radixsort.c revision 1.14 1 /* $NetBSD: radixsort.c,v 1.14 2000/01/22 22:19:20 mycroft Exp $ */
2
3 /*-
4 * Copyright (c) 1990, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * Peter McIlroy and by Dan Bernstein at New York University,
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the University of
21 * California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 * may be used to endorse or promote products derived from this software
24 * without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 */
38
39 #include <sys/cdefs.h>
40 #if defined(LIBC_SCCS) && !defined(lint)
41 #if 0
42 static char sccsid[] = "@(#)radixsort.c 8.2 (Berkeley) 4/28/95";
43 #else
44 __RCSID("$NetBSD: radixsort.c,v 1.14 2000/01/22 22:19:20 mycroft Exp $");
45 #endif
46 #endif /* LIBC_SCCS and not lint */
47
48 /*
49 * Radixsort routines.
50 *
51 * Program r_sort_a() is unstable but uses O(logN) extra memory for a stack.
52 * Use radixsort(a, n, trace, endchar) for this case.
53 *
54 * For stable sorting (using N extra pointers) use sradixsort(), which calls
55 * r_sort_b().
56 *
57 * For a description of this code, see D. McIlroy, P. McIlroy, K. Bostic,
58 * "Engineering Radix Sort".
59 */
60
61 #include "namespace.h"
62 #include <sys/types.h>
63
64 #include <assert.h>
65 #include <errno.h>
66 #include <stdlib.h>
67
68 #ifdef __weak_alias
69 __weak_alias(radixsort,_radixsort)
70 __weak_alias(sradixsort,_sradixsort)
71 #endif
72
73 typedef struct {
74 const u_char **sa;
75 int sn, si;
76 } stack;
77
78 static __inline void simplesort
79 __P((const u_char **, int, int, const u_char *, u_int));
80 static void r_sort_a __P((const u_char **, int, int, const u_char *, u_int));
81 static void r_sort_b __P((const u_char **,
82 const u_char **, int, int, const u_char *, u_int));
83
84 #define THRESHOLD 20 /* Divert to simplesort(). */
85 #define SIZE 512 /* Default stack size. */
86
87 #define SETUP { \
88 if (tab == NULL) { \
89 tr = tr0; \
90 for (c = 0; c < endch; c++) \
91 tr0[c] = c + 1; \
92 tr0[c] = 0; \
93 for (c++; c < 256; c++) \
94 tr0[c] = c; \
95 endch = 0; \
96 } else { \
97 endch = tab[endch]; \
98 tr = tab; \
99 if (endch != 0 && endch != 255) { \
100 errno = EINVAL; \
101 return (-1); \
102 } \
103 } \
104 }
105
106 int
107 radixsort(a, n, tab, endch)
108 const u_char **a, *tab;
109 int n;
110 u_int endch;
111 {
112 const u_char *tr;
113 int c;
114 u_char tr0[256];
115
116 _DIAGASSERT(a != NULL);
117 _DIAGASSERT(tab != NULL);
118
119 SETUP;
120 r_sort_a(a, n, 0, tr, endch);
121 return (0);
122 }
123
124 int
125 sradixsort(a, n, tab, endch)
126 const u_char **a, *tab;
127 int n;
128 u_int endch;
129 {
130 const u_char *tr, **ta;
131 int c;
132 u_char tr0[256];
133
134 _DIAGASSERT(a != NULL);
135 _DIAGASSERT(tab != NULL);
136 if (a == NULL || tab == NULL) {
137 errno = EFAULT;
138 return (-1);
139 }
140
141 SETUP;
142 if (n < THRESHOLD)
143 simplesort(a, n, 0, tr, endch);
144 else {
145 if ((ta = malloc(n * sizeof(a))) == NULL)
146 return (-1);
147 r_sort_b(a, ta, n, 0, tr, endch);
148 free(ta);
149 }
150 return (0);
151 }
152
153 #define empty(s) (s >= sp)
154 #define pop(a, n, i) a = (--sp)->sa, n = sp->sn, i = sp->si
155 #define push(a, n, i) sp->sa = a, sp->sn = n, (sp++)->si = i
156 #define swap(a, b, t) t = a, a = b, b = t
157
158 /* Unstable, in-place sort. */
159 static void
160 r_sort_a(a, n, i, tr, endch)
161 const u_char **a;
162 int n, i;
163 const u_char *tr;
164 u_int endch;
165 {
166 static int count[256], nc, bmin;
167 int c;
168 const u_char **ak, *r;
169 stack s[SIZE], *sp, *sp0, *sp1, temp;
170 int *cp, bigc;
171 const u_char **an, *t, **aj, **top[256];
172
173 _DIAGASSERT(a != NULL);
174 _DIAGASSERT(tr != NULL);
175
176 /* Set up stack. */
177 sp = s;
178 push(a, n, i);
179 while (!empty(s)) {
180 pop(a, n, i);
181 if (n < THRESHOLD) {
182 simplesort(a, n, i, tr, endch);
183 continue;
184 }
185 an = a + n;
186
187 /* Make character histogram. */
188 if (nc == 0) {
189 bmin = 255; /* First occupied bin, excluding eos. */
190 for (ak = a; ak < an;) {
191 c = tr[(*ak++)[i]];
192 if (++count[c] == 1 && c != endch) {
193 if (c < bmin)
194 bmin = c;
195 nc++;
196 }
197 }
198 if (sp + nc > s + SIZE) { /* Get more stack. */
199 r_sort_a(a, n, i, tr, endch);
200 continue;
201 }
202 }
203
204 /*
205 * Set top[]; push incompletely sorted bins onto stack.
206 * top[] = pointers to last out-of-place element in bins.
207 * count[] = counts of elements in bins.
208 * Before permuting: top[c-1] + count[c] = top[c];
209 * during deal: top[c] counts down to top[c-1].
210 */
211 sp0 = sp1 = sp; /* Stack position of biggest bin. */
212 bigc = 2; /* Size of biggest bin. */
213 if (endch == 0) /* Special case: set top[eos]. */
214 top[0] = ak = a + count[0];
215 else {
216 ak = a;
217 top[255] = an;
218 }
219 for (cp = count + bmin; nc > 0; cp++) {
220 while (*cp == 0) /* Find next non-empty pile. */
221 cp++;
222 if (*cp > 1) {
223 if (*cp > bigc) {
224 bigc = *cp;
225 sp1 = sp;
226 }
227 push(ak, *cp, i+1);
228 }
229 top[cp-count] = ak += *cp;
230 nc--;
231 }
232 swap(*sp0, *sp1, temp); /* Play it safe -- biggest bin last. */
233
234 /*
235 * Permute misplacements home. Already home: everything
236 * before aj, and in bin[c], items from top[c] on.
237 * Inner loop:
238 * r = next element to put in place;
239 * ak = top[r[i]] = location to put the next element.
240 * aj = bottom of 1st disordered bin.
241 * Outer loop:
242 * Once the 1st disordered bin is done, ie. aj >= ak,
243 * aj<-aj + count[c] connects the bins in a linked list;
244 * reset count[c].
245 */
246 for (aj = a; aj < an; *aj = r, aj += count[c], count[c] = 0)
247 for (r = *aj; aj < (ak = --top[c = tr[r[i]]]);)
248 swap(*ak, r, t);
249 }
250 }
251
252 /* Stable sort, requiring additional memory. */
253 static void
254 r_sort_b(a, ta, n, i, tr, endch)
255 const u_char **a, **ta;
256 int n, i;
257 const u_char *tr;
258 u_int endch;
259 {
260 static int count[256], nc, bmin;
261 int c;
262 const u_char **ak, **ai;
263 stack s[512], *sp, *sp0, *sp1, temp;
264 const u_char **top[256];
265 int *cp, bigc;
266
267 _DIAGASSERT(a != NULL);
268 _DIAGASSERT(ta != NULL);
269 _DIAGASSERT(tr != NULL);
270
271 sp = s;
272 push(a, n, i);
273 while (!empty(s)) {
274 pop(a, n, i);
275 if (n < THRESHOLD) {
276 simplesort(a, n, i, tr, endch);
277 continue;
278 }
279
280 if (nc == 0) {
281 bmin = 255;
282 for (ak = a + n; --ak >= a;) {
283 c = tr[(*ak)[i]];
284 if (++count[c] == 1 && c != endch) {
285 if (c < bmin)
286 bmin = c;
287 nc++;
288 }
289 }
290 if (sp + nc > s + SIZE) {
291 r_sort_b(a, ta, n, i, tr, endch);
292 continue;
293 }
294 }
295
296 sp0 = sp1 = sp;
297 bigc = 2;
298 if (endch == 0) {
299 top[0] = ak = a + count[0];
300 count[0] = 0;
301 } else {
302 ak = a;
303 top[255] = a + n;
304 count[255] = 0;
305 }
306 for (cp = count + bmin; nc > 0; cp++) {
307 while (*cp == 0)
308 cp++;
309 if ((c = *cp) > 1) {
310 if (c > bigc) {
311 bigc = c;
312 sp1 = sp;
313 }
314 push(ak, c, i+1);
315 }
316 top[cp-count] = ak += c;
317 *cp = 0; /* Reset count[]. */
318 nc--;
319 }
320 swap(*sp0, *sp1, temp);
321
322 for (ak = ta + n, ai = a+n; ak > ta;) /* Copy to temp. */
323 *--ak = *--ai;
324 for (ak = ta+n; --ak >= ta;) /* Deal to piles. */
325 *--top[tr[(*ak)[i]]] = *ak;
326 }
327 }
328
329 static __inline void
330 simplesort(a, n, b, tr, endch) /* insertion sort */
331 const u_char **a;
332 int n, b;
333 const u_char *tr;
334 u_int endch;
335 {
336 u_char ch;
337 const u_char **ak, **ai, *s, *t;
338
339 _DIAGASSERT(a != NULL);
340 _DIAGASSERT(tr != NULL);
341
342 for (ak = a+1; --n >= 1; ak++)
343 for (ai = ak; ai > a; ai--) {
344 for (s = ai[0] + b, t = ai[-1] + b;
345 (ch = tr[*s]) != endch; s++, t++)
346 if (ch != tr[*t])
347 break;
348 if (ch >= tr[*t])
349 break;
350 swap(ai[0], ai[-1], s);
351 }
352 }
353