jemalloc.c revision 1.19 1 /* $NetBSD: jemalloc.c,v 1.19 2008/06/23 10:46:25 ad Exp $ */
2
3 /*-
4 * Copyright (C) 2006,2007 Jason Evans <jasone (at) FreeBSD.org>.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice(s), this list of conditions and the following disclaimer as
12 * the first lines of this file unmodified other than the possible
13 * addition of one or more copyright notices.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice(s), this list of conditions and the following disclaimer in
16 * the documentation and/or other materials provided with the
17 * distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY
20 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE
23 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
26 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
27 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
28 * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
29 * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 *
31 *******************************************************************************
32 *
33 * This allocator implementation is designed to provide scalable performance
34 * for multi-threaded programs on multi-processor systems. The following
35 * features are included for this purpose:
36 *
37 * + Multiple arenas are used if there are multiple CPUs, which reduces lock
38 * contention and cache sloshing.
39 *
40 * + Cache line sharing between arenas is avoided for internal data
41 * structures.
42 *
43 * + Memory is managed in chunks and runs (chunks can be split into runs),
44 * rather than as individual pages. This provides a constant-time
45 * mechanism for associating allocations with particular arenas.
46 *
47 * Allocation requests are rounded up to the nearest size class, and no record
48 * of the original request size is maintained. Allocations are broken into
49 * categories according to size class. Assuming runtime defaults, 4 kB pages
50 * and a 16 byte quantum, the size classes in each category are as follows:
51 *
52 * |=====================================|
53 * | Category | Subcategory | Size |
54 * |=====================================|
55 * | Small | Tiny | 2 |
56 * | | | 4 |
57 * | | | 8 |
58 * | |----------------+---------|
59 * | | Quantum-spaced | 16 |
60 * | | | 32 |
61 * | | | 48 |
62 * | | | ... |
63 * | | | 480 |
64 * | | | 496 |
65 * | | | 512 |
66 * | |----------------+---------|
67 * | | Sub-page | 1 kB |
68 * | | | 2 kB |
69 * |=====================================|
70 * | Large | 4 kB |
71 * | | 8 kB |
72 * | | 12 kB |
73 * | | ... |
74 * | | 1012 kB |
75 * | | 1016 kB |
76 * | | 1020 kB |
77 * |=====================================|
78 * | Huge | 1 MB |
79 * | | 2 MB |
80 * | | 3 MB |
81 * | | ... |
82 * |=====================================|
83 *
84 * A different mechanism is used for each category:
85 *
86 * Small : Each size class is segregated into its own set of runs. Each run
87 * maintains a bitmap of which regions are free/allocated.
88 *
89 * Large : Each allocation is backed by a dedicated run. Metadata are stored
90 * in the associated arena chunk header maps.
91 *
92 * Huge : Each allocation is backed by a dedicated contiguous set of chunks.
93 * Metadata are stored in a separate red-black tree.
94 *
95 *******************************************************************************
96 */
97
98 /* LINTLIBRARY */
99
100 #ifdef __NetBSD__
101 # define xutrace(a, b) utrace("malloc", (a), (b))
102 # define __DECONST(x, y) ((x)__UNCONST(y))
103 # define NO_TLS
104 #else
105 # define xutrace(a, b) utrace((a), (b))
106 #endif /* __NetBSD__ */
107
108 /*
109 * MALLOC_PRODUCTION disables assertions and statistics gathering. It also
110 * defaults the A and J runtime options to off. These settings are appropriate
111 * for production systems.
112 */
113 #define MALLOC_PRODUCTION
114
115 #ifndef MALLOC_PRODUCTION
116 # define MALLOC_DEBUG
117 #endif
118
119 #include <sys/cdefs.h>
120 /* __FBSDID("$FreeBSD: src/lib/libc/stdlib/malloc.c,v 1.147 2007/06/15 22:00:16 jasone Exp $"); */
121 __RCSID("$NetBSD: jemalloc.c,v 1.19 2008/06/23 10:46:25 ad Exp $");
122
123 #ifdef __FreeBSD__
124 #include "libc_private.h"
125 #ifdef MALLOC_DEBUG
126 # define _LOCK_DEBUG
127 #endif
128 #include "spinlock.h"
129 #endif
130 #include "namespace.h"
131 #include <sys/mman.h>
132 #include <sys/param.h>
133 #ifdef __FreeBSD__
134 #include <sys/stddef.h>
135 #endif
136 #include <sys/time.h>
137 #include <sys/types.h>
138 #include <sys/sysctl.h>
139 #include <sys/tree.h>
140 #include <sys/uio.h>
141 #include <sys/ktrace.h> /* Must come after several other sys/ includes. */
142
143 #ifdef __FreeBSD__
144 #include <machine/atomic.h>
145 #include <machine/cpufunc.h>
146 #endif
147 #include <machine/vmparam.h>
148
149 #include <errno.h>
150 #include <limits.h>
151 #include <pthread.h>
152 #include <sched.h>
153 #include <stdarg.h>
154 #include <stdbool.h>
155 #include <stdio.h>
156 #include <stdint.h>
157 #include <stdlib.h>
158 #include <string.h>
159 #include <strings.h>
160 #include <unistd.h>
161
162 #ifdef __NetBSD__
163 # include <reentrant.h>
164 # include "extern.h"
165
166 #define STRERROR_R(a, b, c) __strerror_r(a, b, c);
167 /*
168 * A non localized version of strerror, that avoids bringing in
169 * stdio and the locale code. All the malloc messages are in English
170 * so why bother?
171 */
172 static int
173 __strerror_r(int e, char *s, size_t l)
174 {
175 int rval;
176 size_t slen;
177
178 if (e >= 0 && e < sys_nerr) {
179 slen = strlcpy(s, sys_errlist[e], l);
180 rval = 0;
181 } else {
182 slen = snprintf_ss(s, l, "Unknown error %u", e);
183 rval = EINVAL;
184 }
185 return slen >= l ? ERANGE : rval;
186 }
187 #endif
188
189 #ifdef __FreeBSD__
190 #define STRERROR_R(a, b, c) strerror_r(a, b, c);
191 #include "un-namespace.h"
192 #endif
193
194 /* MALLOC_STATS enables statistics calculation. */
195 #ifndef MALLOC_PRODUCTION
196 # define MALLOC_STATS
197 #endif
198
199 #ifdef MALLOC_DEBUG
200 # ifdef NDEBUG
201 # undef NDEBUG
202 # endif
203 #else
204 # ifndef NDEBUG
205 # define NDEBUG
206 # endif
207 #endif
208 #include <assert.h>
209
210 #ifdef MALLOC_DEBUG
211 /* Disable inlining to make debugging easier. */
212 # define inline
213 #endif
214
215 /* Size of stack-allocated buffer passed to strerror_r(). */
216 #define STRERROR_BUF 64
217
218 /* Minimum alignment of allocations is 2^QUANTUM_2POW_MIN bytes. */
219 #ifdef __i386__
220 # define QUANTUM_2POW_MIN 4
221 # define SIZEOF_PTR_2POW 2
222 # define USE_BRK
223 #endif
224 #ifdef __ia64__
225 # define QUANTUM_2POW_MIN 4
226 # define SIZEOF_PTR_2POW 3
227 #endif
228 #ifdef __alpha__
229 # define QUANTUM_2POW_MIN 4
230 # define SIZEOF_PTR_2POW 3
231 # define NO_TLS
232 #endif
233 #ifdef __sparc64__
234 # define QUANTUM_2POW_MIN 4
235 # define SIZEOF_PTR_2POW 3
236 # define NO_TLS
237 #endif
238 #ifdef __amd64__
239 # define QUANTUM_2POW_MIN 4
240 # define SIZEOF_PTR_2POW 3
241 #endif
242 #ifdef __arm__
243 # define QUANTUM_2POW_MIN 3
244 # define SIZEOF_PTR_2POW 2
245 # define USE_BRK
246 # define NO_TLS
247 #endif
248 #ifdef __powerpc__
249 # define QUANTUM_2POW_MIN 4
250 # define SIZEOF_PTR_2POW 2
251 # define USE_BRK
252 #endif
253 #if defined(__sparc__) && !defined(__sparc64__)
254 # define QUANTUM_2POW_MIN 4
255 # define SIZEOF_PTR_2POW 2
256 # define USE_BRK
257 #endif
258 #ifdef __vax__
259 # define QUANTUM_2POW_MIN 4
260 # define SIZEOF_PTR_2POW 2
261 # define USE_BRK
262 #endif
263 #ifdef __sh__
264 # define QUANTUM_2POW_MIN 4
265 # define SIZEOF_PTR_2POW 2
266 # define USE_BRK
267 #endif
268 #ifdef __m68k__
269 # define QUANTUM_2POW_MIN 4
270 # define SIZEOF_PTR_2POW 2
271 # define USE_BRK
272 #endif
273 #ifdef __mips__
274 # define QUANTUM_2POW_MIN 4
275 # define SIZEOF_PTR_2POW 2
276 # define USE_BRK
277 #endif
278 #ifdef __hppa__
279 # define QUANTUM_2POW_MIN 4
280 # define SIZEOF_PTR_2POW 2
281 # define USE_BRK
282 #endif
283
284 #define SIZEOF_PTR (1 << SIZEOF_PTR_2POW)
285
286 /* sizeof(int) == (1 << SIZEOF_INT_2POW). */
287 #ifndef SIZEOF_INT_2POW
288 # define SIZEOF_INT_2POW 2
289 #endif
290
291 /* We can't use TLS in non-PIC programs, since TLS relies on loader magic. */
292 #if (!defined(PIC) && !defined(NO_TLS))
293 # define NO_TLS
294 #endif
295
296 /*
297 * Size and alignment of memory chunks that are allocated by the OS's virtual
298 * memory system.
299 */
300 #define CHUNK_2POW_DEFAULT 20
301
302 /*
303 * Maximum size of L1 cache line. This is used to avoid cache line aliasing,
304 * so over-estimates are okay (up to a point), but under-estimates will
305 * negatively affect performance.
306 */
307 #define CACHELINE_2POW 6
308 #define CACHELINE ((size_t)(1 << CACHELINE_2POW))
309
310 /* Smallest size class to support. */
311 #define TINY_MIN_2POW 1
312
313 /*
314 * Maximum size class that is a multiple of the quantum, but not (necessarily)
315 * a power of 2. Above this size, allocations are rounded up to the nearest
316 * power of 2.
317 */
318 #define SMALL_MAX_2POW_DEFAULT 9
319 #define SMALL_MAX_DEFAULT (1 << SMALL_MAX_2POW_DEFAULT)
320
321 /*
322 * Maximum desired run header overhead. Runs are sized as small as possible
323 * such that this setting is still honored, without violating other constraints.
324 * The goal is to make runs as small as possible without exceeding a per run
325 * external fragmentation threshold.
326 *
327 * Note that it is possible to set this low enough that it cannot be honored
328 * for some/all object sizes, since there is one bit of header overhead per
329 * object (plus a constant). In such cases, this constraint is relaxed.
330 *
331 * RUN_MAX_OVRHD_RELAX specifies the maximum number of bits per region of
332 * overhead for which RUN_MAX_OVRHD is relaxed.
333 */
334 #define RUN_MAX_OVRHD 0.015
335 #define RUN_MAX_OVRHD_RELAX 1.5
336
337 /* Put a cap on small object run size. This overrides RUN_MAX_OVRHD. */
338 #define RUN_MAX_SMALL_2POW 15
339 #define RUN_MAX_SMALL (1 << RUN_MAX_SMALL_2POW)
340
341 /******************************************************************************/
342
343 #ifdef __FreeBSD__
344 /*
345 * Mutexes based on spinlocks. We can't use normal pthread mutexes, because
346 * they require malloc()ed memory.
347 */
348 typedef struct {
349 spinlock_t lock;
350 } malloc_mutex_t;
351
352 /* Set to true once the allocator has been initialized. */
353 static bool malloc_initialized = false;
354
355 /* Used to avoid initialization races. */
356 static malloc_mutex_t init_lock = {_SPINLOCK_INITIALIZER};
357 #else
358 #define malloc_mutex_t mutex_t
359
360 /* Set to true once the allocator has been initialized. */
361 static bool malloc_initialized = false;
362
363 /* Used to avoid initialization races. */
364 static mutex_t init_lock = MUTEX_INITIALIZER;
365 #endif
366
367 /******************************************************************************/
368 /*
369 * Statistics data structures.
370 */
371
372 #ifdef MALLOC_STATS
373
374 typedef struct malloc_bin_stats_s malloc_bin_stats_t;
375 struct malloc_bin_stats_s {
376 /*
377 * Number of allocation requests that corresponded to the size of this
378 * bin.
379 */
380 uint64_t nrequests;
381
382 /* Total number of runs created for this bin's size class. */
383 uint64_t nruns;
384
385 /*
386 * Total number of runs reused by extracting them from the runs tree for
387 * this bin's size class.
388 */
389 uint64_t reruns;
390
391 /* High-water mark for this bin. */
392 unsigned long highruns;
393
394 /* Current number of runs in this bin. */
395 unsigned long curruns;
396 };
397
398 typedef struct arena_stats_s arena_stats_t;
399 struct arena_stats_s {
400 /* Number of bytes currently mapped. */
401 size_t mapped;
402
403 /* Per-size-category statistics. */
404 size_t allocated_small;
405 uint64_t nmalloc_small;
406 uint64_t ndalloc_small;
407
408 size_t allocated_large;
409 uint64_t nmalloc_large;
410 uint64_t ndalloc_large;
411 };
412
413 typedef struct chunk_stats_s chunk_stats_t;
414 struct chunk_stats_s {
415 /* Number of chunks that were allocated. */
416 uint64_t nchunks;
417
418 /* High-water mark for number of chunks allocated. */
419 unsigned long highchunks;
420
421 /*
422 * Current number of chunks allocated. This value isn't maintained for
423 * any other purpose, so keep track of it in order to be able to set
424 * highchunks.
425 */
426 unsigned long curchunks;
427 };
428
429 #endif /* #ifdef MALLOC_STATS */
430
431 /******************************************************************************/
432 /*
433 * Chunk data structures.
434 */
435
436 /* Tree of chunks. */
437 typedef struct chunk_node_s chunk_node_t;
438 struct chunk_node_s {
439 /* Linkage for the chunk tree. */
440 RB_ENTRY(chunk_node_s) link;
441
442 /*
443 * Pointer to the chunk that this tree node is responsible for. In some
444 * (but certainly not all) cases, this data structure is placed at the
445 * beginning of the corresponding chunk, so this field may point to this
446 * node.
447 */
448 void *chunk;
449
450 /* Total chunk size. */
451 size_t size;
452 };
453 typedef struct chunk_tree_s chunk_tree_t;
454 RB_HEAD(chunk_tree_s, chunk_node_s);
455
456 /******************************************************************************/
457 /*
458 * Arena data structures.
459 */
460
461 typedef struct arena_s arena_t;
462 typedef struct arena_bin_s arena_bin_t;
463
464 typedef struct arena_chunk_map_s arena_chunk_map_t;
465 struct arena_chunk_map_s {
466 /* Number of pages in run. */
467 uint32_t npages;
468 /*
469 * Position within run. For a free run, this is POS_FREE for the first
470 * and last pages. The POS_FREE special value makes it possible to
471 * quickly coalesce free runs.
472 *
473 * This is the limiting factor for chunksize; there can be at most 2^31
474 * pages in a run.
475 */
476 #define POS_FREE ((uint32_t)0xffffffffU)
477 uint32_t pos;
478 };
479
480 /* Arena chunk header. */
481 typedef struct arena_chunk_s arena_chunk_t;
482 struct arena_chunk_s {
483 /* Arena that owns the chunk. */
484 arena_t *arena;
485
486 /* Linkage for the arena's chunk tree. */
487 RB_ENTRY(arena_chunk_s) link;
488
489 /*
490 * Number of pages in use. This is maintained in order to make
491 * detection of empty chunks fast.
492 */
493 uint32_t pages_used;
494
495 /*
496 * Every time a free run larger than this value is created/coalesced,
497 * this value is increased. The only way that the value decreases is if
498 * arena_run_alloc() fails to find a free run as large as advertised by
499 * this value.
500 */
501 uint32_t max_frun_npages;
502
503 /*
504 * Every time a free run that starts at an earlier page than this value
505 * is created/coalesced, this value is decreased. It is reset in a
506 * similar fashion to max_frun_npages.
507 */
508 uint32_t min_frun_ind;
509
510 /*
511 * Map of pages within chunk that keeps track of free/large/small. For
512 * free runs, only the map entries for the first and last pages are
513 * kept up to date, so that free runs can be quickly coalesced.
514 */
515 arena_chunk_map_t map[1]; /* Dynamically sized. */
516 };
517 typedef struct arena_chunk_tree_s arena_chunk_tree_t;
518 RB_HEAD(arena_chunk_tree_s, arena_chunk_s);
519
520 typedef struct arena_run_s arena_run_t;
521 struct arena_run_s {
522 /* Linkage for run trees. */
523 RB_ENTRY(arena_run_s) link;
524
525 #ifdef MALLOC_DEBUG
526 uint32_t magic;
527 # define ARENA_RUN_MAGIC 0x384adf93
528 #endif
529
530 /* Bin this run is associated with. */
531 arena_bin_t *bin;
532
533 /* Index of first element that might have a free region. */
534 unsigned regs_minelm;
535
536 /* Number of free regions in run. */
537 unsigned nfree;
538
539 /* Bitmask of in-use regions (0: in use, 1: free). */
540 unsigned regs_mask[1]; /* Dynamically sized. */
541 };
542 typedef struct arena_run_tree_s arena_run_tree_t;
543 RB_HEAD(arena_run_tree_s, arena_run_s);
544
545 struct arena_bin_s {
546 /*
547 * Current run being used to service allocations of this bin's size
548 * class.
549 */
550 arena_run_t *runcur;
551
552 /*
553 * Tree of non-full runs. This tree is used when looking for an
554 * existing run when runcur is no longer usable. We choose the
555 * non-full run that is lowest in memory; this policy tends to keep
556 * objects packed well, and it can also help reduce the number of
557 * almost-empty chunks.
558 */
559 arena_run_tree_t runs;
560
561 /* Size of regions in a run for this bin's size class. */
562 size_t reg_size;
563
564 /* Total size of a run for this bin's size class. */
565 size_t run_size;
566
567 /* Total number of regions in a run for this bin's size class. */
568 uint32_t nregs;
569
570 /* Number of elements in a run's regs_mask for this bin's size class. */
571 uint32_t regs_mask_nelms;
572
573 /* Offset of first region in a run for this bin's size class. */
574 uint32_t reg0_offset;
575
576 #ifdef MALLOC_STATS
577 /* Bin statistics. */
578 malloc_bin_stats_t stats;
579 #endif
580 };
581
582 struct arena_s {
583 #ifdef MALLOC_DEBUG
584 uint32_t magic;
585 # define ARENA_MAGIC 0x947d3d24
586 #endif
587
588 /* All operations on this arena require that mtx be locked. */
589 malloc_mutex_t mtx;
590
591 #ifdef MALLOC_STATS
592 arena_stats_t stats;
593 #endif
594
595 /*
596 * Tree of chunks this arena manages.
597 */
598 arena_chunk_tree_t chunks;
599
600 /*
601 * In order to avoid rapid chunk allocation/deallocation when an arena
602 * oscillates right on the cusp of needing a new chunk, cache the most
603 * recently freed chunk. This caching is disabled by opt_hint.
604 *
605 * There is one spare chunk per arena, rather than one spare total, in
606 * order to avoid interactions between multiple threads that could make
607 * a single spare inadequate.
608 */
609 arena_chunk_t *spare;
610
611 /*
612 * bins is used to store rings of free regions of the following sizes,
613 * assuming a 16-byte quantum, 4kB pagesize, and default MALLOC_OPTIONS.
614 *
615 * bins[i] | size |
616 * --------+------+
617 * 0 | 2 |
618 * 1 | 4 |
619 * 2 | 8 |
620 * --------+------+
621 * 3 | 16 |
622 * 4 | 32 |
623 * 5 | 48 |
624 * 6 | 64 |
625 * : :
626 * : :
627 * 33 | 496 |
628 * 34 | 512 |
629 * --------+------+
630 * 35 | 1024 |
631 * 36 | 2048 |
632 * --------+------+
633 */
634 arena_bin_t bins[1]; /* Dynamically sized. */
635 };
636
637 /******************************************************************************/
638 /*
639 * Data.
640 */
641
642 /* Number of CPUs. */
643 static unsigned ncpus;
644
645 /* VM page size. */
646 static size_t pagesize;
647 static size_t pagesize_mask;
648 static int pagesize_2pow;
649
650 /* Various bin-related settings. */
651 static size_t bin_maxclass; /* Max size class for bins. */
652 static unsigned ntbins; /* Number of (2^n)-spaced tiny bins. */
653 static unsigned nqbins; /* Number of quantum-spaced bins. */
654 static unsigned nsbins; /* Number of (2^n)-spaced sub-page bins. */
655 static size_t small_min;
656 static size_t small_max;
657
658 /* Various quantum-related settings. */
659 static size_t quantum;
660 static size_t quantum_mask; /* (quantum - 1). */
661
662 /* Various chunk-related settings. */
663 static size_t chunksize;
664 static size_t chunksize_mask; /* (chunksize - 1). */
665 static int chunksize_2pow;
666 static unsigned chunk_npages;
667 static unsigned arena_chunk_header_npages;
668 static size_t arena_maxclass; /* Max size class for arenas. */
669
670 /********/
671 /*
672 * Chunks.
673 */
674
675 /* Protects chunk-related data structures. */
676 static malloc_mutex_t chunks_mtx;
677
678 /* Tree of chunks that are stand-alone huge allocations. */
679 static chunk_tree_t huge;
680
681 #ifdef USE_BRK
682 /*
683 * Try to use brk for chunk-size allocations, due to address space constraints.
684 */
685 /*
686 * Protects sbrk() calls. This must be separate from chunks_mtx, since
687 * base_pages_alloc() also uses sbrk(), but cannot lock chunks_mtx (doing so
688 * could cause recursive lock acquisition).
689 */
690 static malloc_mutex_t brk_mtx;
691 /* Result of first sbrk(0) call. */
692 static void *brk_base;
693 /* Current end of brk, or ((void *)-1) if brk is exhausted. */
694 static void *brk_prev;
695 /* Current upper limit on brk addresses. */
696 static void *brk_max;
697 #endif
698
699 #ifdef MALLOC_STATS
700 /* Huge allocation statistics. */
701 static uint64_t huge_nmalloc;
702 static uint64_t huge_ndalloc;
703 static uint64_t huge_nralloc;
704 static size_t huge_allocated;
705 #endif
706
707 /*
708 * Tree of chunks that were previously allocated. This is used when allocating
709 * chunks, in an attempt to re-use address space.
710 */
711 static chunk_tree_t old_chunks;
712
713 /****************************/
714 /*
715 * base (internal allocation).
716 */
717
718 /*
719 * Current pages that are being used for internal memory allocations. These
720 * pages are carved up in cacheline-size quanta, so that there is no chance of
721 * false cache line sharing.
722 */
723 static void *base_pages;
724 static void *base_next_addr;
725 static void *base_past_addr; /* Addr immediately past base_pages. */
726 static chunk_node_t *base_chunk_nodes; /* LIFO cache of chunk nodes. */
727 static malloc_mutex_t base_mtx;
728 #ifdef MALLOC_STATS
729 static size_t base_mapped;
730 #endif
731
732 /********/
733 /*
734 * Arenas.
735 */
736
737 /*
738 * Arenas that are used to service external requests. Not all elements of the
739 * arenas array are necessarily used; arenas are created lazily as needed.
740 */
741 static arena_t **arenas;
742 static unsigned narenas;
743 static unsigned next_arena;
744 static malloc_mutex_t arenas_mtx; /* Protects arenas initialization. */
745
746 #ifndef NO_TLS
747 /*
748 * Map of pthread_self() --> arenas[???], used for selecting an arena to use
749 * for allocations.
750 */
751 static __thread arena_t *arenas_map;
752 #define get_arenas_map() (arenas_map)
753 #define set_arenas_map(x) (arenas_map = x)
754 #else
755 static thread_key_t arenas_map_key;
756 #define get_arenas_map() thr_getspecific(arenas_map_key)
757 #define set_arenas_map(x) thr_setspecific(arenas_map_key, x)
758 #endif
759
760 #ifdef MALLOC_STATS
761 /* Chunk statistics. */
762 static chunk_stats_t stats_chunks;
763 #endif
764
765 /*******************************/
766 /*
767 * Runtime configuration options.
768 */
769 const char *_malloc_options;
770
771 #ifndef MALLOC_PRODUCTION
772 static bool opt_abort = true;
773 static bool opt_junk = true;
774 #else
775 static bool opt_abort = false;
776 static bool opt_junk = false;
777 #endif
778 static bool opt_hint = false;
779 static bool opt_print_stats = false;
780 static int opt_quantum_2pow = QUANTUM_2POW_MIN;
781 static int opt_small_max_2pow = SMALL_MAX_2POW_DEFAULT;
782 static int opt_chunk_2pow = CHUNK_2POW_DEFAULT;
783 static bool opt_utrace = false;
784 static bool opt_sysv = false;
785 static bool opt_xmalloc = false;
786 static bool opt_zero = false;
787 static int32_t opt_narenas_lshift = 0;
788
789 typedef struct {
790 void *p;
791 size_t s;
792 void *r;
793 } malloc_utrace_t;
794
795 #define UTRACE(a, b, c) \
796 if (opt_utrace) { \
797 malloc_utrace_t ut; \
798 ut.p = a; \
799 ut.s = b; \
800 ut.r = c; \
801 xutrace(&ut, sizeof(ut)); \
802 }
803
804 /******************************************************************************/
805 /*
806 * Begin function prototypes for non-inline static functions.
807 */
808
809 static void wrtmessage(const char *p1, const char *p2, const char *p3,
810 const char *p4);
811 #ifdef MALLOC_STATS
812 static void malloc_printf(const char *format, ...);
813 #endif
814 static char *umax2s(uintmax_t x, char *s);
815 static bool base_pages_alloc(size_t minsize);
816 static void *base_alloc(size_t size);
817 static chunk_node_t *base_chunk_node_alloc(void);
818 static void base_chunk_node_dealloc(chunk_node_t *node);
819 #ifdef MALLOC_STATS
820 static void stats_print(arena_t *arena);
821 #endif
822 static void *pages_map(void *addr, size_t size);
823 static void *pages_map_align(void *addr, size_t size, int align);
824 static void pages_unmap(void *addr, size_t size);
825 static void *chunk_alloc(size_t size);
826 static void chunk_dealloc(void *chunk, size_t size);
827 static void arena_run_split(arena_t *arena, arena_run_t *run, size_t size);
828 static arena_chunk_t *arena_chunk_alloc(arena_t *arena);
829 static void arena_chunk_dealloc(arena_t *arena, arena_chunk_t *chunk);
830 static arena_run_t *arena_run_alloc(arena_t *arena, size_t size);
831 static void arena_run_dalloc(arena_t *arena, arena_run_t *run, size_t size);
832 static arena_run_t *arena_bin_nonfull_run_get(arena_t *arena, arena_bin_t *bin);
833 static void *arena_bin_malloc_hard(arena_t *arena, arena_bin_t *bin);
834 static size_t arena_bin_run_size_calc(arena_bin_t *bin, size_t min_run_size);
835 static void *arena_malloc(arena_t *arena, size_t size);
836 static void *arena_palloc(arena_t *arena, size_t alignment, size_t size,
837 size_t alloc_size);
838 static size_t arena_salloc(const void *ptr);
839 static void *arena_ralloc(void *ptr, size_t size, size_t oldsize);
840 static void arena_dalloc(arena_t *arena, arena_chunk_t *chunk, void *ptr);
841 static bool arena_new(arena_t *arena);
842 static arena_t *arenas_extend(unsigned ind);
843 static void *huge_malloc(size_t size);
844 static void *huge_palloc(size_t alignment, size_t size);
845 static void *huge_ralloc(void *ptr, size_t size, size_t oldsize);
846 static void huge_dalloc(void *ptr);
847 static void *imalloc(size_t size);
848 static void *ipalloc(size_t alignment, size_t size);
849 static void *icalloc(size_t size);
850 static size_t isalloc(const void *ptr);
851 static void *iralloc(void *ptr, size_t size);
852 static void idalloc(void *ptr);
853 static void malloc_print_stats(void);
854 static bool malloc_init_hard(void);
855
856 /*
857 * End function prototypes.
858 */
859 /******************************************************************************/
860 /*
861 * Begin mutex.
862 */
863
864 #ifdef __NetBSD__
865 #define malloc_mutex_init(m) mutex_init(m, NULL)
866 #define malloc_mutex_lock(m) mutex_lock(m)
867 #define malloc_mutex_unlock(m) mutex_unlock(m)
868 #else /* __NetBSD__ */
869 static inline void
870 malloc_mutex_init(malloc_mutex_t *a_mutex)
871 {
872 static const spinlock_t lock = _SPINLOCK_INITIALIZER;
873
874 a_mutex->lock = lock;
875 }
876
877 static inline void
878 malloc_mutex_lock(malloc_mutex_t *a_mutex)
879 {
880
881 if (__isthreaded)
882 _SPINLOCK(&a_mutex->lock);
883 }
884
885 static inline void
886 malloc_mutex_unlock(malloc_mutex_t *a_mutex)
887 {
888
889 if (__isthreaded)
890 _SPINUNLOCK(&a_mutex->lock);
891 }
892 #endif /* __NetBSD__ */
893
894 /*
895 * End mutex.
896 */
897 /******************************************************************************/
898 /*
899 * Begin Utility functions/macros.
900 */
901
902 /* Return the chunk address for allocation address a. */
903 #define CHUNK_ADDR2BASE(a) \
904 ((void *)((uintptr_t)(a) & ~chunksize_mask))
905
906 /* Return the chunk offset of address a. */
907 #define CHUNK_ADDR2OFFSET(a) \
908 ((size_t)((uintptr_t)(a) & chunksize_mask))
909
910 /* Return the smallest chunk multiple that is >= s. */
911 #define CHUNK_CEILING(s) \
912 (((s) + chunksize_mask) & ~chunksize_mask)
913
914 /* Return the smallest cacheline multiple that is >= s. */
915 #define CACHELINE_CEILING(s) \
916 (((s) + (CACHELINE - 1)) & ~(CACHELINE - 1))
917
918 /* Return the smallest quantum multiple that is >= a. */
919 #define QUANTUM_CEILING(a) \
920 (((a) + quantum_mask) & ~quantum_mask)
921
922 /* Return the smallest pagesize multiple that is >= s. */
923 #define PAGE_CEILING(s) \
924 (((s) + pagesize_mask) & ~pagesize_mask)
925
926 /* Compute the smallest power of 2 that is >= x. */
927 static inline size_t
928 pow2_ceil(size_t x)
929 {
930
931 x--;
932 x |= x >> 1;
933 x |= x >> 2;
934 x |= x >> 4;
935 x |= x >> 8;
936 x |= x >> 16;
937 #if (SIZEOF_PTR == 8)
938 x |= x >> 32;
939 #endif
940 x++;
941 return (x);
942 }
943
944 static void
945 wrtmessage(const char *p1, const char *p2, const char *p3, const char *p4)
946 {
947
948 write(STDERR_FILENO, p1, strlen(p1));
949 write(STDERR_FILENO, p2, strlen(p2));
950 write(STDERR_FILENO, p3, strlen(p3));
951 write(STDERR_FILENO, p4, strlen(p4));
952 }
953
954 void (*_malloc_message)(const char *p1, const char *p2, const char *p3,
955 const char *p4) = wrtmessage;
956
957 #ifdef MALLOC_STATS
958 /*
959 * Print to stderr in such a way as to (hopefully) avoid memory allocation.
960 */
961 static void
962 malloc_printf(const char *format, ...)
963 {
964 char buf[4096];
965 va_list ap;
966
967 va_start(ap, format);
968 vsnprintf(buf, sizeof(buf), format, ap);
969 va_end(ap);
970 _malloc_message(buf, "", "", "");
971 }
972 #endif
973
974 /*
975 * We don't want to depend on vsnprintf() for production builds, since that can
976 * cause unnecessary bloat for static binaries. umax2s() provides minimal
977 * integer printing functionality, so that malloc_printf() use can be limited to
978 * MALLOC_STATS code.
979 */
980 #define UMAX2S_BUFSIZE 21
981 static char *
982 umax2s(uintmax_t x, char *s)
983 {
984 unsigned i;
985
986 /* Make sure UMAX2S_BUFSIZE is large enough. */
987 /* LINTED */
988 assert(sizeof(uintmax_t) <= 8);
989
990 i = UMAX2S_BUFSIZE - 1;
991 s[i] = '\0';
992 do {
993 i--;
994 s[i] = "0123456789"[(int)x % 10];
995 x /= (uintmax_t)10LL;
996 } while (x > 0);
997
998 return (&s[i]);
999 }
1000
1001 /******************************************************************************/
1002
1003 static bool
1004 base_pages_alloc(size_t minsize)
1005 {
1006 size_t csize = 0;
1007
1008 #ifdef USE_BRK
1009 /*
1010 * Do special brk allocation here, since base allocations don't need to
1011 * be chunk-aligned.
1012 */
1013 if (brk_prev != (void *)-1) {
1014 void *brk_cur;
1015 intptr_t incr;
1016
1017 if (minsize != 0)
1018 csize = CHUNK_CEILING(minsize);
1019
1020 malloc_mutex_lock(&brk_mtx);
1021 do {
1022 /* Get the current end of brk. */
1023 brk_cur = sbrk(0);
1024
1025 /*
1026 * Calculate how much padding is necessary to
1027 * chunk-align the end of brk. Don't worry about
1028 * brk_cur not being chunk-aligned though.
1029 */
1030 incr = (intptr_t)chunksize
1031 - (intptr_t)CHUNK_ADDR2OFFSET(brk_cur);
1032 if (incr < minsize)
1033 incr += csize;
1034
1035 brk_prev = sbrk(incr);
1036 if (brk_prev == brk_cur) {
1037 /* Success. */
1038 malloc_mutex_unlock(&brk_mtx);
1039 base_pages = brk_cur;
1040 base_next_addr = base_pages;
1041 base_past_addr = (void *)((uintptr_t)base_pages
1042 + incr);
1043 #ifdef MALLOC_STATS
1044 base_mapped += incr;
1045 #endif
1046 return (false);
1047 }
1048 } while (brk_prev != (void *)-1);
1049 malloc_mutex_unlock(&brk_mtx);
1050 }
1051 if (minsize == 0) {
1052 /*
1053 * Failure during initialization doesn't matter, so avoid
1054 * falling through to the mmap-based page mapping code.
1055 */
1056 return (true);
1057 }
1058 #endif
1059 assert(minsize != 0);
1060 csize = PAGE_CEILING(minsize);
1061 base_pages = pages_map(NULL, csize);
1062 if (base_pages == NULL)
1063 return (true);
1064 base_next_addr = base_pages;
1065 base_past_addr = (void *)((uintptr_t)base_pages + csize);
1066 #ifdef MALLOC_STATS
1067 base_mapped += csize;
1068 #endif
1069 return (false);
1070 }
1071
1072 static void *
1073 base_alloc(size_t size)
1074 {
1075 void *ret;
1076 size_t csize;
1077
1078 /* Round size up to nearest multiple of the cacheline size. */
1079 csize = CACHELINE_CEILING(size);
1080
1081 malloc_mutex_lock(&base_mtx);
1082
1083 /* Make sure there's enough space for the allocation. */
1084 if ((uintptr_t)base_next_addr + csize > (uintptr_t)base_past_addr) {
1085 if (base_pages_alloc(csize)) {
1086 ret = NULL;
1087 goto RETURN;
1088 }
1089 }
1090
1091 /* Allocate. */
1092 ret = base_next_addr;
1093 base_next_addr = (void *)((uintptr_t)base_next_addr + csize);
1094
1095 RETURN:
1096 malloc_mutex_unlock(&base_mtx);
1097 return (ret);
1098 }
1099
1100 static chunk_node_t *
1101 base_chunk_node_alloc(void)
1102 {
1103 chunk_node_t *ret;
1104
1105 malloc_mutex_lock(&base_mtx);
1106 if (base_chunk_nodes != NULL) {
1107 ret = base_chunk_nodes;
1108 /* LINTED */
1109 base_chunk_nodes = *(chunk_node_t **)ret;
1110 malloc_mutex_unlock(&base_mtx);
1111 } else {
1112 malloc_mutex_unlock(&base_mtx);
1113 ret = (chunk_node_t *)base_alloc(sizeof(chunk_node_t));
1114 }
1115
1116 return (ret);
1117 }
1118
1119 static void
1120 base_chunk_node_dealloc(chunk_node_t *node)
1121 {
1122
1123 malloc_mutex_lock(&base_mtx);
1124 /* LINTED */
1125 *(chunk_node_t **)node = base_chunk_nodes;
1126 base_chunk_nodes = node;
1127 malloc_mutex_unlock(&base_mtx);
1128 }
1129
1130 /******************************************************************************/
1131
1132 #ifdef MALLOC_STATS
1133 static void
1134 stats_print(arena_t *arena)
1135 {
1136 unsigned i;
1137 int gap_start;
1138
1139 malloc_printf(
1140 " allocated/mapped nmalloc ndalloc\n");
1141
1142 malloc_printf("small: %12zu %-12s %12llu %12llu\n",
1143 arena->stats.allocated_small, "", arena->stats.nmalloc_small,
1144 arena->stats.ndalloc_small);
1145 malloc_printf("large: %12zu %-12s %12llu %12llu\n",
1146 arena->stats.allocated_large, "", arena->stats.nmalloc_large,
1147 arena->stats.ndalloc_large);
1148 malloc_printf("total: %12zu/%-12zu %12llu %12llu\n",
1149 arena->stats.allocated_small + arena->stats.allocated_large,
1150 arena->stats.mapped,
1151 arena->stats.nmalloc_small + arena->stats.nmalloc_large,
1152 arena->stats.ndalloc_small + arena->stats.ndalloc_large);
1153
1154 malloc_printf("bins: bin size regs pgs requests newruns"
1155 " reruns maxruns curruns\n");
1156 for (i = 0, gap_start = -1; i < ntbins + nqbins + nsbins; i++) {
1157 if (arena->bins[i].stats.nrequests == 0) {
1158 if (gap_start == -1)
1159 gap_start = i;
1160 } else {
1161 if (gap_start != -1) {
1162 if (i > gap_start + 1) {
1163 /* Gap of more than one size class. */
1164 malloc_printf("[%u..%u]\n",
1165 gap_start, i - 1);
1166 } else {
1167 /* Gap of one size class. */
1168 malloc_printf("[%u]\n", gap_start);
1169 }
1170 gap_start = -1;
1171 }
1172 malloc_printf(
1173 "%13u %1s %4u %4u %3u %9llu %9llu"
1174 " %9llu %7lu %7lu\n",
1175 i,
1176 i < ntbins ? "T" : i < ntbins + nqbins ? "Q" : "S",
1177 arena->bins[i].reg_size,
1178 arena->bins[i].nregs,
1179 arena->bins[i].run_size >> pagesize_2pow,
1180 arena->bins[i].stats.nrequests,
1181 arena->bins[i].stats.nruns,
1182 arena->bins[i].stats.reruns,
1183 arena->bins[i].stats.highruns,
1184 arena->bins[i].stats.curruns);
1185 }
1186 }
1187 if (gap_start != -1) {
1188 if (i > gap_start + 1) {
1189 /* Gap of more than one size class. */
1190 malloc_printf("[%u..%u]\n", gap_start, i - 1);
1191 } else {
1192 /* Gap of one size class. */
1193 malloc_printf("[%u]\n", gap_start);
1194 }
1195 }
1196 }
1197 #endif
1198
1199 /*
1200 * End Utility functions/macros.
1201 */
1202 /******************************************************************************/
1203 /*
1204 * Begin chunk management functions.
1205 */
1206
1207 #ifndef lint
1208 static inline int
1209 chunk_comp(chunk_node_t *a, chunk_node_t *b)
1210 {
1211
1212 assert(a != NULL);
1213 assert(b != NULL);
1214
1215 if ((uintptr_t)a->chunk < (uintptr_t)b->chunk)
1216 return (-1);
1217 else if (a->chunk == b->chunk)
1218 return (0);
1219 else
1220 return (1);
1221 }
1222
1223 /* Generate red-black tree code for chunks. */
1224 RB_GENERATE_STATIC(chunk_tree_s, chunk_node_s, link, chunk_comp);
1225 #endif
1226
1227 static void *
1228 pages_map_align(void *addr, size_t size, int align)
1229 {
1230 void *ret;
1231
1232 /*
1233 * We don't use MAP_FIXED here, because it can cause the *replacement*
1234 * of existing mappings, and we only want to create new mappings.
1235 */
1236 ret = mmap(addr, size, PROT_READ | PROT_WRITE,
1237 MAP_PRIVATE | MAP_ANON | MAP_ALIGNED(align), -1, 0);
1238 assert(ret != NULL);
1239
1240 if (ret == MAP_FAILED)
1241 ret = NULL;
1242 else if (addr != NULL && ret != addr) {
1243 /*
1244 * We succeeded in mapping memory, but not in the right place.
1245 */
1246 if (munmap(ret, size) == -1) {
1247 char buf[STRERROR_BUF];
1248
1249 STRERROR_R(errno, buf, sizeof(buf));
1250 _malloc_message(getprogname(),
1251 ": (malloc) Error in munmap(): ", buf, "\n");
1252 if (opt_abort)
1253 abort();
1254 }
1255 ret = NULL;
1256 }
1257
1258 assert(ret == NULL || (addr == NULL && ret != addr)
1259 || (addr != NULL && ret == addr));
1260 return (ret);
1261 }
1262
1263 static void *
1264 pages_map(void *addr, size_t size)
1265 {
1266
1267 return pages_map_align(addr, size, 0);
1268 }
1269
1270 static void
1271 pages_unmap(void *addr, size_t size)
1272 {
1273
1274 if (munmap(addr, size) == -1) {
1275 char buf[STRERROR_BUF];
1276
1277 STRERROR_R(errno, buf, sizeof(buf));
1278 _malloc_message(getprogname(),
1279 ": (malloc) Error in munmap(): ", buf, "\n");
1280 if (opt_abort)
1281 abort();
1282 }
1283 }
1284
1285 static void *
1286 chunk_alloc(size_t size)
1287 {
1288 void *ret, *chunk;
1289 chunk_node_t *tchunk, *delchunk;
1290
1291 assert(size != 0);
1292 assert((size & chunksize_mask) == 0);
1293
1294 malloc_mutex_lock(&chunks_mtx);
1295
1296 if (size == chunksize) {
1297 /*
1298 * Check for address ranges that were previously chunks and try
1299 * to use them.
1300 */
1301
1302 /* LINTED */
1303 tchunk = RB_MIN(chunk_tree_s, &old_chunks);
1304 while (tchunk != NULL) {
1305 /* Found an address range. Try to recycle it. */
1306
1307 chunk = tchunk->chunk;
1308 delchunk = tchunk;
1309 /* LINTED */
1310 tchunk = RB_NEXT(chunk_tree_s, &old_chunks, delchunk);
1311
1312 /* Remove delchunk from the tree. */
1313 /* LINTED */
1314 RB_REMOVE(chunk_tree_s, &old_chunks, delchunk);
1315 base_chunk_node_dealloc(delchunk);
1316
1317 #ifdef USE_BRK
1318 if ((uintptr_t)chunk >= (uintptr_t)brk_base
1319 && (uintptr_t)chunk < (uintptr_t)brk_max) {
1320 /* Re-use a previously freed brk chunk. */
1321 ret = chunk;
1322 goto RETURN;
1323 }
1324 #endif
1325 if ((ret = pages_map(chunk, size)) != NULL) {
1326 /* Success. */
1327 goto RETURN;
1328 }
1329 }
1330 }
1331
1332 /*
1333 * Try to over-allocate, but allow the OS to place the allocation
1334 * anywhere. Beware of size_t wrap-around.
1335 */
1336 if (size + chunksize > size) {
1337 if ((ret = pages_map_align(NULL, size, chunksize_2pow))
1338 != NULL) {
1339 goto RETURN;
1340 }
1341 }
1342
1343 #ifdef USE_BRK
1344 /*
1345 * Try to create allocations in brk, in order to make full use of
1346 * limited address space.
1347 */
1348 if (brk_prev != (void *)-1) {
1349 void *brk_cur;
1350 intptr_t incr;
1351
1352 /*
1353 * The loop is necessary to recover from races with other
1354 * threads that are using brk for something other than malloc.
1355 */
1356 malloc_mutex_lock(&brk_mtx);
1357 do {
1358 /* Get the current end of brk. */
1359 brk_cur = sbrk(0);
1360
1361 /*
1362 * Calculate how much padding is necessary to
1363 * chunk-align the end of brk.
1364 */
1365 incr = (intptr_t)size
1366 - (intptr_t)CHUNK_ADDR2OFFSET(brk_cur);
1367 if (incr == size) {
1368 ret = brk_cur;
1369 } else {
1370 ret = (void *)((intptr_t)brk_cur + incr);
1371 incr += size;
1372 }
1373
1374 brk_prev = sbrk(incr);
1375 if (brk_prev == brk_cur) {
1376 /* Success. */
1377 malloc_mutex_unlock(&brk_mtx);
1378 brk_max = (void *)((intptr_t)ret + size);
1379 goto RETURN;
1380 }
1381 } while (brk_prev != (void *)-1);
1382 malloc_mutex_unlock(&brk_mtx);
1383 }
1384 #endif
1385
1386 /* All strategies for allocation failed. */
1387 ret = NULL;
1388 RETURN:
1389 if (ret != NULL) {
1390 chunk_node_t key;
1391 /*
1392 * Clean out any entries in old_chunks that overlap with the
1393 * memory we just allocated.
1394 */
1395 key.chunk = ret;
1396 /* LINTED */
1397 tchunk = RB_NFIND(chunk_tree_s, &old_chunks, &key);
1398 while (tchunk != NULL
1399 && (uintptr_t)tchunk->chunk >= (uintptr_t)ret
1400 && (uintptr_t)tchunk->chunk < (uintptr_t)ret + size) {
1401 delchunk = tchunk;
1402 /* LINTED */
1403 tchunk = RB_NEXT(chunk_tree_s, &old_chunks, delchunk);
1404 /* LINTED */
1405 RB_REMOVE(chunk_tree_s, &old_chunks, delchunk);
1406 base_chunk_node_dealloc(delchunk);
1407 }
1408
1409 }
1410 #ifdef MALLOC_STATS
1411 if (ret != NULL) {
1412 stats_chunks.nchunks += (size / chunksize);
1413 stats_chunks.curchunks += (size / chunksize);
1414 }
1415 if (stats_chunks.curchunks > stats_chunks.highchunks)
1416 stats_chunks.highchunks = stats_chunks.curchunks;
1417 #endif
1418 malloc_mutex_unlock(&chunks_mtx);
1419
1420 assert(CHUNK_ADDR2BASE(ret) == ret);
1421 return (ret);
1422 }
1423
1424 static void
1425 chunk_dealloc(void *chunk, size_t size)
1426 {
1427 chunk_node_t *node;
1428
1429 assert(chunk != NULL);
1430 assert(CHUNK_ADDR2BASE(chunk) == chunk);
1431 assert(size != 0);
1432 assert((size & chunksize_mask) == 0);
1433
1434 malloc_mutex_lock(&chunks_mtx);
1435
1436 #ifdef USE_BRK
1437 if ((uintptr_t)chunk >= (uintptr_t)brk_base
1438 && (uintptr_t)chunk < (uintptr_t)brk_max) {
1439 void *brk_cur;
1440
1441 malloc_mutex_lock(&brk_mtx);
1442 /* Get the current end of brk. */
1443 brk_cur = sbrk(0);
1444
1445 /*
1446 * Try to shrink the data segment if this chunk is at the end
1447 * of the data segment. The sbrk() call here is subject to a
1448 * race condition with threads that use brk(2) or sbrk(2)
1449 * directly, but the alternative would be to leak memory for
1450 * the sake of poorly designed multi-threaded programs.
1451 */
1452 if (brk_cur == brk_max
1453 && (void *)((uintptr_t)chunk + size) == brk_max
1454 && sbrk(-(intptr_t)size) == brk_max) {
1455 malloc_mutex_unlock(&brk_mtx);
1456 if (brk_prev == brk_max) {
1457 /* Success. */
1458 brk_prev = (void *)((intptr_t)brk_max
1459 - (intptr_t)size);
1460 brk_max = brk_prev;
1461 }
1462 } else {
1463 size_t offset;
1464
1465 malloc_mutex_unlock(&brk_mtx);
1466 madvise(chunk, size, MADV_FREE);
1467
1468 /*
1469 * Iteratively create records of each chunk-sized
1470 * memory region that 'chunk' is comprised of, so that
1471 * the address range can be recycled if memory usage
1472 * increases later on.
1473 */
1474 for (offset = 0; offset < size; offset += chunksize) {
1475 node = base_chunk_node_alloc();
1476 if (node == NULL)
1477 break;
1478
1479 node->chunk = (void *)((uintptr_t)chunk
1480 + (uintptr_t)offset);
1481 node->size = chunksize;
1482 /* LINTED */
1483 RB_INSERT(chunk_tree_s, &old_chunks, node);
1484 }
1485 }
1486 } else {
1487 #endif
1488 pages_unmap(chunk, size);
1489
1490 /*
1491 * Make a record of the chunk's address, so that the address
1492 * range can be recycled if memory usage increases later on.
1493 * Don't bother to create entries if (size > chunksize), since
1494 * doing so could cause scalability issues for truly gargantuan
1495 * objects (many gigabytes or larger).
1496 */
1497 if (size == chunksize) {
1498 node = base_chunk_node_alloc();
1499 if (node != NULL) {
1500 node->chunk = (void *)(uintptr_t)chunk;
1501 node->size = chunksize;
1502 /* LINTED */
1503 RB_INSERT(chunk_tree_s, &old_chunks, node);
1504 }
1505 }
1506 #ifdef USE_BRK
1507 }
1508 #endif
1509
1510 #ifdef MALLOC_STATS
1511 stats_chunks.curchunks -= (size / chunksize);
1512 #endif
1513 malloc_mutex_unlock(&chunks_mtx);
1514 }
1515
1516 /*
1517 * End chunk management functions.
1518 */
1519 /******************************************************************************/
1520 /*
1521 * Begin arena.
1522 */
1523
1524 /*
1525 * Choose an arena based on a per-thread and (optimistically) per-CPU value.
1526 *
1527 * We maintain at least one block of arenas. Usually there are more.
1528 * The blocks are $ncpu arenas in size. Whole blocks are 'hashed'
1529 * amongst threads. To accomplish this, next_arena advances only in
1530 * ncpu steps.
1531 */
1532 static __noinline arena_t *
1533 choose_arena_hard(void)
1534 {
1535 unsigned i, curcpu;
1536 arena_t **map;
1537
1538 /* Initialize the current block of arenas and advance to next. */
1539 malloc_mutex_lock(&arenas_mtx);
1540 assert(next_arena % ncpus == 0);
1541 assert(narenas % ncpus == 0);
1542 map = &arenas[next_arena];
1543 set_arenas_map(map);
1544 for (i = 0; i < ncpus; i++) {
1545 if (arenas[next_arena] == NULL)
1546 arenas_extend(next_arena);
1547 next_arena = (next_arena + 1) % narenas;
1548 }
1549 malloc_mutex_unlock(&arenas_mtx);
1550
1551 /*
1552 * If we were unable to allocate an arena above, then default to
1553 * the first arena, which is always present.
1554 */
1555 curcpu = thr_curcpu();
1556 if (map[curcpu] != NULL)
1557 return map[curcpu];
1558 return arenas[0];
1559 }
1560
1561 static inline arena_t *
1562 choose_arena(void)
1563 {
1564 unsigned curcpu;
1565 arena_t **map;
1566
1567 map = get_arenas_map();
1568 curcpu = thr_curcpu();
1569 if (__predict_true(map != NULL && map[curcpu] != NULL))
1570 return map[curcpu];
1571
1572 return choose_arena_hard();
1573 }
1574
1575 #ifndef lint
1576 static inline int
1577 arena_chunk_comp(arena_chunk_t *a, arena_chunk_t *b)
1578 {
1579
1580 assert(a != NULL);
1581 assert(b != NULL);
1582
1583 if ((uintptr_t)a < (uintptr_t)b)
1584 return (-1);
1585 else if (a == b)
1586 return (0);
1587 else
1588 return (1);
1589 }
1590
1591 /* Generate red-black tree code for arena chunks. */
1592 RB_GENERATE_STATIC(arena_chunk_tree_s, arena_chunk_s, link, arena_chunk_comp);
1593 #endif
1594
1595 #ifndef lint
1596 static inline int
1597 arena_run_comp(arena_run_t *a, arena_run_t *b)
1598 {
1599
1600 assert(a != NULL);
1601 assert(b != NULL);
1602
1603 if ((uintptr_t)a < (uintptr_t)b)
1604 return (-1);
1605 else if (a == b)
1606 return (0);
1607 else
1608 return (1);
1609 }
1610
1611 /* Generate red-black tree code for arena runs. */
1612 RB_GENERATE_STATIC(arena_run_tree_s, arena_run_s, link, arena_run_comp);
1613 #endif
1614
1615 static inline void *
1616 arena_run_reg_alloc(arena_run_t *run, arena_bin_t *bin)
1617 {
1618 void *ret;
1619 unsigned i, mask, bit, regind;
1620
1621 assert(run->magic == ARENA_RUN_MAGIC);
1622 assert(run->regs_minelm < bin->regs_mask_nelms);
1623
1624 /*
1625 * Move the first check outside the loop, so that run->regs_minelm can
1626 * be updated unconditionally, without the possibility of updating it
1627 * multiple times.
1628 */
1629 i = run->regs_minelm;
1630 mask = run->regs_mask[i];
1631 if (mask != 0) {
1632 /* Usable allocation found. */
1633 bit = ffs((int)mask) - 1;
1634
1635 regind = ((i << (SIZEOF_INT_2POW + 3)) + bit);
1636 ret = (void *)(((uintptr_t)run) + bin->reg0_offset
1637 + (bin->reg_size * regind));
1638
1639 /* Clear bit. */
1640 mask ^= (1 << bit);
1641 run->regs_mask[i] = mask;
1642
1643 return (ret);
1644 }
1645
1646 for (i++; i < bin->regs_mask_nelms; i++) {
1647 mask = run->regs_mask[i];
1648 if (mask != 0) {
1649 /* Usable allocation found. */
1650 bit = ffs((int)mask) - 1;
1651
1652 regind = ((i << (SIZEOF_INT_2POW + 3)) + bit);
1653 ret = (void *)(((uintptr_t)run) + bin->reg0_offset
1654 + (bin->reg_size * regind));
1655
1656 /* Clear bit. */
1657 mask ^= (1 << bit);
1658 run->regs_mask[i] = mask;
1659
1660 /*
1661 * Make a note that nothing before this element
1662 * contains a free region.
1663 */
1664 run->regs_minelm = i; /* Low payoff: + (mask == 0); */
1665
1666 return (ret);
1667 }
1668 }
1669 /* Not reached. */
1670 /* LINTED */
1671 assert(0);
1672 return (NULL);
1673 }
1674
1675 static inline void
1676 arena_run_reg_dalloc(arena_run_t *run, arena_bin_t *bin, void *ptr, size_t size)
1677 {
1678 /*
1679 * To divide by a number D that is not a power of two we multiply
1680 * by (2^21 / D) and then right shift by 21 positions.
1681 *
1682 * X / D
1683 *
1684 * becomes
1685 *
1686 * (X * size_invs[(D >> QUANTUM_2POW_MIN) - 3]) >> SIZE_INV_SHIFT
1687 */
1688 #define SIZE_INV_SHIFT 21
1689 #define SIZE_INV(s) (((1 << SIZE_INV_SHIFT) / (s << QUANTUM_2POW_MIN)) + 1)
1690 static const unsigned size_invs[] = {
1691 SIZE_INV(3),
1692 SIZE_INV(4), SIZE_INV(5), SIZE_INV(6), SIZE_INV(7),
1693 SIZE_INV(8), SIZE_INV(9), SIZE_INV(10), SIZE_INV(11),
1694 SIZE_INV(12),SIZE_INV(13), SIZE_INV(14), SIZE_INV(15),
1695 SIZE_INV(16),SIZE_INV(17), SIZE_INV(18), SIZE_INV(19),
1696 SIZE_INV(20),SIZE_INV(21), SIZE_INV(22), SIZE_INV(23),
1697 SIZE_INV(24),SIZE_INV(25), SIZE_INV(26), SIZE_INV(27),
1698 SIZE_INV(28),SIZE_INV(29), SIZE_INV(30), SIZE_INV(31)
1699 #if (QUANTUM_2POW_MIN < 4)
1700 ,
1701 SIZE_INV(32), SIZE_INV(33), SIZE_INV(34), SIZE_INV(35),
1702 SIZE_INV(36), SIZE_INV(37), SIZE_INV(38), SIZE_INV(39),
1703 SIZE_INV(40), SIZE_INV(41), SIZE_INV(42), SIZE_INV(43),
1704 SIZE_INV(44), SIZE_INV(45), SIZE_INV(46), SIZE_INV(47),
1705 SIZE_INV(48), SIZE_INV(49), SIZE_INV(50), SIZE_INV(51),
1706 SIZE_INV(52), SIZE_INV(53), SIZE_INV(54), SIZE_INV(55),
1707 SIZE_INV(56), SIZE_INV(57), SIZE_INV(58), SIZE_INV(59),
1708 SIZE_INV(60), SIZE_INV(61), SIZE_INV(62), SIZE_INV(63)
1709 #endif
1710 };
1711 unsigned diff, regind, elm, bit;
1712
1713 /* LINTED */
1714 assert(run->magic == ARENA_RUN_MAGIC);
1715 assert(((sizeof(size_invs)) / sizeof(unsigned)) + 3
1716 >= (SMALL_MAX_DEFAULT >> QUANTUM_2POW_MIN));
1717
1718 /*
1719 * Avoid doing division with a variable divisor if possible. Using
1720 * actual division here can reduce allocator throughput by over 20%!
1721 */
1722 diff = (unsigned)((uintptr_t)ptr - (uintptr_t)run - bin->reg0_offset);
1723 if ((size & (size - 1)) == 0) {
1724 /*
1725 * log2_table allows fast division of a power of two in the
1726 * [1..128] range.
1727 *
1728 * (x / divisor) becomes (x >> log2_table[divisor - 1]).
1729 */
1730 static const unsigned char log2_table[] = {
1731 0, 1, 0, 2, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 4,
1732 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5,
1733 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1734 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6,
1735 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1736 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1737 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1738 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7
1739 };
1740
1741 if (size <= 128)
1742 regind = (diff >> log2_table[size - 1]);
1743 else if (size <= 32768)
1744 regind = diff >> (8 + log2_table[(size >> 8) - 1]);
1745 else {
1746 /*
1747 * The page size is too large for us to use the lookup
1748 * table. Use real division.
1749 */
1750 regind = (unsigned)(diff / size);
1751 }
1752 } else if (size <= ((sizeof(size_invs) / sizeof(unsigned))
1753 << QUANTUM_2POW_MIN) + 2) {
1754 regind = size_invs[(size >> QUANTUM_2POW_MIN) - 3] * diff;
1755 regind >>= SIZE_INV_SHIFT;
1756 } else {
1757 /*
1758 * size_invs isn't large enough to handle this size class, so
1759 * calculate regind using actual division. This only happens
1760 * if the user increases small_max via the 'S' runtime
1761 * configuration option.
1762 */
1763 regind = (unsigned)(diff / size);
1764 };
1765 assert(diff == regind * size);
1766 assert(regind < bin->nregs);
1767
1768 elm = regind >> (SIZEOF_INT_2POW + 3);
1769 if (elm < run->regs_minelm)
1770 run->regs_minelm = elm;
1771 bit = regind - (elm << (SIZEOF_INT_2POW + 3));
1772 assert((run->regs_mask[elm] & (1 << bit)) == 0);
1773 run->regs_mask[elm] |= (1 << bit);
1774 #undef SIZE_INV
1775 #undef SIZE_INV_SHIFT
1776 }
1777
1778 static void
1779 arena_run_split(arena_t *arena, arena_run_t *run, size_t size)
1780 {
1781 arena_chunk_t *chunk;
1782 unsigned run_ind, map_offset, total_pages, need_pages, rem_pages;
1783 unsigned i;
1784
1785 chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(run);
1786 run_ind = (unsigned)(((uintptr_t)run - (uintptr_t)chunk)
1787 >> pagesize_2pow);
1788 total_pages = chunk->map[run_ind].npages;
1789 need_pages = (unsigned)(size >> pagesize_2pow);
1790 assert(need_pages <= total_pages);
1791 rem_pages = total_pages - need_pages;
1792
1793 /* Split enough pages from the front of run to fit allocation size. */
1794 map_offset = run_ind;
1795 for (i = 0; i < need_pages; i++) {
1796 chunk->map[map_offset + i].npages = need_pages;
1797 chunk->map[map_offset + i].pos = i;
1798 }
1799
1800 /* Keep track of trailing unused pages for later use. */
1801 if (rem_pages > 0) {
1802 /* Update map for trailing pages. */
1803 map_offset += need_pages;
1804 chunk->map[map_offset].npages = rem_pages;
1805 chunk->map[map_offset].pos = POS_FREE;
1806 chunk->map[map_offset + rem_pages - 1].npages = rem_pages;
1807 chunk->map[map_offset + rem_pages - 1].pos = POS_FREE;
1808 }
1809
1810 chunk->pages_used += need_pages;
1811 }
1812
1813 static arena_chunk_t *
1814 arena_chunk_alloc(arena_t *arena)
1815 {
1816 arena_chunk_t *chunk;
1817
1818 if (arena->spare != NULL) {
1819 chunk = arena->spare;
1820 arena->spare = NULL;
1821
1822 /* LINTED */
1823 RB_INSERT(arena_chunk_tree_s, &arena->chunks, chunk);
1824 } else {
1825 chunk = (arena_chunk_t *)chunk_alloc(chunksize);
1826 if (chunk == NULL)
1827 return (NULL);
1828 #ifdef MALLOC_STATS
1829 arena->stats.mapped += chunksize;
1830 #endif
1831
1832 chunk->arena = arena;
1833
1834 /* LINTED */
1835 RB_INSERT(arena_chunk_tree_s, &arena->chunks, chunk);
1836
1837 /*
1838 * Claim that no pages are in use, since the header is merely
1839 * overhead.
1840 */
1841 chunk->pages_used = 0;
1842
1843 chunk->max_frun_npages = chunk_npages -
1844 arena_chunk_header_npages;
1845 chunk->min_frun_ind = arena_chunk_header_npages;
1846
1847 /*
1848 * Initialize enough of the map to support one maximal free run.
1849 */
1850 chunk->map[arena_chunk_header_npages].npages = chunk_npages -
1851 arena_chunk_header_npages;
1852 chunk->map[arena_chunk_header_npages].pos = POS_FREE;
1853 chunk->map[chunk_npages - 1].npages = chunk_npages -
1854 arena_chunk_header_npages;
1855 chunk->map[chunk_npages - 1].pos = POS_FREE;
1856 }
1857
1858 return (chunk);
1859 }
1860
1861 static void
1862 arena_chunk_dealloc(arena_t *arena, arena_chunk_t *chunk)
1863 {
1864
1865 /*
1866 * Remove chunk from the chunk tree, regardless of whether this chunk
1867 * will be cached, so that the arena does not use it.
1868 */
1869 /* LINTED */
1870 RB_REMOVE(arena_chunk_tree_s, &chunk->arena->chunks, chunk);
1871
1872 if (opt_hint == false) {
1873 if (arena->spare != NULL) {
1874 chunk_dealloc((void *)arena->spare, chunksize);
1875 #ifdef MALLOC_STATS
1876 arena->stats.mapped -= chunksize;
1877 #endif
1878 }
1879 arena->spare = chunk;
1880 } else {
1881 assert(arena->spare == NULL);
1882 chunk_dealloc((void *)chunk, chunksize);
1883 #ifdef MALLOC_STATS
1884 arena->stats.mapped -= chunksize;
1885 #endif
1886 }
1887 }
1888
1889 static arena_run_t *
1890 arena_run_alloc(arena_t *arena, size_t size)
1891 {
1892 arena_chunk_t *chunk;
1893 arena_run_t *run;
1894 unsigned need_npages, limit_pages, compl_need_npages;
1895
1896 assert(size <= (chunksize - (arena_chunk_header_npages <<
1897 pagesize_2pow)));
1898 assert((size & pagesize_mask) == 0);
1899
1900 /*
1901 * Search through arena's chunks in address order for a free run that is
1902 * large enough. Look for the first fit.
1903 */
1904 need_npages = (unsigned)(size >> pagesize_2pow);
1905 limit_pages = chunk_npages - arena_chunk_header_npages;
1906 compl_need_npages = limit_pages - need_npages;
1907 /* LINTED */
1908 RB_FOREACH(chunk, arena_chunk_tree_s, &arena->chunks) {
1909 /*
1910 * Avoid searching this chunk if there are not enough
1911 * contiguous free pages for there to possibly be a large
1912 * enough free run.
1913 */
1914 if (chunk->pages_used <= compl_need_npages &&
1915 need_npages <= chunk->max_frun_npages) {
1916 arena_chunk_map_t *mapelm;
1917 unsigned i;
1918 unsigned max_frun_npages = 0;
1919 unsigned min_frun_ind = chunk_npages;
1920
1921 assert(chunk->min_frun_ind >=
1922 arena_chunk_header_npages);
1923 for (i = chunk->min_frun_ind; i < chunk_npages;) {
1924 mapelm = &chunk->map[i];
1925 if (mapelm->pos == POS_FREE) {
1926 if (mapelm->npages >= need_npages) {
1927 run = (arena_run_t *)
1928 ((uintptr_t)chunk + (i <<
1929 pagesize_2pow));
1930 /* Update page map. */
1931 arena_run_split(arena, run,
1932 size);
1933 return (run);
1934 }
1935 if (mapelm->npages >
1936 max_frun_npages) {
1937 max_frun_npages =
1938 mapelm->npages;
1939 }
1940 if (i < min_frun_ind) {
1941 min_frun_ind = i;
1942 if (i < chunk->min_frun_ind)
1943 chunk->min_frun_ind = i;
1944 }
1945 }
1946 i += mapelm->npages;
1947 }
1948 /*
1949 * Search failure. Reset cached chunk->max_frun_npages.
1950 * chunk->min_frun_ind was already reset above (if
1951 * necessary).
1952 */
1953 chunk->max_frun_npages = max_frun_npages;
1954 }
1955 }
1956
1957 /*
1958 * No usable runs. Create a new chunk from which to allocate the run.
1959 */
1960 chunk = arena_chunk_alloc(arena);
1961 if (chunk == NULL)
1962 return (NULL);
1963 run = (arena_run_t *)((uintptr_t)chunk + (arena_chunk_header_npages <<
1964 pagesize_2pow));
1965 /* Update page map. */
1966 arena_run_split(arena, run, size);
1967 return (run);
1968 }
1969
1970 static void
1971 arena_run_dalloc(arena_t *arena, arena_run_t *run, size_t size)
1972 {
1973 arena_chunk_t *chunk;
1974 unsigned run_ind, run_pages;
1975
1976 chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(run);
1977
1978 run_ind = (unsigned)(((uintptr_t)run - (uintptr_t)chunk)
1979 >> pagesize_2pow);
1980 assert(run_ind >= arena_chunk_header_npages);
1981 assert(run_ind < (chunksize >> pagesize_2pow));
1982 run_pages = (unsigned)(size >> pagesize_2pow);
1983 assert(run_pages == chunk->map[run_ind].npages);
1984
1985 /* Subtract pages from count of pages used in chunk. */
1986 chunk->pages_used -= run_pages;
1987
1988 /* Mark run as deallocated. */
1989 assert(chunk->map[run_ind].npages == run_pages);
1990 chunk->map[run_ind].pos = POS_FREE;
1991 assert(chunk->map[run_ind + run_pages - 1].npages == run_pages);
1992 chunk->map[run_ind + run_pages - 1].pos = POS_FREE;
1993
1994 /*
1995 * Tell the kernel that we don't need the data in this run, but only if
1996 * requested via runtime configuration.
1997 */
1998 if (opt_hint)
1999 madvise(run, size, MADV_FREE);
2000
2001 /* Try to coalesce with neighboring runs. */
2002 if (run_ind > arena_chunk_header_npages &&
2003 chunk->map[run_ind - 1].pos == POS_FREE) {
2004 unsigned prev_npages;
2005
2006 /* Coalesce with previous run. */
2007 prev_npages = chunk->map[run_ind - 1].npages;
2008 run_ind -= prev_npages;
2009 assert(chunk->map[run_ind].npages == prev_npages);
2010 assert(chunk->map[run_ind].pos == POS_FREE);
2011 run_pages += prev_npages;
2012
2013 chunk->map[run_ind].npages = run_pages;
2014 assert(chunk->map[run_ind].pos == POS_FREE);
2015 chunk->map[run_ind + run_pages - 1].npages = run_pages;
2016 assert(chunk->map[run_ind + run_pages - 1].pos == POS_FREE);
2017 }
2018
2019 if (run_ind + run_pages < chunk_npages &&
2020 chunk->map[run_ind + run_pages].pos == POS_FREE) {
2021 unsigned next_npages;
2022
2023 /* Coalesce with next run. */
2024 next_npages = chunk->map[run_ind + run_pages].npages;
2025 run_pages += next_npages;
2026 assert(chunk->map[run_ind + run_pages - 1].npages ==
2027 next_npages);
2028 assert(chunk->map[run_ind + run_pages - 1].pos == POS_FREE);
2029
2030 chunk->map[run_ind].npages = run_pages;
2031 chunk->map[run_ind].pos = POS_FREE;
2032 chunk->map[run_ind + run_pages - 1].npages = run_pages;
2033 assert(chunk->map[run_ind + run_pages - 1].pos == POS_FREE);
2034 }
2035
2036 if (chunk->map[run_ind].npages > chunk->max_frun_npages)
2037 chunk->max_frun_npages = chunk->map[run_ind].npages;
2038 if (run_ind < chunk->min_frun_ind)
2039 chunk->min_frun_ind = run_ind;
2040
2041 /* Deallocate chunk if it is now completely unused. */
2042 if (chunk->pages_used == 0)
2043 arena_chunk_dealloc(arena, chunk);
2044 }
2045
2046 static arena_run_t *
2047 arena_bin_nonfull_run_get(arena_t *arena, arena_bin_t *bin)
2048 {
2049 arena_run_t *run;
2050 unsigned i, remainder;
2051
2052 /* Look for a usable run. */
2053 /* LINTED */
2054 if ((run = RB_MIN(arena_run_tree_s, &bin->runs)) != NULL) {
2055 /* run is guaranteed to have available space. */
2056 /* LINTED */
2057 RB_REMOVE(arena_run_tree_s, &bin->runs, run);
2058 #ifdef MALLOC_STATS
2059 bin->stats.reruns++;
2060 #endif
2061 return (run);
2062 }
2063 /* No existing runs have any space available. */
2064
2065 /* Allocate a new run. */
2066 run = arena_run_alloc(arena, bin->run_size);
2067 if (run == NULL)
2068 return (NULL);
2069
2070 /* Initialize run internals. */
2071 run->bin = bin;
2072
2073 for (i = 0; i < bin->regs_mask_nelms; i++)
2074 run->regs_mask[i] = UINT_MAX;
2075 remainder = bin->nregs & ((1 << (SIZEOF_INT_2POW + 3)) - 1);
2076 if (remainder != 0) {
2077 /* The last element has spare bits that need to be unset. */
2078 run->regs_mask[i] = (UINT_MAX >> ((1 << (SIZEOF_INT_2POW + 3))
2079 - remainder));
2080 }
2081
2082 run->regs_minelm = 0;
2083
2084 run->nfree = bin->nregs;
2085 #ifdef MALLOC_DEBUG
2086 run->magic = ARENA_RUN_MAGIC;
2087 #endif
2088
2089 #ifdef MALLOC_STATS
2090 bin->stats.nruns++;
2091 bin->stats.curruns++;
2092 if (bin->stats.curruns > bin->stats.highruns)
2093 bin->stats.highruns = bin->stats.curruns;
2094 #endif
2095 return (run);
2096 }
2097
2098 /* bin->runcur must have space available before this function is called. */
2099 static inline void *
2100 arena_bin_malloc_easy(arena_t *arena, arena_bin_t *bin, arena_run_t *run)
2101 {
2102 void *ret;
2103
2104 assert(run->magic == ARENA_RUN_MAGIC);
2105 assert(run->nfree > 0);
2106
2107 ret = arena_run_reg_alloc(run, bin);
2108 assert(ret != NULL);
2109 run->nfree--;
2110
2111 return (ret);
2112 }
2113
2114 /* Re-fill bin->runcur, then call arena_bin_malloc_easy(). */
2115 static void *
2116 arena_bin_malloc_hard(arena_t *arena, arena_bin_t *bin)
2117 {
2118
2119 bin->runcur = arena_bin_nonfull_run_get(arena, bin);
2120 if (bin->runcur == NULL)
2121 return (NULL);
2122 assert(bin->runcur->magic == ARENA_RUN_MAGIC);
2123 assert(bin->runcur->nfree > 0);
2124
2125 return (arena_bin_malloc_easy(arena, bin, bin->runcur));
2126 }
2127
2128 /*
2129 * Calculate bin->run_size such that it meets the following constraints:
2130 *
2131 * *) bin->run_size >= min_run_size
2132 * *) bin->run_size <= arena_maxclass
2133 * *) bin->run_size <= RUN_MAX_SMALL
2134 * *) run header overhead <= RUN_MAX_OVRHD (or header overhead relaxed).
2135 *
2136 * bin->nregs, bin->regs_mask_nelms, and bin->reg0_offset are
2137 * also calculated here, since these settings are all interdependent.
2138 */
2139 static size_t
2140 arena_bin_run_size_calc(arena_bin_t *bin, size_t min_run_size)
2141 {
2142 size_t try_run_size, good_run_size;
2143 unsigned good_nregs, good_mask_nelms, good_reg0_offset;
2144 unsigned try_nregs, try_mask_nelms, try_reg0_offset;
2145 float max_ovrhd = RUN_MAX_OVRHD;
2146
2147 assert(min_run_size >= pagesize);
2148 assert(min_run_size <= arena_maxclass);
2149 assert(min_run_size <= RUN_MAX_SMALL);
2150
2151 /*
2152 * Calculate known-valid settings before entering the run_size
2153 * expansion loop, so that the first part of the loop always copies
2154 * valid settings.
2155 *
2156 * The do..while loop iteratively reduces the number of regions until
2157 * the run header and the regions no longer overlap. A closed formula
2158 * would be quite messy, since there is an interdependency between the
2159 * header's mask length and the number of regions.
2160 */
2161 try_run_size = min_run_size;
2162 try_nregs = (unsigned)(((try_run_size - sizeof(arena_run_t)) /
2163 bin->reg_size) + 1); /* Counter-act the first line of the loop. */
2164 do {
2165 try_nregs--;
2166 try_mask_nelms = (try_nregs >> (SIZEOF_INT_2POW + 3)) +
2167 ((try_nregs & ((1 << (SIZEOF_INT_2POW + 3)) - 1)) ? 1 : 0);
2168 try_reg0_offset = (unsigned)(try_run_size -
2169 (try_nregs * bin->reg_size));
2170 } while (sizeof(arena_run_t) + (sizeof(unsigned) * (try_mask_nelms - 1))
2171 > try_reg0_offset);
2172
2173 /* run_size expansion loop. */
2174 do {
2175 /*
2176 * Copy valid settings before trying more aggressive settings.
2177 */
2178 good_run_size = try_run_size;
2179 good_nregs = try_nregs;
2180 good_mask_nelms = try_mask_nelms;
2181 good_reg0_offset = try_reg0_offset;
2182
2183 /* Try more aggressive settings. */
2184 try_run_size += pagesize;
2185 try_nregs = (unsigned)(((try_run_size - sizeof(arena_run_t)) /
2186 bin->reg_size) + 1); /* Counter-act try_nregs-- in loop. */
2187 do {
2188 try_nregs--;
2189 try_mask_nelms = (try_nregs >> (SIZEOF_INT_2POW + 3)) +
2190 ((try_nregs & ((1 << (SIZEOF_INT_2POW + 3)) - 1)) ?
2191 1 : 0);
2192 try_reg0_offset = (unsigned)(try_run_size - (try_nregs *
2193 bin->reg_size));
2194 } while (sizeof(arena_run_t) + (sizeof(unsigned) *
2195 (try_mask_nelms - 1)) > try_reg0_offset);
2196 } while (try_run_size <= arena_maxclass && try_run_size <= RUN_MAX_SMALL
2197 && max_ovrhd > RUN_MAX_OVRHD_RELAX / ((float)(bin->reg_size << 3))
2198 && ((float)(try_reg0_offset)) / ((float)(try_run_size)) >
2199 max_ovrhd);
2200
2201 assert(sizeof(arena_run_t) + (sizeof(unsigned) * (good_mask_nelms - 1))
2202 <= good_reg0_offset);
2203 assert((good_mask_nelms << (SIZEOF_INT_2POW + 3)) >= good_nregs);
2204
2205 /* Copy final settings. */
2206 bin->run_size = good_run_size;
2207 bin->nregs = good_nregs;
2208 bin->regs_mask_nelms = good_mask_nelms;
2209 bin->reg0_offset = good_reg0_offset;
2210
2211 return (good_run_size);
2212 }
2213
2214 static void *
2215 arena_malloc(arena_t *arena, size_t size)
2216 {
2217 void *ret;
2218
2219 assert(arena != NULL);
2220 assert(arena->magic == ARENA_MAGIC);
2221 assert(size != 0);
2222 assert(QUANTUM_CEILING(size) <= arena_maxclass);
2223
2224 if (size <= bin_maxclass) {
2225 arena_bin_t *bin;
2226 arena_run_t *run;
2227
2228 /* Small allocation. */
2229
2230 if (size < small_min) {
2231 /* Tiny. */
2232 size = pow2_ceil(size);
2233 bin = &arena->bins[ffs((int)(size >> (TINY_MIN_2POW +
2234 1)))];
2235 #if (!defined(NDEBUG) || defined(MALLOC_STATS))
2236 /*
2237 * Bin calculation is always correct, but we may need
2238 * to fix size for the purposes of assertions and/or
2239 * stats accuracy.
2240 */
2241 if (size < (1 << TINY_MIN_2POW))
2242 size = (1 << TINY_MIN_2POW);
2243 #endif
2244 } else if (size <= small_max) {
2245 /* Quantum-spaced. */
2246 size = QUANTUM_CEILING(size);
2247 bin = &arena->bins[ntbins + (size >> opt_quantum_2pow)
2248 - 1];
2249 } else {
2250 /* Sub-page. */
2251 size = pow2_ceil(size);
2252 bin = &arena->bins[ntbins + nqbins
2253 + (ffs((int)(size >> opt_small_max_2pow)) - 2)];
2254 }
2255 assert(size == bin->reg_size);
2256
2257 malloc_mutex_lock(&arena->mtx);
2258 if ((run = bin->runcur) != NULL && run->nfree > 0)
2259 ret = arena_bin_malloc_easy(arena, bin, run);
2260 else
2261 ret = arena_bin_malloc_hard(arena, bin);
2262
2263 if (ret == NULL) {
2264 malloc_mutex_unlock(&arena->mtx);
2265 return (NULL);
2266 }
2267
2268 #ifdef MALLOC_STATS
2269 bin->stats.nrequests++;
2270 arena->stats.nmalloc_small++;
2271 arena->stats.allocated_small += size;
2272 #endif
2273 } else {
2274 /* Large allocation. */
2275 size = PAGE_CEILING(size);
2276 malloc_mutex_lock(&arena->mtx);
2277 ret = (void *)arena_run_alloc(arena, size);
2278 if (ret == NULL) {
2279 malloc_mutex_unlock(&arena->mtx);
2280 return (NULL);
2281 }
2282 #ifdef MALLOC_STATS
2283 arena->stats.nmalloc_large++;
2284 arena->stats.allocated_large += size;
2285 #endif
2286 }
2287
2288 malloc_mutex_unlock(&arena->mtx);
2289
2290 if (opt_junk)
2291 memset(ret, 0xa5, size);
2292 else if (opt_zero)
2293 memset(ret, 0, size);
2294 return (ret);
2295 }
2296
2297 static inline void
2298 arena_palloc_trim(arena_t *arena, arena_chunk_t *chunk, unsigned pageind,
2299 unsigned npages)
2300 {
2301 unsigned i;
2302
2303 assert(npages > 0);
2304
2305 /*
2306 * Modifiy the map such that arena_run_dalloc() sees the run as
2307 * separately allocated.
2308 */
2309 for (i = 0; i < npages; i++) {
2310 chunk->map[pageind + i].npages = npages;
2311 chunk->map[pageind + i].pos = i;
2312 }
2313 arena_run_dalloc(arena, (arena_run_t *)((uintptr_t)chunk + (pageind <<
2314 pagesize_2pow)), npages << pagesize_2pow);
2315 }
2316
2317 /* Only handles large allocations that require more than page alignment. */
2318 static void *
2319 arena_palloc(arena_t *arena, size_t alignment, size_t size, size_t alloc_size)
2320 {
2321 void *ret;
2322 size_t offset;
2323 arena_chunk_t *chunk;
2324 unsigned pageind, i, npages;
2325
2326 assert((size & pagesize_mask) == 0);
2327 assert((alignment & pagesize_mask) == 0);
2328
2329 npages = (unsigned)(size >> pagesize_2pow);
2330
2331 malloc_mutex_lock(&arena->mtx);
2332 ret = (void *)arena_run_alloc(arena, alloc_size);
2333 if (ret == NULL) {
2334 malloc_mutex_unlock(&arena->mtx);
2335 return (NULL);
2336 }
2337
2338 chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ret);
2339
2340 offset = (uintptr_t)ret & (alignment - 1);
2341 assert((offset & pagesize_mask) == 0);
2342 assert(offset < alloc_size);
2343 if (offset == 0) {
2344 pageind = (unsigned)(((uintptr_t)ret - (uintptr_t)chunk) >>
2345 pagesize_2pow);
2346
2347 /* Update the map for the run to be kept. */
2348 for (i = 0; i < npages; i++) {
2349 chunk->map[pageind + i].npages = npages;
2350 assert(chunk->map[pageind + i].pos == i);
2351 }
2352
2353 /* Trim trailing space. */
2354 arena_palloc_trim(arena, chunk, pageind + npages,
2355 (unsigned)((alloc_size - size) >> pagesize_2pow));
2356 } else {
2357 size_t leadsize, trailsize;
2358
2359 leadsize = alignment - offset;
2360 ret = (void *)((uintptr_t)ret + leadsize);
2361 pageind = (unsigned)(((uintptr_t)ret - (uintptr_t)chunk) >>
2362 pagesize_2pow);
2363
2364 /* Update the map for the run to be kept. */
2365 for (i = 0; i < npages; i++) {
2366 chunk->map[pageind + i].npages = npages;
2367 chunk->map[pageind + i].pos = i;
2368 }
2369
2370 /* Trim leading space. */
2371 arena_palloc_trim(arena, chunk,
2372 (unsigned)(pageind - (leadsize >> pagesize_2pow)),
2373 (unsigned)(leadsize >> pagesize_2pow));
2374
2375 trailsize = alloc_size - leadsize - size;
2376 if (trailsize != 0) {
2377 /* Trim trailing space. */
2378 assert(trailsize < alloc_size);
2379 arena_palloc_trim(arena, chunk, pageind + npages,
2380 (unsigned)(trailsize >> pagesize_2pow));
2381 }
2382 }
2383
2384 #ifdef MALLOC_STATS
2385 arena->stats.nmalloc_large++;
2386 arena->stats.allocated_large += size;
2387 #endif
2388 malloc_mutex_unlock(&arena->mtx);
2389
2390 if (opt_junk)
2391 memset(ret, 0xa5, size);
2392 else if (opt_zero)
2393 memset(ret, 0, size);
2394 return (ret);
2395 }
2396
2397 /* Return the size of the allocation pointed to by ptr. */
2398 static size_t
2399 arena_salloc(const void *ptr)
2400 {
2401 size_t ret;
2402 arena_chunk_t *chunk;
2403 arena_chunk_map_t *mapelm;
2404 unsigned pageind;
2405
2406 assert(ptr != NULL);
2407 assert(CHUNK_ADDR2BASE(ptr) != ptr);
2408
2409 /*
2410 * No arena data structures that we query here can change in a way that
2411 * affects this function, so we don't need to lock.
2412 */
2413 chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
2414 pageind = (unsigned)(((uintptr_t)ptr - (uintptr_t)chunk) >>
2415 pagesize_2pow);
2416 mapelm = &chunk->map[pageind];
2417 if (mapelm->pos != 0 || ptr != (char *)((uintptr_t)chunk) + (pageind <<
2418 pagesize_2pow)) {
2419 arena_run_t *run;
2420
2421 pageind -= mapelm->pos;
2422
2423 run = (arena_run_t *)((uintptr_t)chunk + (pageind <<
2424 pagesize_2pow));
2425 assert(run->magic == ARENA_RUN_MAGIC);
2426 ret = run->bin->reg_size;
2427 } else
2428 ret = mapelm->npages << pagesize_2pow;
2429
2430 return (ret);
2431 }
2432
2433 static void *
2434 arena_ralloc(void *ptr, size_t size, size_t oldsize)
2435 {
2436 void *ret;
2437
2438 /* Avoid moving the allocation if the size class would not change. */
2439 if (size < small_min) {
2440 if (oldsize < small_min &&
2441 ffs((int)(pow2_ceil(size) >> (TINY_MIN_2POW + 1)))
2442 == ffs((int)(pow2_ceil(oldsize) >> (TINY_MIN_2POW + 1))))
2443 goto IN_PLACE;
2444 } else if (size <= small_max) {
2445 if (oldsize >= small_min && oldsize <= small_max &&
2446 (QUANTUM_CEILING(size) >> opt_quantum_2pow)
2447 == (QUANTUM_CEILING(oldsize) >> opt_quantum_2pow))
2448 goto IN_PLACE;
2449 } else {
2450 /*
2451 * We make no attempt to resize runs here, though it would be
2452 * possible to do so.
2453 */
2454 if (oldsize > small_max && PAGE_CEILING(size) == oldsize)
2455 goto IN_PLACE;
2456 }
2457
2458 /*
2459 * If we get here, then size and oldsize are different enough that we
2460 * need to use a different size class. In that case, fall back to
2461 * allocating new space and copying.
2462 */
2463 ret = arena_malloc(choose_arena(), size);
2464 if (ret == NULL)
2465 return (NULL);
2466
2467 /* Junk/zero-filling were already done by arena_malloc(). */
2468 if (size < oldsize)
2469 memcpy(ret, ptr, size);
2470 else
2471 memcpy(ret, ptr, oldsize);
2472 idalloc(ptr);
2473 return (ret);
2474 IN_PLACE:
2475 if (opt_junk && size < oldsize)
2476 memset((void *)((uintptr_t)ptr + size), 0x5a, oldsize - size);
2477 else if (opt_zero && size > oldsize)
2478 memset((void *)((uintptr_t)ptr + oldsize), 0, size - oldsize);
2479 return (ptr);
2480 }
2481
2482 static void
2483 arena_dalloc(arena_t *arena, arena_chunk_t *chunk, void *ptr)
2484 {
2485 unsigned pageind;
2486 arena_chunk_map_t *mapelm;
2487 size_t size;
2488
2489 assert(arena != NULL);
2490 assert(arena->magic == ARENA_MAGIC);
2491 assert(chunk->arena == arena);
2492 assert(ptr != NULL);
2493 assert(CHUNK_ADDR2BASE(ptr) != ptr);
2494
2495 pageind = (unsigned)(((uintptr_t)ptr - (uintptr_t)chunk) >>
2496 pagesize_2pow);
2497 mapelm = &chunk->map[pageind];
2498 if (mapelm->pos != 0 || ptr != (char *)((uintptr_t)chunk) + (pageind <<
2499 pagesize_2pow)) {
2500 arena_run_t *run;
2501 arena_bin_t *bin;
2502
2503 /* Small allocation. */
2504
2505 pageind -= mapelm->pos;
2506
2507 run = (arena_run_t *)((uintptr_t)chunk + (pageind <<
2508 pagesize_2pow));
2509 assert(run->magic == ARENA_RUN_MAGIC);
2510 bin = run->bin;
2511 size = bin->reg_size;
2512
2513 if (opt_junk)
2514 memset(ptr, 0x5a, size);
2515
2516 malloc_mutex_lock(&arena->mtx);
2517 arena_run_reg_dalloc(run, bin, ptr, size);
2518 run->nfree++;
2519
2520 if (run->nfree == bin->nregs) {
2521 /* Deallocate run. */
2522 if (run == bin->runcur)
2523 bin->runcur = NULL;
2524 else if (bin->nregs != 1) {
2525 /*
2526 * This block's conditional is necessary because
2527 * if the run only contains one region, then it
2528 * never gets inserted into the non-full runs
2529 * tree.
2530 */
2531 /* LINTED */
2532 RB_REMOVE(arena_run_tree_s, &bin->runs, run);
2533 }
2534 #ifdef MALLOC_DEBUG
2535 run->magic = 0;
2536 #endif
2537 arena_run_dalloc(arena, run, bin->run_size);
2538 #ifdef MALLOC_STATS
2539 bin->stats.curruns--;
2540 #endif
2541 } else if (run->nfree == 1 && run != bin->runcur) {
2542 /*
2543 * Make sure that bin->runcur always refers to the
2544 * lowest non-full run, if one exists.
2545 */
2546 if (bin->runcur == NULL)
2547 bin->runcur = run;
2548 else if ((uintptr_t)run < (uintptr_t)bin->runcur) {
2549 /* Switch runcur. */
2550 if (bin->runcur->nfree > 0) {
2551 /* Insert runcur. */
2552 /* LINTED */
2553 RB_INSERT(arena_run_tree_s, &bin->runs,
2554 bin->runcur);
2555 }
2556 bin->runcur = run;
2557 } else {
2558 /* LINTED */
2559 RB_INSERT(arena_run_tree_s, &bin->runs, run);
2560 }
2561 }
2562 #ifdef MALLOC_STATS
2563 arena->stats.allocated_small -= size;
2564 arena->stats.ndalloc_small++;
2565 #endif
2566 } else {
2567 /* Large allocation. */
2568
2569 size = mapelm->npages << pagesize_2pow;
2570 assert((((uintptr_t)ptr) & pagesize_mask) == 0);
2571
2572 if (opt_junk)
2573 memset(ptr, 0x5a, size);
2574
2575 malloc_mutex_lock(&arena->mtx);
2576 arena_run_dalloc(arena, (arena_run_t *)ptr, size);
2577 #ifdef MALLOC_STATS
2578 arena->stats.allocated_large -= size;
2579 arena->stats.ndalloc_large++;
2580 #endif
2581 }
2582
2583 malloc_mutex_unlock(&arena->mtx);
2584 }
2585
2586 static bool
2587 arena_new(arena_t *arena)
2588 {
2589 unsigned i;
2590 arena_bin_t *bin;
2591 size_t prev_run_size;
2592
2593 malloc_mutex_init(&arena->mtx);
2594
2595 #ifdef MALLOC_STATS
2596 memset(&arena->stats, 0, sizeof(arena_stats_t));
2597 #endif
2598
2599 /* Initialize chunks. */
2600 RB_INIT(&arena->chunks);
2601 arena->spare = NULL;
2602
2603 /* Initialize bins. */
2604 prev_run_size = pagesize;
2605
2606 /* (2^n)-spaced tiny bins. */
2607 for (i = 0; i < ntbins; i++) {
2608 bin = &arena->bins[i];
2609 bin->runcur = NULL;
2610 RB_INIT(&bin->runs);
2611
2612 bin->reg_size = (1 << (TINY_MIN_2POW + i));
2613 prev_run_size = arena_bin_run_size_calc(bin, prev_run_size);
2614
2615 #ifdef MALLOC_STATS
2616 memset(&bin->stats, 0, sizeof(malloc_bin_stats_t));
2617 #endif
2618 }
2619
2620 /* Quantum-spaced bins. */
2621 for (; i < ntbins + nqbins; i++) {
2622 bin = &arena->bins[i];
2623 bin->runcur = NULL;
2624 RB_INIT(&bin->runs);
2625
2626 bin->reg_size = quantum * (i - ntbins + 1);
2627 /*
2628 pow2_size = pow2_ceil(quantum * (i - ntbins + 1));
2629 */
2630 prev_run_size = arena_bin_run_size_calc(bin, prev_run_size);
2631
2632 #ifdef MALLOC_STATS
2633 memset(&bin->stats, 0, sizeof(malloc_bin_stats_t));
2634 #endif
2635 }
2636
2637 /* (2^n)-spaced sub-page bins. */
2638 for (; i < ntbins + nqbins + nsbins; i++) {
2639 bin = &arena->bins[i];
2640 bin->runcur = NULL;
2641 RB_INIT(&bin->runs);
2642
2643 bin->reg_size = (small_max << (i - (ntbins + nqbins) + 1));
2644
2645 prev_run_size = arena_bin_run_size_calc(bin, prev_run_size);
2646
2647 #ifdef MALLOC_STATS
2648 memset(&bin->stats, 0, sizeof(malloc_bin_stats_t));
2649 #endif
2650 }
2651
2652 #ifdef MALLOC_DEBUG
2653 arena->magic = ARENA_MAGIC;
2654 #endif
2655
2656 return (false);
2657 }
2658
2659 /* Create a new arena and insert it into the arenas array at index ind. */
2660 static arena_t *
2661 arenas_extend(unsigned ind)
2662 {
2663 arena_t *ret;
2664
2665 /* Allocate enough space for trailing bins. */
2666 ret = (arena_t *)base_alloc(sizeof(arena_t)
2667 + (sizeof(arena_bin_t) * (ntbins + nqbins + nsbins - 1)));
2668 if (ret != NULL && arena_new(ret) == false) {
2669 arenas[ind] = ret;
2670 return (ret);
2671 }
2672 /* Only reached if there is an OOM error. */
2673
2674 /*
2675 * OOM here is quite inconvenient to propagate, since dealing with it
2676 * would require a check for failure in the fast path. Instead, punt
2677 * by using arenas[0]. In practice, this is an extremely unlikely
2678 * failure.
2679 */
2680 _malloc_message(getprogname(),
2681 ": (malloc) Error initializing arena\n", "", "");
2682 if (opt_abort)
2683 abort();
2684
2685 return (arenas[0]);
2686 }
2687
2688 /*
2689 * End arena.
2690 */
2691 /******************************************************************************/
2692 /*
2693 * Begin general internal functions.
2694 */
2695
2696 static void *
2697 huge_malloc(size_t size)
2698 {
2699 void *ret;
2700 size_t csize;
2701 chunk_node_t *node;
2702
2703 /* Allocate one or more contiguous chunks for this request. */
2704
2705 csize = CHUNK_CEILING(size);
2706 if (csize == 0) {
2707 /* size is large enough to cause size_t wrap-around. */
2708 return (NULL);
2709 }
2710
2711 /* Allocate a chunk node with which to track the chunk. */
2712 node = base_chunk_node_alloc();
2713 if (node == NULL)
2714 return (NULL);
2715
2716 ret = chunk_alloc(csize);
2717 if (ret == NULL) {
2718 base_chunk_node_dealloc(node);
2719 return (NULL);
2720 }
2721
2722 /* Insert node into huge. */
2723 node->chunk = ret;
2724 node->size = csize;
2725
2726 malloc_mutex_lock(&chunks_mtx);
2727 RB_INSERT(chunk_tree_s, &huge, node);
2728 #ifdef MALLOC_STATS
2729 huge_nmalloc++;
2730 huge_allocated += csize;
2731 #endif
2732 malloc_mutex_unlock(&chunks_mtx);
2733
2734 if (opt_junk)
2735 memset(ret, 0xa5, csize);
2736 else if (opt_zero)
2737 memset(ret, 0, csize);
2738
2739 return (ret);
2740 }
2741
2742 /* Only handles large allocations that require more than chunk alignment. */
2743 static void *
2744 huge_palloc(size_t alignment, size_t size)
2745 {
2746 void *ret;
2747 size_t alloc_size, chunk_size, offset;
2748 chunk_node_t *node;
2749
2750 /*
2751 * This allocation requires alignment that is even larger than chunk
2752 * alignment. This means that huge_malloc() isn't good enough.
2753 *
2754 * Allocate almost twice as many chunks as are demanded by the size or
2755 * alignment, in order to assure the alignment can be achieved, then
2756 * unmap leading and trailing chunks.
2757 */
2758 assert(alignment >= chunksize);
2759
2760 chunk_size = CHUNK_CEILING(size);
2761
2762 if (size >= alignment)
2763 alloc_size = chunk_size + alignment - chunksize;
2764 else
2765 alloc_size = (alignment << 1) - chunksize;
2766
2767 /* Allocate a chunk node with which to track the chunk. */
2768 node = base_chunk_node_alloc();
2769 if (node == NULL)
2770 return (NULL);
2771
2772 ret = chunk_alloc(alloc_size);
2773 if (ret == NULL) {
2774 base_chunk_node_dealloc(node);
2775 return (NULL);
2776 }
2777
2778 offset = (uintptr_t)ret & (alignment - 1);
2779 assert((offset & chunksize_mask) == 0);
2780 assert(offset < alloc_size);
2781 if (offset == 0) {
2782 /* Trim trailing space. */
2783 chunk_dealloc((void *)((uintptr_t)ret + chunk_size), alloc_size
2784 - chunk_size);
2785 } else {
2786 size_t trailsize;
2787
2788 /* Trim leading space. */
2789 chunk_dealloc(ret, alignment - offset);
2790
2791 ret = (void *)((uintptr_t)ret + (alignment - offset));
2792
2793 trailsize = alloc_size - (alignment - offset) - chunk_size;
2794 if (trailsize != 0) {
2795 /* Trim trailing space. */
2796 assert(trailsize < alloc_size);
2797 chunk_dealloc((void *)((uintptr_t)ret + chunk_size),
2798 trailsize);
2799 }
2800 }
2801
2802 /* Insert node into huge. */
2803 node->chunk = ret;
2804 node->size = chunk_size;
2805
2806 malloc_mutex_lock(&chunks_mtx);
2807 RB_INSERT(chunk_tree_s, &huge, node);
2808 #ifdef MALLOC_STATS
2809 huge_nmalloc++;
2810 huge_allocated += chunk_size;
2811 #endif
2812 malloc_mutex_unlock(&chunks_mtx);
2813
2814 if (opt_junk)
2815 memset(ret, 0xa5, chunk_size);
2816 else if (opt_zero)
2817 memset(ret, 0, chunk_size);
2818
2819 return (ret);
2820 }
2821
2822 static void *
2823 huge_ralloc(void *ptr, size_t size, size_t oldsize)
2824 {
2825 void *ret;
2826
2827 /* Avoid moving the allocation if the size class would not change. */
2828 if (oldsize > arena_maxclass &&
2829 CHUNK_CEILING(size) == CHUNK_CEILING(oldsize)) {
2830 if (opt_junk && size < oldsize) {
2831 memset((void *)((uintptr_t)ptr + size), 0x5a, oldsize
2832 - size);
2833 } else if (opt_zero && size > oldsize) {
2834 memset((void *)((uintptr_t)ptr + oldsize), 0, size
2835 - oldsize);
2836 }
2837 return (ptr);
2838 }
2839
2840 if (CHUNK_ADDR2BASE(ptr) == ptr
2841 #ifdef USE_BRK
2842 && ((uintptr_t)ptr < (uintptr_t)brk_base
2843 || (uintptr_t)ptr >= (uintptr_t)brk_max)
2844 #endif
2845 ) {
2846 chunk_node_t *node, key;
2847 void *newptr;
2848 size_t oldcsize;
2849 size_t newcsize;
2850
2851 newcsize = CHUNK_CEILING(size);
2852 oldcsize = CHUNK_CEILING(oldsize);
2853 assert(oldcsize != newcsize);
2854 if (newcsize == 0) {
2855 /* size_t wrap-around */
2856 return (NULL);
2857 }
2858 newptr = mremap(ptr, oldcsize, NULL, newcsize,
2859 MAP_ALIGNED(chunksize_2pow));
2860 if (newptr != MAP_FAILED) {
2861 assert(CHUNK_ADDR2BASE(newptr) == newptr);
2862
2863 /* update tree */
2864 malloc_mutex_lock(&chunks_mtx);
2865 key.chunk = __DECONST(void *, ptr);
2866 /* LINTED */
2867 node = RB_FIND(chunk_tree_s, &huge, &key);
2868 assert(node != NULL);
2869 assert(node->chunk == ptr);
2870 assert(node->size == oldcsize);
2871 node->size = newcsize;
2872 if (ptr != newptr) {
2873 RB_REMOVE(chunk_tree_s, &huge, node);
2874 node->chunk = newptr;
2875 RB_INSERT(chunk_tree_s, &huge, node);
2876 }
2877 #ifdef MALLOC_STATS
2878 huge_nralloc++;
2879 huge_allocated += newcsize - oldcsize;
2880 if (newcsize > oldcsize) {
2881 stats_chunks.curchunks +=
2882 (newcsize - oldcsize) / chunksize;
2883 if (stats_chunks.curchunks >
2884 stats_chunks.highchunks)
2885 stats_chunks.highchunks =
2886 stats_chunks.curchunks;
2887 } else {
2888 stats_chunks.curchunks -=
2889 (oldcsize - newcsize) / chunksize;
2890 }
2891 #endif
2892 malloc_mutex_unlock(&chunks_mtx);
2893
2894 if (opt_junk && size < oldsize) {
2895 memset((void *)((uintptr_t)newptr + size), 0x5a,
2896 newcsize - size);
2897 } else if (opt_zero && size > oldsize) {
2898 memset((void *)((uintptr_t)newptr + oldsize), 0,
2899 size - oldsize);
2900 }
2901 return (newptr);
2902 }
2903 }
2904
2905 /*
2906 * If we get here, then size and oldsize are different enough that we
2907 * need to use a different size class. In that case, fall back to
2908 * allocating new space and copying.
2909 */
2910 ret = huge_malloc(size);
2911 if (ret == NULL)
2912 return (NULL);
2913
2914 if (CHUNK_ADDR2BASE(ptr) == ptr) {
2915 /* The old allocation is a chunk. */
2916 if (size < oldsize)
2917 memcpy(ret, ptr, size);
2918 else
2919 memcpy(ret, ptr, oldsize);
2920 } else {
2921 /* The old allocation is a region. */
2922 assert(oldsize < size);
2923 memcpy(ret, ptr, oldsize);
2924 }
2925 idalloc(ptr);
2926 return (ret);
2927 }
2928
2929 static void
2930 huge_dalloc(void *ptr)
2931 {
2932 chunk_node_t key;
2933 chunk_node_t *node;
2934
2935 malloc_mutex_lock(&chunks_mtx);
2936
2937 /* Extract from tree of huge allocations. */
2938 key.chunk = ptr;
2939 /* LINTED */
2940 node = RB_FIND(chunk_tree_s, &huge, &key);
2941 assert(node != NULL);
2942 assert(node->chunk == ptr);
2943 /* LINTED */
2944 RB_REMOVE(chunk_tree_s, &huge, node);
2945
2946 #ifdef MALLOC_STATS
2947 huge_ndalloc++;
2948 huge_allocated -= node->size;
2949 #endif
2950
2951 malloc_mutex_unlock(&chunks_mtx);
2952
2953 /* Unmap chunk. */
2954 #ifdef USE_BRK
2955 if (opt_junk)
2956 memset(node->chunk, 0x5a, node->size);
2957 #endif
2958 chunk_dealloc(node->chunk, node->size);
2959
2960 base_chunk_node_dealloc(node);
2961 }
2962
2963 static void *
2964 imalloc(size_t size)
2965 {
2966 void *ret;
2967
2968 assert(size != 0);
2969
2970 if (size <= arena_maxclass)
2971 ret = arena_malloc(choose_arena(), size);
2972 else
2973 ret = huge_malloc(size);
2974
2975 return (ret);
2976 }
2977
2978 static void *
2979 ipalloc(size_t alignment, size_t size)
2980 {
2981 void *ret;
2982 size_t ceil_size;
2983
2984 /*
2985 * Round size up to the nearest multiple of alignment.
2986 *
2987 * This done, we can take advantage of the fact that for each small
2988 * size class, every object is aligned at the smallest power of two
2989 * that is non-zero in the base two representation of the size. For
2990 * example:
2991 *
2992 * Size | Base 2 | Minimum alignment
2993 * -----+----------+------------------
2994 * 96 | 1100000 | 32
2995 * 144 | 10100000 | 32
2996 * 192 | 11000000 | 64
2997 *
2998 * Depending on runtime settings, it is possible that arena_malloc()
2999 * will further round up to a power of two, but that never causes
3000 * correctness issues.
3001 */
3002 ceil_size = (size + (alignment - 1)) & (-alignment);
3003 /*
3004 * (ceil_size < size) protects against the combination of maximal
3005 * alignment and size greater than maximal alignment.
3006 */
3007 if (ceil_size < size) {
3008 /* size_t overflow. */
3009 return (NULL);
3010 }
3011
3012 if (ceil_size <= pagesize || (alignment <= pagesize
3013 && ceil_size <= arena_maxclass))
3014 ret = arena_malloc(choose_arena(), ceil_size);
3015 else {
3016 size_t run_size;
3017
3018 /*
3019 * We can't achieve sub-page alignment, so round up alignment
3020 * permanently; it makes later calculations simpler.
3021 */
3022 alignment = PAGE_CEILING(alignment);
3023 ceil_size = PAGE_CEILING(size);
3024 /*
3025 * (ceil_size < size) protects against very large sizes within
3026 * pagesize of SIZE_T_MAX.
3027 *
3028 * (ceil_size + alignment < ceil_size) protects against the
3029 * combination of maximal alignment and ceil_size large enough
3030 * to cause overflow. This is similar to the first overflow
3031 * check above, but it needs to be repeated due to the new
3032 * ceil_size value, which may now be *equal* to maximal
3033 * alignment, whereas before we only detected overflow if the
3034 * original size was *greater* than maximal alignment.
3035 */
3036 if (ceil_size < size || ceil_size + alignment < ceil_size) {
3037 /* size_t overflow. */
3038 return (NULL);
3039 }
3040
3041 /*
3042 * Calculate the size of the over-size run that arena_palloc()
3043 * would need to allocate in order to guarantee the alignment.
3044 */
3045 if (ceil_size >= alignment)
3046 run_size = ceil_size + alignment - pagesize;
3047 else {
3048 /*
3049 * It is possible that (alignment << 1) will cause
3050 * overflow, but it doesn't matter because we also
3051 * subtract pagesize, which in the case of overflow
3052 * leaves us with a very large run_size. That causes
3053 * the first conditional below to fail, which means
3054 * that the bogus run_size value never gets used for
3055 * anything important.
3056 */
3057 run_size = (alignment << 1) - pagesize;
3058 }
3059
3060 if (run_size <= arena_maxclass) {
3061 ret = arena_palloc(choose_arena(), alignment, ceil_size,
3062 run_size);
3063 } else if (alignment <= chunksize)
3064 ret = huge_malloc(ceil_size);
3065 else
3066 ret = huge_palloc(alignment, ceil_size);
3067 }
3068
3069 assert(((uintptr_t)ret & (alignment - 1)) == 0);
3070 return (ret);
3071 }
3072
3073 static void *
3074 icalloc(size_t size)
3075 {
3076 void *ret;
3077
3078 if (size <= arena_maxclass) {
3079 ret = arena_malloc(choose_arena(), size);
3080 if (ret == NULL)
3081 return (NULL);
3082 memset(ret, 0, size);
3083 } else {
3084 /*
3085 * The virtual memory system provides zero-filled pages, so
3086 * there is no need to do so manually, unless opt_junk is
3087 * enabled, in which case huge_malloc() fills huge allocations
3088 * with junk.
3089 */
3090 ret = huge_malloc(size);
3091 if (ret == NULL)
3092 return (NULL);
3093
3094 if (opt_junk)
3095 memset(ret, 0, size);
3096 #ifdef USE_BRK
3097 else if ((uintptr_t)ret >= (uintptr_t)brk_base
3098 && (uintptr_t)ret < (uintptr_t)brk_max) {
3099 /*
3100 * This may be a re-used brk chunk. Therefore, zero
3101 * the memory.
3102 */
3103 memset(ret, 0, size);
3104 }
3105 #endif
3106 }
3107
3108 return (ret);
3109 }
3110
3111 static size_t
3112 isalloc(const void *ptr)
3113 {
3114 size_t ret;
3115 arena_chunk_t *chunk;
3116
3117 assert(ptr != NULL);
3118
3119 chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
3120 if (chunk != ptr) {
3121 /* Region. */
3122 assert(chunk->arena->magic == ARENA_MAGIC);
3123
3124 ret = arena_salloc(ptr);
3125 } else {
3126 chunk_node_t *node, key;
3127
3128 /* Chunk (huge allocation). */
3129
3130 malloc_mutex_lock(&chunks_mtx);
3131
3132 /* Extract from tree of huge allocations. */
3133 key.chunk = __DECONST(void *, ptr);
3134 /* LINTED */
3135 node = RB_FIND(chunk_tree_s, &huge, &key);
3136 assert(node != NULL);
3137
3138 ret = node->size;
3139
3140 malloc_mutex_unlock(&chunks_mtx);
3141 }
3142
3143 return (ret);
3144 }
3145
3146 static void *
3147 iralloc(void *ptr, size_t size)
3148 {
3149 void *ret;
3150 size_t oldsize;
3151
3152 assert(ptr != NULL);
3153 assert(size != 0);
3154
3155 oldsize = isalloc(ptr);
3156
3157 if (size <= arena_maxclass)
3158 ret = arena_ralloc(ptr, size, oldsize);
3159 else
3160 ret = huge_ralloc(ptr, size, oldsize);
3161
3162 return (ret);
3163 }
3164
3165 static void
3166 idalloc(void *ptr)
3167 {
3168 arena_chunk_t *chunk;
3169
3170 assert(ptr != NULL);
3171
3172 chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
3173 if (chunk != ptr) {
3174 /* Region. */
3175 arena_dalloc(chunk->arena, chunk, ptr);
3176 } else
3177 huge_dalloc(ptr);
3178 }
3179
3180 static void
3181 malloc_print_stats(void)
3182 {
3183
3184 if (opt_print_stats) {
3185 char s[UMAX2S_BUFSIZE];
3186 _malloc_message("___ Begin malloc statistics ___\n", "", "",
3187 "");
3188 _malloc_message("Assertions ",
3189 #ifdef NDEBUG
3190 "disabled",
3191 #else
3192 "enabled",
3193 #endif
3194 "\n", "");
3195 _malloc_message("Boolean MALLOC_OPTIONS: ",
3196 opt_abort ? "A" : "a",
3197 opt_junk ? "J" : "j",
3198 opt_hint ? "H" : "h");
3199 _malloc_message(opt_utrace ? "PU" : "Pu",
3200 opt_sysv ? "V" : "v",
3201 opt_xmalloc ? "X" : "x",
3202 opt_zero ? "Z\n" : "z\n");
3203
3204 _malloc_message("CPUs: ", umax2s(ncpus, s), "\n", "");
3205 _malloc_message("Max arenas: ", umax2s(narenas, s), "\n", "");
3206 _malloc_message("Pointer size: ", umax2s(sizeof(void *), s),
3207 "\n", "");
3208 _malloc_message("Quantum size: ", umax2s(quantum, s), "\n", "");
3209 _malloc_message("Max small size: ", umax2s(small_max, s), "\n",
3210 "");
3211
3212 _malloc_message("Chunk size: ", umax2s(chunksize, s), "", "");
3213 _malloc_message(" (2^", umax2s(opt_chunk_2pow, s), ")\n", "");
3214
3215 #ifdef MALLOC_STATS
3216 {
3217 size_t allocated, mapped;
3218 unsigned i;
3219 arena_t *arena;
3220
3221 /* Calculate and print allocated/mapped stats. */
3222
3223 /* arenas. */
3224 for (i = 0, allocated = 0; i < narenas; i++) {
3225 if (arenas[i] != NULL) {
3226 malloc_mutex_lock(&arenas[i]->mtx);
3227 allocated +=
3228 arenas[i]->stats.allocated_small;
3229 allocated +=
3230 arenas[i]->stats.allocated_large;
3231 malloc_mutex_unlock(&arenas[i]->mtx);
3232 }
3233 }
3234
3235 /* huge/base. */
3236 malloc_mutex_lock(&chunks_mtx);
3237 allocated += huge_allocated;
3238 mapped = stats_chunks.curchunks * chunksize;
3239 malloc_mutex_unlock(&chunks_mtx);
3240
3241 malloc_mutex_lock(&base_mtx);
3242 mapped += base_mapped;
3243 malloc_mutex_unlock(&base_mtx);
3244
3245 malloc_printf("Allocated: %zu, mapped: %zu\n",
3246 allocated, mapped);
3247
3248 /* Print chunk stats. */
3249 {
3250 chunk_stats_t chunks_stats;
3251
3252 malloc_mutex_lock(&chunks_mtx);
3253 chunks_stats = stats_chunks;
3254 malloc_mutex_unlock(&chunks_mtx);
3255
3256 malloc_printf("chunks: nchunks "
3257 "highchunks curchunks\n");
3258 malloc_printf(" %13llu%13lu%13lu\n",
3259 chunks_stats.nchunks,
3260 chunks_stats.highchunks,
3261 chunks_stats.curchunks);
3262 }
3263
3264 /* Print chunk stats. */
3265 malloc_printf(
3266 "huge: nmalloc ndalloc "
3267 "nralloc allocated\n");
3268 malloc_printf(" %12llu %12llu %12llu %12zu\n",
3269 huge_nmalloc, huge_ndalloc, huge_nralloc,
3270 huge_allocated);
3271
3272 /* Print stats for each arena. */
3273 for (i = 0; i < narenas; i++) {
3274 arena = arenas[i];
3275 if (arena != NULL) {
3276 malloc_printf(
3277 "\narenas[%u] @ %p\n", i, arena);
3278 malloc_mutex_lock(&arena->mtx);
3279 stats_print(arena);
3280 malloc_mutex_unlock(&arena->mtx);
3281 }
3282 }
3283 }
3284 #endif /* #ifdef MALLOC_STATS */
3285 _malloc_message("--- End malloc statistics ---\n", "", "", "");
3286 }
3287 }
3288
3289 /*
3290 * FreeBSD's pthreads implementation calls malloc(3), so the malloc
3291 * implementation has to take pains to avoid infinite recursion during
3292 * initialization.
3293 */
3294 static inline bool
3295 malloc_init(void)
3296 {
3297
3298 if (malloc_initialized == false)
3299 return (malloc_init_hard());
3300
3301 return (false);
3302 }
3303
3304 static bool
3305 malloc_init_hard(void)
3306 {
3307 unsigned i, j;
3308 ssize_t linklen;
3309 char buf[PATH_MAX + 1];
3310 const char *opts = "";
3311
3312 malloc_mutex_lock(&init_lock);
3313 if (malloc_initialized) {
3314 /*
3315 * Another thread initialized the allocator before this one
3316 * acquired init_lock.
3317 */
3318 malloc_mutex_unlock(&init_lock);
3319 return (false);
3320 }
3321
3322 /* Get number of CPUs. */
3323 {
3324 int mib[2];
3325 size_t len;
3326
3327 mib[0] = CTL_HW;
3328 mib[1] = HW_NCPU;
3329 len = sizeof(ncpus);
3330 if (sysctl(mib, 2, &ncpus, &len, (void *) 0, 0) == -1) {
3331 /* Error. */
3332 ncpus = 1;
3333 }
3334 }
3335
3336 /* Get page size. */
3337 {
3338 long result;
3339
3340 result = sysconf(_SC_PAGESIZE);
3341 assert(result != -1);
3342 pagesize = (unsigned) result;
3343
3344 /*
3345 * We assume that pagesize is a power of 2 when calculating
3346 * pagesize_mask and pagesize_2pow.
3347 */
3348 assert(((result - 1) & result) == 0);
3349 pagesize_mask = result - 1;
3350 pagesize_2pow = ffs((int)result) - 1;
3351 }
3352
3353 for (i = 0; i < 3; i++) {
3354 /* Get runtime configuration. */
3355 switch (i) {
3356 case 0:
3357 if ((linklen = readlink("/etc/malloc.conf", buf,
3358 sizeof(buf) - 1)) != -1) {
3359 /*
3360 * Use the contents of the "/etc/malloc.conf"
3361 * symbolic link's name.
3362 */
3363 buf[linklen] = '\0';
3364 opts = buf;
3365 } else {
3366 /* No configuration specified. */
3367 buf[0] = '\0';
3368 opts = buf;
3369 }
3370 break;
3371 case 1:
3372 if ((opts = getenv("MALLOC_OPTIONS")) != NULL &&
3373 issetugid() == 0) {
3374 /*
3375 * Do nothing; opts is already initialized to
3376 * the value of the MALLOC_OPTIONS environment
3377 * variable.
3378 */
3379 } else {
3380 /* No configuration specified. */
3381 buf[0] = '\0';
3382 opts = buf;
3383 }
3384 break;
3385 case 2:
3386 if (_malloc_options != NULL) {
3387 /*
3388 * Use options that were compiled into the program.
3389 */
3390 opts = _malloc_options;
3391 } else {
3392 /* No configuration specified. */
3393 buf[0] = '\0';
3394 opts = buf;
3395 }
3396 break;
3397 default:
3398 /* NOTREACHED */
3399 /* LINTED */
3400 assert(false);
3401 }
3402
3403 for (j = 0; opts[j] != '\0'; j++) {
3404 switch (opts[j]) {
3405 case 'a':
3406 opt_abort = false;
3407 break;
3408 case 'A':
3409 opt_abort = true;
3410 break;
3411 case 'h':
3412 opt_hint = false;
3413 break;
3414 case 'H':
3415 opt_hint = true;
3416 break;
3417 case 'j':
3418 opt_junk = false;
3419 break;
3420 case 'J':
3421 opt_junk = true;
3422 break;
3423 case 'k':
3424 /*
3425 * Chunks always require at least one header
3426 * page, so chunks can never be smaller than
3427 * two pages.
3428 */
3429 if (opt_chunk_2pow > pagesize_2pow + 1)
3430 opt_chunk_2pow--;
3431 break;
3432 case 'K':
3433 /*
3434 * There must be fewer pages in a chunk than
3435 * can be recorded by the pos field of
3436 * arena_chunk_map_t, in order to make POS_FREE
3437 * special.
3438 */
3439 if (opt_chunk_2pow - pagesize_2pow
3440 < (sizeof(uint32_t) << 3) - 1)
3441 opt_chunk_2pow++;
3442 break;
3443 case 'n':
3444 opt_narenas_lshift--;
3445 break;
3446 case 'N':
3447 opt_narenas_lshift++;
3448 break;
3449 case 'p':
3450 opt_print_stats = false;
3451 break;
3452 case 'P':
3453 opt_print_stats = true;
3454 break;
3455 case 'q':
3456 if (opt_quantum_2pow > QUANTUM_2POW_MIN)
3457 opt_quantum_2pow--;
3458 break;
3459 case 'Q':
3460 if (opt_quantum_2pow < pagesize_2pow - 1)
3461 opt_quantum_2pow++;
3462 break;
3463 case 's':
3464 if (opt_small_max_2pow > QUANTUM_2POW_MIN)
3465 opt_small_max_2pow--;
3466 break;
3467 case 'S':
3468 if (opt_small_max_2pow < pagesize_2pow - 1)
3469 opt_small_max_2pow++;
3470 break;
3471 case 'u':
3472 opt_utrace = false;
3473 break;
3474 case 'U':
3475 opt_utrace = true;
3476 break;
3477 case 'v':
3478 opt_sysv = false;
3479 break;
3480 case 'V':
3481 opt_sysv = true;
3482 break;
3483 case 'x':
3484 opt_xmalloc = false;
3485 break;
3486 case 'X':
3487 opt_xmalloc = true;
3488 break;
3489 case 'z':
3490 opt_zero = false;
3491 break;
3492 case 'Z':
3493 opt_zero = true;
3494 break;
3495 default: {
3496 char cbuf[2];
3497
3498 cbuf[0] = opts[j];
3499 cbuf[1] = '\0';
3500 _malloc_message(getprogname(),
3501 ": (malloc) Unsupported character in "
3502 "malloc options: '", cbuf, "'\n");
3503 }
3504 }
3505 }
3506 }
3507
3508 /* Take care to call atexit() only once. */
3509 if (opt_print_stats) {
3510 /* Print statistics at exit. */
3511 atexit(malloc_print_stats);
3512 }
3513
3514 /* Set variables according to the value of opt_small_max_2pow. */
3515 if (opt_small_max_2pow < opt_quantum_2pow)
3516 opt_small_max_2pow = opt_quantum_2pow;
3517 small_max = (1 << opt_small_max_2pow);
3518
3519 /* Set bin-related variables. */
3520 bin_maxclass = (pagesize >> 1);
3521 assert(opt_quantum_2pow >= TINY_MIN_2POW);
3522 ntbins = (unsigned)(opt_quantum_2pow - TINY_MIN_2POW);
3523 assert(ntbins <= opt_quantum_2pow);
3524 nqbins = (unsigned)(small_max >> opt_quantum_2pow);
3525 nsbins = (unsigned)(pagesize_2pow - opt_small_max_2pow - 1);
3526
3527 /* Set variables according to the value of opt_quantum_2pow. */
3528 quantum = (1 << opt_quantum_2pow);
3529 quantum_mask = quantum - 1;
3530 if (ntbins > 0)
3531 small_min = (quantum >> 1) + 1;
3532 else
3533 small_min = 1;
3534 assert(small_min <= quantum);
3535
3536 /* Set variables according to the value of opt_chunk_2pow. */
3537 chunksize = (1LU << opt_chunk_2pow);
3538 chunksize_mask = chunksize - 1;
3539 chunksize_2pow = (unsigned)opt_chunk_2pow;
3540 chunk_npages = (unsigned)(chunksize >> pagesize_2pow);
3541 {
3542 unsigned header_size;
3543
3544 header_size = (unsigned)(sizeof(arena_chunk_t) +
3545 (sizeof(arena_chunk_map_t) * (chunk_npages - 1)));
3546 arena_chunk_header_npages = (header_size >> pagesize_2pow);
3547 if ((header_size & pagesize_mask) != 0)
3548 arena_chunk_header_npages++;
3549 }
3550 arena_maxclass = chunksize - (arena_chunk_header_npages <<
3551 pagesize_2pow);
3552
3553 UTRACE(0, 0, 0);
3554
3555 #ifdef MALLOC_STATS
3556 memset(&stats_chunks, 0, sizeof(chunk_stats_t));
3557 #endif
3558
3559 /* Various sanity checks that regard configuration. */
3560 assert(quantum >= sizeof(void *));
3561 assert(quantum <= pagesize);
3562 assert(chunksize >= pagesize);
3563 assert(quantum * 4 <= chunksize);
3564
3565 /* Initialize chunks data. */
3566 malloc_mutex_init(&chunks_mtx);
3567 RB_INIT(&huge);
3568 #ifdef USE_BRK
3569 malloc_mutex_init(&brk_mtx);
3570 brk_base = sbrk(0);
3571 brk_prev = brk_base;
3572 brk_max = brk_base;
3573 #endif
3574 #ifdef MALLOC_STATS
3575 huge_nmalloc = 0;
3576 huge_ndalloc = 0;
3577 huge_nralloc = 0;
3578 huge_allocated = 0;
3579 #endif
3580 RB_INIT(&old_chunks);
3581
3582 /* Initialize base allocation data structures. */
3583 #ifdef MALLOC_STATS
3584 base_mapped = 0;
3585 #endif
3586 #ifdef USE_BRK
3587 /*
3588 * Allocate a base chunk here, since it doesn't actually have to be
3589 * chunk-aligned. Doing this before allocating any other chunks allows
3590 * the use of space that would otherwise be wasted.
3591 */
3592 base_pages_alloc(0);
3593 #endif
3594 base_chunk_nodes = NULL;
3595 malloc_mutex_init(&base_mtx);
3596
3597 if (ncpus > 1) {
3598 /*
3599 * For SMP systems, create four times as many arenas as there
3600 * are CPUs by default.
3601 */
3602 opt_narenas_lshift += 2;
3603 }
3604
3605 #ifdef NO_TLS
3606 /* Initialize arena key. */
3607 (void)thr_keycreate(&arenas_map_key, NULL);
3608 #endif
3609
3610 /* Determine how many arenas to use. */
3611 narenas = ncpus;
3612 if (opt_narenas_lshift > 0) {
3613 if ((narenas << opt_narenas_lshift) > narenas)
3614 narenas <<= opt_narenas_lshift;
3615 /*
3616 * Make sure not to exceed the limits of what base_malloc()
3617 * can handle.
3618 */
3619 if (narenas * sizeof(arena_t *) > chunksize)
3620 narenas = (unsigned)(chunksize / sizeof(arena_t *));
3621 } else if (opt_narenas_lshift < 0) {
3622 if ((narenas << opt_narenas_lshift) < narenas)
3623 narenas <<= opt_narenas_lshift;
3624 /* Make sure there is at least one arena. */
3625 if (narenas == 0)
3626 narenas = 1;
3627 }
3628
3629 next_arena = 0;
3630
3631 /* Allocate and initialize arenas. */
3632 arenas = (arena_t **)base_alloc(sizeof(arena_t *) * narenas);
3633 if (arenas == NULL) {
3634 malloc_mutex_unlock(&init_lock);
3635 return (true);
3636 }
3637 /*
3638 * Zero the array. In practice, this should always be pre-zeroed,
3639 * since it was just mmap()ed, but let's be sure.
3640 */
3641 memset(arenas, 0, sizeof(arena_t *) * narenas);
3642
3643 /*
3644 * Initialize one arena here. The rest are lazily created in
3645 * arena_choose_hard().
3646 */
3647 arenas_extend(0);
3648 if (arenas[0] == NULL) {
3649 malloc_mutex_unlock(&init_lock);
3650 return (true);
3651 }
3652
3653 malloc_mutex_init(&arenas_mtx);
3654
3655 malloc_initialized = true;
3656 malloc_mutex_unlock(&init_lock);
3657 return (false);
3658 }
3659
3660 /*
3661 * End general internal functions.
3662 */
3663 /******************************************************************************/
3664 /*
3665 * Begin malloc(3)-compatible functions.
3666 */
3667
3668 void *
3669 malloc(size_t size)
3670 {
3671 void *ret;
3672
3673 if (malloc_init()) {
3674 ret = NULL;
3675 goto RETURN;
3676 }
3677
3678 if (size == 0) {
3679 if (opt_sysv == false)
3680 size = 1;
3681 else {
3682 ret = NULL;
3683 goto RETURN;
3684 }
3685 }
3686
3687 ret = imalloc(size);
3688
3689 RETURN:
3690 if (ret == NULL) {
3691 if (opt_xmalloc) {
3692 _malloc_message(getprogname(),
3693 ": (malloc) Error in malloc(): out of memory\n", "",
3694 "");
3695 abort();
3696 }
3697 errno = ENOMEM;
3698 }
3699
3700 UTRACE(0, size, ret);
3701 return (ret);
3702 }
3703
3704 int
3705 posix_memalign(void **memptr, size_t alignment, size_t size)
3706 {
3707 int ret;
3708 void *result;
3709
3710 if (malloc_init())
3711 result = NULL;
3712 else {
3713 /* Make sure that alignment is a large enough power of 2. */
3714 if (((alignment - 1) & alignment) != 0
3715 || alignment < sizeof(void *)) {
3716 if (opt_xmalloc) {
3717 _malloc_message(getprogname(),
3718 ": (malloc) Error in posix_memalign(): "
3719 "invalid alignment\n", "", "");
3720 abort();
3721 }
3722 result = NULL;
3723 ret = EINVAL;
3724 goto RETURN;
3725 }
3726
3727 result = ipalloc(alignment, size);
3728 }
3729
3730 if (result == NULL) {
3731 if (opt_xmalloc) {
3732 _malloc_message(getprogname(),
3733 ": (malloc) Error in posix_memalign(): out of memory\n",
3734 "", "");
3735 abort();
3736 }
3737 ret = ENOMEM;
3738 goto RETURN;
3739 }
3740
3741 *memptr = result;
3742 ret = 0;
3743
3744 RETURN:
3745 UTRACE(0, size, result);
3746 return (ret);
3747 }
3748
3749 void *
3750 calloc(size_t num, size_t size)
3751 {
3752 void *ret;
3753 size_t num_size;
3754
3755 if (malloc_init()) {
3756 num_size = 0;
3757 ret = NULL;
3758 goto RETURN;
3759 }
3760
3761 num_size = num * size;
3762 if (num_size == 0) {
3763 if ((opt_sysv == false) && ((num == 0) || (size == 0)))
3764 num_size = 1;
3765 else {
3766 ret = NULL;
3767 goto RETURN;
3768 }
3769 /*
3770 * Try to avoid division here. We know that it isn't possible to
3771 * overflow during multiplication if neither operand uses any of the
3772 * most significant half of the bits in a size_t.
3773 */
3774 } else if ((unsigned long long)((num | size) &
3775 ((unsigned long long)SIZE_T_MAX << (sizeof(size_t) << 2))) &&
3776 (num_size / size != num)) {
3777 /* size_t overflow. */
3778 ret = NULL;
3779 goto RETURN;
3780 }
3781
3782 ret = icalloc(num_size);
3783
3784 RETURN:
3785 if (ret == NULL) {
3786 if (opt_xmalloc) {
3787 _malloc_message(getprogname(),
3788 ": (malloc) Error in calloc(): out of memory\n", "",
3789 "");
3790 abort();
3791 }
3792 errno = ENOMEM;
3793 }
3794
3795 UTRACE(0, num_size, ret);
3796 return (ret);
3797 }
3798
3799 void *
3800 realloc(void *ptr, size_t size)
3801 {
3802 void *ret;
3803
3804 if (size == 0) {
3805 if (opt_sysv == false)
3806 size = 1;
3807 else {
3808 if (ptr != NULL)
3809 idalloc(ptr);
3810 ret = NULL;
3811 goto RETURN;
3812 }
3813 }
3814
3815 if (ptr != NULL) {
3816 assert(malloc_initialized);
3817
3818 ret = iralloc(ptr, size);
3819
3820 if (ret == NULL) {
3821 if (opt_xmalloc) {
3822 _malloc_message(getprogname(),
3823 ": (malloc) Error in realloc(): out of "
3824 "memory\n", "", "");
3825 abort();
3826 }
3827 errno = ENOMEM;
3828 }
3829 } else {
3830 if (malloc_init())
3831 ret = NULL;
3832 else
3833 ret = imalloc(size);
3834
3835 if (ret == NULL) {
3836 if (opt_xmalloc) {
3837 _malloc_message(getprogname(),
3838 ": (malloc) Error in realloc(): out of "
3839 "memory\n", "", "");
3840 abort();
3841 }
3842 errno = ENOMEM;
3843 }
3844 }
3845
3846 RETURN:
3847 UTRACE(ptr, size, ret);
3848 return (ret);
3849 }
3850
3851 void
3852 free(void *ptr)
3853 {
3854
3855 UTRACE(ptr, 0, 0);
3856 if (ptr != NULL) {
3857 assert(malloc_initialized);
3858
3859 idalloc(ptr);
3860 }
3861 }
3862
3863 /*
3864 * End malloc(3)-compatible functions.
3865 */
3866 /******************************************************************************/
3867 /*
3868 * Begin non-standard functions.
3869 */
3870 #ifndef __NetBSD__
3871 size_t
3872 malloc_usable_size(const void *ptr)
3873 {
3874
3875 assert(ptr != NULL);
3876
3877 return (isalloc(ptr));
3878 }
3879 #endif
3880
3881 /*
3882 * End non-standard functions.
3883 */
3884 /******************************************************************************/
3885 /*
3886 * Begin library-private functions, used by threading libraries for protection
3887 * of malloc during fork(). These functions are only called if the program is
3888 * running in threaded mode, so there is no need to check whether the program
3889 * is threaded here.
3890 */
3891
3892 void
3893 _malloc_prefork(void)
3894 {
3895 unsigned i;
3896
3897 /* Acquire all mutexes in a safe order. */
3898
3899 malloc_mutex_lock(&arenas_mtx);
3900 for (i = 0; i < narenas; i++) {
3901 if (arenas[i] != NULL)
3902 malloc_mutex_lock(&arenas[i]->mtx);
3903 }
3904 malloc_mutex_unlock(&arenas_mtx);
3905
3906 malloc_mutex_lock(&base_mtx);
3907
3908 malloc_mutex_lock(&chunks_mtx);
3909 }
3910
3911 void
3912 _malloc_postfork(void)
3913 {
3914 unsigned i;
3915
3916 /* Release all mutexes, now that fork() has completed. */
3917
3918 malloc_mutex_unlock(&chunks_mtx);
3919
3920 malloc_mutex_unlock(&base_mtx);
3921
3922 malloc_mutex_lock(&arenas_mtx);
3923 for (i = 0; i < narenas; i++) {
3924 if (arenas[i] != NULL)
3925 malloc_mutex_unlock(&arenas[i]->mtx);
3926 }
3927 malloc_mutex_unlock(&arenas_mtx);
3928 }
3929
3930 /*
3931 * End library-private functions.
3932 */
3933 /******************************************************************************/
3934