localtime.c revision 1.1.1.5 1 1.1.1.5 jtc /*
2 1.1.1.5 jtc ** This file is in the public domain, so clarified as of
3 1.1.1.5 jtc ** June 5, 1996 by Arthur David Olson (arthur_david_olson (at) nih.gov).
4 1.1.1.5 jtc */
5 1.1.1.5 jtc
6 1.1 jtc #ifndef lint
7 1.1 jtc #ifndef NOID
8 1.1.1.5 jtc static char elsieid[] = "@(#)localtime.c 7.58";
9 1.1 jtc #endif /* !defined NOID */
10 1.1 jtc #endif /* !defined lint */
11 1.1 jtc
12 1.1 jtc /*
13 1.1 jtc ** Leap second handling from Bradley White (bww (at) k.gp.cs.cmu.edu).
14 1.1 jtc ** POSIX-style TZ environment variable handling from Guy Harris
15 1.1 jtc ** (guy (at) auspex.com).
16 1.1 jtc */
17 1.1 jtc
18 1.1 jtc /*LINTLIBRARY*/
19 1.1 jtc
20 1.1 jtc #include "private.h"
21 1.1 jtc #include "tzfile.h"
22 1.1 jtc #include "fcntl.h"
23 1.1 jtc
24 1.1 jtc /*
25 1.1 jtc ** SunOS 4.1.1 headers lack O_BINARY.
26 1.1 jtc */
27 1.1 jtc
28 1.1 jtc #ifdef O_BINARY
29 1.1 jtc #define OPEN_MODE (O_RDONLY | O_BINARY)
30 1.1 jtc #endif /* defined O_BINARY */
31 1.1 jtc #ifndef O_BINARY
32 1.1 jtc #define OPEN_MODE O_RDONLY
33 1.1 jtc #endif /* !defined O_BINARY */
34 1.1 jtc
35 1.1 jtc #ifndef WILDABBR
36 1.1 jtc /*
37 1.1 jtc ** Someone might make incorrect use of a time zone abbreviation:
38 1.1 jtc ** 1. They might reference tzname[0] before calling tzset (explicitly
39 1.1 jtc ** or implicitly).
40 1.1 jtc ** 2. They might reference tzname[1] before calling tzset (explicitly
41 1.1 jtc ** or implicitly).
42 1.1 jtc ** 3. They might reference tzname[1] after setting to a time zone
43 1.1 jtc ** in which Daylight Saving Time is never observed.
44 1.1 jtc ** 4. They might reference tzname[0] after setting to a time zone
45 1.1 jtc ** in which Standard Time is never observed.
46 1.1 jtc ** 5. They might reference tm.TM_ZONE after calling offtime.
47 1.1 jtc ** What's best to do in the above cases is open to debate;
48 1.1 jtc ** for now, we just set things up so that in any of the five cases
49 1.1 jtc ** WILDABBR is used. Another possibility: initialize tzname[0] to the
50 1.1 jtc ** string "tzname[0] used before set", and similarly for the other cases.
51 1.1 jtc ** And another: initialize tzname[0] to "ERA", with an explanation in the
52 1.1 jtc ** manual page of what this "time zone abbreviation" means (doing this so
53 1.1 jtc ** that tzname[0] has the "normal" length of three characters).
54 1.1 jtc */
55 1.1 jtc #define WILDABBR " "
56 1.1 jtc #endif /* !defined WILDABBR */
57 1.1 jtc
58 1.1 jtc static char wildabbr[] = "WILDABBR";
59 1.1 jtc
60 1.1 jtc static const char gmt[] = "GMT";
61 1.1 jtc
62 1.1 jtc struct ttinfo { /* time type information */
63 1.1 jtc long tt_gmtoff; /* GMT offset in seconds */
64 1.1 jtc int tt_isdst; /* used to set tm_isdst */
65 1.1 jtc int tt_abbrind; /* abbreviation list index */
66 1.1 jtc int tt_ttisstd; /* TRUE if transition is std time */
67 1.1 jtc int tt_ttisgmt; /* TRUE if transition is GMT */
68 1.1 jtc };
69 1.1 jtc
70 1.1 jtc struct lsinfo { /* leap second information */
71 1.1 jtc time_t ls_trans; /* transition time */
72 1.1 jtc long ls_corr; /* correction to apply */
73 1.1 jtc };
74 1.1 jtc
75 1.1 jtc #define BIGGEST(a, b) (((a) > (b)) ? (a) : (b))
76 1.1 jtc
77 1.1 jtc #ifdef TZNAME_MAX
78 1.1 jtc #define MY_TZNAME_MAX TZNAME_MAX
79 1.1 jtc #endif /* defined TZNAME_MAX */
80 1.1 jtc #ifndef TZNAME_MAX
81 1.1 jtc #define MY_TZNAME_MAX 255
82 1.1 jtc #endif /* !defined TZNAME_MAX */
83 1.1 jtc
84 1.1 jtc struct state {
85 1.1 jtc int leapcnt;
86 1.1 jtc int timecnt;
87 1.1 jtc int typecnt;
88 1.1 jtc int charcnt;
89 1.1 jtc time_t ats[TZ_MAX_TIMES];
90 1.1 jtc unsigned char types[TZ_MAX_TIMES];
91 1.1 jtc struct ttinfo ttis[TZ_MAX_TYPES];
92 1.1 jtc char chars[BIGGEST(BIGGEST(TZ_MAX_CHARS + 1, sizeof gmt),
93 1.1 jtc (2 * (MY_TZNAME_MAX + 1)))];
94 1.1 jtc struct lsinfo lsis[TZ_MAX_LEAPS];
95 1.1 jtc };
96 1.1 jtc
97 1.1 jtc struct rule {
98 1.1 jtc int r_type; /* type of rule--see below */
99 1.1 jtc int r_day; /* day number of rule */
100 1.1 jtc int r_week; /* week number of rule */
101 1.1 jtc int r_mon; /* month number of rule */
102 1.1 jtc long r_time; /* transition time of rule */
103 1.1 jtc };
104 1.1 jtc
105 1.1 jtc #define JULIAN_DAY 0 /* Jn - Julian day */
106 1.1 jtc #define DAY_OF_YEAR 1 /* n - day of year */
107 1.1 jtc #define MONTH_NTH_DAY_OF_WEEK 2 /* Mm.n.d - month, week, day of week */
108 1.1 jtc
109 1.1 jtc /*
110 1.1 jtc ** Prototypes for static functions.
111 1.1 jtc */
112 1.1 jtc
113 1.1 jtc static long detzcode P((const char * codep));
114 1.1 jtc static const char * getzname P((const char * strp));
115 1.1 jtc static const char * getnum P((const char * strp, int * nump, int min,
116 1.1 jtc int max));
117 1.1 jtc static const char * getsecs P((const char * strp, long * secsp));
118 1.1 jtc static const char * getoffset P((const char * strp, long * offsetp));
119 1.1 jtc static const char * getrule P((const char * strp, struct rule * rulep));
120 1.1 jtc static void gmtload P((struct state * sp));
121 1.1 jtc static void gmtsub P((const time_t * timep, long offset,
122 1.1 jtc struct tm * tmp));
123 1.1 jtc static void localsub P((const time_t * timep, long offset,
124 1.1 jtc struct tm * tmp));
125 1.1 jtc static int increment_overflow P((int * number, int delta));
126 1.1 jtc static int normalize_overflow P((int * tensptr, int * unitsptr,
127 1.1 jtc int base));
128 1.1 jtc static void settzname P((void));
129 1.1 jtc static time_t time1 P((struct tm * tmp,
130 1.1 jtc void(*funcp) P((const time_t *,
131 1.1 jtc long, struct tm *)),
132 1.1 jtc long offset));
133 1.1 jtc static time_t time2 P((struct tm *tmp,
134 1.1 jtc void(*funcp) P((const time_t *,
135 1.1 jtc long, struct tm*)),
136 1.1 jtc long offset, int * okayp));
137 1.1 jtc static void timesub P((const time_t * timep, long offset,
138 1.1 jtc const struct state * sp, struct tm * tmp));
139 1.1 jtc static int tmcomp P((const struct tm * atmp,
140 1.1 jtc const struct tm * btmp));
141 1.1 jtc static time_t transtime P((time_t janfirst, int year,
142 1.1 jtc const struct rule * rulep, long offset));
143 1.1 jtc static int tzload P((const char * name, struct state * sp));
144 1.1 jtc static int tzparse P((const char * name, struct state * sp,
145 1.1 jtc int lastditch));
146 1.1 jtc
147 1.1 jtc #ifdef ALL_STATE
148 1.1 jtc static struct state * lclptr;
149 1.1 jtc static struct state * gmtptr;
150 1.1 jtc #endif /* defined ALL_STATE */
151 1.1 jtc
152 1.1 jtc #ifndef ALL_STATE
153 1.1 jtc static struct state lclmem;
154 1.1 jtc static struct state gmtmem;
155 1.1 jtc #define lclptr (&lclmem)
156 1.1 jtc #define gmtptr (&gmtmem)
157 1.1 jtc #endif /* State Farm */
158 1.1 jtc
159 1.1 jtc #ifndef TZ_STRLEN_MAX
160 1.1 jtc #define TZ_STRLEN_MAX 255
161 1.1 jtc #endif /* !defined TZ_STRLEN_MAX */
162 1.1 jtc
163 1.1 jtc static char lcl_TZname[TZ_STRLEN_MAX + 1];
164 1.1 jtc static int lcl_is_set;
165 1.1 jtc static int gmt_is_set;
166 1.1 jtc
167 1.1 jtc char * tzname[2] = {
168 1.1 jtc wildabbr,
169 1.1 jtc wildabbr
170 1.1 jtc };
171 1.1 jtc
172 1.1 jtc /*
173 1.1 jtc ** Section 4.12.3 of X3.159-1989 requires that
174 1.1 jtc ** Except for the strftime function, these functions [asctime,
175 1.1 jtc ** ctime, gmtime, localtime] return values in one of two static
176 1.1 jtc ** objects: a broken-down time structure and an array of char.
177 1.1 jtc ** Thanks to Paul Eggert (eggert (at) twinsun.com) for noting this.
178 1.1 jtc */
179 1.1 jtc
180 1.1 jtc static struct tm tm;
181 1.1 jtc
182 1.1 jtc #ifdef USG_COMPAT
183 1.1 jtc time_t timezone = 0;
184 1.1 jtc int daylight = 0;
185 1.1 jtc #endif /* defined USG_COMPAT */
186 1.1 jtc
187 1.1 jtc #ifdef ALTZONE
188 1.1 jtc time_t altzone = 0;
189 1.1 jtc #endif /* defined ALTZONE */
190 1.1 jtc
191 1.1 jtc static long
192 1.1 jtc detzcode(codep)
193 1.1 jtc const char * const codep;
194 1.1 jtc {
195 1.1 jtc register long result;
196 1.1 jtc register int i;
197 1.1 jtc
198 1.1.1.3 jtc result = (codep[0] & 0x80) ? ~0L : 0L;
199 1.1 jtc for (i = 0; i < 4; ++i)
200 1.1 jtc result = (result << 8) | (codep[i] & 0xff);
201 1.1 jtc return result;
202 1.1 jtc }
203 1.1 jtc
204 1.1 jtc static void
205 1.1 jtc settzname P((void))
206 1.1 jtc {
207 1.1.1.3 jtc register struct state * const sp = lclptr;
208 1.1.1.3 jtc register int i;
209 1.1 jtc
210 1.1 jtc tzname[0] = wildabbr;
211 1.1 jtc tzname[1] = wildabbr;
212 1.1 jtc #ifdef USG_COMPAT
213 1.1 jtc daylight = 0;
214 1.1 jtc timezone = 0;
215 1.1 jtc #endif /* defined USG_COMPAT */
216 1.1 jtc #ifdef ALTZONE
217 1.1 jtc altzone = 0;
218 1.1 jtc #endif /* defined ALTZONE */
219 1.1 jtc #ifdef ALL_STATE
220 1.1 jtc if (sp == NULL) {
221 1.1 jtc tzname[0] = tzname[1] = gmt;
222 1.1 jtc return;
223 1.1 jtc }
224 1.1 jtc #endif /* defined ALL_STATE */
225 1.1 jtc for (i = 0; i < sp->typecnt; ++i) {
226 1.1 jtc register const struct ttinfo * const ttisp = &sp->ttis[i];
227 1.1 jtc
228 1.1 jtc tzname[ttisp->tt_isdst] =
229 1.1 jtc &sp->chars[ttisp->tt_abbrind];
230 1.1 jtc #ifdef USG_COMPAT
231 1.1 jtc if (ttisp->tt_isdst)
232 1.1 jtc daylight = 1;
233 1.1 jtc if (i == 0 || !ttisp->tt_isdst)
234 1.1 jtc timezone = -(ttisp->tt_gmtoff);
235 1.1 jtc #endif /* defined USG_COMPAT */
236 1.1 jtc #ifdef ALTZONE
237 1.1 jtc if (i == 0 || ttisp->tt_isdst)
238 1.1 jtc altzone = -(ttisp->tt_gmtoff);
239 1.1 jtc #endif /* defined ALTZONE */
240 1.1 jtc }
241 1.1 jtc /*
242 1.1 jtc ** And to get the latest zone names into tzname. . .
243 1.1 jtc */
244 1.1 jtc for (i = 0; i < sp->timecnt; ++i) {
245 1.1 jtc register const struct ttinfo * const ttisp =
246 1.1 jtc &sp->ttis[
247 1.1 jtc sp->types[i]];
248 1.1 jtc
249 1.1 jtc tzname[ttisp->tt_isdst] =
250 1.1 jtc &sp->chars[ttisp->tt_abbrind];
251 1.1 jtc }
252 1.1 jtc }
253 1.1 jtc
254 1.1 jtc static int
255 1.1 jtc tzload(name, sp)
256 1.1 jtc register const char * name;
257 1.1 jtc register struct state * const sp;
258 1.1 jtc {
259 1.1 jtc register const char * p;
260 1.1 jtc register int i;
261 1.1 jtc register int fid;
262 1.1 jtc
263 1.1 jtc if (name == NULL && (name = TZDEFAULT) == NULL)
264 1.1 jtc return -1;
265 1.1 jtc {
266 1.1 jtc register int doaccess;
267 1.1 jtc /*
268 1.1 jtc ** Section 4.9.1 of the C standard says that
269 1.1 jtc ** "FILENAME_MAX expands to an integral constant expression
270 1.1 jtc ** that is the sie needed for an array of char large enough
271 1.1 jtc ** to hold the longest file name string that the implementation
272 1.1 jtc ** guarantees can be opened."
273 1.1 jtc */
274 1.1 jtc char fullname[FILENAME_MAX + 1];
275 1.1 jtc
276 1.1 jtc if (name[0] == ':')
277 1.1 jtc ++name;
278 1.1 jtc doaccess = name[0] == '/';
279 1.1 jtc if (!doaccess) {
280 1.1 jtc if ((p = TZDIR) == NULL)
281 1.1 jtc return -1;
282 1.1 jtc if ((strlen(p) + strlen(name) + 1) >= sizeof fullname)
283 1.1 jtc return -1;
284 1.1 jtc (void) strcpy(fullname, p);
285 1.1 jtc (void) strcat(fullname, "/");
286 1.1 jtc (void) strcat(fullname, name);
287 1.1 jtc /*
288 1.1 jtc ** Set doaccess if '.' (as in "../") shows up in name.
289 1.1 jtc */
290 1.1 jtc if (strchr(name, '.') != NULL)
291 1.1 jtc doaccess = TRUE;
292 1.1 jtc name = fullname;
293 1.1 jtc }
294 1.1 jtc if (doaccess && access(name, R_OK) != 0)
295 1.1 jtc return -1;
296 1.1 jtc if ((fid = open(name, OPEN_MODE)) == -1)
297 1.1 jtc return -1;
298 1.1 jtc }
299 1.1 jtc {
300 1.1 jtc struct tzhead * tzhp;
301 1.1 jtc char buf[sizeof *sp + sizeof *tzhp];
302 1.1 jtc int ttisstdcnt;
303 1.1 jtc int ttisgmtcnt;
304 1.1 jtc
305 1.1 jtc i = read(fid, buf, sizeof buf);
306 1.1 jtc if (close(fid) != 0)
307 1.1 jtc return -1;
308 1.1 jtc p = buf;
309 1.1 jtc p += sizeof tzhp->tzh_reserved;
310 1.1 jtc ttisstdcnt = (int) detzcode(p);
311 1.1 jtc p += 4;
312 1.1 jtc ttisgmtcnt = (int) detzcode(p);
313 1.1 jtc p += 4;
314 1.1 jtc sp->leapcnt = (int) detzcode(p);
315 1.1 jtc p += 4;
316 1.1 jtc sp->timecnt = (int) detzcode(p);
317 1.1 jtc p += 4;
318 1.1 jtc sp->typecnt = (int) detzcode(p);
319 1.1 jtc p += 4;
320 1.1 jtc sp->charcnt = (int) detzcode(p);
321 1.1 jtc p += 4;
322 1.1 jtc if (sp->leapcnt < 0 || sp->leapcnt > TZ_MAX_LEAPS ||
323 1.1 jtc sp->typecnt <= 0 || sp->typecnt > TZ_MAX_TYPES ||
324 1.1 jtc sp->timecnt < 0 || sp->timecnt > TZ_MAX_TIMES ||
325 1.1 jtc sp->charcnt < 0 || sp->charcnt > TZ_MAX_CHARS ||
326 1.1 jtc (ttisstdcnt != sp->typecnt && ttisstdcnt != 0) ||
327 1.1 jtc (ttisgmtcnt != sp->typecnt && ttisgmtcnt != 0))
328 1.1 jtc return -1;
329 1.1 jtc if (i - (p - buf) < sp->timecnt * 4 + /* ats */
330 1.1 jtc sp->timecnt + /* types */
331 1.1 jtc sp->typecnt * (4 + 2) + /* ttinfos */
332 1.1 jtc sp->charcnt + /* chars */
333 1.1 jtc sp->leapcnt * (4 + 4) + /* lsinfos */
334 1.1 jtc ttisstdcnt + /* ttisstds */
335 1.1 jtc ttisgmtcnt) /* ttisgmts */
336 1.1 jtc return -1;
337 1.1 jtc for (i = 0; i < sp->timecnt; ++i) {
338 1.1 jtc sp->ats[i] = detzcode(p);
339 1.1 jtc p += 4;
340 1.1 jtc }
341 1.1 jtc for (i = 0; i < sp->timecnt; ++i) {
342 1.1 jtc sp->types[i] = (unsigned char) *p++;
343 1.1 jtc if (sp->types[i] >= sp->typecnt)
344 1.1 jtc return -1;
345 1.1 jtc }
346 1.1 jtc for (i = 0; i < sp->typecnt; ++i) {
347 1.1 jtc register struct ttinfo * ttisp;
348 1.1 jtc
349 1.1 jtc ttisp = &sp->ttis[i];
350 1.1 jtc ttisp->tt_gmtoff = detzcode(p);
351 1.1 jtc p += 4;
352 1.1 jtc ttisp->tt_isdst = (unsigned char) *p++;
353 1.1 jtc if (ttisp->tt_isdst != 0 && ttisp->tt_isdst != 1)
354 1.1 jtc return -1;
355 1.1 jtc ttisp->tt_abbrind = (unsigned char) *p++;
356 1.1 jtc if (ttisp->tt_abbrind < 0 ||
357 1.1 jtc ttisp->tt_abbrind > sp->charcnt)
358 1.1 jtc return -1;
359 1.1 jtc }
360 1.1 jtc for (i = 0; i < sp->charcnt; ++i)
361 1.1 jtc sp->chars[i] = *p++;
362 1.1 jtc sp->chars[i] = '\0'; /* ensure '\0' at end */
363 1.1 jtc for (i = 0; i < sp->leapcnt; ++i) {
364 1.1 jtc register struct lsinfo * lsisp;
365 1.1 jtc
366 1.1 jtc lsisp = &sp->lsis[i];
367 1.1 jtc lsisp->ls_trans = detzcode(p);
368 1.1 jtc p += 4;
369 1.1 jtc lsisp->ls_corr = detzcode(p);
370 1.1 jtc p += 4;
371 1.1 jtc }
372 1.1 jtc for (i = 0; i < sp->typecnt; ++i) {
373 1.1 jtc register struct ttinfo * ttisp;
374 1.1 jtc
375 1.1 jtc ttisp = &sp->ttis[i];
376 1.1 jtc if (ttisstdcnt == 0)
377 1.1 jtc ttisp->tt_ttisstd = FALSE;
378 1.1 jtc else {
379 1.1 jtc ttisp->tt_ttisstd = *p++;
380 1.1 jtc if (ttisp->tt_ttisstd != TRUE &&
381 1.1 jtc ttisp->tt_ttisstd != FALSE)
382 1.1 jtc return -1;
383 1.1 jtc }
384 1.1 jtc }
385 1.1 jtc for (i = 0; i < sp->typecnt; ++i) {
386 1.1 jtc register struct ttinfo * ttisp;
387 1.1 jtc
388 1.1 jtc ttisp = &sp->ttis[i];
389 1.1 jtc if (ttisgmtcnt == 0)
390 1.1 jtc ttisp->tt_ttisgmt = FALSE;
391 1.1 jtc else {
392 1.1 jtc ttisp->tt_ttisgmt = *p++;
393 1.1 jtc if (ttisp->tt_ttisgmt != TRUE &&
394 1.1 jtc ttisp->tt_ttisgmt != FALSE)
395 1.1 jtc return -1;
396 1.1 jtc }
397 1.1 jtc }
398 1.1 jtc }
399 1.1 jtc return 0;
400 1.1 jtc }
401 1.1 jtc
402 1.1 jtc static const int mon_lengths[2][MONSPERYEAR] = {
403 1.1 jtc { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 },
404 1.1 jtc { 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }
405 1.1 jtc };
406 1.1 jtc
407 1.1 jtc static const int year_lengths[2] = {
408 1.1 jtc DAYSPERNYEAR, DAYSPERLYEAR
409 1.1 jtc };
410 1.1 jtc
411 1.1 jtc /*
412 1.1 jtc ** Given a pointer into a time zone string, scan until a character that is not
413 1.1 jtc ** a valid character in a zone name is found. Return a pointer to that
414 1.1 jtc ** character.
415 1.1 jtc */
416 1.1 jtc
417 1.1 jtc static const char *
418 1.1 jtc getzname(strp)
419 1.1 jtc register const char * strp;
420 1.1 jtc {
421 1.1 jtc register char c;
422 1.1 jtc
423 1.1.1.3 jtc while ((c = *strp) != '\0' && !is_digit(c) && c != ',' && c != '-' &&
424 1.1 jtc c != '+')
425 1.1 jtc ++strp;
426 1.1 jtc return strp;
427 1.1 jtc }
428 1.1 jtc
429 1.1 jtc /*
430 1.1 jtc ** Given a pointer into a time zone string, extract a number from that string.
431 1.1 jtc ** Check that the number is within a specified range; if it is not, return
432 1.1 jtc ** NULL.
433 1.1 jtc ** Otherwise, return a pointer to the first character not part of the number.
434 1.1 jtc */
435 1.1 jtc
436 1.1 jtc static const char *
437 1.1 jtc getnum(strp, nump, min, max)
438 1.1 jtc register const char * strp;
439 1.1 jtc int * const nump;
440 1.1 jtc const int min;
441 1.1 jtc const int max;
442 1.1 jtc {
443 1.1 jtc register char c;
444 1.1 jtc register int num;
445 1.1 jtc
446 1.1.1.3 jtc if (strp == NULL || !is_digit(c = *strp))
447 1.1 jtc return NULL;
448 1.1 jtc num = 0;
449 1.1.1.3 jtc do {
450 1.1 jtc num = num * 10 + (c - '0');
451 1.1 jtc if (num > max)
452 1.1 jtc return NULL; /* illegal value */
453 1.1.1.3 jtc c = *++strp;
454 1.1.1.3 jtc } while (is_digit(c));
455 1.1 jtc if (num < min)
456 1.1 jtc return NULL; /* illegal value */
457 1.1 jtc *nump = num;
458 1.1 jtc return strp;
459 1.1 jtc }
460 1.1 jtc
461 1.1 jtc /*
462 1.1 jtc ** Given a pointer into a time zone string, extract a number of seconds,
463 1.1 jtc ** in hh[:mm[:ss]] form, from the string.
464 1.1 jtc ** If any error occurs, return NULL.
465 1.1 jtc ** Otherwise, return a pointer to the first character not part of the number
466 1.1 jtc ** of seconds.
467 1.1 jtc */
468 1.1 jtc
469 1.1 jtc static const char *
470 1.1 jtc getsecs(strp, secsp)
471 1.1 jtc register const char * strp;
472 1.1 jtc long * const secsp;
473 1.1 jtc {
474 1.1 jtc int num;
475 1.1 jtc
476 1.1 jtc /*
477 1.1 jtc ** `HOURSPERDAY * DAYSPERWEEK - 1' allows quasi-Posix rules like
478 1.1 jtc ** "M10.4.6/26", which does not conform to Posix,
479 1.1 jtc ** but which specifies the equivalent of
480 1.1 jtc ** ``02:00 on the first Sunday on or after 23 Oct''.
481 1.1 jtc */
482 1.1 jtc strp = getnum(strp, &num, 0, HOURSPERDAY * DAYSPERWEEK - 1);
483 1.1 jtc if (strp == NULL)
484 1.1 jtc return NULL;
485 1.1 jtc *secsp = num * (long) SECSPERHOUR;
486 1.1 jtc if (*strp == ':') {
487 1.1 jtc ++strp;
488 1.1 jtc strp = getnum(strp, &num, 0, MINSPERHOUR - 1);
489 1.1 jtc if (strp == NULL)
490 1.1 jtc return NULL;
491 1.1 jtc *secsp += num * SECSPERMIN;
492 1.1 jtc if (*strp == ':') {
493 1.1 jtc ++strp;
494 1.1 jtc /* `SECSPERMIN' allows for leap seconds. */
495 1.1 jtc strp = getnum(strp, &num, 0, SECSPERMIN);
496 1.1 jtc if (strp == NULL)
497 1.1 jtc return NULL;
498 1.1 jtc *secsp += num;
499 1.1 jtc }
500 1.1 jtc }
501 1.1 jtc return strp;
502 1.1 jtc }
503 1.1 jtc
504 1.1 jtc /*
505 1.1 jtc ** Given a pointer into a time zone string, extract an offset, in
506 1.1 jtc ** [+-]hh[:mm[:ss]] form, from the string.
507 1.1 jtc ** If any error occurs, return NULL.
508 1.1 jtc ** Otherwise, return a pointer to the first character not part of the time.
509 1.1 jtc */
510 1.1 jtc
511 1.1 jtc static const char *
512 1.1 jtc getoffset(strp, offsetp)
513 1.1 jtc register const char * strp;
514 1.1 jtc long * const offsetp;
515 1.1 jtc {
516 1.1.1.3 jtc register int neg = 0;
517 1.1 jtc
518 1.1 jtc if (*strp == '-') {
519 1.1 jtc neg = 1;
520 1.1 jtc ++strp;
521 1.1.1.3 jtc } else if (*strp == '+')
522 1.1.1.3 jtc ++strp;
523 1.1 jtc strp = getsecs(strp, offsetp);
524 1.1 jtc if (strp == NULL)
525 1.1 jtc return NULL; /* illegal time */
526 1.1 jtc if (neg)
527 1.1 jtc *offsetp = -*offsetp;
528 1.1 jtc return strp;
529 1.1 jtc }
530 1.1 jtc
531 1.1 jtc /*
532 1.1 jtc ** Given a pointer into a time zone string, extract a rule in the form
533 1.1 jtc ** date[/time]. See POSIX section 8 for the format of "date" and "time".
534 1.1 jtc ** If a valid rule is not found, return NULL.
535 1.1 jtc ** Otherwise, return a pointer to the first character not part of the rule.
536 1.1 jtc */
537 1.1 jtc
538 1.1 jtc static const char *
539 1.1 jtc getrule(strp, rulep)
540 1.1 jtc const char * strp;
541 1.1 jtc register struct rule * const rulep;
542 1.1 jtc {
543 1.1 jtc if (*strp == 'J') {
544 1.1 jtc /*
545 1.1 jtc ** Julian day.
546 1.1 jtc */
547 1.1 jtc rulep->r_type = JULIAN_DAY;
548 1.1 jtc ++strp;
549 1.1 jtc strp = getnum(strp, &rulep->r_day, 1, DAYSPERNYEAR);
550 1.1 jtc } else if (*strp == 'M') {
551 1.1 jtc /*
552 1.1 jtc ** Month, week, day.
553 1.1 jtc */
554 1.1 jtc rulep->r_type = MONTH_NTH_DAY_OF_WEEK;
555 1.1 jtc ++strp;
556 1.1 jtc strp = getnum(strp, &rulep->r_mon, 1, MONSPERYEAR);
557 1.1 jtc if (strp == NULL)
558 1.1 jtc return NULL;
559 1.1 jtc if (*strp++ != '.')
560 1.1 jtc return NULL;
561 1.1 jtc strp = getnum(strp, &rulep->r_week, 1, 5);
562 1.1 jtc if (strp == NULL)
563 1.1 jtc return NULL;
564 1.1 jtc if (*strp++ != '.')
565 1.1 jtc return NULL;
566 1.1 jtc strp = getnum(strp, &rulep->r_day, 0, DAYSPERWEEK - 1);
567 1.1.1.3 jtc } else if (is_digit(*strp)) {
568 1.1 jtc /*
569 1.1 jtc ** Day of year.
570 1.1 jtc */
571 1.1 jtc rulep->r_type = DAY_OF_YEAR;
572 1.1 jtc strp = getnum(strp, &rulep->r_day, 0, DAYSPERLYEAR - 1);
573 1.1 jtc } else return NULL; /* invalid format */
574 1.1 jtc if (strp == NULL)
575 1.1 jtc return NULL;
576 1.1 jtc if (*strp == '/') {
577 1.1 jtc /*
578 1.1 jtc ** Time specified.
579 1.1 jtc */
580 1.1 jtc ++strp;
581 1.1 jtc strp = getsecs(strp, &rulep->r_time);
582 1.1 jtc } else rulep->r_time = 2 * SECSPERHOUR; /* default = 2:00:00 */
583 1.1 jtc return strp;
584 1.1 jtc }
585 1.1 jtc
586 1.1 jtc /*
587 1.1 jtc ** Given the Epoch-relative time of January 1, 00:00:00 GMT, in a year, the
588 1.1 jtc ** year, a rule, and the offset from GMT at the time that rule takes effect,
589 1.1 jtc ** calculate the Epoch-relative time that rule takes effect.
590 1.1 jtc */
591 1.1 jtc
592 1.1 jtc static time_t
593 1.1 jtc transtime(janfirst, year, rulep, offset)
594 1.1 jtc const time_t janfirst;
595 1.1 jtc const int year;
596 1.1 jtc register const struct rule * const rulep;
597 1.1 jtc const long offset;
598 1.1 jtc {
599 1.1 jtc register int leapyear;
600 1.1 jtc register time_t value;
601 1.1 jtc register int i;
602 1.1 jtc int d, m1, yy0, yy1, yy2, dow;
603 1.1 jtc
604 1.1 jtc INITIALIZE(value);
605 1.1 jtc leapyear = isleap(year);
606 1.1 jtc switch (rulep->r_type) {
607 1.1 jtc
608 1.1 jtc case JULIAN_DAY:
609 1.1 jtc /*
610 1.1 jtc ** Jn - Julian day, 1 == January 1, 60 == March 1 even in leap
611 1.1 jtc ** years.
612 1.1 jtc ** In non-leap years, or if the day number is 59 or less, just
613 1.1 jtc ** add SECSPERDAY times the day number-1 to the time of
614 1.1 jtc ** January 1, midnight, to get the day.
615 1.1 jtc */
616 1.1 jtc value = janfirst + (rulep->r_day - 1) * SECSPERDAY;
617 1.1 jtc if (leapyear && rulep->r_day >= 60)
618 1.1 jtc value += SECSPERDAY;
619 1.1 jtc break;
620 1.1 jtc
621 1.1 jtc case DAY_OF_YEAR:
622 1.1 jtc /*
623 1.1 jtc ** n - day of year.
624 1.1 jtc ** Just add SECSPERDAY times the day number to the time of
625 1.1 jtc ** January 1, midnight, to get the day.
626 1.1 jtc */
627 1.1 jtc value = janfirst + rulep->r_day * SECSPERDAY;
628 1.1 jtc break;
629 1.1 jtc
630 1.1 jtc case MONTH_NTH_DAY_OF_WEEK:
631 1.1 jtc /*
632 1.1 jtc ** Mm.n.d - nth "dth day" of month m.
633 1.1 jtc */
634 1.1 jtc value = janfirst;
635 1.1 jtc for (i = 0; i < rulep->r_mon - 1; ++i)
636 1.1 jtc value += mon_lengths[leapyear][i] * SECSPERDAY;
637 1.1 jtc
638 1.1 jtc /*
639 1.1 jtc ** Use Zeller's Congruence to get day-of-week of first day of
640 1.1 jtc ** month.
641 1.1 jtc */
642 1.1 jtc m1 = (rulep->r_mon + 9) % 12 + 1;
643 1.1 jtc yy0 = (rulep->r_mon <= 2) ? (year - 1) : year;
644 1.1 jtc yy1 = yy0 / 100;
645 1.1 jtc yy2 = yy0 % 100;
646 1.1 jtc dow = ((26 * m1 - 2) / 10 +
647 1.1 jtc 1 + yy2 + yy2 / 4 + yy1 / 4 - 2 * yy1) % 7;
648 1.1 jtc if (dow < 0)
649 1.1 jtc dow += DAYSPERWEEK;
650 1.1 jtc
651 1.1 jtc /*
652 1.1 jtc ** "dow" is the day-of-week of the first day of the month. Get
653 1.1 jtc ** the day-of-month (zero-origin) of the first "dow" day of the
654 1.1 jtc ** month.
655 1.1 jtc */
656 1.1 jtc d = rulep->r_day - dow;
657 1.1 jtc if (d < 0)
658 1.1 jtc d += DAYSPERWEEK;
659 1.1 jtc for (i = 1; i < rulep->r_week; ++i) {
660 1.1 jtc if (d + DAYSPERWEEK >=
661 1.1 jtc mon_lengths[leapyear][rulep->r_mon - 1])
662 1.1 jtc break;
663 1.1 jtc d += DAYSPERWEEK;
664 1.1 jtc }
665 1.1 jtc
666 1.1 jtc /*
667 1.1 jtc ** "d" is the day-of-month (zero-origin) of the day we want.
668 1.1 jtc */
669 1.1 jtc value += d * SECSPERDAY;
670 1.1 jtc break;
671 1.1 jtc }
672 1.1 jtc
673 1.1 jtc /*
674 1.1 jtc ** "value" is the Epoch-relative time of 00:00:00 GMT on the day in
675 1.1 jtc ** question. To get the Epoch-relative time of the specified local
676 1.1 jtc ** time on that day, add the transition time and the current offset
677 1.1 jtc ** from GMT.
678 1.1 jtc */
679 1.1 jtc return value + rulep->r_time + offset;
680 1.1 jtc }
681 1.1 jtc
682 1.1 jtc /*
683 1.1 jtc ** Given a POSIX section 8-style TZ string, fill in the rule tables as
684 1.1 jtc ** appropriate.
685 1.1 jtc */
686 1.1 jtc
687 1.1 jtc static int
688 1.1 jtc tzparse(name, sp, lastditch)
689 1.1 jtc const char * name;
690 1.1 jtc register struct state * const sp;
691 1.1 jtc const int lastditch;
692 1.1 jtc {
693 1.1 jtc const char * stdname;
694 1.1 jtc const char * dstname;
695 1.1 jtc size_t stdlen;
696 1.1 jtc size_t dstlen;
697 1.1 jtc long stdoffset;
698 1.1 jtc long dstoffset;
699 1.1 jtc register time_t * atp;
700 1.1 jtc register unsigned char * typep;
701 1.1 jtc register char * cp;
702 1.1 jtc register int load_result;
703 1.1 jtc
704 1.1 jtc INITIALIZE(dstname);
705 1.1 jtc stdname = name;
706 1.1 jtc if (lastditch) {
707 1.1 jtc stdlen = strlen(name); /* length of standard zone name */
708 1.1 jtc name += stdlen;
709 1.1 jtc if (stdlen >= sizeof sp->chars)
710 1.1 jtc stdlen = (sizeof sp->chars) - 1;
711 1.1 jtc } else {
712 1.1 jtc name = getzname(name);
713 1.1 jtc stdlen = name - stdname;
714 1.1 jtc if (stdlen < 3)
715 1.1 jtc return -1;
716 1.1 jtc }
717 1.1 jtc if (*name == '\0')
718 1.1 jtc return -1; /* was "stdoffset = 0;" */
719 1.1 jtc else {
720 1.1 jtc name = getoffset(name, &stdoffset);
721 1.1 jtc if (name == NULL)
722 1.1 jtc return -1;
723 1.1 jtc }
724 1.1 jtc load_result = tzload(TZDEFRULES, sp);
725 1.1 jtc if (load_result != 0)
726 1.1 jtc sp->leapcnt = 0; /* so, we're off a little */
727 1.1 jtc if (*name != '\0') {
728 1.1 jtc dstname = name;
729 1.1 jtc name = getzname(name);
730 1.1 jtc dstlen = name - dstname; /* length of DST zone name */
731 1.1 jtc if (dstlen < 3)
732 1.1 jtc return -1;
733 1.1 jtc if (*name != '\0' && *name != ',' && *name != ';') {
734 1.1 jtc name = getoffset(name, &dstoffset);
735 1.1 jtc if (name == NULL)
736 1.1 jtc return -1;
737 1.1 jtc } else dstoffset = stdoffset - SECSPERHOUR;
738 1.1 jtc if (*name == ',' || *name == ';') {
739 1.1 jtc struct rule start;
740 1.1 jtc struct rule end;
741 1.1 jtc register int year;
742 1.1 jtc register time_t janfirst;
743 1.1 jtc time_t starttime;
744 1.1 jtc time_t endtime;
745 1.1 jtc
746 1.1 jtc ++name;
747 1.1 jtc if ((name = getrule(name, &start)) == NULL)
748 1.1 jtc return -1;
749 1.1 jtc if (*name++ != ',')
750 1.1 jtc return -1;
751 1.1 jtc if ((name = getrule(name, &end)) == NULL)
752 1.1 jtc return -1;
753 1.1 jtc if (*name != '\0')
754 1.1 jtc return -1;
755 1.1 jtc sp->typecnt = 2; /* standard time and DST */
756 1.1 jtc /*
757 1.1 jtc ** Two transitions per year, from EPOCH_YEAR to 2037.
758 1.1 jtc */
759 1.1 jtc sp->timecnt = 2 * (2037 - EPOCH_YEAR + 1);
760 1.1 jtc if (sp->timecnt > TZ_MAX_TIMES)
761 1.1 jtc return -1;
762 1.1 jtc sp->ttis[0].tt_gmtoff = -dstoffset;
763 1.1 jtc sp->ttis[0].tt_isdst = 1;
764 1.1 jtc sp->ttis[0].tt_abbrind = stdlen + 1;
765 1.1 jtc sp->ttis[1].tt_gmtoff = -stdoffset;
766 1.1 jtc sp->ttis[1].tt_isdst = 0;
767 1.1 jtc sp->ttis[1].tt_abbrind = 0;
768 1.1 jtc atp = sp->ats;
769 1.1 jtc typep = sp->types;
770 1.1 jtc janfirst = 0;
771 1.1 jtc for (year = EPOCH_YEAR; year <= 2037; ++year) {
772 1.1 jtc starttime = transtime(janfirst, year, &start,
773 1.1 jtc stdoffset);
774 1.1 jtc endtime = transtime(janfirst, year, &end,
775 1.1 jtc dstoffset);
776 1.1 jtc if (starttime > endtime) {
777 1.1 jtc *atp++ = endtime;
778 1.1 jtc *typep++ = 1; /* DST ends */
779 1.1 jtc *atp++ = starttime;
780 1.1 jtc *typep++ = 0; /* DST begins */
781 1.1 jtc } else {
782 1.1 jtc *atp++ = starttime;
783 1.1 jtc *typep++ = 0; /* DST begins */
784 1.1 jtc *atp++ = endtime;
785 1.1 jtc *typep++ = 1; /* DST ends */
786 1.1 jtc }
787 1.1 jtc janfirst += year_lengths[isleap(year)] *
788 1.1 jtc SECSPERDAY;
789 1.1 jtc }
790 1.1 jtc } else {
791 1.1 jtc register long theirstdoffset;
792 1.1 jtc register long theirdstoffset;
793 1.1 jtc register long theiroffset;
794 1.1 jtc register int isdst;
795 1.1 jtc register int i;
796 1.1 jtc register int j;
797 1.1 jtc
798 1.1 jtc if (*name != '\0')
799 1.1 jtc return -1;
800 1.1 jtc if (load_result != 0)
801 1.1 jtc return -1;
802 1.1 jtc /*
803 1.1 jtc ** Initial values of theirstdoffset and theirdstoffset.
804 1.1 jtc */
805 1.1 jtc theirstdoffset = 0;
806 1.1 jtc for (i = 0; i < sp->timecnt; ++i) {
807 1.1 jtc j = sp->types[i];
808 1.1 jtc if (!sp->ttis[j].tt_isdst) {
809 1.1.1.3 jtc theirstdoffset =
810 1.1.1.3 jtc -sp->ttis[j].tt_gmtoff;
811 1.1 jtc break;
812 1.1 jtc }
813 1.1 jtc }
814 1.1 jtc theirdstoffset = 0;
815 1.1 jtc for (i = 0; i < sp->timecnt; ++i) {
816 1.1 jtc j = sp->types[i];
817 1.1 jtc if (sp->ttis[j].tt_isdst) {
818 1.1.1.3 jtc theirdstoffset =
819 1.1.1.3 jtc -sp->ttis[j].tt_gmtoff;
820 1.1 jtc break;
821 1.1 jtc }
822 1.1 jtc }
823 1.1 jtc /*
824 1.1 jtc ** Initially we're assumed to be in standard time.
825 1.1 jtc */
826 1.1 jtc isdst = FALSE;
827 1.1 jtc theiroffset = theirstdoffset;
828 1.1 jtc /*
829 1.1 jtc ** Now juggle transition times and types
830 1.1 jtc ** tracking offsets as you do.
831 1.1 jtc */
832 1.1 jtc for (i = 0; i < sp->timecnt; ++i) {
833 1.1 jtc j = sp->types[i];
834 1.1 jtc sp->types[i] = sp->ttis[j].tt_isdst;
835 1.1 jtc if (sp->ttis[j].tt_ttisgmt) {
836 1.1 jtc /* No adjustment to transition time */
837 1.1 jtc } else {
838 1.1 jtc /*
839 1.1 jtc ** If summer time is in effect, and the
840 1.1 jtc ** transition time was not specified as
841 1.1 jtc ** standard time, add the summer time
842 1.1 jtc ** offset to the transition time;
843 1.1 jtc ** otherwise, add the standard time
844 1.1 jtc ** offset to the transition time.
845 1.1 jtc */
846 1.1 jtc /*
847 1.1 jtc ** Transitions from DST to DDST
848 1.1 jtc ** will effectively disappear since
849 1.1 jtc ** POSIX provides for only one DST
850 1.1 jtc ** offset.
851 1.1 jtc */
852 1.1 jtc if (isdst && !sp->ttis[j].tt_ttisstd) {
853 1.1 jtc sp->ats[i] += dstoffset -
854 1.1 jtc theirdstoffset;
855 1.1 jtc } else {
856 1.1 jtc sp->ats[i] += stdoffset -
857 1.1 jtc theirstdoffset;
858 1.1 jtc }
859 1.1 jtc }
860 1.1 jtc theiroffset = -sp->ttis[j].tt_gmtoff;
861 1.1 jtc if (sp->ttis[j].tt_isdst)
862 1.1 jtc theirdstoffset = theiroffset;
863 1.1 jtc else theirstdoffset = theiroffset;
864 1.1 jtc }
865 1.1 jtc /*
866 1.1 jtc ** Finally, fill in ttis.
867 1.1 jtc ** ttisstd and ttisgmt need not be handled.
868 1.1 jtc */
869 1.1 jtc sp->ttis[0].tt_gmtoff = -stdoffset;
870 1.1 jtc sp->ttis[0].tt_isdst = FALSE;
871 1.1 jtc sp->ttis[0].tt_abbrind = 0;
872 1.1 jtc sp->ttis[1].tt_gmtoff = -dstoffset;
873 1.1 jtc sp->ttis[1].tt_isdst = TRUE;
874 1.1 jtc sp->ttis[1].tt_abbrind = stdlen + 1;
875 1.1.1.5 jtc sp->typecnt = 2;
876 1.1 jtc }
877 1.1 jtc } else {
878 1.1 jtc dstlen = 0;
879 1.1 jtc sp->typecnt = 1; /* only standard time */
880 1.1 jtc sp->timecnt = 0;
881 1.1 jtc sp->ttis[0].tt_gmtoff = -stdoffset;
882 1.1 jtc sp->ttis[0].tt_isdst = 0;
883 1.1 jtc sp->ttis[0].tt_abbrind = 0;
884 1.1 jtc }
885 1.1 jtc sp->charcnt = stdlen + 1;
886 1.1 jtc if (dstlen != 0)
887 1.1 jtc sp->charcnt += dstlen + 1;
888 1.1 jtc if (sp->charcnt > sizeof sp->chars)
889 1.1 jtc return -1;
890 1.1 jtc cp = sp->chars;
891 1.1 jtc (void) strncpy(cp, stdname, stdlen);
892 1.1 jtc cp += stdlen;
893 1.1 jtc *cp++ = '\0';
894 1.1 jtc if (dstlen != 0) {
895 1.1 jtc (void) strncpy(cp, dstname, dstlen);
896 1.1 jtc *(cp + dstlen) = '\0';
897 1.1 jtc }
898 1.1 jtc return 0;
899 1.1 jtc }
900 1.1 jtc
901 1.1 jtc static void
902 1.1 jtc gmtload(sp)
903 1.1 jtc struct state * const sp;
904 1.1 jtc {
905 1.1 jtc if (tzload(gmt, sp) != 0)
906 1.1 jtc (void) tzparse(gmt, sp, TRUE);
907 1.1 jtc }
908 1.1 jtc
909 1.1 jtc #ifndef STD_INSPIRED
910 1.1 jtc /*
911 1.1 jtc ** A non-static declaration of tzsetwall in a system header file
912 1.1 jtc ** may cause a warning about this upcoming static declaration...
913 1.1 jtc */
914 1.1 jtc static
915 1.1 jtc #endif /* !defined STD_INSPIRED */
916 1.1 jtc void
917 1.1 jtc tzsetwall P((void))
918 1.1 jtc {
919 1.1 jtc if (lcl_is_set < 0)
920 1.1 jtc return;
921 1.1 jtc lcl_is_set = -1;
922 1.1 jtc
923 1.1 jtc #ifdef ALL_STATE
924 1.1 jtc if (lclptr == NULL) {
925 1.1 jtc lclptr = (struct state *) malloc(sizeof *lclptr);
926 1.1 jtc if (lclptr == NULL) {
927 1.1 jtc settzname(); /* all we can do */
928 1.1 jtc return;
929 1.1 jtc }
930 1.1 jtc }
931 1.1 jtc #endif /* defined ALL_STATE */
932 1.1 jtc if (tzload((char *) NULL, lclptr) != 0)
933 1.1 jtc gmtload(lclptr);
934 1.1 jtc settzname();
935 1.1 jtc }
936 1.1 jtc
937 1.1 jtc void
938 1.1 jtc tzset P((void))
939 1.1 jtc {
940 1.1 jtc register const char * name;
941 1.1 jtc
942 1.1 jtc name = getenv("TZ");
943 1.1 jtc if (name == NULL) {
944 1.1 jtc tzsetwall();
945 1.1 jtc return;
946 1.1 jtc }
947 1.1 jtc
948 1.1 jtc if (lcl_is_set > 0 && strcmp(lcl_TZname, name) == 0)
949 1.1 jtc return;
950 1.1 jtc lcl_is_set = (strlen(name) < sizeof(lcl_TZname));
951 1.1 jtc if (lcl_is_set)
952 1.1 jtc (void) strcpy(lcl_TZname, name);
953 1.1 jtc
954 1.1 jtc #ifdef ALL_STATE
955 1.1 jtc if (lclptr == NULL) {
956 1.1 jtc lclptr = (struct state *) malloc(sizeof *lclptr);
957 1.1 jtc if (lclptr == NULL) {
958 1.1 jtc settzname(); /* all we can do */
959 1.1 jtc return;
960 1.1 jtc }
961 1.1 jtc }
962 1.1 jtc #endif /* defined ALL_STATE */
963 1.1 jtc if (*name == '\0') {
964 1.1 jtc /*
965 1.1 jtc ** User wants it fast rather than right.
966 1.1 jtc */
967 1.1 jtc lclptr->leapcnt = 0; /* so, we're off a little */
968 1.1 jtc lclptr->timecnt = 0;
969 1.1 jtc lclptr->ttis[0].tt_gmtoff = 0;
970 1.1 jtc lclptr->ttis[0].tt_abbrind = 0;
971 1.1 jtc (void) strcpy(lclptr->chars, gmt);
972 1.1 jtc } else if (tzload(name, lclptr) != 0)
973 1.1 jtc if (name[0] == ':' || tzparse(name, lclptr, FALSE) != 0)
974 1.1 jtc (void) gmtload(lclptr);
975 1.1 jtc settzname();
976 1.1 jtc }
977 1.1 jtc
978 1.1 jtc /*
979 1.1 jtc ** The easy way to behave "as if no library function calls" localtime
980 1.1 jtc ** is to not call it--so we drop its guts into "localsub", which can be
981 1.1 jtc ** freely called. (And no, the PANS doesn't require the above behavior--
982 1.1 jtc ** but it *is* desirable.)
983 1.1 jtc **
984 1.1 jtc ** The unused offset argument is for the benefit of mktime variants.
985 1.1 jtc */
986 1.1 jtc
987 1.1 jtc /*ARGSUSED*/
988 1.1 jtc static void
989 1.1 jtc localsub(timep, offset, tmp)
990 1.1 jtc const time_t * const timep;
991 1.1 jtc const long offset;
992 1.1 jtc struct tm * const tmp;
993 1.1 jtc {
994 1.1 jtc register struct state * sp;
995 1.1 jtc register const struct ttinfo * ttisp;
996 1.1 jtc register int i;
997 1.1 jtc const time_t t = *timep;
998 1.1 jtc
999 1.1 jtc sp = lclptr;
1000 1.1 jtc #ifdef ALL_STATE
1001 1.1 jtc if (sp == NULL) {
1002 1.1 jtc gmtsub(timep, offset, tmp);
1003 1.1 jtc return;
1004 1.1 jtc }
1005 1.1 jtc #endif /* defined ALL_STATE */
1006 1.1 jtc if (sp->timecnt == 0 || t < sp->ats[0]) {
1007 1.1 jtc i = 0;
1008 1.1 jtc while (sp->ttis[i].tt_isdst)
1009 1.1 jtc if (++i >= sp->typecnt) {
1010 1.1 jtc i = 0;
1011 1.1 jtc break;
1012 1.1 jtc }
1013 1.1 jtc } else {
1014 1.1 jtc for (i = 1; i < sp->timecnt; ++i)
1015 1.1 jtc if (t < sp->ats[i])
1016 1.1 jtc break;
1017 1.1 jtc i = sp->types[i - 1];
1018 1.1 jtc }
1019 1.1 jtc ttisp = &sp->ttis[i];
1020 1.1 jtc /*
1021 1.1 jtc ** To get (wrong) behavior that's compatible with System V Release 2.0
1022 1.1 jtc ** you'd replace the statement below with
1023 1.1 jtc ** t += ttisp->tt_gmtoff;
1024 1.1 jtc ** timesub(&t, 0L, sp, tmp);
1025 1.1 jtc */
1026 1.1 jtc timesub(&t, ttisp->tt_gmtoff, sp, tmp);
1027 1.1 jtc tmp->tm_isdst = ttisp->tt_isdst;
1028 1.1 jtc tzname[tmp->tm_isdst] = &sp->chars[ttisp->tt_abbrind];
1029 1.1 jtc #ifdef TM_ZONE
1030 1.1 jtc tmp->TM_ZONE = &sp->chars[ttisp->tt_abbrind];
1031 1.1 jtc #endif /* defined TM_ZONE */
1032 1.1 jtc }
1033 1.1 jtc
1034 1.1 jtc struct tm *
1035 1.1 jtc localtime(timep)
1036 1.1 jtc const time_t * const timep;
1037 1.1 jtc {
1038 1.1 jtc tzset();
1039 1.1 jtc localsub(timep, 0L, &tm);
1040 1.1 jtc return &tm;
1041 1.1 jtc }
1042 1.1 jtc
1043 1.1 jtc /*
1044 1.1 jtc ** gmtsub is to gmtime as localsub is to localtime.
1045 1.1 jtc */
1046 1.1 jtc
1047 1.1 jtc static void
1048 1.1 jtc gmtsub(timep, offset, tmp)
1049 1.1 jtc const time_t * const timep;
1050 1.1 jtc const long offset;
1051 1.1 jtc struct tm * const tmp;
1052 1.1 jtc {
1053 1.1 jtc if (!gmt_is_set) {
1054 1.1 jtc gmt_is_set = TRUE;
1055 1.1 jtc #ifdef ALL_STATE
1056 1.1 jtc gmtptr = (struct state *) malloc(sizeof *gmtptr);
1057 1.1 jtc if (gmtptr != NULL)
1058 1.1 jtc #endif /* defined ALL_STATE */
1059 1.1 jtc gmtload(gmtptr);
1060 1.1 jtc }
1061 1.1 jtc timesub(timep, offset, gmtptr, tmp);
1062 1.1 jtc #ifdef TM_ZONE
1063 1.1 jtc /*
1064 1.1 jtc ** Could get fancy here and deliver something such as
1065 1.1 jtc ** "GMT+xxxx" or "GMT-xxxx" if offset is non-zero,
1066 1.1 jtc ** but this is no time for a treasure hunt.
1067 1.1 jtc */
1068 1.1 jtc if (offset != 0)
1069 1.1 jtc tmp->TM_ZONE = wildabbr;
1070 1.1 jtc else {
1071 1.1 jtc #ifdef ALL_STATE
1072 1.1 jtc if (gmtptr == NULL)
1073 1.1 jtc tmp->TM_ZONE = gmt;
1074 1.1 jtc else tmp->TM_ZONE = gmtptr->chars;
1075 1.1 jtc #endif /* defined ALL_STATE */
1076 1.1 jtc #ifndef ALL_STATE
1077 1.1 jtc tmp->TM_ZONE = gmtptr->chars;
1078 1.1 jtc #endif /* State Farm */
1079 1.1 jtc }
1080 1.1 jtc #endif /* defined TM_ZONE */
1081 1.1 jtc }
1082 1.1 jtc
1083 1.1 jtc struct tm *
1084 1.1 jtc gmtime(timep)
1085 1.1 jtc const time_t * const timep;
1086 1.1 jtc {
1087 1.1 jtc gmtsub(timep, 0L, &tm);
1088 1.1 jtc return &tm;
1089 1.1 jtc }
1090 1.1 jtc
1091 1.1 jtc #ifdef STD_INSPIRED
1092 1.1 jtc
1093 1.1 jtc struct tm *
1094 1.1 jtc offtime(timep, offset)
1095 1.1 jtc const time_t * const timep;
1096 1.1 jtc const long offset;
1097 1.1 jtc {
1098 1.1 jtc gmtsub(timep, offset, &tm);
1099 1.1 jtc return &tm;
1100 1.1 jtc }
1101 1.1 jtc
1102 1.1 jtc #endif /* defined STD_INSPIRED */
1103 1.1 jtc
1104 1.1 jtc static void
1105 1.1 jtc timesub(timep, offset, sp, tmp)
1106 1.1 jtc const time_t * const timep;
1107 1.1 jtc const long offset;
1108 1.1 jtc register const struct state * const sp;
1109 1.1 jtc register struct tm * const tmp;
1110 1.1 jtc {
1111 1.1 jtc register const struct lsinfo * lp;
1112 1.1 jtc register long days;
1113 1.1 jtc register long rem;
1114 1.1 jtc register int y;
1115 1.1 jtc register int yleap;
1116 1.1 jtc register const int * ip;
1117 1.1 jtc register long corr;
1118 1.1 jtc register int hit;
1119 1.1 jtc register int i;
1120 1.1 jtc
1121 1.1 jtc corr = 0;
1122 1.1 jtc hit = 0;
1123 1.1 jtc #ifdef ALL_STATE
1124 1.1 jtc i = (sp == NULL) ? 0 : sp->leapcnt;
1125 1.1 jtc #endif /* defined ALL_STATE */
1126 1.1 jtc #ifndef ALL_STATE
1127 1.1 jtc i = sp->leapcnt;
1128 1.1 jtc #endif /* State Farm */
1129 1.1 jtc while (--i >= 0) {
1130 1.1 jtc lp = &sp->lsis[i];
1131 1.1 jtc if (*timep >= lp->ls_trans) {
1132 1.1 jtc if (*timep == lp->ls_trans) {
1133 1.1 jtc hit = ((i == 0 && lp->ls_corr > 0) ||
1134 1.1 jtc lp->ls_corr > sp->lsis[i - 1].ls_corr);
1135 1.1 jtc if (hit)
1136 1.1 jtc while (i > 0 &&
1137 1.1 jtc sp->lsis[i].ls_trans ==
1138 1.1 jtc sp->lsis[i - 1].ls_trans + 1 &&
1139 1.1 jtc sp->lsis[i].ls_corr ==
1140 1.1 jtc sp->lsis[i - 1].ls_corr + 1) {
1141 1.1 jtc ++hit;
1142 1.1 jtc --i;
1143 1.1 jtc }
1144 1.1 jtc }
1145 1.1 jtc corr = lp->ls_corr;
1146 1.1 jtc break;
1147 1.1 jtc }
1148 1.1 jtc }
1149 1.1 jtc days = *timep / SECSPERDAY;
1150 1.1 jtc rem = *timep % SECSPERDAY;
1151 1.1 jtc #ifdef mc68k
1152 1.1 jtc if (*timep == 0x80000000) {
1153 1.1 jtc /*
1154 1.1 jtc ** A 3B1 muffs the division on the most negative number.
1155 1.1 jtc */
1156 1.1 jtc days = -24855;
1157 1.1 jtc rem = -11648;
1158 1.1 jtc }
1159 1.1 jtc #endif /* defined mc68k */
1160 1.1 jtc rem += (offset - corr);
1161 1.1 jtc while (rem < 0) {
1162 1.1 jtc rem += SECSPERDAY;
1163 1.1 jtc --days;
1164 1.1 jtc }
1165 1.1 jtc while (rem >= SECSPERDAY) {
1166 1.1 jtc rem -= SECSPERDAY;
1167 1.1 jtc ++days;
1168 1.1 jtc }
1169 1.1 jtc tmp->tm_hour = (int) (rem / SECSPERHOUR);
1170 1.1 jtc rem = rem % SECSPERHOUR;
1171 1.1 jtc tmp->tm_min = (int) (rem / SECSPERMIN);
1172 1.1.1.4 jtc /*
1173 1.1.1.4 jtc ** A positive leap second requires a special
1174 1.1.1.4 jtc ** representation. This uses "... ??:59:60" et seq.
1175 1.1.1.4 jtc */
1176 1.1.1.4 jtc tmp->tm_sec = (int) (rem % SECSPERMIN) + hit;
1177 1.1 jtc tmp->tm_wday = (int) ((EPOCH_WDAY + days) % DAYSPERWEEK);
1178 1.1 jtc if (tmp->tm_wday < 0)
1179 1.1 jtc tmp->tm_wday += DAYSPERWEEK;
1180 1.1 jtc y = EPOCH_YEAR;
1181 1.1.1.3 jtc #define LEAPS_THRU_END_OF(y) ((y) / 4 - (y) / 100 + (y) / 400)
1182 1.1.1.3 jtc while (days < 0 || days >= (long) year_lengths[yleap = isleap(y)]) {
1183 1.1.1.3 jtc register int newy;
1184 1.1.1.3 jtc
1185 1.1.1.3 jtc newy = y + days / DAYSPERNYEAR;
1186 1.1.1.3 jtc if (days < 0)
1187 1.1.1.3 jtc --newy;
1188 1.1.1.3 jtc days -= (newy - y) * DAYSPERNYEAR +
1189 1.1.1.3 jtc LEAPS_THRU_END_OF(newy - 1) -
1190 1.1.1.3 jtc LEAPS_THRU_END_OF(y - 1);
1191 1.1.1.3 jtc y = newy;
1192 1.1.1.3 jtc }
1193 1.1 jtc tmp->tm_year = y - TM_YEAR_BASE;
1194 1.1 jtc tmp->tm_yday = (int) days;
1195 1.1 jtc ip = mon_lengths[yleap];
1196 1.1 jtc for (tmp->tm_mon = 0; days >= (long) ip[tmp->tm_mon]; ++(tmp->tm_mon))
1197 1.1 jtc days = days - (long) ip[tmp->tm_mon];
1198 1.1 jtc tmp->tm_mday = (int) (days + 1);
1199 1.1 jtc tmp->tm_isdst = 0;
1200 1.1 jtc #ifdef TM_GMTOFF
1201 1.1 jtc tmp->TM_GMTOFF = offset;
1202 1.1 jtc #endif /* defined TM_GMTOFF */
1203 1.1 jtc }
1204 1.1 jtc
1205 1.1 jtc char *
1206 1.1 jtc ctime(timep)
1207 1.1 jtc const time_t * const timep;
1208 1.1 jtc {
1209 1.1 jtc /*
1210 1.1 jtc ** Section 4.12.3.2 of X3.159-1989 requires that
1211 1.1 jtc ** The ctime funciton converts the calendar time pointed to by timer
1212 1.1 jtc ** to local time in the form of a string. It is equivalent to
1213 1.1 jtc ** asctime(localtime(timer))
1214 1.1 jtc */
1215 1.1 jtc return asctime(localtime(timep));
1216 1.1 jtc }
1217 1.1 jtc
1218 1.1 jtc /*
1219 1.1 jtc ** Adapted from code provided by Robert Elz, who writes:
1220 1.1 jtc ** The "best" way to do mktime I think is based on an idea of Bob
1221 1.1.1.5 jtc ** Kridle's (so its said...) from a long time ago.
1222 1.1.1.5 jtc ** [kridle (at) xinet.com as of 1996-01-16.]
1223 1.1 jtc ** It does a binary search of the time_t space. Since time_t's are
1224 1.1 jtc ** just 32 bits, its a max of 32 iterations (even at 64 bits it
1225 1.1 jtc ** would still be very reasonable).
1226 1.1 jtc */
1227 1.1 jtc
1228 1.1 jtc #ifndef WRONG
1229 1.1 jtc #define WRONG (-1)
1230 1.1 jtc #endif /* !defined WRONG */
1231 1.1 jtc
1232 1.1 jtc /*
1233 1.1 jtc ** Simplified normalize logic courtesy Paul Eggert (eggert (at) twinsun.com).
1234 1.1 jtc */
1235 1.1 jtc
1236 1.1 jtc static int
1237 1.1 jtc increment_overflow(number, delta)
1238 1.1 jtc int * number;
1239 1.1 jtc int delta;
1240 1.1 jtc {
1241 1.1 jtc int number0;
1242 1.1 jtc
1243 1.1 jtc number0 = *number;
1244 1.1 jtc *number += delta;
1245 1.1 jtc return (*number < number0) != (delta < 0);
1246 1.1 jtc }
1247 1.1 jtc
1248 1.1 jtc static int
1249 1.1 jtc normalize_overflow(tensptr, unitsptr, base)
1250 1.1 jtc int * const tensptr;
1251 1.1 jtc int * const unitsptr;
1252 1.1 jtc const int base;
1253 1.1 jtc {
1254 1.1 jtc register int tensdelta;
1255 1.1 jtc
1256 1.1 jtc tensdelta = (*unitsptr >= 0) ?
1257 1.1 jtc (*unitsptr / base) :
1258 1.1 jtc (-1 - (-1 - *unitsptr) / base);
1259 1.1 jtc *unitsptr -= tensdelta * base;
1260 1.1 jtc return increment_overflow(tensptr, tensdelta);
1261 1.1 jtc }
1262 1.1 jtc
1263 1.1 jtc static int
1264 1.1 jtc tmcomp(atmp, btmp)
1265 1.1 jtc register const struct tm * const atmp;
1266 1.1 jtc register const struct tm * const btmp;
1267 1.1 jtc {
1268 1.1 jtc register int result;
1269 1.1 jtc
1270 1.1 jtc if ((result = (atmp->tm_year - btmp->tm_year)) == 0 &&
1271 1.1 jtc (result = (atmp->tm_mon - btmp->tm_mon)) == 0 &&
1272 1.1 jtc (result = (atmp->tm_mday - btmp->tm_mday)) == 0 &&
1273 1.1 jtc (result = (atmp->tm_hour - btmp->tm_hour)) == 0 &&
1274 1.1 jtc (result = (atmp->tm_min - btmp->tm_min)) == 0)
1275 1.1 jtc result = atmp->tm_sec - btmp->tm_sec;
1276 1.1 jtc return result;
1277 1.1 jtc }
1278 1.1 jtc
1279 1.1 jtc static time_t
1280 1.1 jtc time2(tmp, funcp, offset, okayp)
1281 1.1 jtc struct tm * const tmp;
1282 1.1 jtc void (* const funcp) P((const time_t*, long, struct tm*));
1283 1.1 jtc const long offset;
1284 1.1 jtc int * const okayp;
1285 1.1 jtc {
1286 1.1 jtc register const struct state * sp;
1287 1.1 jtc register int dir;
1288 1.1 jtc register int bits;
1289 1.1 jtc register int i, j ;
1290 1.1 jtc register int saved_seconds;
1291 1.1 jtc time_t newt;
1292 1.1 jtc time_t t;
1293 1.1 jtc struct tm yourtm, mytm;
1294 1.1 jtc
1295 1.1 jtc *okayp = FALSE;
1296 1.1 jtc yourtm = *tmp;
1297 1.1 jtc if (normalize_overflow(&yourtm.tm_hour, &yourtm.tm_min, MINSPERHOUR))
1298 1.1 jtc return WRONG;
1299 1.1 jtc if (normalize_overflow(&yourtm.tm_mday, &yourtm.tm_hour, HOURSPERDAY))
1300 1.1 jtc return WRONG;
1301 1.1 jtc if (normalize_overflow(&yourtm.tm_year, &yourtm.tm_mon, MONSPERYEAR))
1302 1.1 jtc return WRONG;
1303 1.1 jtc /*
1304 1.1 jtc ** Turn yourtm.tm_year into an actual year number for now.
1305 1.1 jtc ** It is converted back to an offset from TM_YEAR_BASE later.
1306 1.1 jtc */
1307 1.1 jtc if (increment_overflow(&yourtm.tm_year, TM_YEAR_BASE))
1308 1.1 jtc return WRONG;
1309 1.1 jtc while (yourtm.tm_mday <= 0) {
1310 1.1 jtc if (increment_overflow(&yourtm.tm_year, -1))
1311 1.1 jtc return WRONG;
1312 1.1.1.5 jtc i = yourtm.tm_year + (1 < yourtm.tm_mon);
1313 1.1.1.5 jtc yourtm.tm_mday += year_lengths[isleap(i)];
1314 1.1 jtc }
1315 1.1 jtc while (yourtm.tm_mday > DAYSPERLYEAR) {
1316 1.1.1.5 jtc i = yourtm.tm_year + (1 < yourtm.tm_mon);
1317 1.1.1.5 jtc yourtm.tm_mday -= year_lengths[isleap(i)];
1318 1.1 jtc if (increment_overflow(&yourtm.tm_year, 1))
1319 1.1 jtc return WRONG;
1320 1.1 jtc }
1321 1.1 jtc for ( ; ; ) {
1322 1.1 jtc i = mon_lengths[isleap(yourtm.tm_year)][yourtm.tm_mon];
1323 1.1 jtc if (yourtm.tm_mday <= i)
1324 1.1 jtc break;
1325 1.1 jtc yourtm.tm_mday -= i;
1326 1.1 jtc if (++yourtm.tm_mon >= MONSPERYEAR) {
1327 1.1 jtc yourtm.tm_mon = 0;
1328 1.1 jtc if (increment_overflow(&yourtm.tm_year, 1))
1329 1.1 jtc return WRONG;
1330 1.1 jtc }
1331 1.1 jtc }
1332 1.1 jtc if (increment_overflow(&yourtm.tm_year, -TM_YEAR_BASE))
1333 1.1 jtc return WRONG;
1334 1.1 jtc if (yourtm.tm_year + TM_YEAR_BASE < EPOCH_YEAR) {
1335 1.1 jtc /*
1336 1.1 jtc ** We can't set tm_sec to 0, because that might push the
1337 1.1 jtc ** time below the minimum representable time.
1338 1.1 jtc ** Set tm_sec to 59 instead.
1339 1.1 jtc ** This assumes that the minimum representable time is
1340 1.1 jtc ** not in the same minute that a leap second was deleted from,
1341 1.1 jtc ** which is a safer assumption than using 58 would be.
1342 1.1 jtc */
1343 1.1 jtc if (increment_overflow(&yourtm.tm_sec, 1 - SECSPERMIN))
1344 1.1 jtc return WRONG;
1345 1.1 jtc saved_seconds = yourtm.tm_sec;
1346 1.1 jtc yourtm.tm_sec = SECSPERMIN - 1;
1347 1.1 jtc } else {
1348 1.1 jtc saved_seconds = yourtm.tm_sec;
1349 1.1 jtc yourtm.tm_sec = 0;
1350 1.1 jtc }
1351 1.1 jtc /*
1352 1.1.1.4 jtc ** Divide the search space in half
1353 1.1.1.4 jtc ** (this works whether time_t is signed or unsigned).
1354 1.1 jtc */
1355 1.1.1.4 jtc bits = TYPE_BIT(time_t) - 1;
1356 1.1 jtc /*
1357 1.1.1.4 jtc ** If time_t is signed, then 0 is just above the median,
1358 1.1.1.4 jtc ** assuming two's complement arithmetic.
1359 1.1.1.4 jtc ** If time_t is unsigned, then (1 << bits) is just above the median.
1360 1.1 jtc */
1361 1.1.1.4 jtc t = TYPE_SIGNED(time_t) ? 0 : (((time_t) 1) << bits);
1362 1.1 jtc for ( ; ; ) {
1363 1.1 jtc (*funcp)(&t, offset, &mytm);
1364 1.1 jtc dir = tmcomp(&mytm, &yourtm);
1365 1.1 jtc if (dir != 0) {
1366 1.1 jtc if (bits-- < 0)
1367 1.1 jtc return WRONG;
1368 1.1 jtc if (bits < 0)
1369 1.1.1.4 jtc --t; /* may be needed if new t is minimal */
1370 1.1 jtc else if (dir > 0)
1371 1.1.1.4 jtc t -= ((time_t) 1) << bits;
1372 1.1.1.4 jtc else t += ((time_t) 1) << bits;
1373 1.1 jtc continue;
1374 1.1 jtc }
1375 1.1 jtc if (yourtm.tm_isdst < 0 || mytm.tm_isdst == yourtm.tm_isdst)
1376 1.1 jtc break;
1377 1.1 jtc /*
1378 1.1 jtc ** Right time, wrong type.
1379 1.1 jtc ** Hunt for right time, right type.
1380 1.1 jtc ** It's okay to guess wrong since the guess
1381 1.1 jtc ** gets checked.
1382 1.1 jtc */
1383 1.1 jtc /*
1384 1.1 jtc ** The (void *) casts are the benefit of SunOS 3.3 on Sun 2's.
1385 1.1 jtc */
1386 1.1 jtc sp = (const struct state *)
1387 1.1 jtc (((void *) funcp == (void *) localsub) ?
1388 1.1 jtc lclptr : gmtptr);
1389 1.1 jtc #ifdef ALL_STATE
1390 1.1 jtc if (sp == NULL)
1391 1.1 jtc return WRONG;
1392 1.1 jtc #endif /* defined ALL_STATE */
1393 1.1.1.3 jtc for (i = sp->typecnt - 1; i >= 0; --i) {
1394 1.1 jtc if (sp->ttis[i].tt_isdst != yourtm.tm_isdst)
1395 1.1 jtc continue;
1396 1.1.1.3 jtc for (j = sp->typecnt - 1; j >= 0; --j) {
1397 1.1 jtc if (sp->ttis[j].tt_isdst == yourtm.tm_isdst)
1398 1.1 jtc continue;
1399 1.1 jtc newt = t + sp->ttis[j].tt_gmtoff -
1400 1.1 jtc sp->ttis[i].tt_gmtoff;
1401 1.1 jtc (*funcp)(&newt, offset, &mytm);
1402 1.1 jtc if (tmcomp(&mytm, &yourtm) != 0)
1403 1.1 jtc continue;
1404 1.1 jtc if (mytm.tm_isdst != yourtm.tm_isdst)
1405 1.1 jtc continue;
1406 1.1 jtc /*
1407 1.1 jtc ** We have a match.
1408 1.1 jtc */
1409 1.1 jtc t = newt;
1410 1.1 jtc goto label;
1411 1.1 jtc }
1412 1.1 jtc }
1413 1.1 jtc return WRONG;
1414 1.1 jtc }
1415 1.1 jtc label:
1416 1.1 jtc newt = t + saved_seconds;
1417 1.1 jtc if ((newt < t) != (saved_seconds < 0))
1418 1.1 jtc return WRONG;
1419 1.1 jtc t = newt;
1420 1.1 jtc (*funcp)(&t, offset, tmp);
1421 1.1 jtc *okayp = TRUE;
1422 1.1 jtc return t;
1423 1.1 jtc }
1424 1.1 jtc
1425 1.1 jtc static time_t
1426 1.1 jtc time1(tmp, funcp, offset)
1427 1.1 jtc struct tm * const tmp;
1428 1.1.1.3 jtc void (* const funcp) P((const time_t *, long, struct tm *));
1429 1.1 jtc const long offset;
1430 1.1 jtc {
1431 1.1 jtc register time_t t;
1432 1.1 jtc register const struct state * sp;
1433 1.1 jtc register int samei, otheri;
1434 1.1 jtc int okay;
1435 1.1 jtc
1436 1.1 jtc if (tmp->tm_isdst > 1)
1437 1.1 jtc tmp->tm_isdst = 1;
1438 1.1 jtc t = time2(tmp, funcp, offset, &okay);
1439 1.1 jtc #ifdef PCTS
1440 1.1 jtc /*
1441 1.1 jtc ** PCTS code courtesy Grant Sullivan (grant (at) osf.org).
1442 1.1 jtc */
1443 1.1 jtc if (okay)
1444 1.1 jtc return t;
1445 1.1 jtc if (tmp->tm_isdst < 0)
1446 1.1 jtc tmp->tm_isdst = 0; /* reset to std and try again */
1447 1.1 jtc #endif /* defined PCTS */
1448 1.1 jtc #ifndef PCTS
1449 1.1 jtc if (okay || tmp->tm_isdst < 0)
1450 1.1 jtc return t;
1451 1.1 jtc #endif /* !defined PCTS */
1452 1.1 jtc /*
1453 1.1 jtc ** We're supposed to assume that somebody took a time of one type
1454 1.1 jtc ** and did some math on it that yielded a "struct tm" that's bad.
1455 1.1 jtc ** We try to divine the type they started from and adjust to the
1456 1.1 jtc ** type they need.
1457 1.1 jtc */
1458 1.1 jtc /*
1459 1.1 jtc ** The (void *) casts are the benefit of SunOS 3.3 on Sun 2's.
1460 1.1 jtc */
1461 1.1 jtc sp = (const struct state *) (((void *) funcp == (void *) localsub) ?
1462 1.1 jtc lclptr : gmtptr);
1463 1.1 jtc #ifdef ALL_STATE
1464 1.1 jtc if (sp == NULL)
1465 1.1 jtc return WRONG;
1466 1.1 jtc #endif /* defined ALL_STATE */
1467 1.1.1.3 jtc for (samei = sp->typecnt - 1; samei >= 0; --samei) {
1468 1.1 jtc if (sp->ttis[samei].tt_isdst != tmp->tm_isdst)
1469 1.1 jtc continue;
1470 1.1.1.3 jtc for (otheri = sp->typecnt - 1; otheri >= 0; --otheri) {
1471 1.1 jtc if (sp->ttis[otheri].tt_isdst == tmp->tm_isdst)
1472 1.1 jtc continue;
1473 1.1 jtc tmp->tm_sec += sp->ttis[otheri].tt_gmtoff -
1474 1.1 jtc sp->ttis[samei].tt_gmtoff;
1475 1.1 jtc tmp->tm_isdst = !tmp->tm_isdst;
1476 1.1 jtc t = time2(tmp, funcp, offset, &okay);
1477 1.1 jtc if (okay)
1478 1.1 jtc return t;
1479 1.1 jtc tmp->tm_sec -= sp->ttis[otheri].tt_gmtoff -
1480 1.1 jtc sp->ttis[samei].tt_gmtoff;
1481 1.1 jtc tmp->tm_isdst = !tmp->tm_isdst;
1482 1.1 jtc }
1483 1.1 jtc }
1484 1.1 jtc return WRONG;
1485 1.1 jtc }
1486 1.1 jtc
1487 1.1 jtc time_t
1488 1.1 jtc mktime(tmp)
1489 1.1 jtc struct tm * const tmp;
1490 1.1 jtc {
1491 1.1 jtc tzset();
1492 1.1 jtc return time1(tmp, localsub, 0L);
1493 1.1 jtc }
1494 1.1 jtc
1495 1.1 jtc #ifdef STD_INSPIRED
1496 1.1 jtc
1497 1.1 jtc time_t
1498 1.1 jtc timelocal(tmp)
1499 1.1 jtc struct tm * const tmp;
1500 1.1 jtc {
1501 1.1 jtc tmp->tm_isdst = -1; /* in case it wasn't initialized */
1502 1.1 jtc return mktime(tmp);
1503 1.1 jtc }
1504 1.1 jtc
1505 1.1 jtc time_t
1506 1.1 jtc timegm(tmp)
1507 1.1 jtc struct tm * const tmp;
1508 1.1 jtc {
1509 1.1 jtc tmp->tm_isdst = 0;
1510 1.1 jtc return time1(tmp, gmtsub, 0L);
1511 1.1 jtc }
1512 1.1 jtc
1513 1.1 jtc time_t
1514 1.1 jtc timeoff(tmp, offset)
1515 1.1 jtc struct tm * const tmp;
1516 1.1 jtc const long offset;
1517 1.1 jtc {
1518 1.1 jtc tmp->tm_isdst = 0;
1519 1.1 jtc return time1(tmp, gmtsub, offset);
1520 1.1 jtc }
1521 1.1 jtc
1522 1.1 jtc #endif /* defined STD_INSPIRED */
1523 1.1 jtc
1524 1.1 jtc #ifdef CMUCS
1525 1.1 jtc
1526 1.1 jtc /*
1527 1.1 jtc ** The following is supplied for compatibility with
1528 1.1 jtc ** previous versions of the CMUCS runtime library.
1529 1.1 jtc */
1530 1.1 jtc
1531 1.1 jtc long
1532 1.1 jtc gtime(tmp)
1533 1.1 jtc struct tm * const tmp;
1534 1.1 jtc {
1535 1.1 jtc const time_t t = mktime(tmp);
1536 1.1 jtc
1537 1.1 jtc if (t == WRONG)
1538 1.1 jtc return -1;
1539 1.1 jtc return t;
1540 1.1 jtc }
1541 1.1 jtc
1542 1.1 jtc #endif /* defined CMUCS */
1543 1.1 jtc
1544 1.1 jtc /*
1545 1.1 jtc ** XXX--is the below the right way to conditionalize??
1546 1.1 jtc */
1547 1.1 jtc
1548 1.1 jtc #ifdef STD_INSPIRED
1549 1.1 jtc
1550 1.1 jtc /*
1551 1.1 jtc ** IEEE Std 1003.1-1988 (POSIX) legislates that 536457599
1552 1.1 jtc ** shall correspond to "Wed Dec 31 23:59:59 GMT 1986", which
1553 1.1 jtc ** is not the case if we are accounting for leap seconds.
1554 1.1 jtc ** So, we provide the following conversion routines for use
1555 1.1 jtc ** when exchanging timestamps with POSIX conforming systems.
1556 1.1 jtc */
1557 1.1 jtc
1558 1.1 jtc static long
1559 1.1 jtc leapcorr(timep)
1560 1.1 jtc time_t * timep;
1561 1.1 jtc {
1562 1.1 jtc register struct state * sp;
1563 1.1 jtc register struct lsinfo * lp;
1564 1.1 jtc register int i;
1565 1.1 jtc
1566 1.1 jtc sp = lclptr;
1567 1.1 jtc i = sp->leapcnt;
1568 1.1 jtc while (--i >= 0) {
1569 1.1 jtc lp = &sp->lsis[i];
1570 1.1 jtc if (*timep >= lp->ls_trans)
1571 1.1 jtc return lp->ls_corr;
1572 1.1 jtc }
1573 1.1 jtc return 0;
1574 1.1 jtc }
1575 1.1 jtc
1576 1.1 jtc time_t
1577 1.1 jtc time2posix(t)
1578 1.1 jtc time_t t;
1579 1.1 jtc {
1580 1.1 jtc tzset();
1581 1.1 jtc return t - leapcorr(&t);
1582 1.1 jtc }
1583 1.1 jtc
1584 1.1 jtc time_t
1585 1.1 jtc posix2time(t)
1586 1.1 jtc time_t t;
1587 1.1 jtc {
1588 1.1 jtc time_t x;
1589 1.1 jtc time_t y;
1590 1.1 jtc
1591 1.1 jtc tzset();
1592 1.1 jtc /*
1593 1.1 jtc ** For a positive leap second hit, the result
1594 1.1 jtc ** is not unique. For a negative leap second
1595 1.1 jtc ** hit, the corresponding time doesn't exist,
1596 1.1 jtc ** so we return an adjacent second.
1597 1.1 jtc */
1598 1.1 jtc x = t + leapcorr(&t);
1599 1.1 jtc y = x - leapcorr(&x);
1600 1.1 jtc if (y < t) {
1601 1.1 jtc do {
1602 1.1 jtc x++;
1603 1.1 jtc y = x - leapcorr(&x);
1604 1.1 jtc } while (y < t);
1605 1.1 jtc if (t != y)
1606 1.1 jtc return x - 1;
1607 1.1 jtc } else if (y > t) {
1608 1.1 jtc do {
1609 1.1 jtc --x;
1610 1.1 jtc y = x - leapcorr(&x);
1611 1.1 jtc } while (y > t);
1612 1.1 jtc if (t != y)
1613 1.1 jtc return x + 1;
1614 1.1 jtc }
1615 1.1 jtc return x;
1616 1.1 jtc }
1617 1.1 jtc
1618 1.1 jtc #endif /* defined STD_INSPIRED */
1619