIC programs, since TLS relies on loader magic. */
292 #if (!defined(PIC) && !defined(NO_TLS))
293 # define NO_TLS
294 #endif
295
296 /*
297 * Size and alignment of memory chunks that are allocated by the OS's virtual
298 * memory system.
299 */
300 #define CHUNK_2POW_DEFAULT 20
301
302 /*
303 * Maximum size of L1 cache line. This is used to avoid cache line aliasing,
304 * so over-estimates are okay (up to a point), but under-estimates will
305 * negatively affect performance.
306 */
307 #define CACHELINE_2POW 6
308 #define CACHELINE ((size_t)(1 << CACHELINE_2POW))
309
310 /* Smallest size class to support. */
311 #define TINY_MIN_2POW 1
312
313 /*
314 * Maximum size class that is a multiple of the quantum, but not (necessarily)
315 * a power of 2. Above this size, allocations are rounded up to the nearest
316 * power of 2.
317 */
318 #define SMALL_MAX_2POW_DEFAULT 9
319 #define SMALL_MAX_DEFAULT (1 << SMALL_MAX_2POW_DEFAULT)
320
321 /*
322 * Maximum desired run header overhead. Runs are sized as small as possible
323 * such that this setting is still honored, without violating other constraints.
324 * The goal is to make runs as small as possible without exceeding a per run
325 * external fragmentation threshold.
326 *
327 * Note that it is possible to set this low enough that it cannot be honored
328 * for some/all object sizes, since there is one bit of header overhead per
329 * object (plus a constant). In such cases, this constraint is relaxed.
330 *
331 * RUN_MAX_OVRHD_RELAX specifies the maximum number of bits per region of
332 * overhead for which RUN_MAX_OVRHD is relaxed.
333 */
334 #define RUN_MAX_OVRHD 0.015
335 #define RUN_MAX_OVRHD_RELAX 1.5
336
337 /* Put a cap on small object run size. This overrides RUN_MAX_OVRHD. */
338 #define RUN_MAX_SMALL_2POW 15
339 #define RUN_MAX_SMALL (1 << RUN_MAX_SMALL_2POW)
340
341 /******************************************************************************/
342
343 #ifdef __FreeBSD__
344 /*
345 * Mutexes based on spinlocks. We can't use normal pthread mutexes, because
346 * they require malloc()ed memory.
347 */
348 typedef struct {
349 spinlock_t lock;
350 } malloc_mutex_t;
351
352 /* Set to true once the allocator has been initialized. */
353 static bool malloc_initialized = false;
354
355 /* Used to avoid initialization races. */
356 static malloc_mutex_t init_lock = {_SPINLOCK_INITIALIZER};
357 #else
358 #define malloc_mutex_t mutex_t
359
360 /* Set to true once the allocator has been initialized. */
361 static bool malloc_initialized = false;
362
363 /* Used to avoid initialization races. */
364 static mutex_t init_lock = MUTEX_INITIALIZER;
365 #endif
366
367 /******************************************************************************/
368 /*
369 * Statistics data structures.
370 */
371
372 #ifdef MALLOC_STATS
373
374 typedef struct malloc_bin_stats_s malloc_bin_stats_t;
375 struct malloc_bin_stats_s {
376 /*
377 * Number of allocation requests that corresponded to the size of this
378 * bin.
379 */
380 uint64_t nrequests;
381
382 /* Total number of runs created for this bin's size class. */
383 uint64_t nruns;
384
385 /*
386 * Total number of runs reused by extracting them from the runs tree for
387 * this bin's size class.
388 */
389 uint64_t reruns;
390
391 /* High-water mark for this bin. */
392 unsigned long highruns;
393
394 /* Current number of runs in this bin. */
395 unsigned long curruns;
396 };
397
398 typedef struct arena_stats_s arena_stats_t;
399 struct arena_stats_s {
400 /* Number of bytes currently mapped. */
401 size_t mapped;
402
403 /* Per-size-category statistics. */
404 size_t allocated_small;
405 uint64_t nmalloc_small;
406 uint64_t ndalloc_small;
407
408 size_t allocated_large;
409 uint64_t nmalloc_large;
410 uint64_t ndalloc_large;
411 };
412
413 typedef struct chunk_stats_s chunk_stats_t;
414 struct chunk_stats_s {
415 /* Number of chunks that were allocated. */
416 uint64_t nchunks;
417
418 /* High-water mark for number of chunks allocated. */
419 unsigned long highchunks;
420
421 /*
422 * Current number of chunks allocated. This value isn't maintained for
423 * any other purpose, so keep track of it in order to be able to set
424 * highchunks.
425 */
426 unsigned long curchunks;
427 };
428
429 #endif /* #ifdef MALLOC_STATS */
430
431 /******************************************************************************/
432 /*
433 * Chunk data structures.
434 */
435
436 /* Tree of chunks. */
437 typedef struct chunk_node_s chunk_node_t;
438 struct chunk_node_s {
439 /* Linkage for the chunk tree. */
440 RB_ENTRY(chunk_node_s) link;
441
442 /*
443 * Pointer to the chunk that this tree node is responsible for. In some
444 * (but certainly not all) cases, this data structure is placed at the
445 * beginning of the corresponding chunk, so this field may point to this
446 * node.
447 */
448 void *chunk;
449
450 /* Total chunk size. */
451 size_t size;
452 };
453 typedef struct chunk_tree_s chunk_tree_t;
454 RB_HEAD(chunk_tree_s, chunk_node_s);
455
456 /******************************************************************************/
457 /*
458 * Arena data structures.
459 */
460
461 typedef struct arena_s arena_t;
462 typedef struct arena_bin_s arena_bin_t;
463
464 typedef struct arena_chunk_map_s arena_chunk_map_t;
465 struct arena_chunk_map_s {
466 /* Number of pages in run. */
467 uint32_t npages;
468 /*
469 * Position within run. For a free run, this is POS_FREE for the first
470 * and last pages. The POS_FREE special value makes it possible to
471 * quickly coalesce free runs.
472 *
473 * This is the limiting factor for chunksize; there can be at most 2^31
474 * pages in a run.
475 */
476 #define POS_FREE ((uint32_t)0xffffffffU)
477 uint32_t pos;
478 };
479
480 /* Arena chunk header. */
481 typedef struct arena_chunk_s arena_chunk_t;
482 struct arena_chunk_s {
483 /* Arena that owns the chunk. */
484 arena_t *arena;
485
486 /* Linkage for the arena's chunk tree. */
487 RB_ENTRY(arena_chunk_s) link;
488
489 /*
490 * Number of pages in use. This is maintained in order to make
491 * detection of empty chunks fast.
492 */
493 uint32_t pages_used;
494
495 /*
496 * Every time a free run larger than this value is created/coalesced,
497 * this value is increased. The only way that the value decreases is if
498 * arena_run_alloc() fails to find a free run as large as advertised by
499 * this value.
500 */
501 uint32_t max_frun_npages;
502
503 /*
504 * Every time a free run that starts at an earlier page than this value
505 * is created/coalesced, this value is decreased. It is reset in a
506 * similar fashion to max_frun_npages.
507 */
508 uint32_t min_frun_ind;
509
510 /*
511 * Map of pages within chunk that keeps track of free/large/small. For
512 * free runs, only the map entries for the first and last pages are
513 * kept up to date, so that free runs can be quickly coalesced.
514 */
515 arena_chunk_map_t map[1]; /* Dynamically sized. */
516 };
517 typedef struct arena_chunk_tree_s arena_chunk_tree_t;
518 RB_HEAD(arena_chunk_tree_s, arena_chunk_s);
519
520 typedef struct arena_run_s arena_run_t;
521 struct arena_run_s {
522 /* Linkage for run trees. */
523 RB_ENTRY(arena_run_s) link;
524
525 #ifdef MALLOC_DEBUG
526 uint32_t magic;
527 # define ARENA_RUN_MAGIC 0x384adf93
528 #endif
529
530 /* Bin this run is associated with. */
531 arena_bin_t *bin;
532
533 /* Index of first element that might have a free region. */
534 unsigned regs_minelm;
535
536 /* Number of free regions in run. */
537 unsigned nfree;
538
539 /* Bitmask of in-use regions (0: in use, 1: free). */
540 unsigned regs_mask[1]; /* Dynamically sized. */
541 };
542 typedef struct arena_run_tree_s arena_run_tree_t;
543 RB_HEAD(arena_run_tree_s, arena_run_s);
544
545 struct arena_bin_s {
546 /*
547 * Current run being used to service allocations of this bin's size
548 * class.
549 */
550 arena_run_t *runcur;
551
552 /*
553 * Tree of non-full runs. This tree is used when looking for an
554 * existing run when runcur is no longer usable. We choose the
555 * non-full run that is lowest in memory; this policy tends to keep
556 * objects packed well, and it can also help reduce the number of
557 * almost-empty chunks.
558 */
559 arena_run_tree_t runs;
560
561 /* Size of regions in a run for this bin's size class. */
562 size_t reg_size;
563
564 /* Total size of a run for this bin's size class. */
565 size_t run_size;
566
567 /* Total number of regions in a run for this bin's size class. */
568 uint32_t nregs;
569
570 /* Number of elements in a run's regs_mask for this bin's size class. */
571 uint32_t regs_mask_nelms;
572
573 /* Offset of first region in a run for this bin's size class. */
574 uint32_t reg0_offset;
575
576 #ifdef MALLOC_STATS
577 /* Bin statistics. */
578 malloc_bin_stats_t stats;
579 #endif
580 };
581
582 struct arena_s {
583 #ifdef MALLOC_DEBUG
584 uint32_t magic;
585 # define ARENA_MAGIC 0x947d3d24
586 #endif
587
588 /* All operations on this arena require that mtx be locked. */
589 malloc_mutex_t mtx;
590
591 #ifdef MALLOC_STATS
592 arena_stats_t stats;
593 #endif
594
595 /*
596 * Tree of chunks this arena manages.
597 */
598 arena_chunk_tree_t chunks;
599
600 /*
601 * In order to avoid rapid chunk allocation/deallocation when an arena
602 * oscillates right on the cusp of needing a new chunk, cache the most
603 * recently freed chunk. This caching is disabled by opt_hint.
604 *
605 * There is one spare chunk per arena, rather than one spare total, in
606 * order to avoid interactions between multiple threads that could make
607 * a single spare inadequate.
608 */
609 arena_chunk_t *spare;
610
611 /*
612 * bins is used to store rings of free regions of the following sizes,
613 * assuming a 16-byte quantum, 4kB pagesize, and default MALLOC_OPTIONS.
614 *
615 * bins[i] | size |
616 * --------+------+
617 * 0 | 2 |
618 * 1 | 4 |
619 * 2 | 8 |
620 * --------+------+
621 * 3 | 16 |
622 * 4 | 32 |
623 * 5 | 48 |
624 * 6 | 64 |
625 * : :
626 * : :
627 * 33 | 496 |
628 * 34 | 512 |
629 * --------+------+
630 * 35 | 1024 |
631 * 36 | 2048 |
632 * --------+------+
633 */
634 arena_bin_t bins[1]; /* Dynamically sized. */
635 };
636
637 /******************************************************************************/
638 /*
639 * Data.
640 */
641
642 /* Number of CPUs. */
643 static unsigned ncpus;
644
645 /* VM page size. */
646 static size_t pagesize;
647 static size_t pagesize_mask;
648 static int pagesize_2pow;
649
650 /* Various bin-related settings. */
651 static size_t bin_maxclass; /* Max size class for bins. */
652 static unsigned ntbins; /* Number of (2^n)-spaced tiny bins. */
653 static unsigned nqbins; /* Number of quantum-spaced bins. */
654 static unsigned nsbins; /* Number of (2^n)-spaced sub-page bins. */
655 static size_t small_min;
656 static size_t small_max;
657
658 /* Various quantum-related settings. */
659 static size_t quantum;
660 static size_t quantum_mask; /* (quantum - 1). */
661
662 /* Various chunk-related settings. */
663 static size_t chunksize;
664 static size_t chunksize_mask; /* (chunksize - 1). */
665 static int chunksize_2pow;
666 static unsigned chunk_npages;
667 static unsigned arena_chunk_header_npages;
668 static size_t arena_maxclass; /* Max size class for arenas. */
669
670 /********/
671 /*
672 * Chunks.
673 */
674
675 /* Protects chunk-related data structures. */
676 static malloc_mutex_t chunks_mtx;
677
678 /* Tree of chunks that are stand-alone huge allocations. */
679 static chunk_tree_t huge;
680
681 #ifdef USE_BRK
682 /*
683 * Try to use brk for chunk-size allocations, due to address space constraints.
684 */
685 /*
686 * Protects sbrk() calls. This must be separate from chunks_mtx, since
687 * base_pages_alloc() also uses sbrk(), but cannot lock chunks_mtx (doing so
688 * could cause recursive lock acquisition).
689 */
690 static malloc_mutex_t brk_mtx;
691 /* Result of first sbrk(0) call. */
692 static void *brk_base;
693 /* Current end of brk, or ((void *)-1) if brk is exhausted. */
694 static void *brk_prev;
695 /* Current upper limit on brk addresses. */
696 static void *brk_max;
697 #endif
698
699 #ifdef MALLOC_STATS
700 /* Huge allocation statistics. */
701 static uint64_t huge_nmalloc;
702 static uint64_t huge_ndalloc;
703 static uint64_t huge_nralloc;
704 static size_t huge_allocated;
705 #endif
706
707 /*
708 * Tree of chunks that were previously allocated. This is used when allocating
709 * chunks, in an attempt to re-use address space.
710 */
711 static chunk_tree_t old_chunks;
712
713 /****************************/
714 /*
715 * base (internal allocation).
716 */
717
718 /*
719 * Current pages that are being used for internal memory allocations. These
720 * pages are carved up in cacheline-size quanta, so that there is no chance of
721 * false cache line sharing.
722 */
723 static void *base_pages;
724 static void *base_next_addr;
725 static void *base_past_addr; /* Addr immediately past base_pages. */
726 static chunk_node_t *base_chunk_nodes; /* LIFO cache of chunk nodes. */
727 static malloc_mutex_t base_mtx;
728 #ifdef MALLOC_STATS
729 static size_t base_mapped;
730 #endif
731
732 /********/
733 /*
734 * Arenas.
735 */
736
737 /*
738 * Arenas that are used to service external requests. Not all elements of the
739 * arenas array are necessarily used; arenas are created lazily as needed.
740 */
741 static arena_t **arenas;
742 static unsigned narenas;
743 static unsigned next_arena;
744 static malloc_mutex_t arenas_mtx; /* Protects arenas initialization. */
745
746 #ifndef NO_TLS
747 /*
748 * Map of pthread_self() --> arenas[???], used for selecting an arena to use
749 * for allocations.
750 */
751 static __thread arena_t *arenas_map;
752 #define get_arenas_map() (arenas_map)
753 #define set_arenas_map(x) (arenas_map = x)
754 #else
755 static thread_key_t arenas_map_key;
756 #define get_arenas_map() thr_getspecific(arenas_map_key)
757 #define set_arenas_map(x) thr_setspecific(arenas_map_key, x)
758 #endif
759
760 #ifdef MALLOC_STATS
761 /* Chunk statistics. */
762 static chunk_stats_t stats_chunks;
763 #endif
764
765 /*******************************/
766 /*
767 * Runtime configuration options.
768 */
769 const char *_malloc_options;
770
771 #ifndef MALLOC_PRODUCTION
772 static bool opt_abort = true;
773 static bool opt_junk = true;
774 #else
775 static bool opt_abort = false;
776 static bool opt_junk = false;
777 #endif
778 static bool opt_hint = false;
779 static bool opt_print_stats = false;
780 static int opt_quantum_2pow = QUANTUM_2POW_MIN;
781 static int opt_small_max_2pow = SMALL_MAX_2POW_DEFAULT;
782 static int opt_chunk_2pow = CHUNK_2POW_DEFAULT;
783 static bool opt_utrace = false;
784 static bool opt_sysv = false;
785 static bool opt_xmalloc = false;
786 static bool opt_zero = false;
787 static int32_t opt_narenas_lshift = 0;
788
789 typedef struct {
790 void *p;
791 size_t s;
792 void *r;
793 } malloc_utrace_t;
794
795 #define UTRACE(a, b, c) \
796 if (opt_utrace) { \
797 malloc_utrace_t ut; \
798 ut.p = a; \
799 ut.s = b; \
800 ut.r = c; \
801 xutrace(&ut, sizeof(ut)); \
802 }
803
804 /******************************************************************************/
805 /*
806 * Begin function prototypes for non-inline static functions.
807 */
808
809 static void wrtmessage(const char *p1, const char *p2, const char *p3,
810 const char *p4);
811 #ifdef MALLOC_STATS
812 static void malloc_printf(const char *format, ...);
813 #endif
814 static char *umax2s(uintmax_t x, char *s);
815 static bool base_pages_alloc(size_t minsize);
816 static void *base_alloc(size_t size);
817 static chunk_node_t *base_chunk_node_alloc(void);
818 static void base_chunk_node_dealloc(chunk_node_t *node);
819 #ifdef MALLOC_STATS
820 static void stats_print(arena_t *arena);
821 #endif
822 static void *pages_map(void *addr, size_t size);
823 static void *pages_map_align(void *addr, size_t size, int align);
824 static void pages_unmap(void *addr, size_t size);
825 static void *chunk_alloc(size_t size);
826 static void chunk_dealloc(void *chunk, size_t size);
827 static void arena_run_split(arena_t *arena, arena_run_t *run, size_t size);
828 static arena_chunk_t *arena_chunk_alloc(arena_t *arena);
829 static void arena_chunk_dealloc(arena_t *arena, arena_chunk_t *chunk);
830 static arena_run_t *arena_run_alloc(arena_t *arena, size_t size);
831 static void arena_run_dalloc(arena_t *arena, arena_run_t *run, size_t size);
832 static arena_run_t *arena_bin_nonfull_run_get(arena_t *arena, arena_bin_t *bin);
833 static void *arena_bin_malloc_hard(arena_t *arena, arena_bin_t *bin);
834 static size_t arena_bin_run_size_calc(arena_bin_t *bin, size_t min_run_size);
835 static void *arena_malloc(arena_t *arena, size_t size);
836 static void *arena_palloc(arena_t *arena, size_t alignment, size_t size,
837 size_t alloc_size);
838 static size_t arena_salloc(const void *ptr);
839 static void *arena_ralloc(void *ptr, size_t size, size_t oldsize);
840 static void arena_dalloc(arena_t *arena, arena_chunk_t *chunk, void *ptr);
841 static bool arena_new(arena_t *arena);
842 static arena_t *arenas_extend(unsigned ind);
843 static void *huge_malloc(size_t size);
844 static void *huge_palloc(size_t alignment, size_t size);
845 static void *huge_ralloc(void *ptr, size_t size, size_t oldsize);
846 static void huge_dalloc(void *ptr);
847 static void *imalloc(size_t size);
848 static void *ipalloc(size_t alignment, size_t size);
849 static void *icalloc(size_t size);
850 static size_t isalloc(const void *ptr);
851 static void *iralloc(void *ptr, size_t size);
852 static void idalloc(void *ptr);
853 static void malloc_print_stats(void);
854 static bool malloc_init_hard(void);
855
856 /*
857 * End function prototypes.
858 */
859 /******************************************************************************/
860 /*
861 * Begin mutex.
862 */
863
864 #ifdef __NetBSD__
865 #define malloc_mutex_init(m) mutex_init(m, NULL)
866 #define malloc_mutex_lock(m) mutex_lock(m)
867 #define malloc_mutex_unlock(m) mutex_unlock(m)
868 #else /* __NetBSD__ */
869 static inline void
870 malloc_mutex_init(malloc_mutex_t *a_mutex)
871 {
872 static const spinlock_t lock = _SPINLOCK_INITIALIZER;
873
874 a_mutex->lock = lock;
875 }
876
877 static inline void
878 malloc_mutex_lock(malloc_mutex_t *a_mutex)
879 {
880
881 if (__isthreaded)
882 _SPINLOCK(&a_mutex->lock);
883 }
884
885 static inline void
886 malloc_mutex_unlock(malloc_mutex_t *a_mutex)
887 {
888
889 if (__isthreaded)
890 _SPINUNLOCK(&a_mutex->lock);
891 }
892 #endif /* __NetBSD__ */
893
894 /*
895 * End mutex.
896 */
897 /******************************************************************************/
898 /*
899 * Begin Utility functions/macros.
900 */
901
902 /* Return the chunk address for allocation address a. */
903 #define CHUNK_ADDR2BASE(a) \
904 ((void *)((uintptr_t)(a) & ~chunksize_mask))
905
906 /* Return the chunk offset of address a. */
907 #define CHUNK_ADDR2OFFSET(a) \
908 ((size_t)((uintptr_t)(a) & chunksize_mask))
909
910 /* Return the smallest chunk multiple that is >= s. */
911 #define CHUNK_CEILING(s) \
912 (((s) + chunksize_mask) & ~chunksize_mask)
913
914 /* Return the smallest cacheline multiple that is >= s. */
915 #define CACHELINE_CEILING(s) \
916 (((s) + (CACHELINE - 1)) & ~(CACHELINE - 1))
917
918 /* Return the smallest quantum multiple that is >= a. */
919 #define QUANTUM_CEILING(a) \
920 (((a) + quantum_mask) & ~quantum_mask)
921
922 /* Return the smallest pagesize multiple that is >= s. */
923 #define PAGE_CEILING(s) \
924 (((s) + pagesize_mask) & ~pagesize_mask)
925
926 /* Compute the smallest power of 2 that is >= x. */
927 static inline size_t
928 pow2_ceil(size_t x)
929 {
930
931 x--;
932 x |= x >> 1;
933 x |= x >> 2;
934 x |= x >> 4;
935 x |= x >> 8;
936 x |= x >> 16;
937 #if (SIZEOF_PTR == 8)
938 x |= x >> 32;
939 #endif
940 x++;
941 return (x);
942 }
943
944 static void
945 wrtmessage(const char *p1, const char *p2, const char *p3, const char *p4)
946 {
947
948 write(STDERR_FILENO, p1, strlen(p1));
949 write(STDERR_FILENO, p2, strlen(p2));
950 write(STDERR_FILENO, p3, strlen(p3));
951 write(STDERR_FILENO, p4, strlen(p4));
952 }
953
954 void (*_malloc_message)(const char *p1, const char *p2, const char *p3,
955 const char *p4) = wrtmessage;
956
957 #ifdef MALLOC_STATS
958 /*
959 * Print to stderr in such a way as to (hopefully) avoid memory allocation.
960 */
961 static void
962 malloc_printf(const char *format, ...)
963 {
964 char buf[4096];
965 va_list ap;
966
967 va_start(ap, format);
968 vsnprintf(buf, sizeof(buf), format, ap);
969 va_end(ap);
970 _malloc_message(buf, "", "", "");
971 }
972 #endif
973
974 /*
975 * We don't want to depend on vsnprintf() for production builds, since that can
976 * cause unnecessary bloat for static binaries. umax2s() provides minimal
977 * integer printing functionality, so that malloc_printf() use can be limited to
978 * MALLOC_STATS code.
979 */
980 #define UMAX2S_BUFSIZE 21
981 static char *
982 umax2s(uintmax_t x, char *s)
983 {
984 unsigned i;
985
986 /* Make sure UMAX2S_BUFSIZE is large enough. */
987 /* LINTED */
988 assert(sizeof(uintmax_t) <= 8);
989
990 i = UMAX2S_BUFSIZE - 1;
991 s[i] = '\0';
992 do {
993 i--;
994 s[i] = "0123456789"[(int)x % 10];
995 x /= (uintmax_t)10LL;
996 } while (x > 0);
997
998 return (&s[i]);
999 }
1000
1001 /******************************************************************************/
1002
1003 static bool
1004 base_pages_alloc(size_t minsize)
1005 {
1006 size_t csize = 0;
1007
1008 #ifdef USE_BRK
1009 /*
1010 * Do special brk allocation here, since base allocations don't need to
1011 * be chunk-aligned.
1012 */
1013 if (brk_prev != (void *)-1) {
1014 void *brk_cur;
1015 intptr_t incr;
1016
1017 if (minsize != 0)
1018 csize = CHUNK_CEILING(minsize);
1019
1020 malloc_mutex_lock(&brk_mtx);
1021 do {
1022 /* Get the current end of brk. */
1023 brk_cur = sbrk(0);
1024
1025 /*
1026 * Calculate how much padding is necessary to
1027 * chunk-align the end of brk. Don't worry about
1028 * brk_cur not being chunk-aligned though.
1029 */
1030 incr = (intptr_t)chunksize
1031 - (intptr_t)CHUNK_ADDR2OFFSET(brk_cur);
1032 if (incr < minsize)
1033 incr += csize;
1034
1035 brk_prev = sbrk(incr);
1036 if (brk_prev == brk_cur) {
1037 /* Success. */
1038 malloc_mutex_unlock(&brk_mtx);
1039 base_pages = brk_cur;
1040 base_next_addr = base_pages;
1041 base_past_addr = (void *)((uintptr_t)base_pages
1042 + incr);
1043 #ifdef MALLOC_STATS
1044 base_mapped += incr;
1045 #endif
1046 return (false);
1047 }
1048 } while (brk_prev != (void *)-1);
1049 malloc_mutex_unlock(&brk_mtx);
1050 }
1051 if (minsize == 0) {
1052 /*
1053 * Failure during initialization doesn't matter, so avoid
1054 * falling through to the mmap-based page mapping code.
1055 */
1056 return (true);
1057 }
1058 #endif
1059 assert(minsize != 0);
1060 csize = PAGE_CEILING(minsize);
1061 base_pages = pages_map(NULL, csize);
1062 if (base_pages == NULL)
1063 return (true);
1064 base_next_addr = base_pages;
1065 base_past_addr = (void *)((uintptr_t)base_pages + csize);
1066 #ifdef MALLOC_STATS
1067 base_mapped += csize;
1068 #endif
1069 return (false);
1070 }
1071
1072 static void *
1073 base_alloc(size_t size)
1074 {
1075 void *ret;
1076 size_t csize;
1077
1078 /* Round size up to nearest multiple of the cacheline size. */
1079 csize = CACHELINE_CEILING(size);
1080
1081 malloc_mutex_lock(&base_mtx);
1082
1083 /* Make sure there's enough space for the allocation. */
1084 if ((uintptr_t)base_next_addr + csize > (uintptr_t)base_past_addr) {
1085 if (base_pages_alloc(csize)) {
1086 ret = NULL;
1087 goto RETURN;
1088 }
1089 }
1090
1091 /* Allocate. */
1092 ret = base_next_addr;
1093 base_next_addr = (void *)((uintptr_t)base_next_addr + csize);
1094
1095 RETURN:
1096 malloc_mutex_unlock(&base_mtx);
1097 return (ret);
1098 }
1099
1100 static chunk_node_t *
1101 base_chunk_node_alloc(void)
1102 {
1103 chunk_node_t *ret;
1104
1105 malloc_mutex_lock(&base_mtx);
1106 if (base_chunk_nodes != NULL) {
1107 ret = base_chunk_nodes;
1108 /* LINTED */
1109 base_chunk_nodes = *(chunk_node_t **)ret;
1110 malloc_mutex_unlock(&base_mtx);
1111 } else {
1112 malloc_mutex_unlock(&base_mtx);
1113 ret = (chunk_node_t *)base_alloc(sizeof(chunk_node_t));
1114 }
1115
1116 return (ret);
1117 }
1118
1119 static void
1120 base_chunk_node_dealloc(chunk_node_t *node)
1121 {
1122
1123 malloc_mutex_lock(&base_mtx);
1124 /* LINTED */
1125 *(chunk_node_t **)node = base_chunk_nodes;
1126 base_chunk_nodes = node;
1127 malloc_mutex_unlock(&base_mtx);
1128 }
1129
1130 /******************************************************************************/
1131
1132 #ifdef MALLOC_STATS
1133 static void
1134 stats_print(arena_t *arena)
1135 {
1136 unsigned i;
1137 int gap_start;
1138
1139 malloc_printf(
1140 " allocated/mapped nmalloc ndalloc\n");
1141
1142 malloc_printf("small: %12zu %-12s %12llu %12llu\n",
1143 arena->stats.allocated_small, "", arena->stats.nmalloc_small,
1144 arena->stats.ndalloc_small);
1145 malloc_printf("large: %12zu %-12s %12llu %12llu\n",
1146 arena->stats.allocated_large, "", arena->stats.nmalloc_large,
1147 arena->stats.ndalloc_large);
1148 malloc_printf("total: %12zu/%-12zu %12llu %12llu\n",
1149 arena->stats.allocated_small + arena->stats.allocated_large,
1150 arena->stats.mapped,
1151 arena->stats.nmalloc_small + arena->stats.nmalloc_large,
1152 arena->stats.ndalloc_small + arena->stats.ndalloc_large);
1153
1154 malloc_printf("bins: bin size regs pgs requests newruns"
1155 " reruns maxruns curruns\n");
1156 for (i = 0, gap_start = -1; i < ntbins + nqbins + nsbins; i++) {
1157 if (arena->bins[i].stats.nrequests == 0) {
1158 if (gap_start == -1)
1159 gap_start = i;
1160 } else {
1161 if (gap_start != -1) {
1162 if (i > gap_start + 1) {
1163 /* Gap of more than one size class. */
1164 malloc_printf("[%u..%u]\n",
1165 gap_start, i - 1);
1166 } else {
1167 /* Gap of one size class. */
1168 malloc_printf("[%u]\n", gap_start);
1169 }
1170 gap_start = -1;
1171 }
1172 malloc_printf(
1173 "%13u %1s %4u %4u %3u %9llu %9llu"
1174 " %9llu %7lu %7lu\n",
1175 i,
1176 i < ntbins ? "T" : i < ntbins + nqbins ? "Q" : "S",
1177 arena->bins[i].reg_size,
1178 arena->bins[i].nregs,
1179 arena->bins[i].run_size >> pagesize_2pow,
1180 arena->bins[i].stats.nrequests,
1181 arena->bins[i].stats.nruns,
1182 arena->bins[i].stats.reruns,
1183 arena->bins[i].stats.highruns,
1184 arena->bins[i].stats.curruns);
1185 }
1186 }
1187 if (gap_start != -1) {
1188 if (i > gap_start + 1) {
1189 /* Gap of more than one size class. */
1190 malloc_printf("[%u..%u]\n", gap_start, i - 1);
1191 } else {
1192 /* Gap of one size class. */
1193 malloc_printf("[%u]\n", gap_start);
1194 }
1195 }
1196 }
1197 #endif
1198
1199 /*
1200 * End Utility functions/macros.
1201 */
1202 /******************************************************************************/
1203 /*
1204 * Begin chunk management functions.
1205 */
1206
1207 #ifndef lint
1208 static inline int
1209 chunk_comp(chunk_node_t *a, chunk_node_t *b)
1210 {
1211
1212 assert(a != NULL);
1213 assert(b != NULL);
1214
1215 if ((uintptr_t)a->chunk < (uintptr_t)b->chunk)
1216 return (-1);
1217 else if (a->chunk == b->chunk)
1218 return (0);
1219 else
1220 return (1);
1221 }
1222
1223 /* Generate red-black tree code for chunks. */
1224 RB_GENERATE_STATIC(chunk_tree_s, chunk_node_s, link, chunk_comp);
1225 #endif
1226
1227 static void *
1228 pages_map_align(void *addr, size_t size, int align)
1229 {
1230 void *ret;
1231
1232 /*
1233 * We don't use MAP_FIXED here, because it can cause the *replacement*
1234 * of existing mappings, and we only want to create new mappings.
1235 */
1236 ret = mmap(addr, size, PROT_READ | PROT_WRITE,
1237 MAP_PRIVATE | MAP_ANON | MAP_ALIGNED(align), -1, 0);
1238 assert(ret != NULL);
1239
1240 if (ret == MAP_FAILED)
1241 ret = NULL;
1242 else if (addr != NULL && ret != addr) {
1243 /*
1244 * We succeeded in mapping memory, but not in the right place.
1245 */
1246 if (munmap(ret, size) == -1) {
1247 char buf[STRERROR_BUF];
1248
1249 STRERROR_R(errno, buf, sizeof(buf));
1250 _malloc_message(getprogname(),
1251 ": (malloc) Error in munmap(): ", buf, "\n");
1252 if (opt_abort)
1253 abort();
1254 }
1255 ret = NULL;
1256 }
1257
1258 assert(ret == NULL || (addr == NULL && ret != addr)
1259 || (addr != NULL && ret == addr));
1260 return (ret);
1261 }
1262
1263 static void *
1264 pages_map(void *addr, size_t size)
1265 {
1266
1267 return pages_map_align(addr, size, 0);
1268 }
1269
1270 static void
1271 pages_unmap(void *addr, size_t size)
1272 {
1273
1274 if (munmap(addr, size) == -1) {
1275 char buf[STRERROR_BUF];
1276
1277 STRERROR_R(errno, buf, sizeof(buf));
1278 _malloc_message(getprogname(),
1279 ": (malloc) Error in munmap(): ", buf, "\n");
1280 if (opt_abort)
1281 abort();
1282 }
1283 }
1284
1285 static void *
1286 chunk_alloc(size_t size)
1287 {
1288 void *ret, *chunk;
1289 chunk_node_t *tchunk, *delchunk;
1290
1291 assert(size != 0);
1292 assert((size & chunksize_mask) == 0);
1293
1294 malloc_mutex_lock(&chunks_mtx);
1295
1296 if (size == chunksize) {
1297 /*
1298 * Check for address ranges that were previously chunks and try
1299 * to use them.
1300 */
1301
1302 /* LINTED */
1303 tchunk = RB_MIN(chunk_tree_s, &old_chunks);
1304 while (tchunk != NULL) {
1305 /* Found an address range. Try to recycle it. */
1306
1307 chunk = tchunk->chunk;
1308 delchunk = tchunk;
1309 /* LINTED */
1310 tchunk = RB_NEXT(chunk_tree_s, &old_chunks, delchunk);
1311
1312 /* Remove delchunk from the tree. */
1313 /* LINTED */
1314 RB_REMOVE(chunk_tree_s, &old_chunks, delchunk);
1315 base_chunk_node_dealloc(delchunk);
1316
1317 #ifdef USE_BRK
1318 if ((uintptr_t)chunk >= (uintptr_t)brk_base
1319 && (uintptr_t)chunk < (uintptr_t)brk_max) {
1320 /* Re-use a previously freed brk chunk. */
1321 ret = chunk;
1322 goto RETURN;
1323 }
1324 #endif
1325 if ((ret = pages_map(chunk, size)) != NULL) {
1326 /* Success. */
1327 goto RETURN;
1328 }
1329 }
1330 }
1331
1332 /*
1333 * Try to over-allocate, but allow the OS to place the allocation
1334 * anywhere. Beware of size_t wrap-around.
1335 */
1336 if (size + chunksize > size) {
1337 if ((ret = pages_map_align(NULL, size, chunksize_2pow))
1338 != NULL) {
1339 goto RETURN;
1340 }
1341 }
1342
1343 #ifdef USE_BRK
1344 /*
1345 * Try to create allocations in brk, in order to make full use of
1346 * limited address space.
1347 */
1348 if (brk_prev != (void *)-1) {
1349 void *brk_cur;
1350 intptr_t incr;
1351
1352 /*
1353 * The loop is necessary to recover from races with other
1354 * threads that are using brk for something other than malloc.
1355 */
1356 malloc_mutex_lock(&brk_mtx);
1357 do {
1358 /* Get the current end of brk. */
1359 brk_cur = sbrk(0);
1360
1361 /*
1362 * Calculate how much padding is necessary to
1363 * chunk-align the end of brk.
1364 */
1365 incr = (intptr_t)size
1366 - (intptr_t)CHUNK_ADDR2OFFSET(brk_cur);
1367 if (incr == size) {
1368 ret = brk_cur;
1369 } else {
1370 ret = (void *)((intptr_t)brk_cur + incr);
1371 incr += size;
1372 }
1373
1374 brk_prev = sbrk(incr);
1375 if (brk_prev == brk_cur) {
1376 /* Success. */
1377 malloc_mutex_unlock(&brk_mtx);
1378 brk_max = (void *)((intptr_t)ret + size);
1379 goto RETURN;
1380 }
1381 } while (brk_prev != (void *)-1);
1382 malloc_mutex_unlock(&brk_mtx);
1383 }
1384 #endif
1385
1386 /* All strategies for allocation failed. */
1387 ret = NULL;
1388 RETURN:
1389 if (ret != NULL) {
1390 chunk_node_t key;
1391 /*
1392 * Clean out any entries in old_chunks that overlap with the
1393 * memory we just allocated.
1394 */
1395 key.chunk = ret;
1396 /* LINTED */
1397 tchunk = RB_NFIND(chunk_tree_s, &old_chunks, &key);
1398 while (tchunk != NULL
1399 && (uintptr_t)tchunk->chunk >= (uintptr_t)ret
1400 && (uintptr_t)tchunk->chunk < (uintptr_t)ret + size) {
1401 delchunk = tchunk;
1402 /* LINTED */
1403 tchunk = RB_NEXT(chunk_tree_s, &old_chunks, delchunk);
1404 /* LINTED */
1405 RB_REMOVE(chunk_tree_s, &old_chunks, delchunk);
1406 base_chunk_node_dealloc(delchunk);
1407 }
1408
1409 }
1410 #ifdef MALLOC_STATS
1411 if (ret != NULL) {
1412 stats_chunks.nchunks += (size / chunksize);
1413 stats_chunks.curchunks += (size / chunksize);
1414 }
1415 if (stats_chunks.curchunks > stats_chunks.highchunks)
1416 stats_chunks.highchunks = stats_chunks.curchunks;
1417 #endif
1418 malloc_mutex_unlock(&chunks_mtx);
1419
1420 assert(CHUNK_ADDR2BASE(ret) == ret);
1421 return (ret);
1422 }
1423
1424 static void
1425 chunk_dealloc(void *chunk, size_t size)
1426 {
1427 chunk_node_t *node;
1428
1429 assert(chunk != NULL);
1430 assert(CHUNK_ADDR2BASE(chunk) == chunk);
1431 assert(size != 0);
1432 assert((size & chunksize_mask) == 0);
1433
1434 malloc_mutex_lock(&chunks_mtx);
1435
1436 #ifdef USE_BRK
1437 if ((uintptr_t)chunk >= (uintptr_t)brk_base
1438 && (uintptr_t)chunk < (uintptr_t)brk_max) {
1439 void *brk_cur;
1440
1441 malloc_mutex_lock(&brk_mtx);
1442 /* Get the current end of brk. */
1443 brk_cur = sbrk(0);
1444
1445 /*
1446 * Try to shrink the data segment if this chunk is at the end
1447 * of the data segment. The sbrk() call here is subject to a
1448 * race condition with threads that use brk(2) or sbrk(2)
1449 * directly, but the alternative would be to leak memory for
1450 * the sake of poorly designed multi-threaded programs.
1451 */
1452 if (brk_cur == brk_max
1453 && (void *)((uintptr_t)chunk + size) == brk_max
1454 && sbrk(-(intptr_t)size) == brk_max) {
1455 malloc_mutex_unlock(&brk_mtx);
1456 if (brk_prev == brk_max) {
1457 /* Success. */
1458 brk_prev = (void *)((intptr_t)brk_max
1459 - (intptr_t)size);
1460 brk_max = brk_prev;
1461 }
1462 } else {
1463 size_t offset;
1464
1465 malloc_mutex_unlock(&brk_mtx);
1466 madvise(chunk, size, MADV_FREE);
1467
1468 /*
1469 * Iteratively create records of each chunk-sized
1470 * memory region that 'chunk' is comprised of, so that
1471 * the address range can be recycled if memory usage
1472 * increases later on.
1473 */
1474 for (offset = 0; offset < size; offset += chunksize) {
1475 node = base_chunk_node_alloc();
1476 if (node == NULL)
1477 break;
1478
1479 node->chunk = (void *)((uintptr_t)chunk
1480 + (uintptr_t)offset);
1481 node->size = chunksize;
1482 /* LINTED */
1483 RB_INSERT(chunk_tree_s, &old_chunks, node);
1484 }
1485 }
1486 } else {
1487 #endif
1488 pages_unmap(chunk, size);
1489
1490 /*
1491 * Make a record of the chunk's address, so that the address
1492 * range can be recycled if memory usage increases later on.
1493 * Don't bother to create entries if (size > chunksize), since
1494 * doing so could cause scalability issues for truly gargantuan
1495 * objects (many gigabytes or larger).
1496 */
1497 if (size == chunksize) {
1498 node = base_chunk_node_alloc();
1499 if (node != NULL) {
1500 node->chunk = (void *)(uintptr_t)chunk;
1501 node->size = chunksize;
1502 /* LINTED */
1503 RB_INSERT(chunk_tree_s, &old_chunks, node);
1504 }
1505 }
1506 #ifdef USE_BRK
1507 }
1508 #endif
1509
1510 #ifdef MALLOC_STATS
1511 stats_chunks.curchunks -= (size / chunksize);
1512 #endif
1513 malloc_mutex_unlock(&chunks_mtx);
1514 }
1515
1516 /*
1517 * End chunk management functions.
1518 */
1519 /******************************************************************************/
1520 /*
1521 * Begin arena.
1522 */
1523
1524 /*
1525 * Choose an arena based on a per-thread and (optimistically) per-CPU value.
1526 *
1527 * We maintain at least one block of arenas. Usually there are more.
1528 * The blocks are $ncpu arenas in size. Whole blocks are 'hashed'
1529 * amongst threads. To accomplish this, next_arena advances only in
1530 * ncpu steps.
1531 */
1532 static inline arena_t *
1533 choose_arena(void)
1534 {
1535 unsigned i, curcpu;
1536 arena_t **map;
1537
1538 map = get_arenas_map();
1539 curcpu = thr_curcpu();
1540 if (__predict_true(map != NULL && map[curcpu] != NULL))
1541 return map[curcpu];
1542
1543 /* Initialize the current block of arenas and advance to next. */
1544 malloc_mutex_lock(&arenas_mtx);
1545 assert(next_arena % ncpus == 0);
1546 assert(narenas % ncpus == 0);
1547 map = &arenas[next_arena];
1548 set_arenas_map(map);
1549 for (i = 0; i < ncpus; i++) {
1550 if (arenas[next_arena] == NULL)
1551 arenas_extend(next_arena);
1552 next_arena = (next_arena + 1) % narenas;
1553 }
1554 malloc_mutex_unlock(&arenas_mtx);
1555
1556 /*
1557 * If we were unable to allocate an arena above, then default to
1558 * the first arena, which is always present.
1559 */
1560 curcpu = thr_curcpu();
1561 if (map[curcpu] != NULL)
1562 return map[curcpu];
1563 return arenas[0];
1564 }
1565
1566 #ifndef lint
1567 static inline int
1568 arena_chunk_comp(arena_chunk_t *a, arena_chunk_t *b)
1569 {
1570
1571 assert(a != NULL);
1572 assert(b != NULL);
1573
1574 if ((uintptr_t)a < (uintptr_t)b)
1575 return (-1);
1576 else if (a == b)
1577 return (0);
1578 else
1579 return (1);
1580 }
1581
1582 /* Generate red-black tree code for arena chunks. */
1583 RB_GENERATE_STATIC(arena_chunk_tree_s, arena_chunk_s, link, arena_chunk_comp);
1584 #endif
1585
1586 #ifndef lint
1587 static inline int
1588 arena_run_comp(arena_run_t *a, arena_run_t *b)
1589 {
1590
1591 assert(a != NULL);
1592 assert(b != NULL);
1593
1594 if ((uintptr_t)a < (uintptr_t)b)
1595 return (-1);
1596 else if (a == b)
1597 return (0);
1598 else
1599 return (1);
1600 }
1601
1602 /* Generate red-black tree code for arena runs. */
1603 RB_GENERATE_STATIC(arena_run_tree_s, arena_run_s, link, arena_run_comp);
1604 #endif
1605
1606 static inline void *
1607 arena_run_reg_alloc(arena_run_t *run, arena_bin_t *bin)
1608 {
1609 void *ret;
1610 unsigned i, mask, bit, regind;
1611
1612 assert(run->magic == ARENA_RUN_MAGIC);
1613 assert(run->regs_minelm < bin->regs_mask_nelms);
1614
1615 /*
1616 * Move the first check outside the loop, so that run->regs_minelm can
1617 * be updated unconditionally, without the possibility of updating it
1618 * multiple times.
1619 */
1620 i = run->regs_minelm;
1621 mask = run->regs_mask[i];
1622 if (mask != 0) {
1623 /* Usable allocation found. */
1624 bit = ffs((int)mask) - 1;
1625
1626 regind = ((i << (SIZEOF_INT_2POW + 3)) + bit);
1627 ret = (void *)(((uintptr_t)run) + bin->reg0_offset
1628 + (bin->reg_size * regind));
1629
1630 /* Clear bit. */
1631 mask ^= (1 << bit);
1632 run->regs_mask[i] = mask;
1633
1634 return (ret);
1635 }
1636
1637 for (i++; i < bin->regs_mask_nelms; i++) {
1638 mask = run->regs_mask[i];
1639 if (mask != 0) {
1640 /* Usable allocation found. */
1641 bit = ffs((int)mask) - 1;
1642
1643 regind = ((i << (SIZEOF_INT_2POW + 3)) + bit);
1644 ret = (void *)(((uintptr_t)run) + bin->reg0_offset
1645 + (bin->reg_size * regind));
1646
1647 /* Clear bit. */
1648 mask ^= (1 << bit);
1649 run->regs_mask[i] = mask;
1650
1651 /*
1652 * Make a note that nothing before this element
1653 * contains a free region.
1654 */
1655 run->regs_minelm = i; /* Low payoff: + (mask == 0); */
1656
1657 return (ret);
1658 }
1659 }
1660 /* Not reached. */
1661 /* LINTED */
1662 assert(0);
1663 return (NULL);
1664 }
1665
1666 static inline void
1667 arena_run_reg_dalloc(arena_run_t *run, arena_bin_t *bin, void *ptr, size_t size)
1668 {
1669 /*
1670 * To divide by a number D that is not a power of two we multiply
1671 * by (2^21 / D) and then right shift by 21 positions.
1672 *
1673 * X / D
1674 *
1675 * becomes
1676 *
1677 * (X * size_invs[(D >> QUANTUM_2POW_MIN) - 3]) >> SIZE_INV_SHIFT
1678 */
1679 #define SIZE_INV_SHIFT 21
1680 #define SIZE_INV(s) (((1 << SIZE_INV_SHIFT) / (s << QUANTUM_2POW_MIN)) + 1)
1681 static const unsigned size_invs[] = {
1682 SIZE_INV(3),
1683 SIZE_INV(4), SIZE_INV(5), SIZE_INV(6), SIZE_INV(7),
1684 SIZE_INV(8), SIZE_INV(9), SIZE_INV(10), SIZE_INV(11),
1685 SIZE_INV(12),SIZE_INV(13), SIZE_INV(14), SIZE_INV(15),
1686 SIZE_INV(16),SIZE_INV(17), SIZE_INV(18), SIZE_INV(19),
1687 SIZE_INV(20),SIZE_INV(21), SIZE_INV(22), SIZE_INV(23),
1688 SIZE_INV(24),SIZE_INV(25), SIZE_INV(26), SIZE_INV(27),
1689 SIZE_INV(28),SIZE_INV(29), SIZE_INV(30), SIZE_INV(31)
1690 #if (QUANTUM_2POW_MIN < 4)
1691 ,
1692 SIZE_INV(32), SIZE_INV(33), SIZE_INV(34), SIZE_INV(35),
1693 SIZE_INV(36), SIZE_INV(37), SIZE_INV(38), SIZE_INV(39),
1694 SIZE_INV(40), SIZE_INV(41), SIZE_INV(42), SIZE_INV(43),
1695 SIZE_INV(44), SIZE_INV(45), SIZE_INV(46), SIZE_INV(47),
1696 SIZE_INV(48), SIZE_INV(49), SIZE_INV(50), SIZE_INV(51),
1697 SIZE_INV(52), SIZE_INV(53), SIZE_INV(54), SIZE_INV(55),
1698 SIZE_INV(56), SIZE_INV(57), SIZE_INV(58), SIZE_INV(59),
1699 SIZE_INV(60), SIZE_INV(61), SIZE_INV(62), SIZE_INV(63)
1700 #endif
1701 };
1702 unsigned diff, regind, elm, bit;
1703
1704 /* LINTED */
1705 assert(run->magic == ARENA_RUN_MAGIC);
1706 assert(((sizeof(size_invs)) / sizeof(unsigned)) + 3
1707 >= (SMALL_MAX_DEFAULT >> QUANTUM_2POW_MIN));
1708
1709 /*
1710 * Avoid doing division with a variable divisor if possible. Using
1711 * actual division here can reduce allocator throughput by over 20%!
1712 */
1713 diff = (unsigned)((uintptr_t)ptr - (uintptr_t)run - bin->reg0_offset);
1714 if ((size & (size - 1)) == 0) {
1715 /*
1716 * log2_table allows fast division of a power of two in the
1717 * [1..128] range.
1718 *
1719 * (x / divisor) becomes (x >> log2_table[divisor - 1]).
1720 */
1721 static const unsigned char log2_table[] = {
1722 0, 1, 0, 2, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 4,
1723 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5,
1724 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1725 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6,
1726 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1727 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1728 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1729 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7
1730 };
1731
1732 if (size <= 128)
1733 regind = (diff >> log2_table[size - 1]);
1734 else if (size <= 32768)
1735 regind = diff >> (8 + log2_table[(size >> 8) - 1]);
1736 else {
1737 /*
1738 * The page size is too large for us to use the lookup
1739 * table. Use real division.
1740 */
1741 regind = (unsigned)(diff / size);
1742 }
1743 } else if (size <= ((sizeof(size_invs) / sizeof(unsigned))
1744 << QUANTUM_2POW_MIN) + 2) {
1745 regind = size_invs[(size >> QUANTUM_2POW_MIN) - 3] * diff;
1746 regind >>= SIZE_INV_SHIFT;
1747 } else {
1748 /*
1749 * size_invs isn't large enough to handle this size class, so
1750 * calculate regind using actual division. This only happens
1751 * if the user increases small_max via the 'S' runtime
1752 * configuration option.
1753 */
1754 regind = (unsigned)(diff / size);
1755 };
1756 assert(diff == regind * size);
1757 assert(regind < bin->nregs);
1758
1759 elm = regind >> (SIZEOF_INT_2POW + 3);
1760 if (elm < run->regs_minelm)
1761 run->regs_minelm = elm;
1762 bit = regind - (elm << (SIZEOF_INT_2POW + 3));
1763 assert((run->regs_mask[elm] & (1 << bit)) == 0);
1764 run->regs_mask[elm] |= (1 << bit);
1765 #undef SIZE_INV
1766 #undef SIZE_INV_SHIFT
1767 }
1768
1769 static void
1770 arena_run_split(arena_t *arena, arena_run_t *run, size_t size)
1771 {
1772 arena_chunk_t *chunk;
1773 unsigned run_ind, map_offset, total_pages, need_pages, rem_pages;
1774 unsigned i;
1775
1776 chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(run);
1777 run_ind = (unsigned)(((uintptr_t)run - (uintptr_t)chunk)
1778 >> pagesize_2pow);
1779 total_pages = chunk->map[run_ind].npages;
1780 need_pages = (unsigned)(size >> pagesize_2pow);
1781 assert(need_pages <= total_pages);
1782 rem_pages = total_pages - need_pages;
1783
1784 /* Split enough pages from the front of run to fit allocation size. */
1785 map_offset = run_ind;
1786 for (i = 0; i < need_pages; i++) {
1787 chunk->map[map_offset + i].npages = need_pages;
1788 chunk->map[map_offset + i].pos = i;
1789 }
1790
1791 /* Keep track of trailing unused pages for later use. */
1792 if (rem_pages > 0) {
1793 /* Update map for trailing pages. */
1794 map_offset += need_pages;
1795 chunk->map[map_offset].npages = rem_pages;
1796 chunk->map[map_offset].pos = POS_FREE;
1797 chunk->map[map_offset + rem_pages - 1].npages = rem_pages;
1798 chunk->map[map_offset + rem_pages - 1].pos = POS_FREE;
1799 }
1800
1801 chunk->pages_used += need_pages;
1802 }
1803
1804 static arena_chunk_t *
1805 arena_chunk_alloc(arena_t *arena)
1806 {
1807 arena_chunk_t *chunk;
1808
1809 if (arena->spare != NULL) {
1810 chunk = arena->spare;
1811 arena->spare = NULL;
1812
1813 /* LINTED */
1814 RB_INSERT(arena_chunk_tree_s, &arena->chunks, chunk);
1815 } else {
1816 chunk = (arena_chunk_t *)chunk_alloc(chunksize);
1817 if (chunk == NULL)
1818 return (NULL);
1819 #ifdef MALLOC_STATS
1820 arena->stats.mapped += chunksize;
1821 #endif
1822
1823 chunk->arena = arena;
1824
1825 /* LINTED */
1826 RB_INSERT(arena_chunk_tree_s, &arena->chunks, chunk);
1827
1828 /*
1829 * Claim that no pages are in use, since the header is merely
1830 * overhead.
1831 */
1832 chunk->pages_used = 0;
1833
1834 chunk->max_frun_npages = chunk_npages -
1835 arena_chunk_header_npages;
1836 chunk->min_frun_ind = arena_chunk_header_npages;
1837
1838 /*
1839 * Initialize enough of the map to support one maximal free run.
1840 */
1841 chunk->map[arena_chunk_header_npages].npages = chunk_npages -
1842 arena_chunk_header_npages;
1843 chunk->map[arena_chunk_header_npages].pos = POS_FREE;
1844 chunk->map[chunk_npages - 1].npages = chunk_npages -
1845 arena_chunk_header_npages;
1846 chunk->map[chunk_npages - 1].pos = POS_FREE;
1847 }
1848
1849 return (chunk);
1850 }
1851
1852 static void
1853 arena_chunk_dealloc(arena_t *arena, arena_chunk_t *chunk)
1854 {
1855
1856 /*
1857 * Remove chunk from the chunk tree, regardless of whether this chunk
1858 * will be cached, so that the arena does not use it.
1859 */
1860 /* LINTED */
1861 RB_REMOVE(arena_chunk_tree_s, &chunk->arena->chunks, chunk);
1862
1863 if (opt_hint == false) {
1864 if (arena->spare != NULL) {
1865 chunk_dealloc((void *)arena->spare, chunksize);
1866 #ifdef MALLOC_STATS
1867 arena->stats.mapped -= chunksize;
1868 #endif
1869 }
1870 arena->spare = chunk;
1871 } else {
1872 assert(arena->spare == NULL);
1873 chunk_dealloc((void *)chunk, chunksize);
1874 #ifdef MALLOC_STATS
1875 arena->stats.mapped -= chunksize;
1876 #endif
1877 }
1878 }
1879
1880 static arena_run_t *
1881 arena_run_alloc(arena_t *arena, size_t size)
1882 {
1883 arena_chunk_t *chunk;
1884 arena_run_t *run;
1885 unsigned need_npages, limit_pages, compl_need_npages;
1886
1887 assert(size <= (chunksize - (arena_chunk_header_npages <<
1888 pagesize_2pow)));
1889 assert((size & pagesize_mask) == 0);
1890
1891 /*
1892 * Search through arena's chunks in address order for a free run that is
1893 * large enough. Look for the first fit.
1894 */
1895 need_npages = (unsigned)(size >> pagesize_2pow);
1896 limit_pages = chunk_npages - arena_chunk_header_npages;
1897 compl_need_npages = limit_pages - need_npages;
1898 /* LINTED */
1899 RB_FOREACH(chunk, arena_chunk_tree_s, &arena->chunks) {
1900 /*
1901 * Avoid searching this chunk if there are not enough
1902 * contiguous free pages for there to possibly be a large
1903 * enough free run.
1904 */
1905 if (chunk->pages_used <= compl_need_npages &&
1906 need_npages <= chunk->max_frun_npages) {
1907 arena_chunk_map_t *mapelm;
1908 unsigned i;
1909 unsigned max_frun_npages = 0;
1910 unsigned min_frun_ind = chunk_npages;
1911
1912 assert(chunk->min_frun_ind >=
1913 arena_chunk_header_npages);
1914 for (i = chunk->min_frun_ind; i < chunk_npages;) {
1915 mapelm = &chunk->map[i];
1916 if (mapelm->pos == POS_FREE) {
1917 if (mapelm->npages >= need_npages) {
1918 run = (arena_run_t *)
1919 ((uintptr_t)chunk + (i <<
1920 pagesize_2pow));
1921 /* Update page map. */
1922 arena_run_split(arena, run,
1923 size);
1924 return (run);
1925 }
1926 if (mapelm->npages >
1927 max_frun_npages) {
1928 max_frun_npages =
1929 mapelm->npages;
1930 }
1931 if (i < min_frun_ind) {
1932 min_frun_ind = i;
1933 if (i < chunk->min_frun_ind)
1934 chunk->min_frun_ind = i;
1935 }
1936 }
1937 i += mapelm->npages;
1938 }
1939 /*
1940 * Search failure. Reset cached chunk->max_frun_npages.
1941 * chunk->min_frun_ind was already reset above (if
1942 * necessary).
1943 */
1944 chunk->max_frun_npages = max_frun_npages;
1945 }
1946 }
1947
1948 /*
1949 * No usable runs. Create a new chunk from which to allocate the run.
1950 */
1951 chunk = arena_chunk_alloc(arena);
1952 if (chunk == NULL)
1953 return (NULL);
1954 run = (arena_run_t *)((uintptr_t)chunk + (arena_chunk_header_npages <<
1955 pagesize_2pow));
1956 /* Update page map. */
1957 arena_run_split(arena, run, size);
1958 return (run);
1959 }
1960
1961 static void
1962 arena_run_dalloc(arena_t *arena, arena_run_t *run, size_t size)
1963 {
1964 arena_chunk_t *chunk;
1965 unsigned run_ind, run_pages;
1966
1967 chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(run);
1968
1969 run_ind = (unsigned)(((uintptr_t)run - (uintptr_t)chunk)
1970 >> pagesize_2pow);
1971 assert(run_ind >= arena_chunk_header_npages);
1972 assert(run_ind < (chunksize >> pagesize_2pow));
1973 run_pages = (unsigned)(size >> pagesize_2pow);
1974 assert(run_pages == chunk->map[run_ind].npages);
1975
1976 /* Subtract pages from count of pages used in chunk. */
1977 chunk->pages_used -= run_pages;
1978
1979 /* Mark run as deallocated. */
1980 assert(chunk->map[run_ind].npages == run_pages);
1981 chunk->map[run_ind].pos = POS_FREE;
1982 assert(chunk->map[run_ind + run_pages - 1].npages == run_pages);
1983 chunk->map[run_ind + run_pages - 1].pos = POS_FREE;
1984
1985 /*
1986 * Tell the kernel that we don't need the data in this run, but only if
1987 * requested via runtime configuration.
1988 */
1989 if (opt_hint)
1990 madvise(run, size, MADV_FREE);
1991
1992 /* Try to coalesce with neighboring runs. */
1993 if (run_ind > arena_chunk_header_npages &&
1994 chunk->map[run_ind - 1].pos == POS_FREE) {
1995 unsigned prev_npages;
1996
1997 /* Coalesce with previous run. */
1998 prev_npages = chunk->map[run_ind - 1].npages;
1999 run_ind -= prev_npages;
2000 assert(chunk->map[run_ind].npages == prev_npages);
2001 assert(chunk->map[run_ind].pos == POS_FREE);
2002 run_pages += prev_npages;
2003
2004 chunk->map[run_ind].npages = run_pages;
2005 assert(chunk->map[run_ind].pos == POS_FREE);
2006 chunk->map[run_ind + run_pages - 1].npages = run_pages;
2007 assert(chunk->map[run_ind + run_pages - 1].pos == POS_FREE);
2008 }
2009
2010 if (run_ind + run_pages < chunk_npages &&
2011 chunk->map[run_ind + run_pages].pos == POS_FREE) {
2012 unsigned next_npages;
2013
2014 /* Coalesce with next run. */
2015 next_npages = chunk->map[run_ind + run_pages].npages;
2016 run_pages += next_npages;
2017 assert(chunk->map[run_ind + run_pages - 1].npages ==
2018 next_npages);
2019 assert(chunk->map[run_ind + run_pages - 1].pos == POS_FREE);
2020
2021 chunk->map[run_ind].npages = run_pages;
2022 chunk->map[run_ind].pos = POS_FREE;
2023 chunk->map[run_ind + run_pages - 1].npages = run_pages;
2024 assert(chunk->map[run_ind + run_pages - 1].pos == POS_FREE);
2025 }
2026
2027 if (chunk->map[run_ind].npages > chunk->max_frun_npages)
2028 chunk->max_frun_npages = chunk->map[run_ind].npages;
2029 if (run_ind < chunk->min_frun_ind)
2030 chunk->min_frun_ind = run_ind;
2031
2032 /* Deallocate chunk if it is now completely unused. */
2033 if (chunk->pages_used == 0)
2034 arena_chunk_dealloc(arena, chunk);
2035 }
2036
2037 static arena_run_t *
2038 arena_bin_nonfull_run_get(arena_t *arena, arena_bin_t *bin)
2039 {
2040 arena_run_t *run;
2041 unsigned i, remainder;
2042
2043 /* Look for a usable run. */
2044 /* LINTED */
2045 if ((run = RB_MIN(arena_run_tree_s, &bin->runs)) != NULL) {
2046 /* run is guaranteed to have available space. */
2047 /* LINTED */
2048 RB_REMOVE(arena_run_tree_s, &bin->runs, run);
2049 #ifdef MALLOC_STATS
2050 bin->stats.reruns++;
2051 #endif
2052 return (run);
2053 }
2054 /* No existing runs have any space available. */
2055
2056 /* Allocate a new run. */
2057 run = arena_run_alloc(arena, bin->run_size);
2058 if (run == NULL)
2059 return (NULL);
2060
2061 /* Initialize run internals. */
2062 run->bin = bin;
2063
2064 for (i = 0; i < bin->regs_mask_nelms; i++)
2065 run->regs_mask[i] = UINT_MAX;
2066 remainder = bin->nregs & ((1 << (SIZEOF_INT_2POW + 3)) - 1);
2067 if (remainder != 0) {
2068 /* The last element has spare bits that need to be unset. */
2069 run->regs_mask[i] = (UINT_MAX >> ((1 << (SIZEOF_INT_2POW + 3))
2070 - remainder));
2071 }
2072
2073 run->regs_minelm = 0;
2074
2075 run->nfree = bin->nregs;
2076 #ifdef MALLOC_DEBUG
2077 run->magic = ARENA_RUN_MAGIC;
2078 #endif
2079
2080 #ifdef MALLOC_STATS
2081 bin->stats.nruns++;
2082 bin->stats.curruns++;
2083 if (bin->stats.curruns > bin->stats.highruns)
2084 bin->stats.highruns = bin->stats.curruns;
2085 #endif
2086 return (run);
2087 }
2088
2089 /* bin->runcur must have space available before this function is called. */
2090 static inline void *
2091 arena_bin_malloc_easy(arena_t *arena, arena_bin_t *bin, arena_run_t *run)
2092 {
2093 void *ret;
2094
2095 assert(run->magic == ARENA_RUN_MAGIC);
2096 assert(run->nfree > 0);
2097
2098 ret = arena_run_reg_alloc(run, bin);
2099 assert(ret != NULL);
2100 run->nfree--;
2101
2102 return (ret);
2103 }
2104
2105 /* Re-fill bin->runcur, then call arena_bin_malloc_easy(). */
2106 static void *
2107 arena_bin_malloc_hard(arena_t *arena, arena_bin_t *bin)
2108 {
2109
2110 bin->runcur = arena_bin_nonfull_run_get(arena, bin);
2111 if (bin->runcur == NULL)
2112 return (NULL);
2113 assert(bin->runcur->magic == ARENA_RUN_MAGIC);
2114 assert(bin->runcur->nfree > 0);
2115
2116 return (arena_bin_malloc_easy(arena, bin, bin->runcur));
2117 }
2118
2119 /*
2120 * Calculate bin->run_size such that it meets the following constraints:
2121 *
2122 * *) bin->run_size >= min_run_size
2123 * *) bin->run_size <= arena_maxclass
2124 * *) bin->run_size <= RUN_MAX_SMALL
2125 * *) run header overhead <= RUN_MAX_OVRHD (or header overhead relaxed).
2126 *
2127 * bin->nregs, bin->regs_mask_nelms, and bin->reg0_offset are
2128 * also calculated here, since these settings are all interdependent.
2129 */
2130 static size_t
2131 arena_bin_run_size_calc(arena_bin_t *bin, size_t min_run_size)
2132 {
2133 size_t try_run_size, good_run_size;
2134 unsigned good_nregs, good_mask_nelms, good_reg0_offset;
2135 unsigned try_nregs, try_mask_nelms, try_reg0_offset;
2136 float max_ovrhd = RUN_MAX_OVRHD;
2137
2138 assert(min_run_size >= pagesize);
2139 assert(min_run_size <= arena_maxclass);
2140 assert(min_run_size <= RUN_MAX_SMALL);
2141
2142 /*
2143 * Calculate known-valid settings before entering the run_size
2144 * expansion loop, so that the first part of the loop always copies
2145 * valid settings.
2146 *
2147 * The do..while loop iteratively reduces the number of regions until
2148 * the run header and the regions no longer overlap. A closed formula
2149 * would be quite messy, since there is an interdependency between the
2150 * header's mask length and the number of regions.
2151 */
2152 try_run_size = min_run_size;
2153 try_nregs = (unsigned)(((try_run_size - sizeof(arena_run_t)) /
2154 bin->reg_size) + 1); /* Counter-act the first line of the loop. */
2155 do {
2156 try_nregs--;
2157 try_mask_nelms = (try_nregs >> (SIZEOF_INT_2POW + 3)) +
2158 ((try_nregs & ((1 << (SIZEOF_INT_2POW + 3)) - 1)) ? 1 : 0);
2159 try_reg0_offset = (unsigned)(try_run_size -
2160 (try_nregs * bin->reg_size));
2161 } while (sizeof(arena_run_t) + (sizeof(unsigned) * (try_mask_nelms - 1))
2162 > try_reg0_offset);
2163
2164 /* run_size expansion loop. */
2165 do {
2166 /*
2167 * Copy valid settings before trying more aggressive settings.
2168 */
2169 good_run_size = try_run_size;
2170 good_nregs = try_nregs;
2171 good_mask_nelms = try_mask_nelms;
2172 good_reg0_offset = try_reg0_offset;
2173
2174 /* Try more aggressive settings. */
2175 try_run_size += pagesize;
2176 try_nregs = (unsigned)(((try_run_size - sizeof(arena_run_t)) /
2177 bin->reg_size) + 1); /* Counter-act try_nregs-- in loop. */
2178 do {
2179 try_nregs--;
2180 try_mask_nelms = (try_nregs >> (SIZEOF_INT_2POW + 3)) +
2181 ((try_nregs & ((1 << (SIZEOF_INT_2POW + 3)) - 1)) ?
2182 1 : 0);
2183 try_reg0_offset = (unsigned)(try_run_size - (try_nregs *
2184 bin->reg_size));
2185 } while (sizeof(arena_run_t) + (sizeof(unsigned) *
2186 (try_mask_nelms - 1)) > try_reg0_offset);
2187 } while (try_run_size <= arena_maxclass && try_run_size <= RUN_MAX_SMALL
2188 && max_ovrhd > RUN_MAX_OVRHD_RELAX / ((float)(bin->reg_size << 3))
2189 && ((float)(try_reg0_offset)) / ((float)(try_run_size)) >
2190 max_ovrhd);
2191
2192 assert(sizeof(arena_run_t) + (sizeof(unsigned) * (good_mask_nelms - 1))
2193 <= good_reg0_offset);
2194 assert((good_mask_nelms << (SIZEOF_INT_2POW + 3)) >= good_nregs);
2195
2196 /* Copy final settings. */
2197 bin->run_size = good_run_size;
2198 bin->nregs = good_nregs;
2199 bin->regs_mask_nelms = good_mask_nelms;
2200 bin->reg0_offset = good_reg0_offset;
2201
2202 return (good_run_size);
2203 }
2204
2205 static void *
2206 arena_malloc(arena_t *arena, size_t size)
2207 {
2208 void *ret;
2209
2210 assert(arena != NULL);
2211 assert(arena->magic == ARENA_MAGIC);
2212 assert(size != 0);
2213 assert(QUANTUM_CEILING(size) <= arena_maxclass);
2214
2215 if (size <= bin_maxclass) {
2216 arena_bin_t *bin;
2217 arena_run_t *run;
2218
2219 /* Small allocation. */
2220
2221 if (size < small_min) {
2222 /* Tiny. */
2223 size = pow2_ceil(size);
2224 bin = &arena->bins[ffs((int)(size >> (TINY_MIN_2POW +
2225 1)))];
2226 #if (!defined(NDEBUG) || defined(MALLOC_STATS))
2227 /*
2228 * Bin calculation is always correct, but we may need
2229 * to fix size for the purposes of assertions and/or
2230 * stats accuracy.
2231 */
2232 if (size < (1 << TINY_MIN_2POW))
2233 size = (1 << TINY_MIN_2POW);
2234 #endif
2235 } else if (size <= small_max) {
2236 /* Quantum-spaced. */
2237 size = QUANTUM_CEILING(size);
2238 bin = &arena->bins[ntbins + (size >> opt_quantum_2pow)
2239 - 1];
2240 } else {
2241 /* Sub-page. */
2242 size = pow2_ceil(size);
2243 bin = &arena->bins[ntbins + nqbins
2244 + (ffs((int)(size >> opt_small_max_2pow)) - 2)];
2245 }
2246 assert(size == bin->reg_size);
2247
2248 malloc_mutex_lock(&arena->mtx);
2249 if ((run = bin->runcur) != NULL && run->nfree > 0)
2250 ret = arena_bin_malloc_easy(arena, bin, run);
2251 else
2252 ret = arena_bin_malloc_hard(arena, bin);
2253
2254 if (ret == NULL) {
2255 malloc_mutex_unlock(&arena->mtx);
2256 return (NULL);
2257 }
2258
2259 #ifdef MALLOC_STATS
2260 bin->stats.nrequests++;
2261 arena->stats.nmalloc_small++;
2262 arena->stats.allocated_small += size;
2263 #endif
2264 } else {
2265 /* Large allocation. */
2266 size = PAGE_CEILING(size);
2267 malloc_mutex_lock(&arena->mtx);
2268 ret = (void *)arena_run_alloc(arena, size);
2269 if (ret == NULL) {
2270 malloc_mutex_unlock(&arena->mtx);
2271 return (NULL);
2272 }
2273 #ifdef MALLOC_STATS
2274 arena->stats.nmalloc_large++;
2275 arena->stats.allocated_large += size;
2276 #endif
2277 }
2278
2279 malloc_mutex_unlock(&arena->mtx);
2280
2281 if (opt_junk)
2282 memset(ret, 0xa5, size);
2283 else if (opt_zero)
2284 memset(ret, 0, size);
2285 return (ret);
2286 }
2287
2288 static inline void
2289 arena_palloc_trim(arena_t *arena, arena_chunk_t *chunk, unsigned pageind,
2290 unsigned npages)
2291 {
2292 unsigned i;
2293
2294 assert(npages > 0);
2295
2296 /*
2297 * Modifiy the map such that arena_run_dalloc() sees the run as
2298 * separately allocated.
2299 */
2300 for (i = 0; i < npages; i++) {
2301 chunk->map[pageind + i].npages = npages;
2302 chunk->map[pageind + i].pos = i;
2303 }
2304 arena_run_dalloc(arena, (arena_run_t *)((uintptr_t)chunk + (pageind <<
2305 pagesize_2pow)), npages << pagesize_2pow);
2306 }
2307
2308 /* Only handles large allocations that require more than page alignment. */
2309 static void *
2310 arena_palloc(arena_t *arena, size_t alignment, size_t size, size_t alloc_size)
2311 {
2312 void *ret;
2313 size_t offset;
2314 arena_chunk_t *chunk;
2315 unsigned pageind, i, npages;
2316
2317 assert((size & pagesize_mask) == 0);
2318 assert((alignment & pagesize_mask) == 0);
2319
2320 npages = (unsigned)(size >> pagesize_2pow);
2321
2322 malloc_mutex_lock(&arena->mtx);
2323 ret = (void *)arena_run_alloc(arena, alloc_size);
2324 if (ret == NULL) {
2325 malloc_mutex_unlock(&arena->mtx);
2326 return (NULL);
2327 }
2328
2329 chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ret);
2330
2331 offset = (uintptr_t)ret & (alignment - 1);
2332 assert((offset & pagesize_mask) == 0);
2333 assert(offset < alloc_size);
2334 if (offset == 0) {
2335 pageind = (unsigned)(((uintptr_t)ret - (uintptr_t)chunk) >>
2336 pagesize_2pow);
2337
2338 /* Update the map for the run to be kept. */
2339 for (i = 0; i < npages; i++) {
2340 chunk->map[pageind + i].npages = npages;
2341 assert(chunk->map[pageind + i].pos == i);
2342 }
2343
2344 /* Trim trailing space. */
2345 arena_palloc_trim(arena, chunk, pageind + npages,
2346 (unsigned)((alloc_size - size) >> pagesize_2pow));
2347 } else {
2348 size_t leadsize, trailsize;
2349
2350 leadsize = alignment - offset;
2351 ret = (void *)((uintptr_t)ret + leadsize);
2352 pageind = (unsigned)(((uintptr_t)ret - (uintptr_t)chunk) >>
2353 pagesize_2pow);
2354
2355 /* Update the map for the run to be kept. */
2356 for (i = 0; i < npages; i++) {
2357 chunk->map[pageind + i].npages = npages;
2358 chunk->map[pageind + i].pos = i;
2359 }
2360
2361 /* Trim leading space. */
2362 arena_palloc_trim(arena, chunk,
2363 (unsigned)(pageind - (leadsize >> pagesize_2pow)),
2364 (unsigned)(leadsize >> pagesize_2pow));
2365
2366 trailsize = alloc_size - leadsize - size;
2367 if (trailsize != 0) {
2368 /* Trim trailing space. */
2369 assert(trailsize < alloc_size);
2370 arena_palloc_trim(arena, chunk, pageind + npages,
2371 (unsigned)(trailsize >> pagesize_2pow));
2372 }
2373 }
2374
2375 #ifdef MALLOC_STATS
2376 arena->stats.nmalloc_large++;
2377 arena->stats.allocated_large += size;
2378 #endif
2379 malloc_mutex_unlock(&arena->mtx);
2380
2381 if (opt_junk)
2382 memset(ret, 0xa5, size);
2383 else if (opt_zero)
2384 memset(ret, 0, size);
2385 return (ret);
2386 }
2387
2388 /* Return the size of the allocation pointed to by ptr. */
2389 static size_t
2390 arena_salloc(const void *ptr)
2391 {
2392 size_t ret;
2393 arena_chunk_t *chunk;
2394 arena_chunk_map_t *mapelm;
2395 unsigned pageind;
2396
2397 assert(ptr != NULL);
2398 assert(CHUNK_ADDR2BASE(ptr) != ptr);
2399
2400 /*
2401 * No arena data structures that we query here can change in a way that
2402 * affects this function, so we don't need to lock.
2403 */
2404 chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
2405 pageind = (unsigned)(((uintptr_t)ptr - (uintptr_t)chunk) >>
2406 pagesize_2pow);
2407 mapelm = &chunk->map[pageind];
2408 if (mapelm->pos != 0 || ptr != (char *)((uintptr_t)chunk) + (pageind <<
2409 pagesize_2pow)) {
2410 arena_run_t *run;
2411
2412 pageind -= mapelm->pos;
2413
2414 run = (arena_run_t *)((uintptr_t)chunk + (pageind <<
2415 pagesize_2pow));
2416 assert(run->magic == ARENA_RUN_MAGIC);
2417 ret = run->bin->reg_size;
2418 } else
2419 ret = mapelm->npages << pagesize_2pow;
2420
2421 return (ret);
2422 }
2423
2424 static void *
2425 arena_ralloc(void *ptr, size_t size, size_t oldsize)
2426 {
2427 void *ret;
2428
2429 /* Avoid moving the allocation if the size class would not change. */
2430 if (size < small_min) {
2431 if (oldsize < small_min &&
2432 ffs((int)(pow2_ceil(size) >> (TINY_MIN_2POW + 1)))
2433 == ffs((int)(pow2_ceil(oldsize) >> (TINY_MIN_2POW + 1))))
2434 goto IN_PLACE;
2435 } else if (size <= small_max) {
2436 if (oldsize >= small_min && oldsize <= small_max &&
2437 (QUANTUM_CEILING(size) >> opt_quantum_2pow)
2438 == (QUANTUM_CEILING(oldsize) >> opt_quantum_2pow))
2439 goto IN_PLACE;
2440 } else {
2441 /*
2442 * We make no attempt to resize runs here, though it would be
2443 * possible to do so.
2444 */
2445 if (oldsize > small_max && PAGE_CEILING(size) == oldsize)
2446 goto IN_PLACE;
2447 }
2448
2449 /*
2450 * If we get here, then size and oldsize are different enough that we
2451 * need to use a different size class. In that case, fall back to
2452 * allocating new space and copying.
2453 */
2454 ret = arena_malloc(choose_arena(), size);
2455 if (ret == NULL)
2456 return (NULL);
2457
2458 /* Junk/zero-filling were already done by arena_malloc(). */
2459 if (size < oldsize)
2460 memcpy(ret, ptr, size);
2461 else
2462 memcpy(ret, ptr, oldsize);
2463 idalloc(ptr);
2464 return (ret);
2465 IN_PLACE:
2466 if (opt_junk && size < oldsize)
2467 memset((void *)((uintptr_t)ptr + size), 0x5a, oldsize - size);
2468 else if (opt_zero && size > oldsize)
2469 memset((void *)((uintptr_t)ptr + oldsize), 0, size - oldsize);
2470 return (ptr);
2471 }
2472
2473 static void
2474 arena_dalloc(arena_t *arena, arena_chunk_t *chunk, void *ptr)
2475 {
2476 unsigned pageind;
2477 arena_chunk_map_t *mapelm;
2478 size_t size;
2479
2480 assert(arena != NULL);
2481 assert(arena->magic == ARENA_MAGIC);
2482 assert(chunk->arena == arena);
2483 assert(ptr != NULL);
2484 assert(CHUNK_ADDR2BASE(ptr) != ptr);
2485
2486 pageind = (unsigned)(((uintptr_t)ptr - (uintptr_t)chunk) >>
2487 pagesize_2pow);
2488 mapelm = &chunk->map[pageind];
2489 if (mapelm->pos != 0 || ptr != (char *)((uintptr_t)chunk) + (pageind <<
2490 pagesize_2pow)) {
2491 arena_run_t *run;
2492 arena_bin_t *bin;
2493
2494 /* Small allocation. */
2495
2496 pageind -= mapelm->pos;
2497
2498 run = (arena_run_t *)((uintptr_t)chunk + (pageind <<
2499 pagesize_2pow));
2500 assert(run->magic == ARENA_RUN_MAGIC);
2501 bin = run->bin;
2502 size = bin->reg_size;
2503
2504 if (opt_junk)
2505 memset(ptr, 0x5a, size);
2506
2507 malloc_mutex_lock(&arena->mtx);
2508 arena_run_reg_dalloc(run, bin, ptr, size);
2509 run->nfree++;
2510
2511 if (run->nfree == bin->nregs) {
2512 /* Deallocate run. */
2513 if (run == bin->runcur)
2514 bin->runcur = NULL;
2515 else if (bin->nregs != 1) {
2516 /*
2517 * This block's conditional is necessary because
2518 * if the run only contains one region, then it
2519 * never gets inserted into the non-full runs
2520 * tree.
2521 */
2522 /* LINTED */
2523 RB_REMOVE(arena_run_tree_s, &bin->runs, run);
2524 }
2525 #ifdef MALLOC_DEBUG
2526 run->magic = 0;
2527 #endif
2528 arena_run_dalloc(arena, run, bin->run_size);
2529 #ifdef MALLOC_STATS
2530 bin->stats.curruns--;
2531 #endif
2532 } else if (run->nfree == 1 && run != bin->runcur) {
2533 /*
2534 * Make sure that bin->runcur always refers to the
2535 * lowest non-full run, if one exists.
2536 */
2537 if (bin->runcur == NULL)
2538 bin->runcur = run;
2539 else if ((uintptr_t)run < (uintptr_t)bin->runcur) {
2540 /* Switch runcur. */
2541 if (bin->runcur->nfree > 0) {
2542 /* Insert runcur. */
2543 /* LINTED */
2544 RB_INSERT(arena_run_tree_s, &bin->runs,
2545 bin->runcur);
2546 }
2547 bin->runcur = run;
2548 } else {
2549 /* LINTED */
2550 RB_INSERT(arena_run_tree_s, &bin->runs, run);
2551 }
2552 }
2553 #ifdef MALLOC_STATS
2554 arena->stats.allocated_small -= size;
2555 arena->stats.ndalloc_small++;
2556 #endif
2557 } else {
2558 /* Large allocation. */
2559
2560 size = mapelm->npages << pagesize_2pow;
2561 assert((((uintptr_t)ptr) & pagesize_mask) == 0);
2562
2563 if (opt_junk)
2564 memset(ptr, 0x5a, size);
2565
2566 malloc_mutex_lock(&arena->mtx);
2567 arena_run_dalloc(arena, (arena_run_t *)ptr, size);
2568 #ifdef MALLOC_STATS
2569 arena->stats.allocated_large -= size;
2570 arena->stats.ndalloc_large++;
2571 #endif
2572 }
2573
2574 malloc_mutex_unlock(&arena->mtx);
2575 }
2576
2577 static bool
2578 arena_new(arena_t *arena)
2579 {
2580 unsigned i;
2581 arena_bin_t *bin;
2582 size_t prev_run_size;
2583
2584 malloc_mutex_init(&arena->mtx);
2585
2586 #ifdef MALLOC_STATS
2587 memset(&arena->stats, 0, sizeof(arena_stats_t));
2588 #endif
2589
2590 /* Initialize chunks. */
2591 RB_INIT(&arena->chunks);
2592 arena->spare = NULL;
2593
2594 /* Initialize bins. */
2595 prev_run_size = pagesize;
2596
2597 /* (2^n)-spaced tiny bins. */
2598 for (i = 0; i < ntbins; i++) {
2599 bin = &arena->bins[i];
2600 bin->runcur = NULL;
2601 RB_INIT(&bin->runs);
2602
2603 bin->reg_size = (1 << (TINY_MIN_2POW + i));
2604 prev_run_size = arena_bin_run_size_calc(bin, prev_run_size);
2605
2606 #ifdef MALLOC_STATS
2607 memset(&bin->stats, 0, sizeof(malloc_bin_stats_t));
2608 #endif
2609 }
2610
2611 /* Quantum-spaced bins. */
2612 for (; i < ntbins + nqbins; i++) {
2613 bin = &arena->bins[i];
2614 bin->runcur = NULL;
2615 RB_INIT(&bin->runs);
2616
2617 bin->reg_size = quantum * (i - ntbins + 1);
2618 /*
2619 pow2_size = pow2_ceil(quantum * (i - ntbins + 1));
2620 */
2621 prev_run_size = arena_bin_run_size_calc(bin, prev_run_size);
2622
2623 #ifdef MALLOC_STATS
2624 memset(&bin->stats, 0, sizeof(malloc_bin_stats_t));
2625 #endif
2626 }
2627
2628 /* (2^n)-spaced sub-page bins. */
2629 for (; i < ntbins + nqbins + nsbins; i++) {
2630 bin = &arena->bins[i];
2631 bin->runcur = NULL;
2632 RB_INIT(&bin->runs);
2633
2634 bin->reg_size = (small_max << (i - (ntbins + nqbins) + 1));
2635
2636 prev_run_size = arena_bin_run_size_calc(bin, prev_run_size);
2637
2638 #ifdef MALLOC_STATS
2639 memset(&bin->stats, 0, sizeof(malloc_bin_stats_t));
2640 #endif
2641 }
2642
2643 #ifdef MALLOC_DEBUG
2644 arena->magic = ARENA_MAGIC;
2645 #endif
2646
2647 return (false);
2648 }
2649
2650 /* Create a new arena and insert it into the arenas array at index ind. */
2651 static arena_t *
2652 arenas_extend(unsigned ind)
2653 {
2654 arena_t *ret;
2655
2656 /* Allocate enough space for trailing bins. */
2657 ret = (arena_t *)base_alloc(sizeof(arena_t)
2658 + (sizeof(arena_bin_t) * (ntbins + nqbins + nsbins - 1)));
2659 if (ret != NULL && arena_new(ret) == false) {
2660 arenas[ind] = ret;
2661 return (ret);
2662 }
2663 /* Only reached if there is an OOM error. */
2664
2665 /*
2666 * OOM here is quite inconvenient to propagate, since dealing with it
2667 * would require a check for failure in the fast path. Instead, punt
2668 * by using arenas[0]. In practice, this is an extremely unlikely
2669 * failure.
2670 */
2671 _malloc_message(getprogname(),
2672 ": (malloc) Error initializing arena\n", "", "");
2673 if (opt_abort)
2674 abort();
2675
2676 return (arenas[0]);
2677 }
2678
2679 /*
2680 * End arena.
2681 */
2682 /******************************************************************************/
2683 /*
2684 * Begin general internal functions.
2685 */
2686
2687 static void *
2688 huge_malloc(size_t size)
2689 {
2690 void *ret;
2691 size_t csize;
2692 chunk_node_t *node;
2693
2694 /* Allocate one or more contiguous chunks for this request. */
2695
2696 csize = CHUNK_CEILING(size);
2697 if (csize == 0) {
2698 /* size is large enough to cause size_t wrap-around. */
2699 return (NULL);
2700 }
2701
2702 /* Allocate a chunk node with which to track the chunk. */
2703 node = base_chunk_node_alloc();
2704 if (node == NULL)
2705 return (NULL);
2706
2707 ret = chunk_alloc(csize);
2708 if (ret == NULL) {
2709 base_chunk_node_dealloc(node);
2710 return (NULL);
2711 }
2712
2713 /* Insert node into huge. */
2714 node->chunk = ret;
2715 node->size = csize;
2716
2717 malloc_mutex_lock(&chunks_mtx);
2718 RB_INSERT(chunk_tree_s, &huge, node);
2719 #ifdef MALLOC_STATS
2720 huge_nmalloc++;
2721 huge_allocated += csize;
2722 #endif
2723 malloc_mutex_unlock(&chunks_mtx);
2724
2725 if (opt_junk)
2726 memset(ret, 0xa5, csize);
2727 else if (opt_zero)
2728 memset(ret, 0, csize);
2729
2730 return (ret);
2731 }
2732
2733 /* Only handles large allocations that require more than chunk alignment. */
2734 static void *
2735 huge_palloc(size_t alignment, size_t size)
2736 {
2737 void *ret;
2738 size_t alloc_size, chunk_size, offset;
2739 chunk_node_t *node;
2740
2741 /*
2742 * This allocation requires alignment that is even larger than chunk
2743 * alignment. This means that huge_malloc() isn't good enough.
2744 *
2745 * Allocate almost twice as many chunks as are demanded by the size or
2746 * alignment, in order to assure the alignment can be achieved, then
2747 * unmap leading and trailing chunks.
2748 */
2749 assert(alignment >= chunksize);
2750
2751 chunk_size = CHUNK_CEILING(size);
2752
2753 if (size >= alignment)
2754 alloc_size = chunk_size + alignment - chunksize;
2755 else
2756 alloc_size = (alignment << 1) - chunksize;
2757
2758 /* Allocate a chunk node with which to track the chunk. */
2759 node = base_chunk_node_alloc();
2760 if (node == NULL)
2761 return (NULL);
2762
2763 ret = chunk_alloc(alloc_size);
2764 if (ret == NULL) {
2765 base_chunk_node_dealloc(node);
2766 return (NULL);
2767 }
2768
2769 offset = (uintptr_t)ret & (alignment - 1);
2770 assert((offset & chunksize_mask) == 0);
2771 assert(offset < alloc_size);
2772 if (offset == 0) {
2773 /* Trim trailing space. */
2774 chunk_dealloc((void *)((uintptr_t)ret + chunk_size), alloc_size
2775 - chunk_size);
2776 } else {
2777 size_t trailsize;
2778
2779 /* Trim leading space. */
2780 chunk_dealloc(ret, alignment - offset);
2781
2782 ret = (void *)((uintptr_t)ret + (alignment - offset));
2783
2784 trailsize = alloc_size - (alignment - offset) - chunk_size;
2785 if (trailsize != 0) {
2786 /* Trim trailing space. */
2787 assert(trailsize < alloc_size);
2788 chunk_dealloc((void *)((uintptr_t)ret + chunk_size),
2789 trailsize);
2790 }
2791 }
2792
2793 /* Insert node into huge. */
2794 node->chunk = ret;
2795 node->size = chunk_size;
2796
2797 malloc_mutex_lock(&chunks_mtx);
2798 RB_INSERT(chunk_tree_s, &huge, node);
2799 #ifdef MALLOC_STATS
2800 huge_nmalloc++;
2801 huge_allocated += chunk_size;
2802 #endif
2803 malloc_mutex_unlock(&chunks_mtx);
2804
2805 if (opt_junk)
2806 memset(ret, 0xa5, chunk_size);
2807 else if (opt_zero)
2808 memset(ret, 0, chunk_size);
2809
2810 return (ret);
2811 }
2812
2813 static void *
2814 huge_ralloc(void *ptr, size_t size, size_t oldsize)
2815 {
2816 void *ret;
2817
2818 /* Avoid moving the allocation if the size class would not change. */
2819 if (oldsize > arena_maxclass &&
2820 CHUNK_CEILING(size) == CHUNK_CEILING(oldsize)) {
2821 if (opt_junk && size < oldsize) {
2822 memset((void *)((uintptr_t)ptr + size), 0x5a, oldsize
2823 - size);
2824 } else if (opt_zero && size > oldsize) {
2825 memset((void *)((uintptr_t)ptr + oldsize), 0, size
2826 - oldsize);
2827 }
2828 return (ptr);
2829 }
2830
2831 if (CHUNK_ADDR2BASE(ptr) == ptr
2832 #ifdef USE_BRK
2833 && ((uintptr_t)ptr < (uintptr_t)brk_base
2834 || (uintptr_t)ptr >= (uintptr_t)brk_max)
2835 #endif
2836 ) {
2837 chunk_node_t *node, key;
2838 void *newptr;
2839 size_t oldcsize;
2840 size_t newcsize;
2841
2842 newcsize = CHUNK_CEILING(size);
2843 oldcsize = CHUNK_CEILING(oldsize);
2844 assert(oldcsize != newcsize);
2845 if (newcsize == 0) {
2846 /* size_t wrap-around */
2847 return (NULL);
2848 }
2849 newptr = mremap(ptr, oldcsize, NULL, newcsize,
2850 MAP_ALIGNED(chunksize_2pow));
2851 if (newptr != MAP_FAILED) {
2852 assert(CHUNK_ADDR2BASE(newptr) == newptr);
2853
2854 /* update tree */
2855 malloc_mutex_lock(&chunks_mtx);
2856 key.chunk = __DECONST(void *, ptr);
2857 /* LINTED */
2858 node = RB_FIND(chunk_tree_s, &huge, &key);
2859 assert(node != NULL);
2860 assert(node->chunk == ptr);
2861 assert(node->size == oldcsize);
2862 node->size = newcsize;
2863 if (ptr != newptr) {
2864 RB_REMOVE(chunk_tree_s, &huge, node);
2865 node->chunk = newptr;
2866 RB_INSERT(chunk_tree_s, &huge, node);
2867 }
2868 #ifdef MALLOC_STATS
2869 huge_nralloc++;
2870 huge_allocated += newcsize - oldcsize;
2871 if (newcsize > oldcsize) {
2872 stats_chunks.curchunks +=
2873 (newcsize - oldcsize) / chunksize;
2874 if (stats_chunks.curchunks >
2875 stats_chunks.highchunks)
2876 stats_chunks.highchunks =
2877 stats_chunks.curchunks;
2878 } else {
2879 stats_chunks.curchunks -=
2880 (oldcsize - newcsize) / chunksize;
2881 }
2882 #endif
2883 malloc_mutex_unlock(&chunks_mtx);
2884
2885 if (opt_junk && size < oldsize) {
2886 memset((void *)((uintptr_t)newptr + size), 0x5a,
2887 newcsize - size);
2888 } else if (opt_zero && size > oldsize) {
2889 memset((void *)((uintptr_t)newptr + oldsize), 0,
2890 size - oldsize);
2891 }
2892 return (newptr);
2893 }
2894 }
2895
2896 /*
2897 * If we get here, then size and oldsize are different enough that we
2898 * need to use a different size class. In that case, fall back to
2899 * allocating new space and copying.
2900 */
2901 ret = huge_malloc(size);
2902 if (ret == NULL)
2903 return (NULL);
2904
2905 if (CHUNK_ADDR2BASE(ptr) == ptr) {
2906 /* The old allocation is a chunk. */
2907 if (size < oldsize)
2908 memcpy(ret, ptr, size);
2909 else
2910 memcpy(ret, ptr, oldsize);
2911 } else {
2912 /* The old allocation is a region. */
2913 assert(oldsize < size);
2914 memcpy(ret, ptr, oldsize);
2915 }
2916 idalloc(ptr);
2917 return (ret);
2918 }
2919
2920 static void
2921 huge_dalloc(void *ptr)
2922 {
2923 chunk_node_t key;
2924 chunk_node_t *node;
2925
2926 malloc_mutex_lock(&chunks_mtx);
2927
2928 /* Extract from tree of huge allocations. */
2929 key.chunk = ptr;
2930 /* LINTED */
2931 node = RB_FIND(chunk_tree_s, &huge, &key);
2932 assert(node != NULL);
2933 assert(node->chunk == ptr);
2934 /* LINTED */
2935 RB_REMOVE(chunk_tree_s, &huge, node);
2936
2937 #ifdef MALLOC_STATS
2938 huge_ndalloc++;
2939 huge_allocated -= node->size;
2940 #endif
2941
2942 malloc_mutex_unlock(&chunks_mtx);
2943
2944 /* Unmap chunk. */
2945 #ifdef USE_BRK
2946 if (opt_junk)
2947 memset(node->chunk, 0x5a, node->size);
2948 #endif
2949 chunk_dealloc(node->chunk, node->size);
2950
2951 base_chunk_node_dealloc(node);
2952 }
2953
2954 static void *
2955 imalloc(size_t size)
2956 {
2957 void *ret;
2958
2959 assert(size != 0);
2960
2961 if (size <= arena_maxclass)
2962 ret = arena_malloc(choose_arena(), size);
2963 else
2964 ret = huge_malloc(size);
2965
2966 return (ret);
2967 }
2968
2969 static void *
2970 ipalloc(size_t alignment, size_t size)
2971 {
2972 void *ret;
2973 size_t ceil_size;
2974
2975 /*
2976 * Round size up to the nearest multiple of alignment.
2977 *
2978 * This done, we can take advantage of the fact that for each small
2979 * size class, every object is aligned at the smallest power of two
2980 * that is non-zero in the base two representation of the size. For
2981 * example:
2982 *
2983 * Size | Base 2 | Minimum alignment
2984 * -----+----------+------------------
2985 * 96 | 1100000 | 32
2986 * 144 | 10100000 | 32
2987 * 192 | 11000000 | 64
2988 *
2989 * Depending on runtime settings, it is possible that arena_malloc()
2990 * will further round up to a power of two, but that never causes
2991 * correctness issues.
2992 */
2993 ceil_size = (size + (alignment - 1)) & (-alignment);
2994 /*
2995 * (ceil_size < size) protects against the combination of maximal
2996 * alignment and size greater than maximal alignment.
2997 */
2998 if (ceil_size < size) {
2999 /* size_t overflow. */
3000 return (NULL);
3001 }
3002
3003 if (ceil_size <= pagesize || (alignment <= pagesize
3004 && ceil_size <= arena_maxclass))
3005 ret = arena_malloc(choose_arena(), ceil_size);
3006 else {
3007 size_t run_size;
3008
3009 /*
3010 * We can't achieve sub-page alignment, so round up alignment
3011 * permanently; it makes later calculations simpler.
3012 */
3013 alignment = PAGE_CEILING(alignment);
3014 ceil_size = PAGE_CEILING(size);
3015 /*
3016 * (ceil_size < size) protects against very large sizes within
3017 * pagesize of SIZE_T_MAX.
3018 *
3019 * (ceil_size + alignment < ceil_size) protects against the
3020 * combination of maximal alignment and ceil_size large enough
3021 * to cause overflow. This is similar to the first overflow
3022 * check above, but it needs to be repeated due to the new
3023 * ceil_size value, which may now be *equal* to maximal
3024 * alignment, whereas before we only detected overflow if the
3025 * original size was *greater* than maximal alignment.
3026 */
3027 if (ceil_size < size || ceil_size + alignment < ceil_size) {
3028 /* size_t overflow. */
3029 return (NULL);
3030 }
3031
3032 /*
3033 * Calculate the size of the over-size run that arena_palloc()
3034 * would need to allocate in order to guarantee the alignment.
3035 */
3036 if (ceil_size >= alignment)
3037 run_size = ceil_size + alignment - pagesize;
3038 else {
3039 /*
3040 * It is possible that (alignment << 1) will cause
3041 * overflow, but it doesn't matter because we also
3042 * subtract pagesize, which in the case of overflow
3043 * leaves us with a very large run_size. That causes
3044 * the first conditional below to fail, which means
3045 * that the bogus run_size value never gets used for
3046 * anything important.
3047 */
3048 run_size = (alignment << 1) - pagesize;
3049 }
3050
3051 if (run_size <= arena_maxclass) {
3052 ret = arena_palloc(choose_arena(), alignment, ceil_size,
3053 run_size);
3054 } else if (alignment <= chunksize)
3055 ret = huge_malloc(ceil_size);
3056 else
3057 ret = huge_palloc(alignment, ceil_size);
3058 }
3059
3060 assert(((uintptr_t)ret & (alignment - 1)) == 0);
3061 return (ret);
3062 }
3063
3064 static void *
3065 icalloc(size_t size)
3066 {
3067 void *ret;
3068
3069 if (size <= arena_maxclass) {
3070 ret = arena_malloc(choose_arena(), size);
3071 if (ret == NULL)
3072 return (NULL);
3073 memset(ret, 0, size);
3074 } else {
3075 /*
3076 * The virtual memory system provides zero-filled pages, so
3077 * there is no need to do so manually, unless opt_junk is
3078 * enabled, in which case huge_malloc() fills huge allocations
3079 * with junk.
3080 */
3081 ret = huge_malloc(size);
3082 if (ret == NULL)
3083 return (NULL);
3084
3085 if (opt_junk)
3086 memset(ret, 0, size);
3087 #ifdef USE_BRK
3088 else if ((uintptr_t)ret >= (uintptr_t)brk_base
3089 && (uintptr_t)ret < (uintptr_t)brk_max) {
3090 /*
3091 * This may be a re-used brk chunk. Therefore, zero
3092 * the memory.
3093 */
3094 memset(ret, 0, size);
3095 }
3096 #endif
3097 }
3098
3099 return (ret);
3100 }
3101
3102 static size_t
3103 isalloc(const void *ptr)
3104 {
3105 size_t ret;
3106 arena_chunk_t *chunk;
3107
3108 assert(ptr != NULL);
3109
3110 chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
3111 if (chunk != ptr) {
3112 /* Region. */
3113 assert(chunk->arena->magic == ARENA_MAGIC);
3114
3115 ret = arena_salloc(ptr);
3116 } else {
3117 chunk_node_t *node, key;
3118
3119 /* Chunk (huge allocation). */
3120
3121 malloc_mutex_lock(&chunks_mtx);
3122
3123 /* Extract from tree of huge allocations. */
3124 key.chunk = __DECONST(void *, ptr);
3125 /* LINTED */
3126 node = RB_FIND(chunk_tree_s, &huge, &key);
3127 assert(node != NULL);
3128
3129 ret = node->size;
3130
3131 malloc_mutex_unlock(&chunks_mtx);
3132 }
3133
3134 return (ret);
3135 }
3136
3137 static void *
3138 iralloc(void *ptr, size_t size)
3139 {
3140 void *ret;
3141 size_t oldsize;
3142
3143 assert(ptr != NULL);
3144 assert(size != 0);
3145
3146 oldsize = isalloc(ptr);
3147
3148 if (size <= arena_maxclass)
3149 ret = arena_ralloc(ptr, size, oldsize);
3150 else
3151 ret = huge_ralloc(ptr, size, oldsize);
3152
3153 return (ret);
3154 }
3155
3156 static void
3157 idalloc(void *ptr)
3158 {
3159 arena_chunk_t *chunk;
3160
3161 assert(ptr != NULL);
3162
3163 chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
3164 if (chunk != ptr) {
3165 /* Region. */
3166 arena_dalloc(chunk->arena, chunk, ptr);
3167 } else
3168 huge_dalloc(ptr);
3169 }
3170
3171 static void
3172 malloc_print_stats(void)
3173 {
3174
3175 if (opt_print_stats) {
3176 char s[UMAX2S_BUFSIZE];
3177 _malloc_message("___ Begin malloc statistics ___\n", "", "",
3178 "");
3179 _malloc_message("Assertions ",
3180 #ifdef NDEBUG
3181 "disabled",
3182 #else
3183 "enabled",
3184 #endif
3185 "\n", "");
3186 _malloc_message("Boolean MALLOC_OPTIONS: ",
3187 opt_abort ? "A" : "a",
3188 opt_junk ? "J" : "j",
3189 opt_hint ? "H" : "h");
3190 _malloc_message(opt_utrace ? "PU" : "Pu",
3191 opt_sysv ? "V" : "v",
3192 opt_xmalloc ? "X" : "x",
3193 opt_zero ? "Z\n" : "z\n");
3194
3195 _malloc_message("CPUs: ", umax2s(ncpus, s), "\n", "");
3196 _malloc_message("Max arenas: ", umax2s(narenas, s), "\n", "");
3197 _malloc_message("Pointer size: ", umax2s(sizeof(void *), s),
3198 "\n", "");
3199 _malloc_message("Quantum size: ", umax2s(quantum, s), "\n", "");
3200 _malloc_message("Max small size: ", umax2s(small_max, s), "\n",
3201 "");
3202
3203 _malloc_message("Chunk size: ", umax2s(chunksize, s), "", "");
3204 _malloc_message(" (2^", umax2s(opt_chunk_2pow, s), ")\n", "");
3205
3206 #ifdef MALLOC_STATS
3207 {
3208 size_t allocated, mapped;
3209 unsigned i;
3210 arena_t *arena;
3211
3212 /* Calculate and print allocated/mapped stats. */
3213
3214 /* arenas. */
3215 for (i = 0, allocated = 0; i < narenas; i++) {
3216 if (arenas[i] != NULL) {
3217 malloc_mutex_lock(&arenas[i]->mtx);
3218 allocated +=
3219 arenas[i]->stats.allocated_small;
3220 allocated +=
3221 arenas[i]->stats.allocated_large;
3222 malloc_mutex_unlock(&arenas[i]->mtx);
3223 }
3224 }
3225
3226 /* huge/base. */
3227 malloc_mutex_lock(&chunks_mtx);
3228 allocated += huge_allocated;
3229 mapped = stats_chunks.curchunks * chunksize;
3230 malloc_mutex_unlock(&chunks_mtx);
3231
3232 malloc_mutex_lock(&base_mtx);
3233 mapped += base_mapped;
3234 malloc_mutex_unlock(&base_mtx);
3235
3236 malloc_printf("Allocated: %zu, mapped: %zu\n",
3237 allocated, mapped);
3238
3239 /* Print chunk stats. */
3240 {
3241 chunk_stats_t chunks_stats;
3242
3243 malloc_mutex_lock(&chunks_mtx);
3244 chunks_stats = stats_chunks;
3245 malloc_mutex_unlock(&chunks_mtx);
3246
3247 malloc_printf("chunks: nchunks "
3248 "highchunks curchunks\n");
3249 malloc_printf(" %13llu%13lu%13lu\n",
3250 chunks_stats.nchunks,
3251 chunks_stats.highchunks,
3252 chunks_stats.curchunks);
3253 }
3254
3255 /* Print chunk stats. */
3256 malloc_printf(
3257 "huge: nmalloc ndalloc "
3258 "nralloc allocated\n");
3259 malloc_printf(" %12llu %12llu %12llu %12zu\n",
3260 huge_nmalloc, huge_ndalloc, huge_nralloc,
3261 huge_allocated);
3262
3263 /* Print stats for each arena. */
3264 for (i = 0; i < narenas; i++) {
3265 arena = arenas[i];
3266 if (arena != NULL) {
3267 malloc_printf(
3268 "\narenas[%u] @ %p\n", i, arena);
3269 malloc_mutex_lock(&arena->mtx);
3270 stats_print(arena);
3271 malloc_mutex_unlock(&arena->mtx);
3272 }
3273 }
3274 }
3275 #endif /* #ifdef MALLOC_STATS */
3276 _malloc_message("--- End malloc statistics ---\n", "", "", "");
3277 }
3278 }
3279
3280 /*
3281 * FreeBSD's pthreads implementation calls malloc(3), so the malloc
3282 * implementation has to take pains to avoid infinite recursion during
3283 * initialization.
3284 */
3285 static inline bool
3286 malloc_init(void)
3287 {
3288
3289 if (malloc_initialized == false)
3290 return (malloc_init_hard());
3291
3292 return (false);
3293 }
3294
3295 static bool
3296 malloc_init_hard(void)
3297 {
3298 unsigned i, j;
3299 ssize_t linklen;
3300 char buf[PATH_MAX + 1];
3301 const char *opts = "";
3302
3303 malloc_mutex_lock(&init_lock);
3304 if (malloc_initialized) {
3305 /*
3306 * Another thread initialized the allocator before this one
3307 * acquired init_lock.
3308 */
3309 malloc_mutex_unlock(&init_lock);
3310 return (false);
3311 }
3312
3313 /* Get number of CPUs. */
3314 {
3315 int mib[2];
3316 size_t len;
3317
3318 mib[0] = CTL_HW;
3319 mib[1] = HW_NCPU;
3320 len = sizeof(ncpus);
3321 if (sysctl(mib, 2, &ncpus, &len, (void *) 0, 0) == -1) {
3322 /* Error. */
3323 ncpus = 1;
3324 }
3325 }
3326
3327 /* Get page size. */
3328 {
3329 long result;
3330
3331 result = sysconf(_SC_PAGESIZE);
3332 assert(result != -1);
3333 pagesize = (unsigned) result;
3334
3335 /*
3336 * We assume that pagesize is a power of 2 when calculating
3337 * pagesize_mask and pagesize_2pow.
3338 */
3339 assert(((result - 1) & result) == 0);
3340 pagesize_mask = result - 1;
3341 pagesize_2pow = ffs((int)result) - 1;
3342 }
3343
3344 for (i = 0; i < 3; i++) {
3345 /* Get runtime configuration. */
3346 switch (i) {
3347 case 0:
3348 if ((linklen = readlink("/etc/malloc.conf", buf,
3349 sizeof(buf) - 1)) != -1) {
3350 /*
3351 * Use the contents of the "/etc/malloc.conf"
3352 * symbolic link's name.
3353 */
3354 buf[linklen] = '\0';
3355 opts = buf;
3356 } else {
3357 /* No configuration specified. */
3358 buf[0] = '\0';
3359 opts = buf;
3360 }
3361 break;
3362 case 1:
3363 if ((opts = getenv("MALLOC_OPTIONS")) != NULL &&
3364 issetugid() == 0) {
3365 /*
3366 * Do nothing; opts is already initialized to
3367 * the value of the MALLOC_OPTIONS environment
3368 * variable.
3369 */
3370 } else {
3371 /* No configuration specified. */
3372 buf[0] = '\0';
3373 opts = buf;
3374 }
3375 break;
3376 case 2:
3377 if (_malloc_options != NULL) {
3378 /*
3379 * Use options that were compiled into the program.
3380 */
3381 opts = _malloc_options;
3382 } else {
3383 /* No configuration specified. */
3384 buf[0] = '\0';
3385 opts = buf;
3386 }
3387 break;
3388 default:
3389 /* NOTREACHED */
3390 /* LINTED */
3391 assert(false);
3392 }
3393
3394 for (j = 0; opts[j] != '\0'; j++) {
3395 switch (opts[j]) {
3396 case 'a':
3397 opt_abort = false;
3398 break;
3399 case 'A':
3400 opt_abort = true;
3401 break;
3402 case 'h':
3403 opt_hint = false;
3404 break;
3405 case 'H':
3406 opt_hint = true;
3407 break;
3408 case 'j':
3409 opt_junk = false;
3410 break;
3411 case 'J':
3412 opt_junk = true;
3413 break;
3414 case 'k':
3415 /*
3416 * Chunks always require at least one header
3417 * page, so chunks can never be smaller than
3418 * two pages.
3419 */
3420 if (opt_chunk_2pow > pagesize_2pow + 1)
3421 opt_chunk_2pow--;
3422 break;
3423 case 'K':
3424 /*
3425 * There must be fewer pages in a chunk than
3426 * can be recorded by the pos field of
3427 * arena_chunk_map_t, in order to make POS_FREE
3428 * special.
3429 */
3430 if (opt_chunk_2pow - pagesize_2pow
3431 < (sizeof(uint32_t) << 3) - 1)
3432 opt_chunk_2pow++;
3433 break;
3434 case 'n':
3435 opt_narenas_lshift--;
3436 break;
3437 case 'N':
3438 opt_narenas_lshift++;
3439 break;
3440 case 'p':
3441 opt_print_stats = false;
3442 break;
3443 case 'P':
3444 opt_print_stats = true;
3445 break;
3446 case 'q':
3447 if (opt_quantum_2pow > QUANTUM_2POW_MIN)
3448 opt_quantum_2pow--;
3449 break;
3450 case 'Q':
3451 if (opt_quantum_2pow < pagesize_2pow - 1)
3452 opt_quantum_2pow++;
3453 break;
3454 case 's':
3455 if (opt_small_max_2pow > QUANTUM_2POW_MIN)
3456 opt_small_max_2pow--;
3457 break;
3458 case 'S':
3459 if (opt_small_max_2pow < pagesize_2pow - 1)
3460 opt_small_max_2pow++;
3461 break;
3462 case 'u':
3463 opt_utrace = false;
3464 break;
3465 case 'U':
3466 opt_utrace = true;
3467 break;
3468 case 'v':
3469 opt_sysv = false;
3470 break;
3471 case 'V':
3472 opt_sysv = true;
3473 break;
3474 case 'x':
3475 opt_xmalloc = false;
3476 break;
3477 case 'X':
3478 opt_xmalloc = true;
3479 break;
3480 case 'z':
3481 opt_zero = false;
3482 break;
3483 case 'Z':
3484 opt_zero = true;
3485 break;
3486 default: {
3487 char cbuf[2];
3488
3489 cbuf[0] = opts[j];
3490 cbuf[1] = '\0';
3491 _malloc_message(getprogname(),
3492 ": (malloc) Unsupported character in "
3493 "malloc options: '", cbuf, "'\n");
3494 }
3495 }
3496 }
3497 }
3498
3499 /* Take care to call atexit() only once. */
3500 if (opt_print_stats) {
3501 /* Print statistics at exit. */
3502 atexit(malloc_print_stats);
3503 }
3504
3505 /* Set variables according to the value of opt_small_max_2pow. */
3506 if (opt_small_max_2pow < opt_quantum_2pow)
3507 opt_small_max_2pow = opt_quantum_2pow;
3508 small_max = (1 << opt_small_max_2pow);
3509
3510 /* Set bin-related variables. */
3511 bin_maxclass = (pagesize >> 1);
3512 assert(opt_quantum_2pow >= TINY_MIN_2POW);
3513 ntbins = (unsigned)(opt_quantum_2pow - TINY_MIN_2POW);
3514 assert(ntbins <= opt_quantum_2pow);
3515 nqbins = (unsigned)(small_max >> opt_quantum_2pow);
3516 nsbins = (unsigned)(pagesize_2pow - opt_small_max_2pow - 1);
3517
3518 /* Set variables according to the value of opt_quantum_2pow. */
3519 quantum = (1 << opt_quantum_2pow);
3520 quantum_mask = quantum - 1;
3521 if (ntbins > 0)
3522 small_min = (quantum >> 1) + 1;
3523 else
3524 small_min = 1;
3525 assert(small_min <= quantum);
3526
3527 /* Set variables according to the value of opt_chunk_2pow. */
3528 chunksize = (1LU << opt_chunk_2pow);
3529 chunksize_mask = chunksize - 1;
3530 chunksize_2pow = (unsigned)opt_chunk_2pow;
3531 chunk_npages = (unsigned)(chunksize >> pagesize_2pow);
3532 {
3533 unsigned header_size;
3534
3535 header_size = (unsigned)(sizeof(arena_chunk_t) +
3536 (sizeof(arena_chunk_map_t) * (chunk_npages - 1)));
3537 arena_chunk_header_npages = (header_size >> pagesize_2pow);
3538 if ((header_size & pagesize_mask) != 0)
3539 arena_chunk_header_npages++;
3540 }
3541 arena_maxclass = chunksize - (arena_chunk_header_npages <<
3542 pagesize_2pow);
3543
3544 UTRACE(0, 0, 0);
3545
3546 #ifdef MALLOC_STATS
3547 memset(&stats_chunks, 0, sizeof(chunk_stats_t));
3548 #endif
3549
3550 /* Various sanity checks that regard configuration. */
3551 assert(quantum >= sizeof(void *));
3552 assert(quantum <= pagesize);
3553 assert(chunksize >= pagesize);
3554 assert(quantum * 4 <= chunksize);
3555
3556 /* Initialize chunks data. */
3557 malloc_mutex_init(&chunks_mtx);
3558 RB_INIT(&huge);
3559 #ifdef USE_BRK
3560 malloc_mutex_init(&brk_mtx);
3561 brk_base = sbrk(0);
3562 brk_prev = brk_base;
3563 brk_max = brk_base;
3564 #endif
3565 #ifdef MALLOC_STATS
3566 huge_nmalloc = 0;
3567 huge_ndalloc = 0;
3568 huge_nralloc = 0;
3569 huge_allocated = 0;
3570 #endif
3571 RB_INIT(&old_chunks);
3572
3573 /* Initialize base allocation data structures. */
3574 #ifdef MALLOC_STATS
3575 base_mapped = 0;
3576 #endif
3577 #ifdef USE_BRK
3578 /*
3579 * Allocate a base chunk here, since it doesn't actually have to be
3580 * chunk-aligned. Doing this before allocating any other chunks allows
3581 * the use of space that would otherwise be wasted.
3582 */
3583 base_pages_alloc(0);
3584 #endif
3585 base_chunk_nodes = NULL;
3586 malloc_mutex_init(&base_mtx);
3587
3588 if (ncpus > 1) {
3589 /*
3590 * For SMP systems, create four times as many arenas as there
3591 * are CPUs by default.
3592 */
3593 opt_narenas_lshift += 2;
3594 }
3595
3596 #ifdef NO_TLS
3597 /* Initialize arena key. */
3598 (void)thr_keycreate(&arenas_map_key, NULL);
3599 #endif
3600
3601 /* Determine how many arenas to use. */
3602 narenas = ncpus;
3603 if (opt_narenas_lshift > 0) {
3604 if ((narenas << opt_narenas_lshift) > narenas)
3605 narenas <<= opt_narenas_lshift;
3606 /*
3607 * Make sure not to exceed the limits of what base_malloc()
3608 * can handle.
3609 */
3610 if (narenas * sizeof(arena_t *) > chunksize)
3611 narenas = (unsigned)(chunksize / sizeof(arena_t *));
3612 } else if (opt_narenas_lshift < 0) {
3613 if ((narenas << opt_narenas_lshift) < narenas)
3614 narenas <<= opt_narenas_lshift;
3615 /* Make sure there is at least one arena. */
3616 if (narenas == 0)
3617 narenas = 1;
3618 }
3619
3620 next_arena = 0;
3621
3622 /* Allocate and initialize arenas. */
3623 arenas = (arena_t **)base_alloc(sizeof(arena_t *) * narenas);
3624 if (arenas == NULL) {
3625 malloc_mutex_unlock(&init_lock);
3626 return (true);
3627 }
3628 /*
3629 * Zero the array. In practice, this should always be pre-zeroed,
3630 * since it was just mmap()ed, but let's be sure.
3631 */
3632 memset(arenas, 0, sizeof(arena_t *) * narenas);
3633
3634 /*
3635 * Initialize one arena here. The rest are lazily created in
3636 * arena_choose_hard().
3637 */
3638 arenas_extend(0);
3639 if (arenas[0] == NULL) {
3640 malloc_mutex_unlock(&init_lock);
3641 return (true);
3642 }
3643
3644 malloc_mutex_init(&arenas_mtx);
3645
3646 malloc_initialized = true;
3647 malloc_mutex_unlock(&init_lock);
3648 return (false);
3649 }
3650
3651 /*
3652 * End general internal functions.
3653 */
3654 /******************************************************************************/
3655 /*
3656 * Begin malloc(3)-compatible functions.
3657 */
3658
3659 void *
3660 malloc(size_t size)
3661 {
3662 void *ret;
3663
3664 if (malloc_init()) {
3665 ret = NULL;
3666 goto RETURN;
3667 }
3668
3669 if (size == 0) {
3670 if (opt_sysv == false)
3671 size = 1;
3672 else {
3673 ret = NULL;
3674 goto RETURN;
3675 }
3676 }
3677
3678 ret = imalloc(size);
3679
3680 RETURN:
3681 if (ret == NULL) {
3682 if (opt_xmalloc) {
3683 _malloc_message(getprogname(),
3684 ": (malloc) Error in malloc(): out of memory\n", "",
3685 "");
3686 abort();
3687 }
3688 errno = ENOMEM;
3689 }
3690
3691 UTRACE(0, size, ret);
3692 return (ret);
3693 }
3694
3695 int
3696 posix_memalign(void **memptr, size_t alignment, size_t size)
3697 {
3698 int ret;
3699 void *result;
3700
3701 if (malloc_init())
3702 result = NULL;
3703 else {
3704 /* Make sure that alignment is a large enough power of 2. */
3705 if (((alignment - 1) & alignment) != 0
3706 || alignment < sizeof(void *)) {
3707 if (opt_xmalloc) {
3708 _malloc_message(getprogname(),
3709 ": (malloc) Error in posix_memalign(): "
3710 "invalid alignment\n", "", "");
3711 abort();
3712 }
3713 result = NULL;
3714 ret = EINVAL;
3715 goto RETURN;
3716 }
3717
3718 result = ipalloc(alignment, size);
3719 }
3720
3721 if (result == NULL) {
3722 if (opt_xmalloc) {
3723 _malloc_message(getprogname(),
3724 ": (malloc) Error in posix_memalign(): out of memory\n",
3725 "", "");
3726 abort();
3727 }
3728 ret = ENOMEM;
3729 goto RETURN;
3730 }
3731
3732 *memptr = result;
3733 ret = 0;
3734
3735 RETURN:
3736 UTRACE(0, size, result);
3737 return (ret);
3738 }
3739
3740 void *
3741 calloc(size_t num, size_t size)
3742 {
3743 void *ret;
3744 size_t num_size;
3745
3746 if (malloc_init()) {
3747 num_size = 0;
3748 ret = NULL;
3749 goto RETURN;
3750 }
3751
3752 num_size = num * size;
3753 if (num_size == 0) {
3754 if ((opt_sysv == false) && ((num == 0) || (size == 0)))
3755 num_size = 1;
3756 else {
3757 ret = NULL;
3758 goto RETURN;
3759 }
3760 /*
3761 * Try to avoid division here. We know that it isn't possible to
3762 * overflow during multiplication if neither operand uses any of the
3763 * most significant half of the bits in a size_t.
3764 */
3765 } else if ((unsigned long long)((num | size) &
3766 ((unsigned long long)SIZE_T_MAX << (sizeof(size_t) << 2))) &&
3767 (num_size / size != num)) {
3768 /* size_t overflow. */
3769 ret = NULL;
3770 goto RETURN;
3771 }
3772
3773 ret = icalloc(num_size);
3774
3775 RETURN:
3776 if (ret == NULL) {
3777 if (opt_xmalloc) {
3778 _malloc_message(getprogname(),
3779 ": (malloc) Error in calloc(): out of memory\n", "",
3780 "");
3781 abort();
3782 }
3783 errno = ENOMEM;
3784 }
3785
3786 UTRACE(0, num_size, ret);
3787 return (ret);
3788 }
3789
3790 void *
3791 realloc(void *ptr, size_t size)
3792 {
3793 void *ret;
3794
3795 if (size == 0) {
3796 if (opt_sysv == false)
3797 size = 1;
3798 else {
3799 if (ptr != NULL)
3800 idalloc(ptr);
3801 ret = NULL;
3802 goto RETURN;
3803 }
3804 }
3805
3806 if (ptr != NULL) {
3807 assert(malloc_initialized);
3808
3809 ret = iralloc(ptr, size);
3810
3811 if (ret == NULL) {
3812 if (opt_xmalloc) {
3813 _malloc_message(getprogname(),
3814 ": (malloc) Error in realloc(): out of "
3815 "memory\n", "", "");
3816 abort();
3817 }
3818 errno = ENOMEM;
3819 }
3820 } else {
3821 if (malloc_init())
3822 ret = NULL;
3823 else
3824 ret = imalloc(size);
3825
3826 if (ret == NULL) {
3827 if (opt_xmalloc) {
3828 _malloc_message(getprogname(),
3829 ": (malloc) Error in realloc(): out of "
3830 "memory\n", "", "");
3831 abort();
3832 }
3833 errno = ENOMEM;
3834 }
3835 }
3836
3837 RETURN:
3838 UTRACE(ptr, size, ret);
3839 return (ret);
3840 }
3841
3842 void
3843 free(void *ptr)
3844 {
3845
3846 UTRACE(ptr, 0, 0);
3847 if (ptr != NULL) {
3848 assert(malloc_initialized);
3849
3850 idalloc(ptr);
3851 }
3852 }
3853
3854 /*
3855 * End malloc(3)-compatible functions.
3856 */
3857 /******************************************************************************/
3858 /*
3859 * Begin non-standard functions.
3860 */
3861 #ifndef __NetBSD__
3862 size_t
3863 malloc_usable_size(const void *ptr)
3864 {
3865
3866 assert(ptr != NULL);
3867
3868 return (isalloc(ptr));
3869 }
3870 #endif
3871
3872 /*
3873 * End non-standard functions.
3874 */
3875 /******************************************************************************/
3876 /*
3877 * Begin library-private functions, used by threading libraries for protection
3878 * of malloc during fork(). These functions are only called if the program is
3879 * running in threaded mode, so there is no need to check whether the program
3880 * is threaded here.
3881 */
3882
3883 void
3884 _malloc_prefork(void)
3885 {
3886 unsigned i;
3887
3888 /* Acquire all mutexes in a safe order. */
3889
3890 malloc_mutex_lock(&arenas_mtx);
3891 for (i = 0; i < narenas; i++) {
3892 if (arenas[i] != NULL)
3893 malloc_mutex_lock(&arenas[i]->mtx);
3894 }
3895 malloc_mutex_unlock(&arenas_mtx);
3896
3897 malloc_mutex_lock(&base_mtx);
3898
3899 malloc_mutex_lock(&chunks_mtx);
3900 }
3901
3902 void
3903 _malloc_postfork(void)
3904 {
3905 unsigned i;
3906
3907 /* Release all mutexes, now that fork() has completed. */
3908
3909 malloc_mutex_unlock(&chunks_mtx);
3910
3911 malloc_mutex_unlock(&base_mtx);
3912
3913 malloc_mutex_lock(&arenas_mtx);
3914 for (i = 0; i < narenas; i++) {
3915 if (arenas[i] != NULL)
3916 malloc_mutex_unlock(&arenas[i]->mtx);
3917 }
3918 malloc_mutex_unlock(&arenas_mtx);
3919 }
3920
3921 /*
3922 * End library-private functions.
3923 */
3924 /******************************************************************************/
3925