radixsort.c revision 1.12 1 /* $NetBSD: radixsort.c,v 1.12 1999/09/16 11:45:35 lukem Exp $ */
2
3 /*-
4 * Copyright (c) 1990, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * Peter McIlroy and by Dan Bernstein at New York University,
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the University of
21 * California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 * may be used to endorse or promote products derived from this software
24 * without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 */
38
39 #include <sys/cdefs.h>
40 #if defined(LIBC_SCCS) && !defined(lint)
41 #if 0
42 static char sccsid[] = "@(#)radixsort.c 8.2 (Berkeley) 4/28/95";
43 #else
44 __RCSID("$NetBSD: radixsort.c,v 1.12 1999/09/16 11:45:35 lukem Exp $");
45 #endif
46 #endif /* LIBC_SCCS and not lint */
47
48 /*
49 * Radixsort routines.
50 *
51 * Program r_sort_a() is unstable but uses O(logN) extra memory for a stack.
52 * Use radixsort(a, n, trace, endchar) for this case.
53 *
54 * For stable sorting (using N extra pointers) use sradixsort(), which calls
55 * r_sort_b().
56 *
57 * For a description of this code, see D. McIlroy, P. McIlroy, K. Bostic,
58 * "Engineering Radix Sort".
59 */
60
61 #include "namespace.h"
62 #include <sys/types.h>
63
64 #include <assert.h>
65 #include <errno.h>
66 #include <stdlib.h>
67
68 #ifdef __weak_alias
69 __weak_alias(radixsort,_radixsort);
70 __weak_alias(sradixsort,_sradixsort);
71 #endif
72
73 typedef struct {
74 const u_char **sa;
75 int sn, si;
76 } stack;
77
78 static __inline void simplesort
79 __P((const u_char **, int, int, const u_char *, u_int));
80 static void r_sort_a __P((const u_char **, int, int, const u_char *, u_int));
81 static void r_sort_b __P((const u_char **,
82 const u_char **, int, int, const u_char *, u_int));
83
84 #define THRESHOLD 20 /* Divert to simplesort(). */
85 #define SIZE 512 /* Default stack size. */
86
87 #define SETUP { \
88 if (tab == NULL) { \
89 tr = tr0; \
90 for (c = 0; c < endch; c++) \
91 tr0[c] = c + 1; \
92 tr0[c] = 0; \
93 for (c++; c < 256; c++) \
94 tr0[c] = c; \
95 endch = 0; \
96 } else { \
97 endch = tab[endch]; \
98 tr = tab; \
99 if (endch != 0 && endch != 255) { \
100 errno = EINVAL; \
101 return (-1); \
102 } \
103 } \
104 }
105
106 int
107 radixsort(a, n, tab, endch)
108 const u_char **a, *tab;
109 int n;
110 u_int endch;
111 {
112 const u_char *tr;
113 int c;
114 u_char tr0[256];
115
116 _DIAGASSERT(a != NULL);
117 _DIAGASSERT(tab != NULL);
118 #ifdef _DIAGNOSTIC
119 if (a == NULL || tab == NULL) {
120 errno = EFAULT;
121 return (-1);
122 }
123 #endif
124
125 SETUP;
126 r_sort_a(a, n, 0, tr, endch);
127 return (0);
128 }
129
130 int
131 sradixsort(a, n, tab, endch)
132 const u_char **a, *tab;
133 int n;
134 u_int endch;
135 {
136 const u_char *tr, **ta;
137 int c;
138 u_char tr0[256];
139
140 _DIAGASSERT(a != NULL);
141 _DIAGASSERT(tab != NULL);
142 if (a == NULL || tab == NULL) {
143 errno = EFAULT;
144 return (-1);
145 }
146
147 SETUP;
148 if (n < THRESHOLD)
149 simplesort(a, n, 0, tr, endch);
150 else {
151 if ((ta = malloc(n * sizeof(a))) == NULL)
152 return (-1);
153 r_sort_b(a, ta, n, 0, tr, endch);
154 free(ta);
155 }
156 return (0);
157 }
158
159 #define empty(s) (s >= sp)
160 #define pop(a, n, i) a = (--sp)->sa, n = sp->sn, i = sp->si
161 #define push(a, n, i) sp->sa = a, sp->sn = n, (sp++)->si = i
162 #define swap(a, b, t) t = a, a = b, b = t
163
164 /* Unstable, in-place sort. */
165 static void
166 r_sort_a(a, n, i, tr, endch)
167 const u_char **a;
168 int n, i;
169 const u_char *tr;
170 u_int endch;
171 {
172 static int count[256], nc, bmin;
173 int c;
174 const u_char **ak, *r;
175 stack s[SIZE], *sp, *sp0, *sp1, temp;
176 int *cp, bigc;
177 const u_char **an, *t, **aj, **top[256];
178
179 _DIAGASSERT(a != NULL);
180 _DIAGASSERT(tr != NULL);
181
182 /* Set up stack. */
183 sp = s;
184 push(a, n, i);
185 while (!empty(s)) {
186 pop(a, n, i);
187 if (n < THRESHOLD) {
188 simplesort(a, n, i, tr, endch);
189 continue;
190 }
191 an = a + n;
192
193 /* Make character histogram. */
194 if (nc == 0) {
195 bmin = 255; /* First occupied bin, excluding eos. */
196 for (ak = a; ak < an;) {
197 c = tr[(*ak++)[i]];
198 if (++count[c] == 1 && c != endch) {
199 if (c < bmin)
200 bmin = c;
201 nc++;
202 }
203 }
204 if (sp + nc > s + SIZE) { /* Get more stack. */
205 r_sort_a(a, n, i, tr, endch);
206 continue;
207 }
208 }
209
210 /*
211 * Set top[]; push incompletely sorted bins onto stack.
212 * top[] = pointers to last out-of-place element in bins.
213 * count[] = counts of elements in bins.
214 * Before permuting: top[c-1] + count[c] = top[c];
215 * during deal: top[c] counts down to top[c-1].
216 */
217 sp0 = sp1 = sp; /* Stack position of biggest bin. */
218 bigc = 2; /* Size of biggest bin. */
219 if (endch == 0) /* Special case: set top[eos]. */
220 top[0] = ak = a + count[0];
221 else {
222 ak = a;
223 top[255] = an;
224 }
225 for (cp = count + bmin; nc > 0; cp++) {
226 while (*cp == 0) /* Find next non-empty pile. */
227 cp++;
228 if (*cp > 1) {
229 if (*cp > bigc) {
230 bigc = *cp;
231 sp1 = sp;
232 }
233 push(ak, *cp, i+1);
234 }
235 top[cp-count] = ak += *cp;
236 nc--;
237 }
238 swap(*sp0, *sp1, temp); /* Play it safe -- biggest bin last. */
239
240 /*
241 * Permute misplacements home. Already home: everything
242 * before aj, and in bin[c], items from top[c] on.
243 * Inner loop:
244 * r = next element to put in place;
245 * ak = top[r[i]] = location to put the next element.
246 * aj = bottom of 1st disordered bin.
247 * Outer loop:
248 * Once the 1st disordered bin is done, ie. aj >= ak,
249 * aj<-aj + count[c] connects the bins in a linked list;
250 * reset count[c].
251 */
252 for (aj = a; aj < an; *aj = r, aj += count[c], count[c] = 0)
253 for (r = *aj; aj < (ak = --top[c = tr[r[i]]]);)
254 swap(*ak, r, t);
255 }
256 }
257
258 /* Stable sort, requiring additional memory. */
259 static void
260 r_sort_b(a, ta, n, i, tr, endch)
261 const u_char **a, **ta;
262 int n, i;
263 const u_char *tr;
264 u_int endch;
265 {
266 static int count[256], nc, bmin;
267 int c;
268 const u_char **ak, **ai;
269 stack s[512], *sp, *sp0, *sp1, temp;
270 const u_char **top[256];
271 int *cp, bigc;
272
273 _DIAGASSERT(a != NULL);
274 _DIAGASSERT(ta != NULL);
275 _DIAGASSERT(tr != NULL);
276
277 sp = s;
278 push(a, n, i);
279 while (!empty(s)) {
280 pop(a, n, i);
281 if (n < THRESHOLD) {
282 simplesort(a, n, i, tr, endch);
283 continue;
284 }
285
286 if (nc == 0) {
287 bmin = 255;
288 for (ak = a + n; --ak >= a;) {
289 c = tr[(*ak)[i]];
290 if (++count[c] == 1 && c != endch) {
291 if (c < bmin)
292 bmin = c;
293 nc++;
294 }
295 }
296 if (sp + nc > s + SIZE) {
297 r_sort_b(a, ta, n, i, tr, endch);
298 continue;
299 }
300 }
301
302 sp0 = sp1 = sp;
303 bigc = 2;
304 if (endch == 0) {
305 top[0] = ak = a + count[0];
306 count[0] = 0;
307 } else {
308 ak = a;
309 top[255] = a + n;
310 count[255] = 0;
311 }
312 for (cp = count + bmin; nc > 0; cp++) {
313 while (*cp == 0)
314 cp++;
315 if ((c = *cp) > 1) {
316 if (c > bigc) {
317 bigc = c;
318 sp1 = sp;
319 }
320 push(ak, c, i+1);
321 }
322 top[cp-count] = ak += c;
323 *cp = 0; /* Reset count[]. */
324 nc--;
325 }
326 swap(*sp0, *sp1, temp);
327
328 for (ak = ta + n, ai = a+n; ak > ta;) /* Copy to temp. */
329 *--ak = *--ai;
330 for (ak = ta+n; --ak >= ta;) /* Deal to piles. */
331 *--top[tr[(*ak)[i]]] = *ak;
332 }
333 }
334
335 static __inline void
336 simplesort(a, n, b, tr, endch) /* insertion sort */
337 const u_char **a;
338 int n, b;
339 const u_char *tr;
340 u_int endch;
341 {
342 u_char ch;
343 const u_char **ak, **ai, *s, *t;
344
345 _DIAGASSERT(a != NULL);
346 _DIAGASSERT(tr != NULL);
347
348 for (ak = a+1; --n >= 1; ak++)
349 for (ai = ak; ai > a; ai--) {
350 for (s = ai[0] + b, t = ai[-1] + b;
351 (ch = tr[*s]) != endch; s++, t++)
352 if (ch != tr[*t])
353 break;
354 if (ch >= tr[*t])
355 break;
356 swap(ai[0], ai[-1], s);
357 }
358 }
359