Home | History | Annotate | Line # | Download | only in stdlib
radixsort.c revision 1.1.1.1
      1 /*-
      2  * Copyright (c) 1990 The Regents of the University of California.
      3  * All rights reserved.
      4  *
      5  * Redistribution and use in source and binary forms, with or without
      6  * modification, are permitted provided that the following conditions
      7  * are met:
      8  * 1. Redistributions of source code must retain the above copyright
      9  *    notice, this list of conditions and the following disclaimer.
     10  * 2. Redistributions in binary form must reproduce the above copyright
     11  *    notice, this list of conditions and the following disclaimer in the
     12  *    documentation and/or other materials provided with the distribution.
     13  * 3. All advertising materials mentioning features or use of this software
     14  *    must display the following acknowledgement:
     15  *	This product includes software developed by the University of
     16  *	California, Berkeley and its contributors.
     17  * 4. Neither the name of the University nor the names of its contributors
     18  *    may be used to endorse or promote products derived from this software
     19  *    without specific prior written permission.
     20  *
     21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     31  * SUCH DAMAGE.
     32  */
     33 
     34 #if defined(LIBC_SCCS) && !defined(lint)
     35 static char sccsid[] = "@(#)radixsort.c	5.7 (Berkeley) 2/23/91";
     36 #endif /* LIBC_SCCS and not lint */
     37 
     38 #include <sys/types.h>
     39 #include <limits.h>
     40 #include <stdlib.h>
     41 #include <stddef.h>
     42 #include <string.h>
     43 
     44 /*
     45  * __rspartition is the cutoff point for a further partitioning instead
     46  * of a shellsort.  If it changes check __rsshell_increments.  Both of
     47  * these are exported, as the best values are data dependent.
     48  */
     49 #define	NPARTITION	40
     50 int __rspartition = NPARTITION;
     51 int __rsshell_increments[] = { 4, 1, 0, 0, 0, 0, 0, 0 };
     52 
     53 /*
     54  * Stackp points to context structures, where each structure schedules a
     55  * partitioning.  Radixsort exits when the stack is empty.
     56  *
     57  * If the buckets are placed on the stack randomly, the worst case is when
     58  * all the buckets but one contain (npartitions + 1) elements and the bucket
     59  * pushed on the stack last contains the rest of the elements.  In this case,
     60  * stack growth is bounded by:
     61  *
     62  *	limit = (nelements / (npartitions + 1)) - 1;
     63  *
     64  * This is a very large number, 52,377,648 for the maximum 32-bit signed int.
     65  *
     66  * By forcing the largest bucket to be pushed on the stack first, the worst
     67  * case is when all but two buckets each contain (npartitions + 1) elements,
     68  * with the remaining elements split equally between the first and last
     69  * buckets pushed on the stack.  In this case, stack growth is bounded when:
     70  *
     71  *	for (partition_cnt = 0; nelements > npartitions; ++partition_cnt)
     72  *		nelements =
     73  *		    (nelements - (npartitions + 1) * (nbuckets - 2)) / 2;
     74  * The bound is:
     75  *
     76  *	limit = partition_cnt * (nbuckets - 1);
     77  *
     78  * This is a much smaller number, 4590 for the maximum 32-bit signed int.
     79  */
     80 #define	NBUCKETS	(UCHAR_MAX + 1)
     81 
     82 typedef struct _stack {
     83 	const u_char **bot;
     84 	int indx, nmemb;
     85 } CONTEXT;
     86 
     87 #define	STACKPUSH { \
     88 	stackp->bot = p; \
     89 	stackp->nmemb = nmemb; \
     90 	stackp->indx = indx; \
     91 	++stackp; \
     92 }
     93 #define	STACKPOP { \
     94 	if (stackp == stack) \
     95 		break; \
     96 	--stackp; \
     97 	bot = stackp->bot; \
     98 	nmemb = stackp->nmemb; \
     99 	indx = stackp->indx; \
    100 }
    101 
    102 /*
    103  * A variant of MSD radix sorting; see Knuth Vol. 3, page 177, and 5.2.5,
    104  * Ex. 10 and 12.  Also, "Three Partition Refinement Algorithms, Paige
    105  * and Tarjan, SIAM J. Comput. Vol. 16, No. 6, December 1987.
    106  *
    107  * This uses a simple sort as soon as a bucket crosses a cutoff point,
    108  * rather than sorting the entire list after partitioning is finished.
    109  * This should be an advantage.
    110  *
    111  * This is pure MSD instead of LSD of some number of MSD, switching to
    112  * the simple sort as soon as possible.  Takes linear time relative to
    113  * the number of bytes in the strings.
    114  */
    115 int
    116 #if __STDC__
    117 radixsort(const u_char **l1, int nmemb, const u_char *tab, u_char endbyte)
    118 #else
    119 radixsort(l1, nmemb, tab, endbyte)
    120 	const u_char **l1;
    121 	register int nmemb;
    122 	const u_char *tab;
    123 	u_char endbyte;
    124 #endif
    125 {
    126 	register int i, indx, t1, t2;
    127 	register const u_char **l2;
    128 	register const u_char **p;
    129 	register const u_char **bot;
    130 	register const u_char *tr;
    131 	CONTEXT *stack, *stackp;
    132 	int c[NBUCKETS + 1], max;
    133 	u_char ltab[NBUCKETS];
    134 	static void shellsort();
    135 
    136 	if (nmemb <= 1)
    137 		return(0);
    138 
    139 	/*
    140 	 * T1 is the constant part of the equation, the number of elements
    141 	 * represented on the stack between the top and bottom entries.
    142 	 * It doesn't get rounded as the divide by 2 rounds down (correct
    143 	 * for a value being subtracted).  T2, the nelem value, has to be
    144 	 * rounded up before each divide because we want an upper bound;
    145 	 * this could overflow if nmemb is the maximum int.
    146 	 */
    147 	t1 = ((__rspartition + 1) * (NBUCKETS - 2)) >> 1;
    148 	for (i = 0, t2 = nmemb; t2 > __rspartition; i += NBUCKETS - 1)
    149 		t2 = ((t2 + 1) >> 1) - t1;
    150 	if (i) {
    151 		if (!(stack = stackp = (CONTEXT *)malloc(i * sizeof(CONTEXT))))
    152 			return(-1);
    153 	} else
    154 		stack = stackp = NULL;
    155 
    156 	/*
    157 	 * There are two arrays, one provided by the user (l1), and the
    158 	 * temporary one (l2).  The data is sorted to the temporary stack,
    159 	 * and then copied back.  The speedup of using index to determine
    160 	 * which stack the data is on and simply swapping stacks back and
    161 	 * forth, thus avoiding the copy every iteration, turns out to not
    162 	 * be any faster than the current implementation.
    163 	 */
    164 	if (!(l2 = (const u_char **)malloc(sizeof(u_char *) * nmemb)))
    165 		return(-1);
    166 
    167 	/*
    168 	 * Tr references a table of sort weights; multiple entries may
    169 	 * map to the same weight; EOS char must have the lowest weight.
    170 	 */
    171 	if (tab)
    172 		tr = tab;
    173 	else {
    174 		for (t1 = 0, t2 = endbyte; t1 < t2; ++t1)
    175 			ltab[t1] = t1 + 1;
    176 		ltab[t2] = 0;
    177 		for (t1 = endbyte + 1; t1 < NBUCKETS; ++t1)
    178 			ltab[t1] = t1;
    179 		tr = ltab;
    180 	}
    181 
    182 	/* First sort is entire stack */
    183 	bot = l1;
    184 	indx = 0;
    185 
    186 	for (;;) {
    187 		/* Clear bucket count array */
    188 		bzero((char *)c, sizeof(c));
    189 
    190 		/*
    191 		 * Compute number of items that sort to the same bucket
    192 		 * for this index.
    193 		 */
    194 		for (p = bot, i = nmemb; --i >= 0;)
    195 			++c[tr[(*p++)[indx]]];
    196 
    197 		/*
    198 		 * Sum the number of characters into c, dividing the temp
    199 		 * stack into the right number of buckets for this bucket,
    200 		 * this index.  C contains the cumulative total of keys
    201 		 * before and included in this bucket, and will later be
    202 		 * used as an index to the bucket.  c[NBUCKETS] contains
    203 		 * the total number of elements, for determining how many
    204 		 * elements the last bucket contains.  At the same time
    205 		 * find the largest bucket so it gets pushed first.
    206 		 */
    207 		for (i = max = t1 = 0, t2 = __rspartition; i <= NBUCKETS; ++i) {
    208 			if (c[i] > t2) {
    209 				t2 = c[i];
    210 				max = i;
    211 			}
    212 			t1 = c[i] += t1;
    213 		}
    214 
    215 		/*
    216 		 * Partition the elements into buckets; c decrements through
    217 		 * the bucket, and ends up pointing to the first element of
    218 		 * the bucket.
    219 		 */
    220 		for (i = nmemb; --i >= 0;) {
    221 			--p;
    222 			l2[--c[tr[(*p)[indx]]]] = *p;
    223 		}
    224 
    225 		/* Copy the partitioned elements back to user stack */
    226 		bcopy(l2, bot, nmemb * sizeof(u_char *));
    227 
    228 		++indx;
    229 		/*
    230 		 * Sort buckets as necessary; don't sort c[0], it's the
    231 		 * EOS character bucket, and nothing can follow EOS.
    232 		 */
    233 		for (i = max; i; --i) {
    234 			if ((nmemb = c[i + 1] - (t1 = c[i])) < 2)
    235 				continue;
    236 			p = bot + t1;
    237 			if (nmemb > __rspartition)
    238 				STACKPUSH
    239 			else
    240 				shellsort(p, indx, nmemb, tr);
    241 		}
    242 		for (i = max + 1; i < NBUCKETS; ++i) {
    243 			if ((nmemb = c[i + 1] - (t1 = c[i])) < 2)
    244 				continue;
    245 			p = bot + t1;
    246 			if (nmemb > __rspartition)
    247 				STACKPUSH
    248 			else
    249 				shellsort(p, indx, nmemb, tr);
    250 		}
    251 		/* Break out when stack is empty */
    252 		STACKPOP
    253 	}
    254 
    255 	free((char *)l2);
    256 	free((char *)stack);
    257 	return(0);
    258 }
    259 
    260 /*
    261  * Shellsort (diminishing increment sort) from Data Structures and
    262  * Algorithms, Aho, Hopcraft and Ullman, 1983 Edition, page 290;
    263  * see also Knuth Vol. 3, page 84.  The increments are selected from
    264  * formula (8), page 95.  Roughly O(N^3/2).
    265  */
    266 static void
    267 shellsort(p, indx, nmemb, tr)
    268 	register u_char **p, *tr;
    269 	register int indx, nmemb;
    270 {
    271 	register u_char ch, *s1, *s2;
    272 	register int incr, *incrp, t1, t2;
    273 
    274 	for (incrp = __rsshell_increments; incr = *incrp++;)
    275 		for (t1 = incr; t1 < nmemb; ++t1)
    276 			for (t2 = t1 - incr; t2 >= 0;) {
    277 				s1 = p[t2] + indx;
    278 				s2 = p[t2 + incr] + indx;
    279 				while ((ch = tr[*s1++]) == tr[*s2] && ch)
    280 					++s2;
    281 				if (ch > tr[*s2]) {
    282 					s1 = p[t2];
    283 					p[t2] = p[t2 + incr];
    284 					p[t2 + incr] = s1;
    285 					t2 -= incr;
    286 				} else
    287 					break;
    288 			}
    289 }
    290