radixsort.c revision 1.6.2.1 1 /* $NetBSD: radixsort.c,v 1.6.2.1 1996/09/18 02:42:56 jtc Exp $ */
2
3 /*-
4 * Copyright (c) 1990, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * Peter McIlroy and by Dan Bernstein at New York University,
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the University of
21 * California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 * may be used to endorse or promote products derived from this software
24 * without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 */
38
39 #if defined(LIBC_SCCS) && !defined(lint)
40 #if 0
41 static char sccsid[] = "from: @(#)radixsort.c 8.1 (Berkeley) 6/4/93";
42 #else
43 static char *rcsid = "$NetBSD: radixsort.c,v 1.6.2.1 1996/09/18 02:42:56 jtc Exp $";
44 #endif
45 #endif /* LIBC_SCCS and not lint */
46
47 /*
48 * Radixsort routines.
49 *
50 * Program r_sort_a() is unstable but uses O(logN) extra memory for a stack.
51 * Use radixsort(a, n, trace, endchar) for this case.
52 *
53 * For stable sorting (using N extra pointers) use sradixsort(), which calls
54 * r_sort_b().
55 *
56 * For a description of this code, see D. McIlroy, P. McIlroy, K. Bostic,
57 * "Engineering Radix Sort".
58 */
59
60 #include "namespace.h"
61 #include <sys/types.h>
62 #include <stdlib.h>
63 #include <errno.h>
64
65 #ifdef __weak_alias
66 __weak_alias(radixsort,_radixsort);
67 __weak_alias(sradixsort,_sradixsort);
68 #endif
69
70 typedef struct {
71 const u_char **sa;
72 int sn, si;
73 } stack;
74
75 static inline void simplesort
76 __P((const u_char **, int, int, const u_char *, u_int));
77 static void r_sort_a __P((const u_char **, int, int, const u_char *, u_int));
78 static void r_sort_b __P((const u_char **,
79 const u_char **, int, int, const u_char *, u_int));
80
81 #define THRESHOLD 20 /* Divert to simplesort(). */
82 #define SIZE 512 /* Default stack size. */
83
84 #define SETUP { \
85 if (tab == NULL) { \
86 tr = tr0; \
87 for (c = 0; c < endch; c++) \
88 tr0[c] = c + 1; \
89 tr0[c] = 0; \
90 for (c++; c < 256; c++) \
91 tr0[c] = c; \
92 endch = 0; \
93 } else { \
94 endch = tab[endch]; \
95 tr = tab; \
96 if (endch != 0 && endch != 255) { \
97 errno = EINVAL; \
98 return (-1); \
99 } \
100 } \
101 }
102
103 int
104 radixsort(a, n, tab, endch)
105 const u_char **a, *tab;
106 int n;
107 u_int endch;
108 {
109 const u_char *tr;
110 int c;
111 u_char tr0[256];
112
113 SETUP;
114 r_sort_a(a, n, 0, tr, endch);
115 return (0);
116 }
117
118 int
119 sradixsort(a, n, tab, endch)
120 const u_char **a, *tab;
121 int n;
122 u_int endch;
123 {
124 const u_char *tr, **ta;
125 int c;
126 u_char tr0[256];
127
128 SETUP;
129 if (n < THRESHOLD)
130 simplesort(a, n, 0, tr, endch);
131 else {
132 if ((ta = malloc(n * sizeof(a))) == NULL)
133 return (-1);
134 r_sort_b(a, ta, n, 0, tr, endch);
135 free(ta);
136 }
137 return (0);
138 }
139
140 #define empty(s) (s >= sp)
141 #define pop(a, n, i) a = (--sp)->sa, n = sp->sn, i = sp->si
142 #define push(a, n, i) sp->sa = a, sp->sn = n, (sp++)->si = i
143 #define swap(a, b, t) t = a, a = b, b = t
144
145 /* Unstable, in-place sort. */
146 void
147 r_sort_a(a, n, i, tr, endch)
148 const u_char **a;
149 int n, i;
150 const u_char *tr;
151 u_int endch;
152 {
153 static int count[256], nc, bmin;
154 register int c;
155 register const u_char **ak, *r;
156 stack s[SIZE], *sp, *sp0, *sp1, temp;
157 int *cp, bigc;
158 const u_char **an, *t, **aj, **top[256];
159
160 /* Set up stack. */
161 sp = s;
162 push(a, n, i);
163 while (!empty(s)) {
164 pop(a, n, i);
165 if (n < THRESHOLD) {
166 simplesort(a, n, i, tr, endch);
167 continue;
168 }
169 an = a + n;
170
171 /* Make character histogram. */
172 if (nc == 0) {
173 bmin = 255; /* First occupied bin, excluding eos. */
174 for (ak = a; ak < an;) {
175 c = tr[(*ak++)[i]];
176 if (++count[c] == 1 && c != endch) {
177 if (c < bmin)
178 bmin = c;
179 nc++;
180 }
181 }
182 if (sp + nc > s + SIZE) { /* Get more stack. */
183 r_sort_a(a, n, i, tr, endch);
184 continue;
185 }
186 }
187
188 /*
189 * Set top[]; push incompletely sorted bins onto stack.
190 * top[] = pointers to last out-of-place element in bins.
191 * count[] = counts of elements in bins.
192 * Before permuting: top[c-1] + count[c] = top[c];
193 * during deal: top[c] counts down to top[c-1].
194 */
195 sp0 = sp1 = sp; /* Stack position of biggest bin. */
196 bigc = 2; /* Size of biggest bin. */
197 if (endch == 0) /* Special case: set top[eos]. */
198 top[0] = ak = a + count[0];
199 else {
200 ak = a;
201 top[255] = an;
202 }
203 for (cp = count + bmin; nc > 0; cp++) {
204 while (*cp == 0) /* Find next non-empty pile. */
205 cp++;
206 if (*cp > 1) {
207 if (*cp > bigc) {
208 bigc = *cp;
209 sp1 = sp;
210 }
211 push(ak, *cp, i+1);
212 }
213 top[cp-count] = ak += *cp;
214 nc--;
215 }
216 swap(*sp0, *sp1, temp); /* Play it safe -- biggest bin last. */
217
218 /*
219 * Permute misplacements home. Already home: everything
220 * before aj, and in bin[c], items from top[c] on.
221 * Inner loop:
222 * r = next element to put in place;
223 * ak = top[r[i]] = location to put the next element.
224 * aj = bottom of 1st disordered bin.
225 * Outer loop:
226 * Once the 1st disordered bin is done, ie. aj >= ak,
227 * aj<-aj + count[c] connects the bins in a linked list;
228 * reset count[c].
229 */
230 for (aj = a; aj < an; *aj = r, aj += count[c], count[c] = 0)
231 for (r = *aj; aj < (ak = --top[c = tr[r[i]]]);)
232 swap(*ak, r, t);
233 }
234 }
235
236 /* Stable sort, requiring additional memory. */
237 void
238 r_sort_b(a, ta, n, i, tr, endch)
239 const u_char **a, **ta;
240 int n, i;
241 const u_char *tr;
242 u_int endch;
243 {
244 static int count[256], nc, bmin;
245 register int c;
246 register const u_char **ak, **ai;
247 stack s[512], *sp, *sp0, *sp1, temp;
248 const u_char **top[256];
249 int *cp, bigc;
250
251 sp = s;
252 push(a, n, i);
253 while (!empty(s)) {
254 pop(a, n, i);
255 if (n < THRESHOLD) {
256 simplesort(a, n, i, tr, endch);
257 continue;
258 }
259
260 if (nc == 0) {
261 bmin = 255;
262 for (ak = a + n; --ak >= a;) {
263 c = tr[(*ak)[i]];
264 if (++count[c] == 1 && c != endch) {
265 if (c < bmin)
266 bmin = c;
267 nc++;
268 }
269 }
270 if (sp + nc > s + SIZE) {
271 r_sort_b(a, ta, n, i, tr, endch);
272 continue;
273 }
274 }
275
276 sp0 = sp1 = sp;
277 bigc = 2;
278 if (endch == 0) {
279 top[0] = ak = a + count[0];
280 count[0] = 0;
281 } else {
282 ak = a;
283 top[255] = a + n;
284 count[255] = 0;
285 }
286 for (cp = count + bmin; nc > 0; cp++) {
287 while (*cp == 0)
288 cp++;
289 if ((c = *cp) > 1) {
290 if (c > bigc) {
291 bigc = c;
292 sp1 = sp;
293 }
294 push(ak, c, i+1);
295 }
296 top[cp-count] = ak += c;
297 *cp = 0; /* Reset count[]. */
298 nc--;
299 }
300 swap(*sp0, *sp1, temp);
301
302 for (ak = ta + n, ai = a+n; ak > ta;) /* Copy to temp. */
303 *--ak = *--ai;
304 for (ak = ta+n; --ak >= ta;) /* Deal to piles. */
305 *--top[tr[(*ak)[i]]] = *ak;
306 }
307 }
308
309 static inline void
310 simplesort(a, n, b, tr, endch) /* insertion sort */
311 register const u_char **a;
312 int n, b;
313 register const u_char *tr;
314 u_int endch;
315 {
316 register u_char ch;
317 const u_char **ak, **ai, *s, *t;
318
319 for (ak = a+1; --n >= 1; ak++)
320 for (ai = ak; ai > a; ai--) {
321 for (s = ai[0] + b, t = ai[-1] + b;
322 (ch = tr[*s]) != endch; s++, t++)
323 if (ch != tr[*t])
324 break;
325 if (ch >= tr[*t])
326 break;
327 swap(ai[0], ai[-1], s);
328 }
329 }
330