Home | History | Annotate | Line # | Download | only in time
localtime.c revision 1.1.1.14
      1   1.1.1.5      jtc /*
      2   1.1.1.5      jtc ** This file is in the public domain, so clarified as of
      3  1.1.1.14  mlelstv ** 1996-06-05 by Arthur David Olson.
      4   1.1.1.5      jtc */
      5   1.1.1.5      jtc 
      6       1.1      jtc #ifndef lint
      7       1.1      jtc #ifndef NOID
      8  1.1.1.14  mlelstv static char	elsieid[] = "@(#)localtime.c	8.9";
      9       1.1      jtc #endif /* !defined NOID */
     10       1.1      jtc #endif /* !defined lint */
     11       1.1      jtc 
     12       1.1      jtc /*
     13  1.1.1.14  mlelstv ** Leap second handling from Bradley White.
     14  1.1.1.14  mlelstv ** POSIX-style TZ environment variable handling from Guy Harris.
     15       1.1      jtc */
     16       1.1      jtc 
     17       1.1      jtc /*LINTLIBRARY*/
     18       1.1      jtc 
     19       1.1      jtc #include "private.h"
     20       1.1      jtc #include "tzfile.h"
     21       1.1      jtc #include "fcntl.h"
     22  1.1.1.14  mlelstv #include "float.h"	/* for FLT_MAX and DBL_MAX */
     23  1.1.1.14  mlelstv 
     24  1.1.1.14  mlelstv #ifndef TZ_ABBR_MAX_LEN
     25  1.1.1.14  mlelstv #define TZ_ABBR_MAX_LEN	16
     26  1.1.1.14  mlelstv #endif /* !defined TZ_ABBR_MAX_LEN */
     27  1.1.1.14  mlelstv 
     28  1.1.1.14  mlelstv #ifndef TZ_ABBR_CHAR_SET
     29  1.1.1.14  mlelstv #define TZ_ABBR_CHAR_SET \
     30  1.1.1.14  mlelstv 	"abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789 :+-._"
     31  1.1.1.14  mlelstv #endif /* !defined TZ_ABBR_CHAR_SET */
     32  1.1.1.14  mlelstv 
     33  1.1.1.14  mlelstv #ifndef TZ_ABBR_ERR_CHAR
     34  1.1.1.14  mlelstv #define TZ_ABBR_ERR_CHAR	'_'
     35  1.1.1.14  mlelstv #endif /* !defined TZ_ABBR_ERR_CHAR */
     36       1.1      jtc 
     37       1.1      jtc /*
     38       1.1      jtc ** SunOS 4.1.1 headers lack O_BINARY.
     39       1.1      jtc */
     40       1.1      jtc 
     41       1.1      jtc #ifdef O_BINARY
     42       1.1      jtc #define OPEN_MODE	(O_RDONLY | O_BINARY)
     43       1.1      jtc #endif /* defined O_BINARY */
     44       1.1      jtc #ifndef O_BINARY
     45       1.1      jtc #define OPEN_MODE	O_RDONLY
     46       1.1      jtc #endif /* !defined O_BINARY */
     47       1.1      jtc 
     48       1.1      jtc #ifndef WILDABBR
     49       1.1      jtc /*
     50       1.1      jtc ** Someone might make incorrect use of a time zone abbreviation:
     51       1.1      jtc **	1.	They might reference tzname[0] before calling tzset (explicitly
     52       1.1      jtc **		or implicitly).
     53       1.1      jtc **	2.	They might reference tzname[1] before calling tzset (explicitly
     54       1.1      jtc **		or implicitly).
     55       1.1      jtc **	3.	They might reference tzname[1] after setting to a time zone
     56       1.1      jtc **		in which Daylight Saving Time is never observed.
     57       1.1      jtc **	4.	They might reference tzname[0] after setting to a time zone
     58       1.1      jtc **		in which Standard Time is never observed.
     59       1.1      jtc **	5.	They might reference tm.TM_ZONE after calling offtime.
     60       1.1      jtc ** What's best to do in the above cases is open to debate;
     61       1.1      jtc ** for now, we just set things up so that in any of the five cases
     62  1.1.1.14  mlelstv ** WILDABBR is used. Another possibility: initialize tzname[0] to the
     63       1.1      jtc ** string "tzname[0] used before set", and similarly for the other cases.
     64  1.1.1.14  mlelstv ** And another: initialize tzname[0] to "ERA", with an explanation in the
     65       1.1      jtc ** manual page of what this "time zone abbreviation" means (doing this so
     66       1.1      jtc ** that tzname[0] has the "normal" length of three characters).
     67       1.1      jtc */
     68       1.1      jtc #define WILDABBR	"   "
     69       1.1      jtc #endif /* !defined WILDABBR */
     70       1.1      jtc 
     71  1.1.1.14  mlelstv static char		wildabbr[] = WILDABBR;
     72       1.1      jtc 
     73       1.1      jtc static const char	gmt[] = "GMT";
     74       1.1      jtc 
     75  1.1.1.10   kleink /*
     76  1.1.1.10   kleink ** The DST rules to use if TZ has no rules and we can't load TZDEFRULES.
     77  1.1.1.10   kleink ** We default to US rules as of 1999-08-17.
     78  1.1.1.10   kleink ** POSIX 1003.1 section 8.1.1 says that the default DST rules are
     79  1.1.1.10   kleink ** implementation dependent; for historical reasons, US rules are a
     80  1.1.1.10   kleink ** common default.
     81  1.1.1.10   kleink */
     82  1.1.1.10   kleink #ifndef TZDEFRULESTRING
     83  1.1.1.10   kleink #define TZDEFRULESTRING ",M4.1.0,M10.5.0"
     84  1.1.1.10   kleink #endif /* !defined TZDEFDST */
     85  1.1.1.10   kleink 
     86       1.1      jtc struct ttinfo {				/* time type information */
     87   1.1.1.8      jtc 	long		tt_gmtoff;	/* UTC offset in seconds */
     88       1.1      jtc 	int		tt_isdst;	/* used to set tm_isdst */
     89       1.1      jtc 	int		tt_abbrind;	/* abbreviation list index */
     90       1.1      jtc 	int		tt_ttisstd;	/* TRUE if transition is std time */
     91   1.1.1.8      jtc 	int		tt_ttisgmt;	/* TRUE if transition is UTC */
     92       1.1      jtc };
     93       1.1      jtc 
     94       1.1      jtc struct lsinfo {				/* leap second information */
     95       1.1      jtc 	time_t		ls_trans;	/* transition time */
     96       1.1      jtc 	long		ls_corr;	/* correction to apply */
     97       1.1      jtc };
     98       1.1      jtc 
     99       1.1      jtc #define BIGGEST(a, b)	(((a) > (b)) ? (a) : (b))
    100       1.1      jtc 
    101       1.1      jtc #ifdef TZNAME_MAX
    102       1.1      jtc #define MY_TZNAME_MAX	TZNAME_MAX
    103       1.1      jtc #endif /* defined TZNAME_MAX */
    104       1.1      jtc #ifndef TZNAME_MAX
    105       1.1      jtc #define MY_TZNAME_MAX	255
    106       1.1      jtc #endif /* !defined TZNAME_MAX */
    107       1.1      jtc 
    108       1.1      jtc struct state {
    109       1.1      jtc 	int		leapcnt;
    110       1.1      jtc 	int		timecnt;
    111       1.1      jtc 	int		typecnt;
    112       1.1      jtc 	int		charcnt;
    113  1.1.1.14  mlelstv 	int		goback;
    114  1.1.1.14  mlelstv 	int		goahead;
    115       1.1      jtc 	time_t		ats[TZ_MAX_TIMES];
    116       1.1      jtc 	unsigned char	types[TZ_MAX_TIMES];
    117       1.1      jtc 	struct ttinfo	ttis[TZ_MAX_TYPES];
    118       1.1      jtc 	char		chars[BIGGEST(BIGGEST(TZ_MAX_CHARS + 1, sizeof gmt),
    119       1.1      jtc 				(2 * (MY_TZNAME_MAX + 1)))];
    120       1.1      jtc 	struct lsinfo	lsis[TZ_MAX_LEAPS];
    121       1.1      jtc };
    122       1.1      jtc 
    123       1.1      jtc struct rule {
    124       1.1      jtc 	int		r_type;		/* type of rule--see below */
    125       1.1      jtc 	int		r_day;		/* day number of rule */
    126       1.1      jtc 	int		r_week;		/* week number of rule */
    127       1.1      jtc 	int		r_mon;		/* month number of rule */
    128       1.1      jtc 	long		r_time;		/* transition time of rule */
    129       1.1      jtc };
    130       1.1      jtc 
    131       1.1      jtc #define JULIAN_DAY		0	/* Jn - Julian day */
    132       1.1      jtc #define DAY_OF_YEAR		1	/* n - day of year */
    133       1.1      jtc #define MONTH_NTH_DAY_OF_WEEK	2	/* Mm.n.d - month, week, day of week */
    134       1.1      jtc 
    135       1.1      jtc /*
    136       1.1      jtc ** Prototypes for static functions.
    137       1.1      jtc */
    138       1.1      jtc 
    139  1.1.1.14  mlelstv static long		detzcode(const char * codep);
    140  1.1.1.14  mlelstv static time_t		detzcode64(const char * codep);
    141  1.1.1.14  mlelstv static int		differ_by_repeat(time_t t1, time_t t0);
    142  1.1.1.14  mlelstv static const char *	getzname(const char * strp);
    143  1.1.1.14  mlelstv static const char *	getqzname(const char * strp, const int delim);
    144  1.1.1.14  mlelstv static const char *	getnum(const char * strp, int * nump, int min,
    145  1.1.1.14  mlelstv 				int max);
    146  1.1.1.14  mlelstv static const char *	getsecs(const char * strp, long * secsp);
    147  1.1.1.14  mlelstv static const char *	getoffset(const char * strp, long * offsetp);
    148  1.1.1.14  mlelstv static const char *	getrule(const char * strp, struct rule * rulep);
    149  1.1.1.14  mlelstv static void		gmtload(struct state * sp);
    150  1.1.1.14  mlelstv static struct tm *	gmtsub(const time_t * timep, long offset,
    151  1.1.1.14  mlelstv 				struct tm * tmp);
    152  1.1.1.14  mlelstv static struct tm *	localsub(const time_t * timep, long offset,
    153  1.1.1.14  mlelstv 				struct tm * tmp);
    154  1.1.1.14  mlelstv static int		increment_overflow(int * number, int delta);
    155  1.1.1.14  mlelstv static int		leaps_thru_end_of(int y);
    156  1.1.1.14  mlelstv static int		long_increment_overflow(long * number, int delta);
    157  1.1.1.14  mlelstv static int		long_normalize_overflow(long * tensptr,
    158  1.1.1.14  mlelstv 				int * unitsptr, int base);
    159  1.1.1.14  mlelstv static int		normalize_overflow(int * tensptr, int * unitsptr,
    160  1.1.1.14  mlelstv 				int base);
    161  1.1.1.14  mlelstv static void		settzname(void);
    162  1.1.1.14  mlelstv static time_t		time1(struct tm * tmp,
    163  1.1.1.14  mlelstv 				struct tm * (*funcp)(const time_t *,
    164  1.1.1.14  mlelstv 				long, struct tm *),
    165  1.1.1.14  mlelstv 				long offset);
    166  1.1.1.14  mlelstv static time_t		time2(struct tm *tmp,
    167  1.1.1.14  mlelstv 				struct tm * (*funcp)(const time_t *,
    168  1.1.1.14  mlelstv 				long, struct tm*),
    169  1.1.1.14  mlelstv 				long offset, int * okayp);
    170  1.1.1.14  mlelstv static time_t		time2sub(struct tm *tmp,
    171  1.1.1.14  mlelstv 				struct tm * (*funcp)(const time_t *,
    172  1.1.1.14  mlelstv 				long, struct tm*),
    173  1.1.1.14  mlelstv 				long offset, int * okayp, int do_norm_secs);
    174  1.1.1.14  mlelstv static struct tm *	timesub(const time_t * timep, long offset,
    175  1.1.1.14  mlelstv 				const struct state * sp, struct tm * tmp);
    176  1.1.1.14  mlelstv static int		tmcomp(const struct tm * atmp,
    177  1.1.1.14  mlelstv 				const struct tm * btmp);
    178  1.1.1.14  mlelstv static time_t		transtime(time_t janfirst, int year,
    179  1.1.1.14  mlelstv 				const struct rule * rulep, long offset);
    180  1.1.1.14  mlelstv static int		typesequiv(const struct state * sp, int a, int b);
    181  1.1.1.14  mlelstv static int		tzload(const char * name, struct state * sp,
    182  1.1.1.14  mlelstv 				int doextend);
    183  1.1.1.14  mlelstv static int		tzparse(const char * name, struct state * sp,
    184  1.1.1.14  mlelstv 				int lastditch);
    185       1.1      jtc 
    186       1.1      jtc #ifdef ALL_STATE
    187       1.1      jtc static struct state *	lclptr;
    188       1.1      jtc static struct state *	gmtptr;
    189       1.1      jtc #endif /* defined ALL_STATE */
    190       1.1      jtc 
    191       1.1      jtc #ifndef ALL_STATE
    192       1.1      jtc static struct state	lclmem;
    193       1.1      jtc static struct state	gmtmem;
    194       1.1      jtc #define lclptr		(&lclmem)
    195       1.1      jtc #define gmtptr		(&gmtmem)
    196       1.1      jtc #endif /* State Farm */
    197       1.1      jtc 
    198       1.1      jtc #ifndef TZ_STRLEN_MAX
    199       1.1      jtc #define TZ_STRLEN_MAX 255
    200       1.1      jtc #endif /* !defined TZ_STRLEN_MAX */
    201       1.1      jtc 
    202       1.1      jtc static char		lcl_TZname[TZ_STRLEN_MAX + 1];
    203       1.1      jtc static int		lcl_is_set;
    204       1.1      jtc static int		gmt_is_set;
    205       1.1      jtc 
    206       1.1      jtc char *			tzname[2] = {
    207       1.1      jtc 	wildabbr,
    208       1.1      jtc 	wildabbr
    209       1.1      jtc };
    210       1.1      jtc 
    211       1.1      jtc /*
    212       1.1      jtc ** Section 4.12.3 of X3.159-1989 requires that
    213       1.1      jtc **	Except for the strftime function, these functions [asctime,
    214       1.1      jtc **	ctime, gmtime, localtime] return values in one of two static
    215       1.1      jtc **	objects: a broken-down time structure and an array of char.
    216  1.1.1.14  mlelstv ** Thanks to Paul Eggert for noting this.
    217       1.1      jtc */
    218       1.1      jtc 
    219       1.1      jtc static struct tm	tm;
    220       1.1      jtc 
    221       1.1      jtc #ifdef USG_COMPAT
    222       1.1      jtc time_t			timezone = 0;
    223       1.1      jtc int			daylight = 0;
    224       1.1      jtc #endif /* defined USG_COMPAT */
    225       1.1      jtc 
    226       1.1      jtc #ifdef ALTZONE
    227       1.1      jtc time_t			altzone = 0;
    228       1.1      jtc #endif /* defined ALTZONE */
    229       1.1      jtc 
    230       1.1      jtc static long
    231       1.1      jtc detzcode(codep)
    232       1.1      jtc const char * const	codep;
    233       1.1      jtc {
    234       1.1      jtc 	register long	result;
    235       1.1      jtc 	register int	i;
    236       1.1      jtc 
    237  1.1.1.14  mlelstv 	result = (codep[0] & 0x80) ? ~0L : 0;
    238       1.1      jtc 	for (i = 0; i < 4; ++i)
    239       1.1      jtc 		result = (result << 8) | (codep[i] & 0xff);
    240       1.1      jtc 	return result;
    241       1.1      jtc }
    242       1.1      jtc 
    243  1.1.1.14  mlelstv static time_t
    244  1.1.1.14  mlelstv detzcode64(codep)
    245  1.1.1.14  mlelstv const char * const	codep;
    246  1.1.1.14  mlelstv {
    247  1.1.1.14  mlelstv 	register time_t	result;
    248  1.1.1.14  mlelstv 	register int	i;
    249  1.1.1.14  mlelstv 
    250  1.1.1.14  mlelstv 	result = (codep[0] & 0x80) ?  (~(int_fast64_t) 0) : 0;
    251  1.1.1.14  mlelstv 	for (i = 0; i < 8; ++i)
    252  1.1.1.14  mlelstv 		result = result * 256 + (codep[i] & 0xff);
    253  1.1.1.14  mlelstv 	return result;
    254  1.1.1.14  mlelstv }
    255  1.1.1.14  mlelstv 
    256       1.1      jtc static void
    257  1.1.1.14  mlelstv settzname(void)
    258       1.1      jtc {
    259   1.1.1.3      jtc 	register struct state * const	sp = lclptr;
    260   1.1.1.3      jtc 	register int			i;
    261       1.1      jtc 
    262       1.1      jtc 	tzname[0] = wildabbr;
    263       1.1      jtc 	tzname[1] = wildabbr;
    264       1.1      jtc #ifdef USG_COMPAT
    265       1.1      jtc 	daylight = 0;
    266       1.1      jtc 	timezone = 0;
    267       1.1      jtc #endif /* defined USG_COMPAT */
    268       1.1      jtc #ifdef ALTZONE
    269       1.1      jtc 	altzone = 0;
    270       1.1      jtc #endif /* defined ALTZONE */
    271       1.1      jtc #ifdef ALL_STATE
    272       1.1      jtc 	if (sp == NULL) {
    273       1.1      jtc 		tzname[0] = tzname[1] = gmt;
    274       1.1      jtc 		return;
    275       1.1      jtc 	}
    276       1.1      jtc #endif /* defined ALL_STATE */
    277       1.1      jtc 	for (i = 0; i < sp->typecnt; ++i) {
    278       1.1      jtc 		register const struct ttinfo * const	ttisp = &sp->ttis[i];
    279       1.1      jtc 
    280       1.1      jtc 		tzname[ttisp->tt_isdst] =
    281       1.1      jtc 			&sp->chars[ttisp->tt_abbrind];
    282       1.1      jtc #ifdef USG_COMPAT
    283       1.1      jtc 		if (ttisp->tt_isdst)
    284       1.1      jtc 			daylight = 1;
    285       1.1      jtc 		if (i == 0 || !ttisp->tt_isdst)
    286       1.1      jtc 			timezone = -(ttisp->tt_gmtoff);
    287       1.1      jtc #endif /* defined USG_COMPAT */
    288       1.1      jtc #ifdef ALTZONE
    289       1.1      jtc 		if (i == 0 || ttisp->tt_isdst)
    290       1.1      jtc 			altzone = -(ttisp->tt_gmtoff);
    291       1.1      jtc #endif /* defined ALTZONE */
    292       1.1      jtc 	}
    293       1.1      jtc 	/*
    294       1.1      jtc 	** And to get the latest zone names into tzname. . .
    295       1.1      jtc 	*/
    296       1.1      jtc 	for (i = 0; i < sp->timecnt; ++i) {
    297       1.1      jtc 		register const struct ttinfo * const	ttisp =
    298       1.1      jtc 							&sp->ttis[
    299       1.1      jtc 								sp->types[i]];
    300       1.1      jtc 
    301       1.1      jtc 		tzname[ttisp->tt_isdst] =
    302       1.1      jtc 			&sp->chars[ttisp->tt_abbrind];
    303       1.1      jtc 	}
    304  1.1.1.14  mlelstv 	/*
    305  1.1.1.14  mlelstv 	** Finally, scrub the abbreviations.
    306  1.1.1.14  mlelstv 	** First, replace bogus characters.
    307  1.1.1.14  mlelstv 	*/
    308  1.1.1.14  mlelstv 	for (i = 0; i < sp->charcnt; ++i)
    309  1.1.1.14  mlelstv 		if (strchr(TZ_ABBR_CHAR_SET, sp->chars[i]) == NULL)
    310  1.1.1.14  mlelstv 			sp->chars[i] = TZ_ABBR_ERR_CHAR;
    311  1.1.1.14  mlelstv 	/*
    312  1.1.1.14  mlelstv 	** Second, truncate long abbreviations.
    313  1.1.1.14  mlelstv 	*/
    314  1.1.1.14  mlelstv 	for (i = 0; i < sp->typecnt; ++i) {
    315  1.1.1.14  mlelstv 		register const struct ttinfo * const	ttisp = &sp->ttis[i];
    316  1.1.1.14  mlelstv 		register char *				cp = &sp->chars[ttisp->tt_abbrind];
    317  1.1.1.14  mlelstv 
    318  1.1.1.14  mlelstv 		if (strlen(cp) > TZ_ABBR_MAX_LEN &&
    319  1.1.1.14  mlelstv 			strcmp(cp, GRANDPARENTED) != 0)
    320  1.1.1.14  mlelstv 				*(cp + TZ_ABBR_MAX_LEN) = '\0';
    321  1.1.1.14  mlelstv 	}
    322       1.1      jtc }
    323       1.1      jtc 
    324       1.1      jtc static int
    325  1.1.1.14  mlelstv differ_by_repeat(t1, t0)
    326  1.1.1.14  mlelstv const time_t	t1;
    327  1.1.1.14  mlelstv const time_t	t0;
    328  1.1.1.14  mlelstv {
    329  1.1.1.14  mlelstv 	if (TYPE_INTEGRAL(time_t) &&
    330  1.1.1.14  mlelstv 		TYPE_BIT(time_t) - TYPE_SIGNED(time_t) < SECSPERREPEAT_BITS)
    331  1.1.1.14  mlelstv 			return 0;
    332  1.1.1.14  mlelstv 	return t1 - t0 == SECSPERREPEAT;
    333  1.1.1.14  mlelstv }
    334  1.1.1.14  mlelstv 
    335  1.1.1.14  mlelstv static int
    336  1.1.1.14  mlelstv tzload(name, sp, doextend)
    337       1.1      jtc register const char *		name;
    338       1.1      jtc register struct state * const	sp;
    339  1.1.1.14  mlelstv register const int		doextend;
    340       1.1      jtc {
    341  1.1.1.14  mlelstv 	register const char *		p;
    342  1.1.1.14  mlelstv 	register int			i;
    343  1.1.1.14  mlelstv 	register int			fid;
    344  1.1.1.14  mlelstv 	register int			stored;
    345  1.1.1.14  mlelstv 	register int			nread;
    346  1.1.1.14  mlelstv 	union {
    347  1.1.1.14  mlelstv 		struct tzhead	tzhead;
    348  1.1.1.14  mlelstv 		char		buf[2 * sizeof(struct tzhead) +
    349  1.1.1.14  mlelstv 					2 * sizeof *sp +
    350  1.1.1.14  mlelstv 					4 * TZ_MAX_TIMES];
    351  1.1.1.14  mlelstv 	} u;
    352       1.1      jtc 
    353       1.1      jtc 	if (name == NULL && (name = TZDEFAULT) == NULL)
    354       1.1      jtc 		return -1;
    355       1.1      jtc 	{
    356       1.1      jtc 		register int	doaccess;
    357       1.1      jtc 		/*
    358       1.1      jtc 		** Section 4.9.1 of the C standard says that
    359       1.1      jtc 		** "FILENAME_MAX expands to an integral constant expression
    360   1.1.1.6      jtc 		** that is the size needed for an array of char large enough
    361       1.1      jtc 		** to hold the longest file name string that the implementation
    362       1.1      jtc 		** guarantees can be opened."
    363       1.1      jtc 		*/
    364       1.1      jtc 		char		fullname[FILENAME_MAX + 1];
    365       1.1      jtc 
    366       1.1      jtc 		if (name[0] == ':')
    367       1.1      jtc 			++name;
    368       1.1      jtc 		doaccess = name[0] == '/';
    369       1.1      jtc 		if (!doaccess) {
    370       1.1      jtc 			if ((p = TZDIR) == NULL)
    371       1.1      jtc 				return -1;
    372       1.1      jtc 			if ((strlen(p) + strlen(name) + 1) >= sizeof fullname)
    373       1.1      jtc 				return -1;
    374       1.1      jtc 			(void) strcpy(fullname, p);
    375       1.1      jtc 			(void) strcat(fullname, "/");
    376       1.1      jtc 			(void) strcat(fullname, name);
    377       1.1      jtc 			/*
    378       1.1      jtc 			** Set doaccess if '.' (as in "../") shows up in name.
    379       1.1      jtc 			*/
    380       1.1      jtc 			if (strchr(name, '.') != NULL)
    381       1.1      jtc 				doaccess = TRUE;
    382       1.1      jtc 			name = fullname;
    383       1.1      jtc 		}
    384       1.1      jtc 		if (doaccess && access(name, R_OK) != 0)
    385       1.1      jtc 			return -1;
    386       1.1      jtc 		if ((fid = open(name, OPEN_MODE)) == -1)
    387       1.1      jtc 			return -1;
    388       1.1      jtc 	}
    389  1.1.1.14  mlelstv 	nread = read(fid, u.buf, sizeof u.buf);
    390  1.1.1.14  mlelstv 	if (close(fid) < 0 || nread <= 0)
    391  1.1.1.14  mlelstv 		return -1;
    392  1.1.1.14  mlelstv 	for (stored = 4; stored <= 8; stored *= 2) {
    393       1.1      jtc 		int		ttisstdcnt;
    394       1.1      jtc 		int		ttisgmtcnt;
    395       1.1      jtc 
    396  1.1.1.12   kleink 		ttisstdcnt = (int) detzcode(u.tzhead.tzh_ttisstdcnt);
    397  1.1.1.12   kleink 		ttisgmtcnt = (int) detzcode(u.tzhead.tzh_ttisgmtcnt);
    398   1.1.1.8      jtc 		sp->leapcnt = (int) detzcode(u.tzhead.tzh_leapcnt);
    399   1.1.1.8      jtc 		sp->timecnt = (int) detzcode(u.tzhead.tzh_timecnt);
    400   1.1.1.8      jtc 		sp->typecnt = (int) detzcode(u.tzhead.tzh_typecnt);
    401   1.1.1.8      jtc 		sp->charcnt = (int) detzcode(u.tzhead.tzh_charcnt);
    402   1.1.1.8      jtc 		p = u.tzhead.tzh_charcnt + sizeof u.tzhead.tzh_charcnt;
    403       1.1      jtc 		if (sp->leapcnt < 0 || sp->leapcnt > TZ_MAX_LEAPS ||
    404       1.1      jtc 			sp->typecnt <= 0 || sp->typecnt > TZ_MAX_TYPES ||
    405       1.1      jtc 			sp->timecnt < 0 || sp->timecnt > TZ_MAX_TIMES ||
    406       1.1      jtc 			sp->charcnt < 0 || sp->charcnt > TZ_MAX_CHARS ||
    407       1.1      jtc 			(ttisstdcnt != sp->typecnt && ttisstdcnt != 0) ||
    408       1.1      jtc 			(ttisgmtcnt != sp->typecnt && ttisgmtcnt != 0))
    409       1.1      jtc 				return -1;
    410  1.1.1.14  mlelstv 		if (nread - (p - u.buf) <
    411  1.1.1.14  mlelstv 			sp->timecnt * stored +		/* ats */
    412       1.1      jtc 			sp->timecnt +			/* types */
    413  1.1.1.14  mlelstv 			sp->typecnt * 6 +		/* ttinfos */
    414       1.1      jtc 			sp->charcnt +			/* chars */
    415  1.1.1.14  mlelstv 			sp->leapcnt * (stored + 4) +	/* lsinfos */
    416       1.1      jtc 			ttisstdcnt +			/* ttisstds */
    417       1.1      jtc 			ttisgmtcnt)			/* ttisgmts */
    418       1.1      jtc 				return -1;
    419       1.1      jtc 		for (i = 0; i < sp->timecnt; ++i) {
    420  1.1.1.14  mlelstv 			sp->ats[i] = (stored == 4) ?
    421  1.1.1.14  mlelstv 				detzcode(p) : detzcode64(p);
    422  1.1.1.14  mlelstv 			p += stored;
    423       1.1      jtc 		}
    424       1.1      jtc 		for (i = 0; i < sp->timecnt; ++i) {
    425       1.1      jtc 			sp->types[i] = (unsigned char) *p++;
    426       1.1      jtc 			if (sp->types[i] >= sp->typecnt)
    427       1.1      jtc 				return -1;
    428       1.1      jtc 		}
    429       1.1      jtc 		for (i = 0; i < sp->typecnt; ++i) {
    430       1.1      jtc 			register struct ttinfo *	ttisp;
    431       1.1      jtc 
    432       1.1      jtc 			ttisp = &sp->ttis[i];
    433       1.1      jtc 			ttisp->tt_gmtoff = detzcode(p);
    434       1.1      jtc 			p += 4;
    435       1.1      jtc 			ttisp->tt_isdst = (unsigned char) *p++;
    436       1.1      jtc 			if (ttisp->tt_isdst != 0 && ttisp->tt_isdst != 1)
    437       1.1      jtc 				return -1;
    438       1.1      jtc 			ttisp->tt_abbrind = (unsigned char) *p++;
    439       1.1      jtc 			if (ttisp->tt_abbrind < 0 ||
    440       1.1      jtc 				ttisp->tt_abbrind > sp->charcnt)
    441       1.1      jtc 					return -1;
    442       1.1      jtc 		}
    443       1.1      jtc 		for (i = 0; i < sp->charcnt; ++i)
    444       1.1      jtc 			sp->chars[i] = *p++;
    445       1.1      jtc 		sp->chars[i] = '\0';	/* ensure '\0' at end */
    446       1.1      jtc 		for (i = 0; i < sp->leapcnt; ++i) {
    447       1.1      jtc 			register struct lsinfo *	lsisp;
    448       1.1      jtc 
    449       1.1      jtc 			lsisp = &sp->lsis[i];
    450  1.1.1.14  mlelstv 			lsisp->ls_trans = (stored == 4) ?
    451  1.1.1.14  mlelstv 				detzcode(p) : detzcode64(p);
    452  1.1.1.14  mlelstv 			p += stored;
    453       1.1      jtc 			lsisp->ls_corr = detzcode(p);
    454       1.1      jtc 			p += 4;
    455       1.1      jtc 		}
    456       1.1      jtc 		for (i = 0; i < sp->typecnt; ++i) {
    457       1.1      jtc 			register struct ttinfo *	ttisp;
    458       1.1      jtc 
    459       1.1      jtc 			ttisp = &sp->ttis[i];
    460       1.1      jtc 			if (ttisstdcnt == 0)
    461       1.1      jtc 				ttisp->tt_ttisstd = FALSE;
    462       1.1      jtc 			else {
    463       1.1      jtc 				ttisp->tt_ttisstd = *p++;
    464       1.1      jtc 				if (ttisp->tt_ttisstd != TRUE &&
    465       1.1      jtc 					ttisp->tt_ttisstd != FALSE)
    466       1.1      jtc 						return -1;
    467       1.1      jtc 			}
    468       1.1      jtc 		}
    469       1.1      jtc 		for (i = 0; i < sp->typecnt; ++i) {
    470       1.1      jtc 			register struct ttinfo *	ttisp;
    471       1.1      jtc 
    472       1.1      jtc 			ttisp = &sp->ttis[i];
    473       1.1      jtc 			if (ttisgmtcnt == 0)
    474       1.1      jtc 				ttisp->tt_ttisgmt = FALSE;
    475       1.1      jtc 			else {
    476       1.1      jtc 				ttisp->tt_ttisgmt = *p++;
    477       1.1      jtc 				if (ttisp->tt_ttisgmt != TRUE &&
    478       1.1      jtc 					ttisp->tt_ttisgmt != FALSE)
    479       1.1      jtc 						return -1;
    480       1.1      jtc 			}
    481       1.1      jtc 		}
    482  1.1.1.14  mlelstv 		/*
    483  1.1.1.14  mlelstv 		** Out-of-sort ats should mean we're running on a
    484  1.1.1.14  mlelstv 		** signed time_t system but using a data file with
    485  1.1.1.14  mlelstv 		** unsigned values (or vice versa).
    486  1.1.1.14  mlelstv 		*/
    487  1.1.1.14  mlelstv 		for (i = 0; i < sp->timecnt - 2; ++i)
    488  1.1.1.14  mlelstv 			if (sp->ats[i] > sp->ats[i + 1]) {
    489  1.1.1.14  mlelstv 				++i;
    490  1.1.1.14  mlelstv 				if (TYPE_SIGNED(time_t)) {
    491  1.1.1.14  mlelstv 					/*
    492  1.1.1.14  mlelstv 					** Ignore the end (easy).
    493  1.1.1.14  mlelstv 					*/
    494  1.1.1.14  mlelstv 					sp->timecnt = i;
    495  1.1.1.14  mlelstv 				} else {
    496  1.1.1.14  mlelstv 					/*
    497  1.1.1.14  mlelstv 					** Ignore the beginning (harder).
    498  1.1.1.14  mlelstv 					*/
    499  1.1.1.14  mlelstv 					register int	j;
    500  1.1.1.14  mlelstv 
    501  1.1.1.14  mlelstv 					for (j = 0; j + i < sp->timecnt; ++j) {
    502  1.1.1.14  mlelstv 						sp->ats[j] = sp->ats[j + i];
    503  1.1.1.14  mlelstv 						sp->types[j] = sp->types[j + i];
    504  1.1.1.14  mlelstv 					}
    505  1.1.1.14  mlelstv 					sp->timecnt = j;
    506  1.1.1.14  mlelstv 				}
    507  1.1.1.14  mlelstv 				break;
    508  1.1.1.14  mlelstv 			}
    509  1.1.1.14  mlelstv 		/*
    510  1.1.1.14  mlelstv 		** If this is an old file, we're done.
    511  1.1.1.14  mlelstv 		*/
    512  1.1.1.14  mlelstv 		if (u.tzhead.tzh_version[0] == '\0')
    513  1.1.1.14  mlelstv 			break;
    514  1.1.1.14  mlelstv 		nread -= p - u.buf;
    515  1.1.1.14  mlelstv 		for (i = 0; i < nread; ++i)
    516  1.1.1.14  mlelstv 			u.buf[i] = p[i];
    517  1.1.1.14  mlelstv 		/*
    518  1.1.1.14  mlelstv 		** If this is a narrow integer time_t system, we're done.
    519  1.1.1.14  mlelstv 		*/
    520  1.1.1.14  mlelstv 		if (stored >= (int) sizeof(time_t) && TYPE_INTEGRAL(time_t))
    521  1.1.1.14  mlelstv 			break;
    522  1.1.1.14  mlelstv 	}
    523  1.1.1.14  mlelstv 	if (doextend && nread > 2 &&
    524  1.1.1.14  mlelstv 		u.buf[0] == '\n' && u.buf[nread - 1] == '\n' &&
    525  1.1.1.14  mlelstv 		sp->typecnt + 2 <= TZ_MAX_TYPES) {
    526  1.1.1.14  mlelstv 			struct state	ts;
    527  1.1.1.14  mlelstv 			register int	result;
    528  1.1.1.14  mlelstv 
    529  1.1.1.14  mlelstv 			u.buf[nread - 1] = '\0';
    530  1.1.1.14  mlelstv 			result = tzparse(&u.buf[1], &ts, FALSE);
    531  1.1.1.14  mlelstv 			if (result == 0 && ts.typecnt == 2 &&
    532  1.1.1.14  mlelstv 				sp->charcnt + ts.charcnt <= TZ_MAX_CHARS) {
    533  1.1.1.14  mlelstv 					for (i = 0; i < 2; ++i)
    534  1.1.1.14  mlelstv 						ts.ttis[i].tt_abbrind +=
    535  1.1.1.14  mlelstv 							sp->charcnt;
    536  1.1.1.14  mlelstv 					for (i = 0; i < ts.charcnt; ++i)
    537  1.1.1.14  mlelstv 						sp->chars[sp->charcnt++] =
    538  1.1.1.14  mlelstv 							ts.chars[i];
    539  1.1.1.14  mlelstv 					i = 0;
    540  1.1.1.14  mlelstv 					while (i < ts.timecnt &&
    541  1.1.1.14  mlelstv 						ts.ats[i] <=
    542  1.1.1.14  mlelstv 						sp->ats[sp->timecnt - 1])
    543  1.1.1.14  mlelstv 							++i;
    544  1.1.1.14  mlelstv 					while (i < ts.timecnt &&
    545  1.1.1.14  mlelstv 					    sp->timecnt < TZ_MAX_TIMES) {
    546  1.1.1.14  mlelstv 						sp->ats[sp->timecnt] =
    547  1.1.1.14  mlelstv 							ts.ats[i];
    548  1.1.1.14  mlelstv 						sp->types[sp->timecnt] =
    549  1.1.1.14  mlelstv 							sp->typecnt +
    550  1.1.1.14  mlelstv 							ts.types[i];
    551  1.1.1.14  mlelstv 						++sp->timecnt;
    552  1.1.1.14  mlelstv 						++i;
    553  1.1.1.14  mlelstv 					}
    554  1.1.1.14  mlelstv 					sp->ttis[sp->typecnt++] = ts.ttis[0];
    555  1.1.1.14  mlelstv 					sp->ttis[sp->typecnt++] = ts.ttis[1];
    556  1.1.1.14  mlelstv 			}
    557  1.1.1.14  mlelstv 	}
    558  1.1.1.14  mlelstv 	sp->goback = sp->goahead = FALSE;
    559  1.1.1.14  mlelstv 	if (sp->timecnt > 1) {
    560  1.1.1.14  mlelstv 		for (i = 1; i < sp->timecnt; ++i)
    561  1.1.1.14  mlelstv 			if (typesequiv(sp, sp->types[i], sp->types[0]) &&
    562  1.1.1.14  mlelstv 				differ_by_repeat(sp->ats[i], sp->ats[0])) {
    563  1.1.1.14  mlelstv 					sp->goback = TRUE;
    564  1.1.1.14  mlelstv 					break;
    565  1.1.1.14  mlelstv 				}
    566  1.1.1.14  mlelstv 		for (i = sp->timecnt - 2; i >= 0; --i)
    567  1.1.1.14  mlelstv 			if (typesequiv(sp, sp->types[sp->timecnt - 1],
    568  1.1.1.14  mlelstv 				sp->types[i]) &&
    569  1.1.1.14  mlelstv 				differ_by_repeat(sp->ats[sp->timecnt - 1],
    570  1.1.1.14  mlelstv 				sp->ats[i])) {
    571  1.1.1.14  mlelstv 					sp->goahead = TRUE;
    572  1.1.1.14  mlelstv 					break;
    573  1.1.1.14  mlelstv 		}
    574       1.1      jtc 	}
    575       1.1      jtc 	return 0;
    576       1.1      jtc }
    577       1.1      jtc 
    578  1.1.1.14  mlelstv static int
    579  1.1.1.14  mlelstv typesequiv(sp, a, b)
    580  1.1.1.14  mlelstv const struct state * const	sp;
    581  1.1.1.14  mlelstv const int			a;
    582  1.1.1.14  mlelstv const int			b;
    583  1.1.1.14  mlelstv {
    584  1.1.1.14  mlelstv 	register int	result;
    585  1.1.1.14  mlelstv 
    586  1.1.1.14  mlelstv 	if (sp == NULL ||
    587  1.1.1.14  mlelstv 		a < 0 || a >= sp->typecnt ||
    588  1.1.1.14  mlelstv 		b < 0 || b >= sp->typecnt)
    589  1.1.1.14  mlelstv 			result = FALSE;
    590  1.1.1.14  mlelstv 	else {
    591  1.1.1.14  mlelstv 		register const struct ttinfo *	ap = &sp->ttis[a];
    592  1.1.1.14  mlelstv 		register const struct ttinfo *	bp = &sp->ttis[b];
    593  1.1.1.14  mlelstv 		result = ap->tt_gmtoff == bp->tt_gmtoff &&
    594  1.1.1.14  mlelstv 			ap->tt_isdst == bp->tt_isdst &&
    595  1.1.1.14  mlelstv 			ap->tt_ttisstd == bp->tt_ttisstd &&
    596  1.1.1.14  mlelstv 			ap->tt_ttisgmt == bp->tt_ttisgmt &&
    597  1.1.1.14  mlelstv 			strcmp(&sp->chars[ap->tt_abbrind],
    598  1.1.1.14  mlelstv 			&sp->chars[bp->tt_abbrind]) == 0;
    599  1.1.1.14  mlelstv 	}
    600  1.1.1.14  mlelstv 	return result;
    601  1.1.1.14  mlelstv }
    602  1.1.1.14  mlelstv 
    603       1.1      jtc static const int	mon_lengths[2][MONSPERYEAR] = {
    604       1.1      jtc 	{ 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 },
    605       1.1      jtc 	{ 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }
    606       1.1      jtc };
    607       1.1      jtc 
    608       1.1      jtc static const int	year_lengths[2] = {
    609       1.1      jtc 	DAYSPERNYEAR, DAYSPERLYEAR
    610       1.1      jtc };
    611       1.1      jtc 
    612       1.1      jtc /*
    613       1.1      jtc ** Given a pointer into a time zone string, scan until a character that is not
    614  1.1.1.14  mlelstv ** a valid character in a zone name is found. Return a pointer to that
    615       1.1      jtc ** character.
    616       1.1      jtc */
    617       1.1      jtc 
    618       1.1      jtc static const char *
    619       1.1      jtc getzname(strp)
    620       1.1      jtc register const char *	strp;
    621       1.1      jtc {
    622       1.1      jtc 	register char	c;
    623       1.1      jtc 
    624   1.1.1.3      jtc 	while ((c = *strp) != '\0' && !is_digit(c) && c != ',' && c != '-' &&
    625       1.1      jtc 		c != '+')
    626       1.1      jtc 			++strp;
    627       1.1      jtc 	return strp;
    628       1.1      jtc }
    629       1.1      jtc 
    630       1.1      jtc /*
    631  1.1.1.14  mlelstv ** Given a pointer into an extended time zone string, scan until the ending
    632  1.1.1.14  mlelstv ** delimiter of the zone name is located. Return a pointer to the delimiter.
    633  1.1.1.14  mlelstv **
    634  1.1.1.14  mlelstv ** As with getzname above, the legal character set is actually quite
    635  1.1.1.14  mlelstv ** restricted, with other characters producing undefined results.
    636  1.1.1.14  mlelstv ** We don't do any checking here; checking is done later in common-case code.
    637  1.1.1.14  mlelstv */
    638  1.1.1.14  mlelstv 
    639  1.1.1.14  mlelstv static const char *
    640  1.1.1.14  mlelstv getqzname(register const char *strp, const int delim)
    641  1.1.1.14  mlelstv {
    642  1.1.1.14  mlelstv 	register int	c;
    643  1.1.1.14  mlelstv 
    644  1.1.1.14  mlelstv 	while ((c = *strp) != '\0' && c != delim)
    645  1.1.1.14  mlelstv 		++strp;
    646  1.1.1.14  mlelstv 	return strp;
    647  1.1.1.14  mlelstv }
    648  1.1.1.14  mlelstv 
    649  1.1.1.14  mlelstv /*
    650       1.1      jtc ** Given a pointer into a time zone string, extract a number from that string.
    651       1.1      jtc ** Check that the number is within a specified range; if it is not, return
    652       1.1      jtc ** NULL.
    653       1.1      jtc ** Otherwise, return a pointer to the first character not part of the number.
    654       1.1      jtc */
    655       1.1      jtc 
    656       1.1      jtc static const char *
    657       1.1      jtc getnum(strp, nump, min, max)
    658       1.1      jtc register const char *	strp;
    659       1.1      jtc int * const		nump;
    660       1.1      jtc const int		min;
    661       1.1      jtc const int		max;
    662       1.1      jtc {
    663       1.1      jtc 	register char	c;
    664       1.1      jtc 	register int	num;
    665       1.1      jtc 
    666   1.1.1.3      jtc 	if (strp == NULL || !is_digit(c = *strp))
    667       1.1      jtc 		return NULL;
    668       1.1      jtc 	num = 0;
    669   1.1.1.3      jtc 	do {
    670       1.1      jtc 		num = num * 10 + (c - '0');
    671       1.1      jtc 		if (num > max)
    672       1.1      jtc 			return NULL;	/* illegal value */
    673   1.1.1.3      jtc 		c = *++strp;
    674   1.1.1.3      jtc 	} while (is_digit(c));
    675       1.1      jtc 	if (num < min)
    676       1.1      jtc 		return NULL;		/* illegal value */
    677       1.1      jtc 	*nump = num;
    678       1.1      jtc 	return strp;
    679       1.1      jtc }
    680       1.1      jtc 
    681       1.1      jtc /*
    682       1.1      jtc ** Given a pointer into a time zone string, extract a number of seconds,
    683       1.1      jtc ** in hh[:mm[:ss]] form, from the string.
    684       1.1      jtc ** If any error occurs, return NULL.
    685       1.1      jtc ** Otherwise, return a pointer to the first character not part of the number
    686       1.1      jtc ** of seconds.
    687       1.1      jtc */
    688       1.1      jtc 
    689       1.1      jtc static const char *
    690       1.1      jtc getsecs(strp, secsp)
    691       1.1      jtc register const char *	strp;
    692       1.1      jtc long * const		secsp;
    693       1.1      jtc {
    694       1.1      jtc 	int	num;
    695       1.1      jtc 
    696       1.1      jtc 	/*
    697       1.1      jtc 	** `HOURSPERDAY * DAYSPERWEEK - 1' allows quasi-Posix rules like
    698       1.1      jtc 	** "M10.4.6/26", which does not conform to Posix,
    699       1.1      jtc 	** but which specifies the equivalent of
    700       1.1      jtc 	** ``02:00 on the first Sunday on or after 23 Oct''.
    701       1.1      jtc 	*/
    702       1.1      jtc 	strp = getnum(strp, &num, 0, HOURSPERDAY * DAYSPERWEEK - 1);
    703       1.1      jtc 	if (strp == NULL)
    704       1.1      jtc 		return NULL;
    705       1.1      jtc 	*secsp = num * (long) SECSPERHOUR;
    706       1.1      jtc 	if (*strp == ':') {
    707       1.1      jtc 		++strp;
    708       1.1      jtc 		strp = getnum(strp, &num, 0, MINSPERHOUR - 1);
    709       1.1      jtc 		if (strp == NULL)
    710       1.1      jtc 			return NULL;
    711       1.1      jtc 		*secsp += num * SECSPERMIN;
    712       1.1      jtc 		if (*strp == ':') {
    713       1.1      jtc 			++strp;
    714  1.1.1.14  mlelstv 			/* `SECSPERMIN' allows for leap seconds. */
    715       1.1      jtc 			strp = getnum(strp, &num, 0, SECSPERMIN);
    716       1.1      jtc 			if (strp == NULL)
    717       1.1      jtc 				return NULL;
    718       1.1      jtc 			*secsp += num;
    719       1.1      jtc 		}
    720       1.1      jtc 	}
    721       1.1      jtc 	return strp;
    722       1.1      jtc }
    723       1.1      jtc 
    724       1.1      jtc /*
    725       1.1      jtc ** Given a pointer into a time zone string, extract an offset, in
    726       1.1      jtc ** [+-]hh[:mm[:ss]] form, from the string.
    727       1.1      jtc ** If any error occurs, return NULL.
    728       1.1      jtc ** Otherwise, return a pointer to the first character not part of the time.
    729       1.1      jtc */
    730       1.1      jtc 
    731       1.1      jtc static const char *
    732       1.1      jtc getoffset(strp, offsetp)
    733       1.1      jtc register const char *	strp;
    734       1.1      jtc long * const		offsetp;
    735       1.1      jtc {
    736   1.1.1.3      jtc 	register int	neg = 0;
    737       1.1      jtc 
    738       1.1      jtc 	if (*strp == '-') {
    739       1.1      jtc 		neg = 1;
    740       1.1      jtc 		++strp;
    741   1.1.1.3      jtc 	} else if (*strp == '+')
    742   1.1.1.3      jtc 		++strp;
    743       1.1      jtc 	strp = getsecs(strp, offsetp);
    744       1.1      jtc 	if (strp == NULL)
    745       1.1      jtc 		return NULL;		/* illegal time */
    746       1.1      jtc 	if (neg)
    747       1.1      jtc 		*offsetp = -*offsetp;
    748       1.1      jtc 	return strp;
    749       1.1      jtc }
    750       1.1      jtc 
    751       1.1      jtc /*
    752       1.1      jtc ** Given a pointer into a time zone string, extract a rule in the form
    753  1.1.1.14  mlelstv ** date[/time]. See POSIX section 8 for the format of "date" and "time".
    754       1.1      jtc ** If a valid rule is not found, return NULL.
    755       1.1      jtc ** Otherwise, return a pointer to the first character not part of the rule.
    756       1.1      jtc */
    757       1.1      jtc 
    758       1.1      jtc static const char *
    759       1.1      jtc getrule(strp, rulep)
    760       1.1      jtc const char *			strp;
    761       1.1      jtc register struct rule * const	rulep;
    762       1.1      jtc {
    763       1.1      jtc 	if (*strp == 'J') {
    764       1.1      jtc 		/*
    765       1.1      jtc 		** Julian day.
    766       1.1      jtc 		*/
    767       1.1      jtc 		rulep->r_type = JULIAN_DAY;
    768       1.1      jtc 		++strp;
    769       1.1      jtc 		strp = getnum(strp, &rulep->r_day, 1, DAYSPERNYEAR);
    770       1.1      jtc 	} else if (*strp == 'M') {
    771       1.1      jtc 		/*
    772       1.1      jtc 		** Month, week, day.
    773       1.1      jtc 		*/
    774       1.1      jtc 		rulep->r_type = MONTH_NTH_DAY_OF_WEEK;
    775       1.1      jtc 		++strp;
    776       1.1      jtc 		strp = getnum(strp, &rulep->r_mon, 1, MONSPERYEAR);
    777       1.1      jtc 		if (strp == NULL)
    778       1.1      jtc 			return NULL;
    779       1.1      jtc 		if (*strp++ != '.')
    780       1.1      jtc 			return NULL;
    781       1.1      jtc 		strp = getnum(strp, &rulep->r_week, 1, 5);
    782       1.1      jtc 		if (strp == NULL)
    783       1.1      jtc 			return NULL;
    784       1.1      jtc 		if (*strp++ != '.')
    785       1.1      jtc 			return NULL;
    786       1.1      jtc 		strp = getnum(strp, &rulep->r_day, 0, DAYSPERWEEK - 1);
    787   1.1.1.3      jtc 	} else if (is_digit(*strp)) {
    788       1.1      jtc 		/*
    789       1.1      jtc 		** Day of year.
    790       1.1      jtc 		*/
    791       1.1      jtc 		rulep->r_type = DAY_OF_YEAR;
    792       1.1      jtc 		strp = getnum(strp, &rulep->r_day, 0, DAYSPERLYEAR - 1);
    793       1.1      jtc 	} else	return NULL;		/* invalid format */
    794       1.1      jtc 	if (strp == NULL)
    795       1.1      jtc 		return NULL;
    796       1.1      jtc 	if (*strp == '/') {
    797       1.1      jtc 		/*
    798       1.1      jtc 		** Time specified.
    799       1.1      jtc 		*/
    800       1.1      jtc 		++strp;
    801       1.1      jtc 		strp = getsecs(strp, &rulep->r_time);
    802       1.1      jtc 	} else	rulep->r_time = 2 * SECSPERHOUR;	/* default = 2:00:00 */
    803       1.1      jtc 	return strp;
    804       1.1      jtc }
    805       1.1      jtc 
    806       1.1      jtc /*
    807   1.1.1.8      jtc ** Given the Epoch-relative time of January 1, 00:00:00 UTC, in a year, the
    808   1.1.1.8      jtc ** year, a rule, and the offset from UTC at the time that rule takes effect,
    809       1.1      jtc ** calculate the Epoch-relative time that rule takes effect.
    810       1.1      jtc */
    811       1.1      jtc 
    812       1.1      jtc static time_t
    813       1.1      jtc transtime(janfirst, year, rulep, offset)
    814       1.1      jtc const time_t				janfirst;
    815       1.1      jtc const int				year;
    816       1.1      jtc register const struct rule * const	rulep;
    817       1.1      jtc const long				offset;
    818       1.1      jtc {
    819       1.1      jtc 	register int	leapyear;
    820       1.1      jtc 	register time_t	value;
    821       1.1      jtc 	register int	i;
    822       1.1      jtc 	int		d, m1, yy0, yy1, yy2, dow;
    823       1.1      jtc 
    824       1.1      jtc 	INITIALIZE(value);
    825       1.1      jtc 	leapyear = isleap(year);
    826       1.1      jtc 	switch (rulep->r_type) {
    827       1.1      jtc 
    828       1.1      jtc 	case JULIAN_DAY:
    829       1.1      jtc 		/*
    830       1.1      jtc 		** Jn - Julian day, 1 == January 1, 60 == March 1 even in leap
    831       1.1      jtc 		** years.
    832       1.1      jtc 		** In non-leap years, or if the day number is 59 or less, just
    833       1.1      jtc 		** add SECSPERDAY times the day number-1 to the time of
    834       1.1      jtc 		** January 1, midnight, to get the day.
    835       1.1      jtc 		*/
    836       1.1      jtc 		value = janfirst + (rulep->r_day - 1) * SECSPERDAY;
    837       1.1      jtc 		if (leapyear && rulep->r_day >= 60)
    838       1.1      jtc 			value += SECSPERDAY;
    839       1.1      jtc 		break;
    840       1.1      jtc 
    841       1.1      jtc 	case DAY_OF_YEAR:
    842       1.1      jtc 		/*
    843       1.1      jtc 		** n - day of year.
    844       1.1      jtc 		** Just add SECSPERDAY times the day number to the time of
    845       1.1      jtc 		** January 1, midnight, to get the day.
    846       1.1      jtc 		*/
    847       1.1      jtc 		value = janfirst + rulep->r_day * SECSPERDAY;
    848       1.1      jtc 		break;
    849       1.1      jtc 
    850       1.1      jtc 	case MONTH_NTH_DAY_OF_WEEK:
    851       1.1      jtc 		/*
    852       1.1      jtc 		** Mm.n.d - nth "dth day" of month m.
    853       1.1      jtc 		*/
    854       1.1      jtc 		value = janfirst;
    855       1.1      jtc 		for (i = 0; i < rulep->r_mon - 1; ++i)
    856       1.1      jtc 			value += mon_lengths[leapyear][i] * SECSPERDAY;
    857       1.1      jtc 
    858       1.1      jtc 		/*
    859       1.1      jtc 		** Use Zeller's Congruence to get day-of-week of first day of
    860       1.1      jtc 		** month.
    861       1.1      jtc 		*/
    862       1.1      jtc 		m1 = (rulep->r_mon + 9) % 12 + 1;
    863       1.1      jtc 		yy0 = (rulep->r_mon <= 2) ? (year - 1) : year;
    864       1.1      jtc 		yy1 = yy0 / 100;
    865       1.1      jtc 		yy2 = yy0 % 100;
    866       1.1      jtc 		dow = ((26 * m1 - 2) / 10 +
    867       1.1      jtc 			1 + yy2 + yy2 / 4 + yy1 / 4 - 2 * yy1) % 7;
    868       1.1      jtc 		if (dow < 0)
    869       1.1      jtc 			dow += DAYSPERWEEK;
    870       1.1      jtc 
    871       1.1      jtc 		/*
    872  1.1.1.14  mlelstv 		** "dow" is the day-of-week of the first day of the month. Get
    873       1.1      jtc 		** the day-of-month (zero-origin) of the first "dow" day of the
    874       1.1      jtc 		** month.
    875       1.1      jtc 		*/
    876       1.1      jtc 		d = rulep->r_day - dow;
    877       1.1      jtc 		if (d < 0)
    878       1.1      jtc 			d += DAYSPERWEEK;
    879       1.1      jtc 		for (i = 1; i < rulep->r_week; ++i) {
    880       1.1      jtc 			if (d + DAYSPERWEEK >=
    881       1.1      jtc 				mon_lengths[leapyear][rulep->r_mon - 1])
    882       1.1      jtc 					break;
    883       1.1      jtc 			d += DAYSPERWEEK;
    884       1.1      jtc 		}
    885       1.1      jtc 
    886       1.1      jtc 		/*
    887       1.1      jtc 		** "d" is the day-of-month (zero-origin) of the day we want.
    888       1.1      jtc 		*/
    889       1.1      jtc 		value += d * SECSPERDAY;
    890       1.1      jtc 		break;
    891       1.1      jtc 	}
    892       1.1      jtc 
    893       1.1      jtc 	/*
    894   1.1.1.8      jtc 	** "value" is the Epoch-relative time of 00:00:00 UTC on the day in
    895  1.1.1.14  mlelstv 	** question. To get the Epoch-relative time of the specified local
    896       1.1      jtc 	** time on that day, add the transition time and the current offset
    897   1.1.1.8      jtc 	** from UTC.
    898       1.1      jtc 	*/
    899       1.1      jtc 	return value + rulep->r_time + offset;
    900       1.1      jtc }
    901       1.1      jtc 
    902       1.1      jtc /*
    903       1.1      jtc ** Given a POSIX section 8-style TZ string, fill in the rule tables as
    904       1.1      jtc ** appropriate.
    905       1.1      jtc */
    906       1.1      jtc 
    907       1.1      jtc static int
    908       1.1      jtc tzparse(name, sp, lastditch)
    909       1.1      jtc const char *			name;
    910       1.1      jtc register struct state * const	sp;
    911       1.1      jtc const int			lastditch;
    912       1.1      jtc {
    913       1.1      jtc 	const char *			stdname;
    914       1.1      jtc 	const char *			dstname;
    915       1.1      jtc 	size_t				stdlen;
    916       1.1      jtc 	size_t				dstlen;
    917       1.1      jtc 	long				stdoffset;
    918       1.1      jtc 	long				dstoffset;
    919       1.1      jtc 	register time_t *		atp;
    920       1.1      jtc 	register unsigned char *	typep;
    921       1.1      jtc 	register char *			cp;
    922       1.1      jtc 	register int			load_result;
    923       1.1      jtc 
    924       1.1      jtc 	INITIALIZE(dstname);
    925       1.1      jtc 	stdname = name;
    926       1.1      jtc 	if (lastditch) {
    927       1.1      jtc 		stdlen = strlen(name);	/* length of standard zone name */
    928       1.1      jtc 		name += stdlen;
    929       1.1      jtc 		if (stdlen >= sizeof sp->chars)
    930       1.1      jtc 			stdlen = (sizeof sp->chars) - 1;
    931   1.1.1.6      jtc 		stdoffset = 0;
    932       1.1      jtc 	} else {
    933  1.1.1.14  mlelstv 		if (*name == '<') {
    934  1.1.1.14  mlelstv 			name++;
    935  1.1.1.14  mlelstv 			stdname = name;
    936  1.1.1.14  mlelstv 			name = getqzname(name, '>');
    937  1.1.1.14  mlelstv 			if (*name != '>')
    938  1.1.1.14  mlelstv 				return (-1);
    939  1.1.1.14  mlelstv 			stdlen = name - stdname;
    940  1.1.1.14  mlelstv 			name++;
    941  1.1.1.14  mlelstv 		} else {
    942  1.1.1.14  mlelstv 			name = getzname(name);
    943  1.1.1.14  mlelstv 			stdlen = name - stdname;
    944  1.1.1.14  mlelstv 		}
    945   1.1.1.6      jtc 		if (*name == '\0')
    946   1.1.1.6      jtc 			return -1;
    947       1.1      jtc 		name = getoffset(name, &stdoffset);
    948       1.1      jtc 		if (name == NULL)
    949       1.1      jtc 			return -1;
    950       1.1      jtc 	}
    951  1.1.1.14  mlelstv 	load_result = tzload(TZDEFRULES, sp, FALSE);
    952       1.1      jtc 	if (load_result != 0)
    953       1.1      jtc 		sp->leapcnt = 0;		/* so, we're off a little */
    954       1.1      jtc 	if (*name != '\0') {
    955  1.1.1.14  mlelstv 		if (*name == '<') {
    956  1.1.1.14  mlelstv 			dstname = ++name;
    957  1.1.1.14  mlelstv 			name = getqzname(name, '>');
    958  1.1.1.14  mlelstv 			if (*name != '>')
    959  1.1.1.14  mlelstv 				return -1;
    960  1.1.1.14  mlelstv 			dstlen = name - dstname;
    961  1.1.1.14  mlelstv 			name++;
    962  1.1.1.14  mlelstv 		} else {
    963  1.1.1.14  mlelstv 			dstname = name;
    964  1.1.1.14  mlelstv 			name = getzname(name);
    965  1.1.1.14  mlelstv 			dstlen = name - dstname; /* length of DST zone name */
    966  1.1.1.14  mlelstv 		}
    967       1.1      jtc 		if (*name != '\0' && *name != ',' && *name != ';') {
    968       1.1      jtc 			name = getoffset(name, &dstoffset);
    969       1.1      jtc 			if (name == NULL)
    970       1.1      jtc 				return -1;
    971       1.1      jtc 		} else	dstoffset = stdoffset - SECSPERHOUR;
    972  1.1.1.10   kleink 		if (*name == '\0' && load_result != 0)
    973  1.1.1.10   kleink 			name = TZDEFRULESTRING;
    974       1.1      jtc 		if (*name == ',' || *name == ';') {
    975       1.1      jtc 			struct rule	start;
    976       1.1      jtc 			struct rule	end;
    977       1.1      jtc 			register int	year;
    978       1.1      jtc 			register time_t	janfirst;
    979       1.1      jtc 			time_t		starttime;
    980       1.1      jtc 			time_t		endtime;
    981       1.1      jtc 
    982       1.1      jtc 			++name;
    983       1.1      jtc 			if ((name = getrule(name, &start)) == NULL)
    984       1.1      jtc 				return -1;
    985       1.1      jtc 			if (*name++ != ',')
    986       1.1      jtc 				return -1;
    987       1.1      jtc 			if ((name = getrule(name, &end)) == NULL)
    988       1.1      jtc 				return -1;
    989       1.1      jtc 			if (*name != '\0')
    990       1.1      jtc 				return -1;
    991       1.1      jtc 			sp->typecnt = 2;	/* standard time and DST */
    992       1.1      jtc 			/*
    993  1.1.1.14  mlelstv 			** Two transitions per year, from EPOCH_YEAR forward.
    994       1.1      jtc 			*/
    995       1.1      jtc 			sp->ttis[0].tt_gmtoff = -dstoffset;
    996       1.1      jtc 			sp->ttis[0].tt_isdst = 1;
    997       1.1      jtc 			sp->ttis[0].tt_abbrind = stdlen + 1;
    998       1.1      jtc 			sp->ttis[1].tt_gmtoff = -stdoffset;
    999       1.1      jtc 			sp->ttis[1].tt_isdst = 0;
   1000       1.1      jtc 			sp->ttis[1].tt_abbrind = 0;
   1001       1.1      jtc 			atp = sp->ats;
   1002       1.1      jtc 			typep = sp->types;
   1003       1.1      jtc 			janfirst = 0;
   1004  1.1.1.14  mlelstv 			sp->timecnt = 0;
   1005  1.1.1.14  mlelstv 			for (year = EPOCH_YEAR;
   1006  1.1.1.14  mlelstv 			    sp->timecnt + 2 <= TZ_MAX_TIMES;
   1007  1.1.1.14  mlelstv 			    ++year) {
   1008  1.1.1.14  mlelstv 			    	time_t	newfirst;
   1009  1.1.1.14  mlelstv 
   1010       1.1      jtc 				starttime = transtime(janfirst, year, &start,
   1011       1.1      jtc 					stdoffset);
   1012       1.1      jtc 				endtime = transtime(janfirst, year, &end,
   1013       1.1      jtc 					dstoffset);
   1014       1.1      jtc 				if (starttime > endtime) {
   1015       1.1      jtc 					*atp++ = endtime;
   1016       1.1      jtc 					*typep++ = 1;	/* DST ends */
   1017       1.1      jtc 					*atp++ = starttime;
   1018       1.1      jtc 					*typep++ = 0;	/* DST begins */
   1019       1.1      jtc 				} else {
   1020       1.1      jtc 					*atp++ = starttime;
   1021       1.1      jtc 					*typep++ = 0;	/* DST begins */
   1022       1.1      jtc 					*atp++ = endtime;
   1023       1.1      jtc 					*typep++ = 1;	/* DST ends */
   1024       1.1      jtc 				}
   1025  1.1.1.14  mlelstv 				sp->timecnt += 2;
   1026  1.1.1.14  mlelstv 				newfirst = janfirst;
   1027  1.1.1.14  mlelstv 				newfirst += year_lengths[isleap(year)] *
   1028       1.1      jtc 					SECSPERDAY;
   1029  1.1.1.14  mlelstv 				if (newfirst <= janfirst)
   1030  1.1.1.14  mlelstv 					break;
   1031  1.1.1.14  mlelstv 				janfirst = newfirst;
   1032       1.1      jtc 			}
   1033       1.1      jtc 		} else {
   1034       1.1      jtc 			register long	theirstdoffset;
   1035       1.1      jtc 			register long	theirdstoffset;
   1036       1.1      jtc 			register long	theiroffset;
   1037       1.1      jtc 			register int	isdst;
   1038       1.1      jtc 			register int	i;
   1039       1.1      jtc 			register int	j;
   1040       1.1      jtc 
   1041       1.1      jtc 			if (*name != '\0')
   1042       1.1      jtc 				return -1;
   1043       1.1      jtc 			/*
   1044       1.1      jtc 			** Initial values of theirstdoffset and theirdstoffset.
   1045       1.1      jtc 			*/
   1046       1.1      jtc 			theirstdoffset = 0;
   1047       1.1      jtc 			for (i = 0; i < sp->timecnt; ++i) {
   1048       1.1      jtc 				j = sp->types[i];
   1049       1.1      jtc 				if (!sp->ttis[j].tt_isdst) {
   1050   1.1.1.3      jtc 					theirstdoffset =
   1051   1.1.1.3      jtc 						-sp->ttis[j].tt_gmtoff;
   1052       1.1      jtc 					break;
   1053       1.1      jtc 				}
   1054       1.1      jtc 			}
   1055       1.1      jtc 			theirdstoffset = 0;
   1056       1.1      jtc 			for (i = 0; i < sp->timecnt; ++i) {
   1057       1.1      jtc 				j = sp->types[i];
   1058       1.1      jtc 				if (sp->ttis[j].tt_isdst) {
   1059   1.1.1.3      jtc 					theirdstoffset =
   1060   1.1.1.3      jtc 						-sp->ttis[j].tt_gmtoff;
   1061       1.1      jtc 					break;
   1062       1.1      jtc 				}
   1063       1.1      jtc 			}
   1064       1.1      jtc 			/*
   1065       1.1      jtc 			** Initially we're assumed to be in standard time.
   1066       1.1      jtc 			*/
   1067       1.1      jtc 			isdst = FALSE;
   1068       1.1      jtc 			theiroffset = theirstdoffset;
   1069       1.1      jtc 			/*
   1070       1.1      jtc 			** Now juggle transition times and types
   1071       1.1      jtc 			** tracking offsets as you do.
   1072       1.1      jtc 			*/
   1073       1.1      jtc 			for (i = 0; i < sp->timecnt; ++i) {
   1074       1.1      jtc 				j = sp->types[i];
   1075       1.1      jtc 				sp->types[i] = sp->ttis[j].tt_isdst;
   1076       1.1      jtc 				if (sp->ttis[j].tt_ttisgmt) {
   1077       1.1      jtc 					/* No adjustment to transition time */
   1078       1.1      jtc 				} else {
   1079       1.1      jtc 					/*
   1080       1.1      jtc 					** If summer time is in effect, and the
   1081       1.1      jtc 					** transition time was not specified as
   1082       1.1      jtc 					** standard time, add the summer time
   1083       1.1      jtc 					** offset to the transition time;
   1084       1.1      jtc 					** otherwise, add the standard time
   1085       1.1      jtc 					** offset to the transition time.
   1086       1.1      jtc 					*/
   1087       1.1      jtc 					/*
   1088       1.1      jtc 					** Transitions from DST to DDST
   1089       1.1      jtc 					** will effectively disappear since
   1090       1.1      jtc 					** POSIX provides for only one DST
   1091       1.1      jtc 					** offset.
   1092       1.1      jtc 					*/
   1093       1.1      jtc 					if (isdst && !sp->ttis[j].tt_ttisstd) {
   1094       1.1      jtc 						sp->ats[i] += dstoffset -
   1095       1.1      jtc 							theirdstoffset;
   1096       1.1      jtc 					} else {
   1097       1.1      jtc 						sp->ats[i] += stdoffset -
   1098       1.1      jtc 							theirstdoffset;
   1099       1.1      jtc 					}
   1100       1.1      jtc 				}
   1101       1.1      jtc 				theiroffset = -sp->ttis[j].tt_gmtoff;
   1102       1.1      jtc 				if (sp->ttis[j].tt_isdst)
   1103       1.1      jtc 					theirdstoffset = theiroffset;
   1104       1.1      jtc 				else	theirstdoffset = theiroffset;
   1105       1.1      jtc 			}
   1106       1.1      jtc 			/*
   1107       1.1      jtc 			** Finally, fill in ttis.
   1108       1.1      jtc 			** ttisstd and ttisgmt need not be handled.
   1109       1.1      jtc 			*/
   1110       1.1      jtc 			sp->ttis[0].tt_gmtoff = -stdoffset;
   1111       1.1      jtc 			sp->ttis[0].tt_isdst = FALSE;
   1112       1.1      jtc 			sp->ttis[0].tt_abbrind = 0;
   1113       1.1      jtc 			sp->ttis[1].tt_gmtoff = -dstoffset;
   1114       1.1      jtc 			sp->ttis[1].tt_isdst = TRUE;
   1115       1.1      jtc 			sp->ttis[1].tt_abbrind = stdlen + 1;
   1116   1.1.1.5      jtc 			sp->typecnt = 2;
   1117       1.1      jtc 		}
   1118       1.1      jtc 	} else {
   1119       1.1      jtc 		dstlen = 0;
   1120       1.1      jtc 		sp->typecnt = 1;		/* only standard time */
   1121       1.1      jtc 		sp->timecnt = 0;
   1122       1.1      jtc 		sp->ttis[0].tt_gmtoff = -stdoffset;
   1123       1.1      jtc 		sp->ttis[0].tt_isdst = 0;
   1124       1.1      jtc 		sp->ttis[0].tt_abbrind = 0;
   1125       1.1      jtc 	}
   1126       1.1      jtc 	sp->charcnt = stdlen + 1;
   1127       1.1      jtc 	if (dstlen != 0)
   1128       1.1      jtc 		sp->charcnt += dstlen + 1;
   1129   1.1.1.6      jtc 	if ((size_t) sp->charcnt > sizeof sp->chars)
   1130       1.1      jtc 		return -1;
   1131       1.1      jtc 	cp = sp->chars;
   1132       1.1      jtc 	(void) strncpy(cp, stdname, stdlen);
   1133       1.1      jtc 	cp += stdlen;
   1134       1.1      jtc 	*cp++ = '\0';
   1135       1.1      jtc 	if (dstlen != 0) {
   1136       1.1      jtc 		(void) strncpy(cp, dstname, dstlen);
   1137       1.1      jtc 		*(cp + dstlen) = '\0';
   1138       1.1      jtc 	}
   1139       1.1      jtc 	return 0;
   1140       1.1      jtc }
   1141       1.1      jtc 
   1142       1.1      jtc static void
   1143       1.1      jtc gmtload(sp)
   1144       1.1      jtc struct state * const	sp;
   1145       1.1      jtc {
   1146  1.1.1.14  mlelstv 	if (tzload(gmt, sp, TRUE) != 0)
   1147       1.1      jtc 		(void) tzparse(gmt, sp, TRUE);
   1148       1.1      jtc }
   1149       1.1      jtc 
   1150       1.1      jtc #ifndef STD_INSPIRED
   1151       1.1      jtc /*
   1152       1.1      jtc ** A non-static declaration of tzsetwall in a system header file
   1153       1.1      jtc ** may cause a warning about this upcoming static declaration...
   1154       1.1      jtc */
   1155       1.1      jtc static
   1156       1.1      jtc #endif /* !defined STD_INSPIRED */
   1157       1.1      jtc void
   1158  1.1.1.14  mlelstv tzsetwall(void)
   1159       1.1      jtc {
   1160       1.1      jtc 	if (lcl_is_set < 0)
   1161       1.1      jtc 		return;
   1162       1.1      jtc 	lcl_is_set = -1;
   1163       1.1      jtc 
   1164       1.1      jtc #ifdef ALL_STATE
   1165       1.1      jtc 	if (lclptr == NULL) {
   1166       1.1      jtc 		lclptr = (struct state *) malloc(sizeof *lclptr);
   1167       1.1      jtc 		if (lclptr == NULL) {
   1168       1.1      jtc 			settzname();	/* all we can do */
   1169       1.1      jtc 			return;
   1170       1.1      jtc 		}
   1171       1.1      jtc 	}
   1172       1.1      jtc #endif /* defined ALL_STATE */
   1173  1.1.1.14  mlelstv 	if (tzload((char *) NULL, lclptr, TRUE) != 0)
   1174       1.1      jtc 		gmtload(lclptr);
   1175       1.1      jtc 	settzname();
   1176       1.1      jtc }
   1177       1.1      jtc 
   1178       1.1      jtc void
   1179  1.1.1.14  mlelstv tzset(void)
   1180       1.1      jtc {
   1181       1.1      jtc 	register const char *	name;
   1182       1.1      jtc 
   1183       1.1      jtc 	name = getenv("TZ");
   1184       1.1      jtc 	if (name == NULL) {
   1185       1.1      jtc 		tzsetwall();
   1186       1.1      jtc 		return;
   1187       1.1      jtc 	}
   1188       1.1      jtc 
   1189  1.1.1.11   kleink 	if (lcl_is_set > 0 && strcmp(lcl_TZname, name) == 0)
   1190       1.1      jtc 		return;
   1191  1.1.1.11   kleink 	lcl_is_set = strlen(name) < sizeof lcl_TZname;
   1192       1.1      jtc 	if (lcl_is_set)
   1193       1.1      jtc 		(void) strcpy(lcl_TZname, name);
   1194       1.1      jtc 
   1195       1.1      jtc #ifdef ALL_STATE
   1196       1.1      jtc 	if (lclptr == NULL) {
   1197       1.1      jtc 		lclptr = (struct state *) malloc(sizeof *lclptr);
   1198       1.1      jtc 		if (lclptr == NULL) {
   1199       1.1      jtc 			settzname();	/* all we can do */
   1200       1.1      jtc 			return;
   1201       1.1      jtc 		}
   1202       1.1      jtc 	}
   1203       1.1      jtc #endif /* defined ALL_STATE */
   1204       1.1      jtc 	if (*name == '\0') {
   1205       1.1      jtc 		/*
   1206       1.1      jtc 		** User wants it fast rather than right.
   1207       1.1      jtc 		*/
   1208       1.1      jtc 		lclptr->leapcnt = 0;		/* so, we're off a little */
   1209       1.1      jtc 		lclptr->timecnt = 0;
   1210  1.1.1.11   kleink 		lclptr->typecnt = 0;
   1211  1.1.1.11   kleink 		lclptr->ttis[0].tt_isdst = 0;
   1212       1.1      jtc 		lclptr->ttis[0].tt_gmtoff = 0;
   1213       1.1      jtc 		lclptr->ttis[0].tt_abbrind = 0;
   1214       1.1      jtc 		(void) strcpy(lclptr->chars, gmt);
   1215  1.1.1.14  mlelstv 	} else if (tzload(name, lclptr, TRUE) != 0)
   1216       1.1      jtc 		if (name[0] == ':' || tzparse(name, lclptr, FALSE) != 0)
   1217       1.1      jtc 			(void) gmtload(lclptr);
   1218       1.1      jtc 	settzname();
   1219       1.1      jtc }
   1220       1.1      jtc 
   1221       1.1      jtc /*
   1222       1.1      jtc ** The easy way to behave "as if no library function calls" localtime
   1223       1.1      jtc ** is to not call it--so we drop its guts into "localsub", which can be
   1224  1.1.1.14  mlelstv ** freely called. (And no, the PANS doesn't require the above behavior--
   1225       1.1      jtc ** but it *is* desirable.)
   1226       1.1      jtc **
   1227       1.1      jtc ** The unused offset argument is for the benefit of mktime variants.
   1228       1.1      jtc */
   1229       1.1      jtc 
   1230       1.1      jtc /*ARGSUSED*/
   1231  1.1.1.14  mlelstv static struct tm *
   1232       1.1      jtc localsub(timep, offset, tmp)
   1233       1.1      jtc const time_t * const	timep;
   1234       1.1      jtc const long		offset;
   1235       1.1      jtc struct tm * const	tmp;
   1236       1.1      jtc {
   1237       1.1      jtc 	register struct state *		sp;
   1238       1.1      jtc 	register const struct ttinfo *	ttisp;
   1239       1.1      jtc 	register int			i;
   1240  1.1.1.14  mlelstv 	register struct tm *		result;
   1241       1.1      jtc 	const time_t			t = *timep;
   1242       1.1      jtc 
   1243       1.1      jtc 	sp = lclptr;
   1244       1.1      jtc #ifdef ALL_STATE
   1245  1.1.1.14  mlelstv 	if (sp == NULL)
   1246  1.1.1.14  mlelstv 		return gmtsub(timep, offset, tmp);
   1247       1.1      jtc #endif /* defined ALL_STATE */
   1248  1.1.1.14  mlelstv 	if ((sp->goback && t < sp->ats[0]) ||
   1249  1.1.1.14  mlelstv 		(sp->goahead && t > sp->ats[sp->timecnt - 1])) {
   1250  1.1.1.14  mlelstv 			time_t			newt = t;
   1251  1.1.1.14  mlelstv 			register time_t		seconds;
   1252  1.1.1.14  mlelstv 			register time_t		tcycles;
   1253  1.1.1.14  mlelstv 			register int_fast64_t	icycles;
   1254  1.1.1.14  mlelstv 
   1255  1.1.1.14  mlelstv 			if (t < sp->ats[0])
   1256  1.1.1.14  mlelstv 				seconds = sp->ats[0] - t;
   1257  1.1.1.14  mlelstv 			else	seconds = t - sp->ats[sp->timecnt - 1];
   1258  1.1.1.14  mlelstv 			--seconds;
   1259  1.1.1.14  mlelstv 			tcycles = seconds / YEARSPERREPEAT / AVGSECSPERYEAR;
   1260  1.1.1.14  mlelstv 			++tcycles;
   1261  1.1.1.14  mlelstv 			icycles = tcycles;
   1262  1.1.1.14  mlelstv 			if (tcycles - icycles >= 1 || icycles - tcycles >= 1)
   1263  1.1.1.14  mlelstv 				return NULL;
   1264  1.1.1.14  mlelstv 			seconds = icycles;
   1265  1.1.1.14  mlelstv 			seconds *= YEARSPERREPEAT;
   1266  1.1.1.14  mlelstv 			seconds *= AVGSECSPERYEAR;
   1267  1.1.1.14  mlelstv 			if (t < sp->ats[0])
   1268  1.1.1.14  mlelstv 				newt += seconds;
   1269  1.1.1.14  mlelstv 			else	newt -= seconds;
   1270  1.1.1.14  mlelstv 			if (newt < sp->ats[0] ||
   1271  1.1.1.14  mlelstv 				newt > sp->ats[sp->timecnt - 1])
   1272  1.1.1.14  mlelstv 					return NULL;	/* "cannot happen" */
   1273  1.1.1.14  mlelstv 			result = localsub(&newt, offset, tmp);
   1274  1.1.1.14  mlelstv 			if (result == tmp) {
   1275  1.1.1.14  mlelstv 				register time_t	newy;
   1276  1.1.1.14  mlelstv 
   1277  1.1.1.14  mlelstv 				newy = tmp->tm_year;
   1278  1.1.1.14  mlelstv 				if (t < sp->ats[0])
   1279  1.1.1.14  mlelstv 					newy -= icycles * YEARSPERREPEAT;
   1280  1.1.1.14  mlelstv 				else	newy += icycles * YEARSPERREPEAT;
   1281  1.1.1.14  mlelstv 				tmp->tm_year = newy;
   1282  1.1.1.14  mlelstv 				if (tmp->tm_year != newy)
   1283  1.1.1.14  mlelstv 					return NULL;
   1284  1.1.1.14  mlelstv 			}
   1285  1.1.1.14  mlelstv 			return result;
   1286  1.1.1.14  mlelstv 	}
   1287       1.1      jtc 	if (sp->timecnt == 0 || t < sp->ats[0]) {
   1288       1.1      jtc 		i = 0;
   1289       1.1      jtc 		while (sp->ttis[i].tt_isdst)
   1290       1.1      jtc 			if (++i >= sp->typecnt) {
   1291       1.1      jtc 				i = 0;
   1292       1.1      jtc 				break;
   1293       1.1      jtc 			}
   1294       1.1      jtc 	} else {
   1295  1.1.1.14  mlelstv 		register int	lo = 1;
   1296  1.1.1.14  mlelstv 		register int	hi = sp->timecnt;
   1297  1.1.1.14  mlelstv 
   1298  1.1.1.14  mlelstv 		while (lo < hi) {
   1299  1.1.1.14  mlelstv 			register int	mid = (lo + hi) >> 1;
   1300  1.1.1.14  mlelstv 
   1301  1.1.1.14  mlelstv 			if (t < sp->ats[mid])
   1302  1.1.1.14  mlelstv 				hi = mid;
   1303  1.1.1.14  mlelstv 			else	lo = mid + 1;
   1304  1.1.1.14  mlelstv 		}
   1305  1.1.1.14  mlelstv 		i = (int) sp->types[lo - 1];
   1306       1.1      jtc 	}
   1307       1.1      jtc 	ttisp = &sp->ttis[i];
   1308       1.1      jtc 	/*
   1309       1.1      jtc 	** To get (wrong) behavior that's compatible with System V Release 2.0
   1310       1.1      jtc 	** you'd replace the statement below with
   1311       1.1      jtc 	**	t += ttisp->tt_gmtoff;
   1312       1.1      jtc 	**	timesub(&t, 0L, sp, tmp);
   1313       1.1      jtc 	*/
   1314  1.1.1.14  mlelstv 	result = timesub(&t, ttisp->tt_gmtoff, sp, tmp);
   1315       1.1      jtc 	tmp->tm_isdst = ttisp->tt_isdst;
   1316       1.1      jtc 	tzname[tmp->tm_isdst] = &sp->chars[ttisp->tt_abbrind];
   1317       1.1      jtc #ifdef TM_ZONE
   1318       1.1      jtc 	tmp->TM_ZONE = &sp->chars[ttisp->tt_abbrind];
   1319       1.1      jtc #endif /* defined TM_ZONE */
   1320  1.1.1.14  mlelstv 	return result;
   1321       1.1      jtc }
   1322       1.1      jtc 
   1323       1.1      jtc struct tm *
   1324       1.1      jtc localtime(timep)
   1325       1.1      jtc const time_t * const	timep;
   1326       1.1      jtc {
   1327       1.1      jtc 	tzset();
   1328  1.1.1.14  mlelstv 	return localsub(timep, 0L, &tm);
   1329       1.1      jtc }
   1330       1.1      jtc 
   1331       1.1      jtc /*
   1332  1.1.1.13   kleink ** Re-entrant version of localtime.
   1333  1.1.1.13   kleink */
   1334  1.1.1.13   kleink 
   1335   1.1.1.9   kleink struct tm *
   1336  1.1.1.14  mlelstv localtime_r(timep, tmp)
   1337   1.1.1.9   kleink const time_t * const	timep;
   1338  1.1.1.14  mlelstv struct tm *		tmp;
   1339   1.1.1.9   kleink {
   1340  1.1.1.14  mlelstv 	return localsub(timep, 0L, tmp);
   1341   1.1.1.9   kleink }
   1342   1.1.1.9   kleink 
   1343   1.1.1.9   kleink /*
   1344       1.1      jtc ** gmtsub is to gmtime as localsub is to localtime.
   1345       1.1      jtc */
   1346       1.1      jtc 
   1347  1.1.1.14  mlelstv static struct tm *
   1348       1.1      jtc gmtsub(timep, offset, tmp)
   1349       1.1      jtc const time_t * const	timep;
   1350       1.1      jtc const long		offset;
   1351       1.1      jtc struct tm * const	tmp;
   1352       1.1      jtc {
   1353  1.1.1.14  mlelstv 	register struct tm *	result;
   1354  1.1.1.14  mlelstv 
   1355       1.1      jtc 	if (!gmt_is_set) {
   1356       1.1      jtc 		gmt_is_set = TRUE;
   1357       1.1      jtc #ifdef ALL_STATE
   1358       1.1      jtc 		gmtptr = (struct state *) malloc(sizeof *gmtptr);
   1359       1.1      jtc 		if (gmtptr != NULL)
   1360       1.1      jtc #endif /* defined ALL_STATE */
   1361       1.1      jtc 			gmtload(gmtptr);
   1362       1.1      jtc 	}
   1363  1.1.1.14  mlelstv 	result = timesub(timep, offset, gmtptr, tmp);
   1364       1.1      jtc #ifdef TM_ZONE
   1365       1.1      jtc 	/*
   1366       1.1      jtc 	** Could get fancy here and deliver something such as
   1367   1.1.1.8      jtc 	** "UTC+xxxx" or "UTC-xxxx" if offset is non-zero,
   1368       1.1      jtc 	** but this is no time for a treasure hunt.
   1369       1.1      jtc 	*/
   1370       1.1      jtc 	if (offset != 0)
   1371       1.1      jtc 		tmp->TM_ZONE = wildabbr;
   1372       1.1      jtc 	else {
   1373       1.1      jtc #ifdef ALL_STATE
   1374       1.1      jtc 		if (gmtptr == NULL)
   1375       1.1      jtc 			tmp->TM_ZONE = gmt;
   1376       1.1      jtc 		else	tmp->TM_ZONE = gmtptr->chars;
   1377       1.1      jtc #endif /* defined ALL_STATE */
   1378       1.1      jtc #ifndef ALL_STATE
   1379       1.1      jtc 		tmp->TM_ZONE = gmtptr->chars;
   1380       1.1      jtc #endif /* State Farm */
   1381       1.1      jtc 	}
   1382       1.1      jtc #endif /* defined TM_ZONE */
   1383  1.1.1.14  mlelstv 	return result;
   1384       1.1      jtc }
   1385       1.1      jtc 
   1386       1.1      jtc struct tm *
   1387       1.1      jtc gmtime(timep)
   1388       1.1      jtc const time_t * const	timep;
   1389       1.1      jtc {
   1390  1.1.1.14  mlelstv 	return gmtsub(timep, 0L, &tm);
   1391       1.1      jtc }
   1392       1.1      jtc 
   1393   1.1.1.9   kleink /*
   1394  1.1.1.13   kleink * Re-entrant version of gmtime.
   1395  1.1.1.13   kleink */
   1396  1.1.1.13   kleink 
   1397   1.1.1.9   kleink struct tm *
   1398  1.1.1.14  mlelstv gmtime_r(timep, tmp)
   1399   1.1.1.9   kleink const time_t * const	timep;
   1400  1.1.1.14  mlelstv struct tm *		tmp;
   1401   1.1.1.9   kleink {
   1402  1.1.1.14  mlelstv 	return gmtsub(timep, 0L, tmp);
   1403   1.1.1.9   kleink }
   1404   1.1.1.9   kleink 
   1405       1.1      jtc #ifdef STD_INSPIRED
   1406       1.1      jtc 
   1407       1.1      jtc struct tm *
   1408       1.1      jtc offtime(timep, offset)
   1409       1.1      jtc const time_t * const	timep;
   1410       1.1      jtc const long		offset;
   1411       1.1      jtc {
   1412  1.1.1.14  mlelstv 	return gmtsub(timep, offset, &tm);
   1413       1.1      jtc }
   1414       1.1      jtc 
   1415       1.1      jtc #endif /* defined STD_INSPIRED */
   1416       1.1      jtc 
   1417  1.1.1.14  mlelstv /*
   1418  1.1.1.14  mlelstv ** Return the number of leap years through the end of the given year
   1419  1.1.1.14  mlelstv ** where, to make the math easy, the answer for year zero is defined as zero.
   1420  1.1.1.14  mlelstv */
   1421  1.1.1.14  mlelstv 
   1422  1.1.1.14  mlelstv static int
   1423  1.1.1.14  mlelstv leaps_thru_end_of(y)
   1424  1.1.1.14  mlelstv register const int	y;
   1425  1.1.1.14  mlelstv {
   1426  1.1.1.14  mlelstv 	return (y >= 0) ? (y / 4 - y / 100 + y / 400) :
   1427  1.1.1.14  mlelstv 		-(leaps_thru_end_of(-(y + 1)) + 1);
   1428  1.1.1.14  mlelstv }
   1429  1.1.1.14  mlelstv 
   1430  1.1.1.14  mlelstv static struct tm *
   1431       1.1      jtc timesub(timep, offset, sp, tmp)
   1432       1.1      jtc const time_t * const			timep;
   1433       1.1      jtc const long				offset;
   1434       1.1      jtc register const struct state * const	sp;
   1435       1.1      jtc register struct tm * const		tmp;
   1436       1.1      jtc {
   1437       1.1      jtc 	register const struct lsinfo *	lp;
   1438  1.1.1.14  mlelstv 	register time_t			tdays;
   1439  1.1.1.14  mlelstv 	register int			idays;	/* unsigned would be so 2003 */
   1440       1.1      jtc 	register long			rem;
   1441  1.1.1.14  mlelstv 	int				y;
   1442       1.1      jtc 	register const int *		ip;
   1443       1.1      jtc 	register long			corr;
   1444       1.1      jtc 	register int			hit;
   1445       1.1      jtc 	register int			i;
   1446       1.1      jtc 
   1447       1.1      jtc 	corr = 0;
   1448       1.1      jtc 	hit = 0;
   1449       1.1      jtc #ifdef ALL_STATE
   1450       1.1      jtc 	i = (sp == NULL) ? 0 : sp->leapcnt;
   1451       1.1      jtc #endif /* defined ALL_STATE */
   1452       1.1      jtc #ifndef ALL_STATE
   1453       1.1      jtc 	i = sp->leapcnt;
   1454       1.1      jtc #endif /* State Farm */
   1455       1.1      jtc 	while (--i >= 0) {
   1456       1.1      jtc 		lp = &sp->lsis[i];
   1457       1.1      jtc 		if (*timep >= lp->ls_trans) {
   1458       1.1      jtc 			if (*timep == lp->ls_trans) {
   1459       1.1      jtc 				hit = ((i == 0 && lp->ls_corr > 0) ||
   1460       1.1      jtc 					lp->ls_corr > sp->lsis[i - 1].ls_corr);
   1461       1.1      jtc 				if (hit)
   1462       1.1      jtc 					while (i > 0 &&
   1463       1.1      jtc 						sp->lsis[i].ls_trans ==
   1464       1.1      jtc 						sp->lsis[i - 1].ls_trans + 1 &&
   1465       1.1      jtc 						sp->lsis[i].ls_corr ==
   1466       1.1      jtc 						sp->lsis[i - 1].ls_corr + 1) {
   1467       1.1      jtc 							++hit;
   1468       1.1      jtc 							--i;
   1469       1.1      jtc 					}
   1470       1.1      jtc 			}
   1471       1.1      jtc 			corr = lp->ls_corr;
   1472       1.1      jtc 			break;
   1473       1.1      jtc 		}
   1474       1.1      jtc 	}
   1475  1.1.1.14  mlelstv 	y = EPOCH_YEAR;
   1476  1.1.1.14  mlelstv 	tdays = *timep / SECSPERDAY;
   1477  1.1.1.14  mlelstv 	rem = *timep - tdays * SECSPERDAY;
   1478  1.1.1.14  mlelstv 	while (tdays < 0 || tdays >= year_lengths[isleap(y)]) {
   1479  1.1.1.14  mlelstv 		int		newy;
   1480  1.1.1.14  mlelstv 		register time_t	tdelta;
   1481  1.1.1.14  mlelstv 		register int	idelta;
   1482  1.1.1.14  mlelstv 		register int	leapdays;
   1483  1.1.1.14  mlelstv 
   1484  1.1.1.14  mlelstv 		tdelta = tdays / DAYSPERLYEAR;
   1485  1.1.1.14  mlelstv 		idelta = tdelta;
   1486  1.1.1.14  mlelstv 		if (tdelta - idelta >= 1 || idelta - tdelta >= 1)
   1487  1.1.1.14  mlelstv 			return NULL;
   1488  1.1.1.14  mlelstv 		if (idelta == 0)
   1489  1.1.1.14  mlelstv 			idelta = (tdays < 0) ? -1 : 1;
   1490  1.1.1.14  mlelstv 		newy = y;
   1491  1.1.1.14  mlelstv 		if (increment_overflow(&newy, idelta))
   1492  1.1.1.14  mlelstv 			return NULL;
   1493  1.1.1.14  mlelstv 		leapdays = leaps_thru_end_of(newy - 1) -
   1494  1.1.1.14  mlelstv 			leaps_thru_end_of(y - 1);
   1495  1.1.1.14  mlelstv 		tdays -= ((time_t) newy - y) * DAYSPERNYEAR;
   1496  1.1.1.14  mlelstv 		tdays -= leapdays;
   1497  1.1.1.14  mlelstv 		y = newy;
   1498       1.1      jtc 	}
   1499  1.1.1.14  mlelstv 	{
   1500  1.1.1.14  mlelstv 		register long	seconds;
   1501  1.1.1.14  mlelstv 
   1502  1.1.1.14  mlelstv 		seconds = tdays * SECSPERDAY + 0.5;
   1503  1.1.1.14  mlelstv 		tdays = seconds / SECSPERDAY;
   1504  1.1.1.14  mlelstv 		rem += seconds - tdays * SECSPERDAY;
   1505  1.1.1.14  mlelstv 	}
   1506  1.1.1.14  mlelstv 	/*
   1507  1.1.1.14  mlelstv 	** Given the range, we can now fearlessly cast...
   1508  1.1.1.14  mlelstv 	*/
   1509  1.1.1.14  mlelstv 	idays = tdays;
   1510  1.1.1.14  mlelstv 	rem += offset - corr;
   1511       1.1      jtc 	while (rem < 0) {
   1512       1.1      jtc 		rem += SECSPERDAY;
   1513  1.1.1.14  mlelstv 		--idays;
   1514       1.1      jtc 	}
   1515       1.1      jtc 	while (rem >= SECSPERDAY) {
   1516       1.1      jtc 		rem -= SECSPERDAY;
   1517  1.1.1.14  mlelstv 		++idays;
   1518  1.1.1.14  mlelstv 	}
   1519  1.1.1.14  mlelstv 	while (idays < 0) {
   1520  1.1.1.14  mlelstv 		if (increment_overflow(&y, -1))
   1521  1.1.1.14  mlelstv 			return NULL;
   1522  1.1.1.14  mlelstv 		idays += year_lengths[isleap(y)];
   1523       1.1      jtc 	}
   1524  1.1.1.14  mlelstv 	while (idays >= year_lengths[isleap(y)]) {
   1525  1.1.1.14  mlelstv 		idays -= year_lengths[isleap(y)];
   1526  1.1.1.14  mlelstv 		if (increment_overflow(&y, 1))
   1527  1.1.1.14  mlelstv 			return NULL;
   1528  1.1.1.14  mlelstv 	}
   1529  1.1.1.14  mlelstv 	tmp->tm_year = y;
   1530  1.1.1.14  mlelstv 	if (increment_overflow(&tmp->tm_year, -TM_YEAR_BASE))
   1531  1.1.1.14  mlelstv 		return NULL;
   1532  1.1.1.14  mlelstv 	tmp->tm_yday = idays;
   1533  1.1.1.14  mlelstv 	/*
   1534  1.1.1.14  mlelstv 	** The "extra" mods below avoid overflow problems.
   1535  1.1.1.14  mlelstv 	*/
   1536  1.1.1.14  mlelstv 	tmp->tm_wday = EPOCH_WDAY +
   1537  1.1.1.14  mlelstv 		((y - EPOCH_YEAR) % DAYSPERWEEK) *
   1538  1.1.1.14  mlelstv 		(DAYSPERNYEAR % DAYSPERWEEK) +
   1539  1.1.1.14  mlelstv 		leaps_thru_end_of(y - 1) -
   1540  1.1.1.14  mlelstv 		leaps_thru_end_of(EPOCH_YEAR - 1) +
   1541  1.1.1.14  mlelstv 		idays;
   1542  1.1.1.14  mlelstv 	tmp->tm_wday %= DAYSPERWEEK;
   1543  1.1.1.14  mlelstv 	if (tmp->tm_wday < 0)
   1544  1.1.1.14  mlelstv 		tmp->tm_wday += DAYSPERWEEK;
   1545       1.1      jtc 	tmp->tm_hour = (int) (rem / SECSPERHOUR);
   1546  1.1.1.14  mlelstv 	rem %= SECSPERHOUR;
   1547       1.1      jtc 	tmp->tm_min = (int) (rem / SECSPERMIN);
   1548   1.1.1.4      jtc 	/*
   1549   1.1.1.4      jtc 	** A positive leap second requires a special
   1550  1.1.1.14  mlelstv 	** representation. This uses "... ??:59:60" et seq.
   1551   1.1.1.4      jtc 	*/
   1552   1.1.1.4      jtc 	tmp->tm_sec = (int) (rem % SECSPERMIN) + hit;
   1553  1.1.1.14  mlelstv 	ip = mon_lengths[isleap(y)];
   1554  1.1.1.14  mlelstv 	for (tmp->tm_mon = 0; idays >= ip[tmp->tm_mon]; ++(tmp->tm_mon))
   1555  1.1.1.14  mlelstv 		idays -= ip[tmp->tm_mon];
   1556  1.1.1.14  mlelstv 	tmp->tm_mday = (int) (idays + 1);
   1557       1.1      jtc 	tmp->tm_isdst = 0;
   1558       1.1      jtc #ifdef TM_GMTOFF
   1559       1.1      jtc 	tmp->TM_GMTOFF = offset;
   1560       1.1      jtc #endif /* defined TM_GMTOFF */
   1561  1.1.1.14  mlelstv 	return tmp;
   1562       1.1      jtc }
   1563       1.1      jtc 
   1564       1.1      jtc char *
   1565       1.1      jtc ctime(timep)
   1566       1.1      jtc const time_t * const	timep;
   1567       1.1      jtc {
   1568       1.1      jtc /*
   1569       1.1      jtc ** Section 4.12.3.2 of X3.159-1989 requires that
   1570   1.1.1.9   kleink **	The ctime function converts the calendar time pointed to by timer
   1571  1.1.1.14  mlelstv **	to local time in the form of a string. It is equivalent to
   1572       1.1      jtc **		asctime(localtime(timer))
   1573       1.1      jtc */
   1574       1.1      jtc 	return asctime(localtime(timep));
   1575   1.1.1.9   kleink }
   1576   1.1.1.9   kleink 
   1577   1.1.1.9   kleink char *
   1578   1.1.1.9   kleink ctime_r(timep, buf)
   1579   1.1.1.9   kleink const time_t * const	timep;
   1580   1.1.1.9   kleink char *			buf;
   1581   1.1.1.9   kleink {
   1582  1.1.1.14  mlelstv 	struct tm	mytm;
   1583   1.1.1.9   kleink 
   1584  1.1.1.14  mlelstv 	return asctime_r(localtime_r(timep, &mytm), buf);
   1585       1.1      jtc }
   1586       1.1      jtc 
   1587       1.1      jtc /*
   1588       1.1      jtc ** Adapted from code provided by Robert Elz, who writes:
   1589       1.1      jtc **	The "best" way to do mktime I think is based on an idea of Bob
   1590   1.1.1.5      jtc **	Kridle's (so its said...) from a long time ago.
   1591  1.1.1.14  mlelstv **	It does a binary search of the time_t space. Since time_t's are
   1592       1.1      jtc **	just 32 bits, its a max of 32 iterations (even at 64 bits it
   1593       1.1      jtc **	would still be very reasonable).
   1594       1.1      jtc */
   1595       1.1      jtc 
   1596       1.1      jtc #ifndef WRONG
   1597       1.1      jtc #define WRONG	(-1)
   1598       1.1      jtc #endif /* !defined WRONG */
   1599       1.1      jtc 
   1600       1.1      jtc /*
   1601  1.1.1.14  mlelstv ** Simplified normalize logic courtesy Paul Eggert.
   1602       1.1      jtc */
   1603       1.1      jtc 
   1604       1.1      jtc static int
   1605       1.1      jtc increment_overflow(number, delta)
   1606       1.1      jtc int *	number;
   1607       1.1      jtc int	delta;
   1608       1.1      jtc {
   1609       1.1      jtc 	int	number0;
   1610       1.1      jtc 
   1611       1.1      jtc 	number0 = *number;
   1612       1.1      jtc 	*number += delta;
   1613       1.1      jtc 	return (*number < number0) != (delta < 0);
   1614       1.1      jtc }
   1615       1.1      jtc 
   1616       1.1      jtc static int
   1617  1.1.1.14  mlelstv long_increment_overflow(number, delta)
   1618  1.1.1.14  mlelstv long *	number;
   1619  1.1.1.14  mlelstv int	delta;
   1620  1.1.1.14  mlelstv {
   1621  1.1.1.14  mlelstv 	long	number0;
   1622  1.1.1.14  mlelstv 
   1623  1.1.1.14  mlelstv 	number0 = *number;
   1624  1.1.1.14  mlelstv 	*number += delta;
   1625  1.1.1.14  mlelstv 	return (*number < number0) != (delta < 0);
   1626  1.1.1.14  mlelstv }
   1627  1.1.1.14  mlelstv 
   1628  1.1.1.14  mlelstv static int
   1629       1.1      jtc normalize_overflow(tensptr, unitsptr, base)
   1630       1.1      jtc int * const	tensptr;
   1631       1.1      jtc int * const	unitsptr;
   1632       1.1      jtc const int	base;
   1633       1.1      jtc {
   1634       1.1      jtc 	register int	tensdelta;
   1635       1.1      jtc 
   1636       1.1      jtc 	tensdelta = (*unitsptr >= 0) ?
   1637       1.1      jtc 		(*unitsptr / base) :
   1638       1.1      jtc 		(-1 - (-1 - *unitsptr) / base);
   1639       1.1      jtc 	*unitsptr -= tensdelta * base;
   1640       1.1      jtc 	return increment_overflow(tensptr, tensdelta);
   1641       1.1      jtc }
   1642       1.1      jtc 
   1643       1.1      jtc static int
   1644  1.1.1.14  mlelstv long_normalize_overflow(tensptr, unitsptr, base)
   1645  1.1.1.14  mlelstv long * const	tensptr;
   1646  1.1.1.14  mlelstv int * const	unitsptr;
   1647  1.1.1.14  mlelstv const int	base;
   1648  1.1.1.14  mlelstv {
   1649  1.1.1.14  mlelstv 	register int	tensdelta;
   1650  1.1.1.14  mlelstv 
   1651  1.1.1.14  mlelstv 	tensdelta = (*unitsptr >= 0) ?
   1652  1.1.1.14  mlelstv 		(*unitsptr / base) :
   1653  1.1.1.14  mlelstv 		(-1 - (-1 - *unitsptr) / base);
   1654  1.1.1.14  mlelstv 	*unitsptr -= tensdelta * base;
   1655  1.1.1.14  mlelstv 	return long_increment_overflow(tensptr, tensdelta);
   1656  1.1.1.14  mlelstv }
   1657  1.1.1.14  mlelstv 
   1658  1.1.1.14  mlelstv static int
   1659       1.1      jtc tmcomp(atmp, btmp)
   1660       1.1      jtc register const struct tm * const atmp;
   1661       1.1      jtc register const struct tm * const btmp;
   1662       1.1      jtc {
   1663       1.1      jtc 	register int	result;
   1664       1.1      jtc 
   1665       1.1      jtc 	if ((result = (atmp->tm_year - btmp->tm_year)) == 0 &&
   1666       1.1      jtc 		(result = (atmp->tm_mon - btmp->tm_mon)) == 0 &&
   1667       1.1      jtc 		(result = (atmp->tm_mday - btmp->tm_mday)) == 0 &&
   1668       1.1      jtc 		(result = (atmp->tm_hour - btmp->tm_hour)) == 0 &&
   1669       1.1      jtc 		(result = (atmp->tm_min - btmp->tm_min)) == 0)
   1670       1.1      jtc 			result = atmp->tm_sec - btmp->tm_sec;
   1671       1.1      jtc 	return result;
   1672       1.1      jtc }
   1673       1.1      jtc 
   1674       1.1      jtc static time_t
   1675   1.1.1.7      jtc time2sub(tmp, funcp, offset, okayp, do_norm_secs)
   1676       1.1      jtc struct tm * const	tmp;
   1677  1.1.1.14  mlelstv struct tm * (* const	funcp)(const time_t*, long, struct tm*);
   1678       1.1      jtc const long		offset;
   1679       1.1      jtc int * const		okayp;
   1680   1.1.1.7      jtc const int		do_norm_secs;
   1681       1.1      jtc {
   1682       1.1      jtc 	register const struct state *	sp;
   1683       1.1      jtc 	register int			dir;
   1684  1.1.1.14  mlelstv 	register int			i, j;
   1685       1.1      jtc 	register int			saved_seconds;
   1686  1.1.1.14  mlelstv 	register long			li;
   1687  1.1.1.14  mlelstv 	register time_t			lo;
   1688  1.1.1.14  mlelstv 	register time_t			hi;
   1689  1.1.1.14  mlelstv 	long				y;
   1690       1.1      jtc 	time_t				newt;
   1691       1.1      jtc 	time_t				t;
   1692       1.1      jtc 	struct tm			yourtm, mytm;
   1693       1.1      jtc 
   1694       1.1      jtc 	*okayp = FALSE;
   1695       1.1      jtc 	yourtm = *tmp;
   1696   1.1.1.7      jtc 	if (do_norm_secs) {
   1697   1.1.1.7      jtc 		if (normalize_overflow(&yourtm.tm_min, &yourtm.tm_sec,
   1698   1.1.1.7      jtc 			SECSPERMIN))
   1699   1.1.1.7      jtc 				return WRONG;
   1700   1.1.1.7      jtc 	}
   1701       1.1      jtc 	if (normalize_overflow(&yourtm.tm_hour, &yourtm.tm_min, MINSPERHOUR))
   1702       1.1      jtc 		return WRONG;
   1703       1.1      jtc 	if (normalize_overflow(&yourtm.tm_mday, &yourtm.tm_hour, HOURSPERDAY))
   1704       1.1      jtc 		return WRONG;
   1705  1.1.1.14  mlelstv 	y = yourtm.tm_year;
   1706  1.1.1.14  mlelstv 	if (long_normalize_overflow(&y, &yourtm.tm_mon, MONSPERYEAR))
   1707       1.1      jtc 		return WRONG;
   1708       1.1      jtc 	/*
   1709  1.1.1.14  mlelstv 	** Turn y into an actual year number for now.
   1710       1.1      jtc 	** It is converted back to an offset from TM_YEAR_BASE later.
   1711       1.1      jtc 	*/
   1712  1.1.1.14  mlelstv 	if (long_increment_overflow(&y, TM_YEAR_BASE))
   1713       1.1      jtc 		return WRONG;
   1714       1.1      jtc 	while (yourtm.tm_mday <= 0) {
   1715  1.1.1.14  mlelstv 		if (long_increment_overflow(&y, -1))
   1716       1.1      jtc 			return WRONG;
   1717  1.1.1.14  mlelstv 		li = y + (1 < yourtm.tm_mon);
   1718  1.1.1.14  mlelstv 		yourtm.tm_mday += year_lengths[isleap(li)];
   1719       1.1      jtc 	}
   1720       1.1      jtc 	while (yourtm.tm_mday > DAYSPERLYEAR) {
   1721  1.1.1.14  mlelstv 		li = y + (1 < yourtm.tm_mon);
   1722  1.1.1.14  mlelstv 		yourtm.tm_mday -= year_lengths[isleap(li)];
   1723  1.1.1.14  mlelstv 		if (long_increment_overflow(&y, 1))
   1724       1.1      jtc 			return WRONG;
   1725       1.1      jtc 	}
   1726       1.1      jtc 	for ( ; ; ) {
   1727  1.1.1.14  mlelstv 		i = mon_lengths[isleap(y)][yourtm.tm_mon];
   1728       1.1      jtc 		if (yourtm.tm_mday <= i)
   1729       1.1      jtc 			break;
   1730       1.1      jtc 		yourtm.tm_mday -= i;
   1731       1.1      jtc 		if (++yourtm.tm_mon >= MONSPERYEAR) {
   1732       1.1      jtc 			yourtm.tm_mon = 0;
   1733  1.1.1.14  mlelstv 			if (long_increment_overflow(&y, 1))
   1734       1.1      jtc 				return WRONG;
   1735       1.1      jtc 		}
   1736       1.1      jtc 	}
   1737  1.1.1.14  mlelstv 	if (long_increment_overflow(&y, -TM_YEAR_BASE))
   1738  1.1.1.14  mlelstv 		return WRONG;
   1739  1.1.1.14  mlelstv 	yourtm.tm_year = y;
   1740  1.1.1.14  mlelstv 	if (yourtm.tm_year != y)
   1741       1.1      jtc 		return WRONG;
   1742  1.1.1.11   kleink 	if (yourtm.tm_sec >= 0 && yourtm.tm_sec < SECSPERMIN)
   1743  1.1.1.11   kleink 		saved_seconds = 0;
   1744  1.1.1.14  mlelstv 	else if (y + TM_YEAR_BASE < EPOCH_YEAR) {
   1745       1.1      jtc 		/*
   1746       1.1      jtc 		** We can't set tm_sec to 0, because that might push the
   1747       1.1      jtc 		** time below the minimum representable time.
   1748       1.1      jtc 		** Set tm_sec to 59 instead.
   1749       1.1      jtc 		** This assumes that the minimum representable time is
   1750       1.1      jtc 		** not in the same minute that a leap second was deleted from,
   1751       1.1      jtc 		** which is a safer assumption than using 58 would be.
   1752       1.1      jtc 		*/
   1753       1.1      jtc 		if (increment_overflow(&yourtm.tm_sec, 1 - SECSPERMIN))
   1754       1.1      jtc 			return WRONG;
   1755       1.1      jtc 		saved_seconds = yourtm.tm_sec;
   1756       1.1      jtc 		yourtm.tm_sec = SECSPERMIN - 1;
   1757       1.1      jtc 	} else {
   1758       1.1      jtc 		saved_seconds = yourtm.tm_sec;
   1759       1.1      jtc 		yourtm.tm_sec = 0;
   1760       1.1      jtc 	}
   1761       1.1      jtc 	/*
   1762  1.1.1.14  mlelstv 	** Do a binary search (this works whatever time_t's type is).
   1763       1.1      jtc 	*/
   1764  1.1.1.14  mlelstv 	if (!TYPE_SIGNED(time_t)) {
   1765  1.1.1.14  mlelstv 		lo = 0;
   1766  1.1.1.14  mlelstv 		hi = lo - 1;
   1767  1.1.1.14  mlelstv 	} else if (!TYPE_INTEGRAL(time_t)) {
   1768  1.1.1.14  mlelstv 		if (sizeof(time_t) > sizeof(float))
   1769  1.1.1.14  mlelstv 			hi = (time_t) DBL_MAX;
   1770  1.1.1.14  mlelstv 		else	hi = (time_t) FLT_MAX;
   1771  1.1.1.14  mlelstv 		lo = -hi;
   1772  1.1.1.14  mlelstv 	} else {
   1773  1.1.1.14  mlelstv 		lo = 1;
   1774  1.1.1.14  mlelstv 		for (i = 0; i < (int) TYPE_BIT(time_t) - 1; ++i)
   1775  1.1.1.14  mlelstv 			lo *= 2;
   1776  1.1.1.14  mlelstv 		hi = -(lo + 1);
   1777  1.1.1.14  mlelstv 	}
   1778       1.1      jtc 	for ( ; ; ) {
   1779  1.1.1.14  mlelstv 		t = lo / 2 + hi / 2;
   1780  1.1.1.14  mlelstv 		if (t < lo)
   1781  1.1.1.14  mlelstv 			t = lo;
   1782  1.1.1.14  mlelstv 		else if (t > hi)
   1783  1.1.1.14  mlelstv 			t = hi;
   1784  1.1.1.14  mlelstv 		if ((*funcp)(&t, offset, &mytm) == NULL) {
   1785  1.1.1.14  mlelstv 			/*
   1786  1.1.1.14  mlelstv 			** Assume that t is too extreme to be represented in
   1787  1.1.1.14  mlelstv 			** a struct tm; arrange things so that it is less
   1788  1.1.1.14  mlelstv 			** extreme on the next pass.
   1789  1.1.1.14  mlelstv 			*/
   1790  1.1.1.14  mlelstv 			dir = (t > 0) ? 1 : -1;
   1791  1.1.1.14  mlelstv 		} else	dir = tmcomp(&mytm, &yourtm);
   1792       1.1      jtc 		if (dir != 0) {
   1793  1.1.1.14  mlelstv 			if (t == lo) {
   1794  1.1.1.14  mlelstv 				++t;
   1795  1.1.1.14  mlelstv 				if (t <= lo)
   1796  1.1.1.14  mlelstv 					return WRONG;
   1797  1.1.1.14  mlelstv 				++lo;
   1798  1.1.1.14  mlelstv 			} else if (t == hi) {
   1799  1.1.1.14  mlelstv 				--t;
   1800  1.1.1.14  mlelstv 				if (t >= hi)
   1801  1.1.1.14  mlelstv 					return WRONG;
   1802  1.1.1.14  mlelstv 				--hi;
   1803  1.1.1.14  mlelstv 			}
   1804  1.1.1.14  mlelstv 			if (lo > hi)
   1805       1.1      jtc 				return WRONG;
   1806  1.1.1.14  mlelstv 			if (dir > 0)
   1807  1.1.1.14  mlelstv 				hi = t;
   1808  1.1.1.14  mlelstv 			else	lo = t;
   1809       1.1      jtc 			continue;
   1810       1.1      jtc 		}
   1811       1.1      jtc 		if (yourtm.tm_isdst < 0 || mytm.tm_isdst == yourtm.tm_isdst)
   1812       1.1      jtc 			break;
   1813       1.1      jtc 		/*
   1814       1.1      jtc 		** Right time, wrong type.
   1815       1.1      jtc 		** Hunt for right time, right type.
   1816       1.1      jtc 		** It's okay to guess wrong since the guess
   1817       1.1      jtc 		** gets checked.
   1818       1.1      jtc 		*/
   1819       1.1      jtc 		sp = (const struct state *)
   1820  1.1.1.14  mlelstv 			((funcp == localsub) ? lclptr : gmtptr);
   1821       1.1      jtc #ifdef ALL_STATE
   1822       1.1      jtc 		if (sp == NULL)
   1823       1.1      jtc 			return WRONG;
   1824       1.1      jtc #endif /* defined ALL_STATE */
   1825   1.1.1.3      jtc 		for (i = sp->typecnt - 1; i >= 0; --i) {
   1826       1.1      jtc 			if (sp->ttis[i].tt_isdst != yourtm.tm_isdst)
   1827       1.1      jtc 				continue;
   1828   1.1.1.3      jtc 			for (j = sp->typecnt - 1; j >= 0; --j) {
   1829       1.1      jtc 				if (sp->ttis[j].tt_isdst == yourtm.tm_isdst)
   1830       1.1      jtc 					continue;
   1831       1.1      jtc 				newt = t + sp->ttis[j].tt_gmtoff -
   1832       1.1      jtc 					sp->ttis[i].tt_gmtoff;
   1833  1.1.1.14  mlelstv 				if ((*funcp)(&newt, offset, &mytm) == NULL)
   1834  1.1.1.14  mlelstv 					continue;
   1835       1.1      jtc 				if (tmcomp(&mytm, &yourtm) != 0)
   1836       1.1      jtc 					continue;
   1837       1.1      jtc 				if (mytm.tm_isdst != yourtm.tm_isdst)
   1838       1.1      jtc 					continue;
   1839       1.1      jtc 				/*
   1840       1.1      jtc 				** We have a match.
   1841       1.1      jtc 				*/
   1842       1.1      jtc 				t = newt;
   1843       1.1      jtc 				goto label;
   1844       1.1      jtc 			}
   1845       1.1      jtc 		}
   1846       1.1      jtc 		return WRONG;
   1847       1.1      jtc 	}
   1848       1.1      jtc label:
   1849       1.1      jtc 	newt = t + saved_seconds;
   1850       1.1      jtc 	if ((newt < t) != (saved_seconds < 0))
   1851       1.1      jtc 		return WRONG;
   1852       1.1      jtc 	t = newt;
   1853  1.1.1.14  mlelstv 	if ((*funcp)(&t, offset, tmp))
   1854  1.1.1.14  mlelstv 		*okayp = TRUE;
   1855       1.1      jtc 	return t;
   1856   1.1.1.7      jtc }
   1857   1.1.1.7      jtc 
   1858   1.1.1.7      jtc static time_t
   1859   1.1.1.7      jtc time2(tmp, funcp, offset, okayp)
   1860   1.1.1.7      jtc struct tm * const	tmp;
   1861  1.1.1.14  mlelstv struct tm * (* const	funcp)(const time_t*, long, struct tm*);
   1862   1.1.1.7      jtc const long		offset;
   1863   1.1.1.7      jtc int * const		okayp;
   1864   1.1.1.7      jtc {
   1865   1.1.1.7      jtc 	time_t	t;
   1866   1.1.1.7      jtc 
   1867   1.1.1.7      jtc 	/*
   1868   1.1.1.7      jtc 	** First try without normalization of seconds
   1869   1.1.1.7      jtc 	** (in case tm_sec contains a value associated with a leap second).
   1870   1.1.1.7      jtc 	** If that fails, try with normalization of seconds.
   1871   1.1.1.7      jtc 	*/
   1872   1.1.1.7      jtc 	t = time2sub(tmp, funcp, offset, okayp, FALSE);
   1873   1.1.1.7      jtc 	return *okayp ? t : time2sub(tmp, funcp, offset, okayp, TRUE);
   1874       1.1      jtc }
   1875       1.1      jtc 
   1876       1.1      jtc static time_t
   1877       1.1      jtc time1(tmp, funcp, offset)
   1878       1.1      jtc struct tm * const	tmp;
   1879  1.1.1.14  mlelstv struct tm * (* const	funcp)(const time_t *, long, struct tm *);
   1880       1.1      jtc const long		offset;
   1881       1.1      jtc {
   1882       1.1      jtc 	register time_t			t;
   1883       1.1      jtc 	register const struct state *	sp;
   1884       1.1      jtc 	register int			samei, otheri;
   1885  1.1.1.13   kleink 	register int			sameind, otherind;
   1886  1.1.1.13   kleink 	register int			i;
   1887  1.1.1.13   kleink 	register int			nseen;
   1888  1.1.1.13   kleink 	int				seen[TZ_MAX_TYPES];
   1889  1.1.1.13   kleink 	int				types[TZ_MAX_TYPES];
   1890       1.1      jtc 	int				okay;
   1891       1.1      jtc 
   1892       1.1      jtc 	if (tmp->tm_isdst > 1)
   1893       1.1      jtc 		tmp->tm_isdst = 1;
   1894       1.1      jtc 	t = time2(tmp, funcp, offset, &okay);
   1895       1.1      jtc #ifdef PCTS
   1896       1.1      jtc 	/*
   1897  1.1.1.14  mlelstv 	** PCTS code courtesy Grant Sullivan.
   1898       1.1      jtc 	*/
   1899       1.1      jtc 	if (okay)
   1900       1.1      jtc 		return t;
   1901       1.1      jtc 	if (tmp->tm_isdst < 0)
   1902       1.1      jtc 		tmp->tm_isdst = 0;	/* reset to std and try again */
   1903       1.1      jtc #endif /* defined PCTS */
   1904       1.1      jtc #ifndef PCTS
   1905       1.1      jtc 	if (okay || tmp->tm_isdst < 0)
   1906       1.1      jtc 		return t;
   1907       1.1      jtc #endif /* !defined PCTS */
   1908       1.1      jtc 	/*
   1909       1.1      jtc 	** We're supposed to assume that somebody took a time of one type
   1910       1.1      jtc 	** and did some math on it that yielded a "struct tm" that's bad.
   1911       1.1      jtc 	** We try to divine the type they started from and adjust to the
   1912       1.1      jtc 	** type they need.
   1913       1.1      jtc 	*/
   1914  1.1.1.14  mlelstv 	sp = (const struct state *) ((funcp == localsub) ?  lclptr : gmtptr);
   1915       1.1      jtc #ifdef ALL_STATE
   1916       1.1      jtc 	if (sp == NULL)
   1917       1.1      jtc 		return WRONG;
   1918       1.1      jtc #endif /* defined ALL_STATE */
   1919  1.1.1.13   kleink 	for (i = 0; i < sp->typecnt; ++i)
   1920  1.1.1.13   kleink 		seen[i] = FALSE;
   1921  1.1.1.13   kleink 	nseen = 0;
   1922  1.1.1.13   kleink 	for (i = sp->timecnt - 1; i >= 0; --i)
   1923  1.1.1.13   kleink 		if (!seen[sp->types[i]]) {
   1924  1.1.1.13   kleink 			seen[sp->types[i]] = TRUE;
   1925  1.1.1.13   kleink 			types[nseen++] = sp->types[i];
   1926  1.1.1.13   kleink 		}
   1927  1.1.1.13   kleink 	for (sameind = 0; sameind < nseen; ++sameind) {
   1928  1.1.1.13   kleink 		samei = types[sameind];
   1929       1.1      jtc 		if (sp->ttis[samei].tt_isdst != tmp->tm_isdst)
   1930       1.1      jtc 			continue;
   1931  1.1.1.13   kleink 		for (otherind = 0; otherind < nseen; ++otherind) {
   1932  1.1.1.13   kleink 			otheri = types[otherind];
   1933       1.1      jtc 			if (sp->ttis[otheri].tt_isdst == tmp->tm_isdst)
   1934       1.1      jtc 				continue;
   1935       1.1      jtc 			tmp->tm_sec += sp->ttis[otheri].tt_gmtoff -
   1936       1.1      jtc 					sp->ttis[samei].tt_gmtoff;
   1937       1.1      jtc 			tmp->tm_isdst = !tmp->tm_isdst;
   1938       1.1      jtc 			t = time2(tmp, funcp, offset, &okay);
   1939       1.1      jtc 			if (okay)
   1940       1.1      jtc 				return t;
   1941       1.1      jtc 			tmp->tm_sec -= sp->ttis[otheri].tt_gmtoff -
   1942       1.1      jtc 					sp->ttis[samei].tt_gmtoff;
   1943       1.1      jtc 			tmp->tm_isdst = !tmp->tm_isdst;
   1944       1.1      jtc 		}
   1945       1.1      jtc 	}
   1946       1.1      jtc 	return WRONG;
   1947       1.1      jtc }
   1948       1.1      jtc 
   1949       1.1      jtc time_t
   1950       1.1      jtc mktime(tmp)
   1951       1.1      jtc struct tm * const	tmp;
   1952       1.1      jtc {
   1953       1.1      jtc 	tzset();
   1954       1.1      jtc 	return time1(tmp, localsub, 0L);
   1955       1.1      jtc }
   1956       1.1      jtc 
   1957       1.1      jtc #ifdef STD_INSPIRED
   1958       1.1      jtc 
   1959       1.1      jtc time_t
   1960       1.1      jtc timelocal(tmp)
   1961       1.1      jtc struct tm * const	tmp;
   1962       1.1      jtc {
   1963       1.1      jtc 	tmp->tm_isdst = -1;	/* in case it wasn't initialized */
   1964       1.1      jtc 	return mktime(tmp);
   1965       1.1      jtc }
   1966       1.1      jtc 
   1967       1.1      jtc time_t
   1968       1.1      jtc timegm(tmp)
   1969       1.1      jtc struct tm * const	tmp;
   1970       1.1      jtc {
   1971       1.1      jtc 	tmp->tm_isdst = 0;
   1972       1.1      jtc 	return time1(tmp, gmtsub, 0L);
   1973       1.1      jtc }
   1974       1.1      jtc 
   1975       1.1      jtc time_t
   1976       1.1      jtc timeoff(tmp, offset)
   1977       1.1      jtc struct tm * const	tmp;
   1978       1.1      jtc const long		offset;
   1979       1.1      jtc {
   1980       1.1      jtc 	tmp->tm_isdst = 0;
   1981       1.1      jtc 	return time1(tmp, gmtsub, offset);
   1982       1.1      jtc }
   1983       1.1      jtc 
   1984       1.1      jtc #endif /* defined STD_INSPIRED */
   1985       1.1      jtc 
   1986       1.1      jtc #ifdef CMUCS
   1987       1.1      jtc 
   1988       1.1      jtc /*
   1989       1.1      jtc ** The following is supplied for compatibility with
   1990       1.1      jtc ** previous versions of the CMUCS runtime library.
   1991       1.1      jtc */
   1992       1.1      jtc 
   1993       1.1      jtc long
   1994       1.1      jtc gtime(tmp)
   1995       1.1      jtc struct tm * const	tmp;
   1996       1.1      jtc {
   1997       1.1      jtc 	const time_t	t = mktime(tmp);
   1998       1.1      jtc 
   1999       1.1      jtc 	if (t == WRONG)
   2000       1.1      jtc 		return -1;
   2001       1.1      jtc 	return t;
   2002       1.1      jtc }
   2003       1.1      jtc 
   2004       1.1      jtc #endif /* defined CMUCS */
   2005       1.1      jtc 
   2006       1.1      jtc /*
   2007       1.1      jtc ** XXX--is the below the right way to conditionalize??
   2008       1.1      jtc */
   2009       1.1      jtc 
   2010       1.1      jtc #ifdef STD_INSPIRED
   2011       1.1      jtc 
   2012       1.1      jtc /*
   2013       1.1      jtc ** IEEE Std 1003.1-1988 (POSIX) legislates that 536457599
   2014   1.1.1.8      jtc ** shall correspond to "Wed Dec 31 23:59:59 UTC 1986", which
   2015       1.1      jtc ** is not the case if we are accounting for leap seconds.
   2016       1.1      jtc ** So, we provide the following conversion routines for use
   2017       1.1      jtc ** when exchanging timestamps with POSIX conforming systems.
   2018       1.1      jtc */
   2019       1.1      jtc 
   2020       1.1      jtc static long
   2021       1.1      jtc leapcorr(timep)
   2022       1.1      jtc time_t *	timep;
   2023       1.1      jtc {
   2024       1.1      jtc 	register struct state *		sp;
   2025       1.1      jtc 	register struct lsinfo *	lp;
   2026       1.1      jtc 	register int			i;
   2027       1.1      jtc 
   2028       1.1      jtc 	sp = lclptr;
   2029       1.1      jtc 	i = sp->leapcnt;
   2030       1.1      jtc 	while (--i >= 0) {
   2031       1.1      jtc 		lp = &sp->lsis[i];
   2032       1.1      jtc 		if (*timep >= lp->ls_trans)
   2033       1.1      jtc 			return lp->ls_corr;
   2034       1.1      jtc 	}
   2035       1.1      jtc 	return 0;
   2036       1.1      jtc }
   2037       1.1      jtc 
   2038       1.1      jtc time_t
   2039       1.1      jtc time2posix(t)
   2040       1.1      jtc time_t	t;
   2041       1.1      jtc {
   2042       1.1      jtc 	tzset();
   2043       1.1      jtc 	return t - leapcorr(&t);
   2044       1.1      jtc }
   2045       1.1      jtc 
   2046       1.1      jtc time_t
   2047       1.1      jtc posix2time(t)
   2048       1.1      jtc time_t	t;
   2049       1.1      jtc {
   2050       1.1      jtc 	time_t	x;
   2051       1.1      jtc 	time_t	y;
   2052       1.1      jtc 
   2053       1.1      jtc 	tzset();
   2054       1.1      jtc 	/*
   2055       1.1      jtc 	** For a positive leap second hit, the result
   2056  1.1.1.14  mlelstv 	** is not unique. For a negative leap second
   2057       1.1      jtc 	** hit, the corresponding time doesn't exist,
   2058       1.1      jtc 	** so we return an adjacent second.
   2059       1.1      jtc 	*/
   2060       1.1      jtc 	x = t + leapcorr(&t);
   2061       1.1      jtc 	y = x - leapcorr(&x);
   2062       1.1      jtc 	if (y < t) {
   2063       1.1      jtc 		do {
   2064       1.1      jtc 			x++;
   2065       1.1      jtc 			y = x - leapcorr(&x);
   2066       1.1      jtc 		} while (y < t);
   2067       1.1      jtc 		if (t != y)
   2068       1.1      jtc 			return x - 1;
   2069       1.1      jtc 	} else if (y > t) {
   2070       1.1      jtc 		do {
   2071       1.1      jtc 			--x;
   2072       1.1      jtc 			y = x - leapcorr(&x);
   2073       1.1      jtc 		} while (y > t);
   2074       1.1      jtc 		if (t != y)
   2075       1.1      jtc 			return x + 1;
   2076       1.1      jtc 	}
   2077       1.1      jtc 	return x;
   2078       1.1      jtc }
   2079       1.1      jtc 
   2080       1.1      jtc #endif /* defined STD_INSPIRED */
   2081