Home | History | Annotate | Line # | Download | only in stdlib
qsort.c revision 1.1
      1  1.1  cgd /*-
      2  1.1  cgd  * Copyright (c) 1980, 1983, 1990 The Regents of the University of California.
      3  1.1  cgd  * All rights reserved.
      4  1.1  cgd  *
      5  1.1  cgd  * Redistribution and use in source and binary forms, with or without
      6  1.1  cgd  * modification, are permitted provided that the following conditions
      7  1.1  cgd  * are met:
      8  1.1  cgd  * 1. Redistributions of source code must retain the above copyright
      9  1.1  cgd  *    notice, this list of conditions and the following disclaimer.
     10  1.1  cgd  * 2. Redistributions in binary form must reproduce the above copyright
     11  1.1  cgd  *    notice, this list of conditions and the following disclaimer in the
     12  1.1  cgd  *    documentation and/or other materials provided with the distribution.
     13  1.1  cgd  * 3. All advertising materials mentioning features or use of this software
     14  1.1  cgd  *    must display the following acknowledgement:
     15  1.1  cgd  *	This product includes software developed by the University of
     16  1.1  cgd  *	California, Berkeley and its contributors.
     17  1.1  cgd  * 4. Neither the name of the University nor the names of its contributors
     18  1.1  cgd  *    may be used to endorse or promote products derived from this software
     19  1.1  cgd  *    without specific prior written permission.
     20  1.1  cgd  *
     21  1.1  cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     22  1.1  cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     23  1.1  cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     24  1.1  cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     25  1.1  cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     26  1.1  cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     27  1.1  cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     28  1.1  cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     29  1.1  cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     30  1.1  cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     31  1.1  cgd  * SUCH DAMAGE.
     32  1.1  cgd  */
     33  1.1  cgd 
     34  1.1  cgd #if defined(LIBC_SCCS) && !defined(lint)
     35  1.1  cgd static char sccsid[] = "@(#)qsort.c	5.9 (Berkeley) 2/23/91";
     36  1.1  cgd #endif /* LIBC_SCCS and not lint */
     37  1.1  cgd 
     38  1.1  cgd #include <sys/types.h>
     39  1.1  cgd #include <stdlib.h>
     40  1.1  cgd 
     41  1.1  cgd /*
     42  1.1  cgd  * MTHRESH is the smallest partition for which we compare for a median
     43  1.1  cgd  * value instead of using the middle value.
     44  1.1  cgd  */
     45  1.1  cgd #define	MTHRESH	6
     46  1.1  cgd 
     47  1.1  cgd /*
     48  1.1  cgd  * THRESH is the minimum number of entries in a partition for continued
     49  1.1  cgd  * partitioning.
     50  1.1  cgd  */
     51  1.1  cgd #define	THRESH	4
     52  1.1  cgd 
     53  1.1  cgd void
     54  1.1  cgd qsort(bot, nmemb, size, compar)
     55  1.1  cgd 	void *bot;
     56  1.1  cgd 	size_t nmemb, size;
     57  1.1  cgd 	int (*compar) __P((const void *, const void *));
     58  1.1  cgd {
     59  1.1  cgd 	static void insertion_sort(), quick_sort();
     60  1.1  cgd 
     61  1.1  cgd 	if (nmemb <= 1)
     62  1.1  cgd 		return;
     63  1.1  cgd 
     64  1.1  cgd 	if (nmemb >= THRESH)
     65  1.1  cgd 		quick_sort(bot, nmemb, size, compar);
     66  1.1  cgd 	else
     67  1.1  cgd 		insertion_sort(bot, nmemb, size, compar);
     68  1.1  cgd }
     69  1.1  cgd 
     70  1.1  cgd /*
     71  1.1  cgd  * Swap two areas of size number of bytes.  Although qsort(3) permits random
     72  1.1  cgd  * blocks of memory to be sorted, sorting pointers is almost certainly the
     73  1.1  cgd  * common case (and, were it not, could easily be made so).  Regardless, it
     74  1.1  cgd  * isn't worth optimizing; the SWAP's get sped up by the cache, and pointer
     75  1.1  cgd  * arithmetic gets lost in the time required for comparison function calls.
     76  1.1  cgd  */
     77  1.1  cgd #define	SWAP(a, b) { \
     78  1.1  cgd 	cnt = size; \
     79  1.1  cgd 	do { \
     80  1.1  cgd 		ch = *a; \
     81  1.1  cgd 		*a++ = *b; \
     82  1.1  cgd 		*b++ = ch; \
     83  1.1  cgd 	} while (--cnt); \
     84  1.1  cgd }
     85  1.1  cgd 
     86  1.1  cgd /*
     87  1.1  cgd  * Knuth, Vol. 3, page 116, Algorithm Q, step b, argues that a single pass
     88  1.1  cgd  * of straight insertion sort after partitioning is complete is better than
     89  1.1  cgd  * sorting each small partition as it is created.  This isn't correct in this
     90  1.1  cgd  * implementation because comparisons require at least one (and often two)
     91  1.1  cgd  * function calls and are likely to be the dominating expense of the sort.
     92  1.1  cgd  * Doing a final insertion sort does more comparisons than are necessary
     93  1.1  cgd  * because it compares the "edges" and medians of the partitions which are
     94  1.1  cgd  * known to be already sorted.
     95  1.1  cgd  *
     96  1.1  cgd  * This is also the reasoning behind selecting a small THRESH value (see
     97  1.1  cgd  * Knuth, page 122, equation 26), since the quicksort algorithm does less
     98  1.1  cgd  * comparisons than the insertion sort.
     99  1.1  cgd  */
    100  1.1  cgd #define	SORT(bot, n) { \
    101  1.1  cgd 	if (n > 1) \
    102  1.1  cgd 		if (n == 2) { \
    103  1.1  cgd 			t1 = bot + size; \
    104  1.1  cgd 			if (compar(t1, bot) < 0) \
    105  1.1  cgd 				SWAP(t1, bot); \
    106  1.1  cgd 		} else \
    107  1.1  cgd 			insertion_sort(bot, n, size, compar); \
    108  1.1  cgd }
    109  1.1  cgd 
    110  1.1  cgd static void
    111  1.1  cgd quick_sort(bot, nmemb, size, compar)
    112  1.1  cgd 	register char *bot;
    113  1.1  cgd 	register int size;
    114  1.1  cgd 	int nmemb, (*compar)();
    115  1.1  cgd {
    116  1.1  cgd 	register int cnt;
    117  1.1  cgd 	register u_char ch;
    118  1.1  cgd 	register char *top, *mid, *t1, *t2;
    119  1.1  cgd 	register int n1, n2;
    120  1.1  cgd 	char *bsv;
    121  1.1  cgd 	static void insertion_sort();
    122  1.1  cgd 
    123  1.1  cgd 	/* bot and nmemb must already be set. */
    124  1.1  cgd partition:
    125  1.1  cgd 
    126  1.1  cgd 	/* find mid and top elements */
    127  1.1  cgd 	mid = bot + size * (nmemb >> 1);
    128  1.1  cgd 	top = bot + (nmemb - 1) * size;
    129  1.1  cgd 
    130  1.1  cgd 	/*
    131  1.1  cgd 	 * Find the median of the first, last and middle element (see Knuth,
    132  1.1  cgd 	 * Vol. 3, page 123, Eq. 28).  This test order gets the equalities
    133  1.1  cgd 	 * right.
    134  1.1  cgd 	 */
    135  1.1  cgd 	if (nmemb >= MTHRESH) {
    136  1.1  cgd 		n1 = compar(bot, mid);
    137  1.1  cgd 		n2 = compar(mid, top);
    138  1.1  cgd 		if (n1 < 0 && n2 > 0)
    139  1.1  cgd 			t1 = compar(bot, top) < 0 ? top : bot;
    140  1.1  cgd 		else if (n1 > 0 && n2 < 0)
    141  1.1  cgd 			t1 = compar(bot, top) > 0 ? top : bot;
    142  1.1  cgd 		else
    143  1.1  cgd 			t1 = mid;
    144  1.1  cgd 
    145  1.1  cgd 		/* if mid element not selected, swap selection there */
    146  1.1  cgd 		if (t1 != mid) {
    147  1.1  cgd 			SWAP(t1, mid);
    148  1.1  cgd 			mid -= size;
    149  1.1  cgd 		}
    150  1.1  cgd 	}
    151  1.1  cgd 
    152  1.1  cgd 	/* Standard quicksort, Knuth, Vol. 3, page 116, Algorithm Q. */
    153  1.1  cgd #define	didswap	n1
    154  1.1  cgd #define	newbot	t1
    155  1.1  cgd #define	replace	t2
    156  1.1  cgd 	didswap = 0;
    157  1.1  cgd 	for (bsv = bot;;) {
    158  1.1  cgd 		for (; bot < mid && compar(bot, mid) <= 0; bot += size);
    159  1.1  cgd 		while (top > mid) {
    160  1.1  cgd 			if (compar(mid, top) <= 0) {
    161  1.1  cgd 				top -= size;
    162  1.1  cgd 				continue;
    163  1.1  cgd 			}
    164  1.1  cgd 			newbot = bot + size;	/* value of bot after swap */
    165  1.1  cgd 			if (bot == mid)		/* top <-> mid, mid == top */
    166  1.1  cgd 				replace = mid = top;
    167  1.1  cgd 			else {			/* bot <-> top */
    168  1.1  cgd 				replace = top;
    169  1.1  cgd 				top -= size;
    170  1.1  cgd 			}
    171  1.1  cgd 			goto swap;
    172  1.1  cgd 		}
    173  1.1  cgd 		if (bot == mid)
    174  1.1  cgd 			break;
    175  1.1  cgd 
    176  1.1  cgd 		/* bot <-> mid, mid == bot */
    177  1.1  cgd 		replace = mid;
    178  1.1  cgd 		newbot = mid = bot;		/* value of bot after swap */
    179  1.1  cgd 		top -= size;
    180  1.1  cgd 
    181  1.1  cgd swap:		SWAP(bot, replace);
    182  1.1  cgd 		bot = newbot;
    183  1.1  cgd 		didswap = 1;
    184  1.1  cgd 	}
    185  1.1  cgd 
    186  1.1  cgd 	/*
    187  1.1  cgd 	 * Quicksort behaves badly in the presence of data which is already
    188  1.1  cgd 	 * sorted (see Knuth, Vol. 3, page 119) going from O N lg N to O N^2.
    189  1.1  cgd 	 * To avoid this worst case behavior, if a re-partitioning occurs
    190  1.1  cgd 	 * without swapping any elements, it is not further partitioned and
    191  1.1  cgd 	 * is insert sorted.  This wins big with almost sorted data sets and
    192  1.1  cgd 	 * only loses if the data set is very strangely partitioned.  A fix
    193  1.1  cgd 	 * for those data sets would be to return prematurely if the insertion
    194  1.1  cgd 	 * sort routine is forced to make an excessive number of swaps, and
    195  1.1  cgd 	 * continue the partitioning.
    196  1.1  cgd 	 */
    197  1.1  cgd 	if (!didswap) {
    198  1.1  cgd 		insertion_sort(bsv, nmemb, size, compar);
    199  1.1  cgd 		return;
    200  1.1  cgd 	}
    201  1.1  cgd 
    202  1.1  cgd 	/*
    203  1.1  cgd 	 * Re-partition or sort as necessary.  Note that the mid element
    204  1.1  cgd 	 * itself is correctly positioned and can be ignored.
    205  1.1  cgd 	 */
    206  1.1  cgd #define	nlower	n1
    207  1.1  cgd #define	nupper	n2
    208  1.1  cgd 	bot = bsv;
    209  1.1  cgd 	nlower = (mid - bot) / size;	/* size of lower partition */
    210  1.1  cgd 	mid += size;
    211  1.1  cgd 	nupper = nmemb - nlower - 1;	/* size of upper partition */
    212  1.1  cgd 
    213  1.1  cgd 	/*
    214  1.1  cgd 	 * If must call recursively, do it on the smaller partition; this
    215  1.1  cgd 	 * bounds the stack to lg N entries.
    216  1.1  cgd 	 */
    217  1.1  cgd 	if (nlower > nupper) {
    218  1.1  cgd 		if (nupper >= THRESH)
    219  1.1  cgd 			quick_sort(mid, nupper, size, compar);
    220  1.1  cgd 		else {
    221  1.1  cgd 			SORT(mid, nupper);
    222  1.1  cgd 			if (nlower < THRESH) {
    223  1.1  cgd 				SORT(bot, nlower);
    224  1.1  cgd 				return;
    225  1.1  cgd 			}
    226  1.1  cgd 		}
    227  1.1  cgd 		nmemb = nlower;
    228  1.1  cgd 	} else {
    229  1.1  cgd 		if (nlower >= THRESH)
    230  1.1  cgd 			quick_sort(bot, nlower, size, compar);
    231  1.1  cgd 		else {
    232  1.1  cgd 			SORT(bot, nlower);
    233  1.1  cgd 			if (nupper < THRESH) {
    234  1.1  cgd 				SORT(mid, nupper);
    235  1.1  cgd 				return;
    236  1.1  cgd 			}
    237  1.1  cgd 		}
    238  1.1  cgd 		bot = mid;
    239  1.1  cgd 		nmemb = nupper;
    240  1.1  cgd 	}
    241  1.1  cgd 	goto partition;
    242  1.1  cgd 	/* NOTREACHED */
    243  1.1  cgd }
    244  1.1  cgd 
    245  1.1  cgd static void
    246  1.1  cgd insertion_sort(bot, nmemb, size, compar)
    247  1.1  cgd 	char *bot;
    248  1.1  cgd 	register int size;
    249  1.1  cgd 	int nmemb, (*compar)();
    250  1.1  cgd {
    251  1.1  cgd 	register int cnt;
    252  1.1  cgd 	register u_char ch;
    253  1.1  cgd 	register char *s1, *s2, *t1, *t2, *top;
    254  1.1  cgd 
    255  1.1  cgd 	/*
    256  1.1  cgd 	 * A simple insertion sort (see Knuth, Vol. 3, page 81, Algorithm
    257  1.1  cgd 	 * S).  Insertion sort has the same worst case as most simple sorts
    258  1.1  cgd 	 * (O N^2).  It gets used here because it is (O N) in the case of
    259  1.1  cgd 	 * sorted data.
    260  1.1  cgd 	 */
    261  1.1  cgd 	top = bot + nmemb * size;
    262  1.1  cgd 	for (t1 = bot + size; t1 < top;) {
    263  1.1  cgd 		for (t2 = t1; (t2 -= size) >= bot && compar(t1, t2) < 0;);
    264  1.1  cgd 		if (t1 != (t2 += size)) {
    265  1.1  cgd 			/* Bubble bytes up through each element. */
    266  1.1  cgd 			for (cnt = size; cnt--; ++t1) {
    267  1.1  cgd 				ch = *t1;
    268  1.1  cgd 				for (s1 = s2 = t1; (s2 -= size) >= t2; s1 = s2)
    269  1.1  cgd 					*s1 = *s2;
    270  1.1  cgd 				*s1 = ch;
    271  1.1  cgd 			}
    272  1.1  cgd 		} else
    273  1.1  cgd 			t1 += size;
    274  1.1  cgd 	}
    275  1.1  cgd }
    276