localtime.c revision 1.11 1 1.11 christos /* $NetBSD: localtime.c,v 1.11 1997/07/13 20:26:50 christos Exp $ */
2 1.7 jtc
3 1.7 jtc /*
4 1.7 jtc ** This file is in the public domain, so clarified as of
5 1.10 jtc ** 1996-06-05 by Arthur David Olson (arthur_david_olson (at) nih.gov).
6 1.7 jtc */
7 1.2 jtc
8 1.11 christos #include <sys/cdefs.h>
9 1.1 jtc #ifndef lint
10 1.1 jtc #ifndef NOID
11 1.11 christos #if 0
12 1.10 jtc static char elsieid[] = "@(#)localtime.c 7.61";
13 1.11 christos #else
14 1.11 christos __RCSID("$NetBSD: localtime.c,v 1.11 1997/07/13 20:26:50 christos Exp $");
15 1.11 christos #endif
16 1.1 jtc #endif /* !defined NOID */
17 1.1 jtc #endif /* !defined lint */
18 1.1 jtc
19 1.1 jtc /*
20 1.1 jtc ** Leap second handling from Bradley White (bww (at) k.gp.cs.cmu.edu).
21 1.1 jtc ** POSIX-style TZ environment variable handling from Guy Harris
22 1.1 jtc ** (guy (at) auspex.com).
23 1.1 jtc */
24 1.1 jtc
25 1.1 jtc /*LINTLIBRARY*/
26 1.1 jtc
27 1.1 jtc #include "private.h"
28 1.1 jtc #include "tzfile.h"
29 1.1 jtc #include "fcntl.h"
30 1.1 jtc
31 1.1 jtc /*
32 1.1 jtc ** SunOS 4.1.1 headers lack O_BINARY.
33 1.1 jtc */
34 1.1 jtc
35 1.1 jtc #ifdef O_BINARY
36 1.1 jtc #define OPEN_MODE (O_RDONLY | O_BINARY)
37 1.1 jtc #endif /* defined O_BINARY */
38 1.1 jtc #ifndef O_BINARY
39 1.1 jtc #define OPEN_MODE O_RDONLY
40 1.1 jtc #endif /* !defined O_BINARY */
41 1.1 jtc
42 1.1 jtc #ifndef WILDABBR
43 1.1 jtc /*
44 1.1 jtc ** Someone might make incorrect use of a time zone abbreviation:
45 1.1 jtc ** 1. They might reference tzname[0] before calling tzset (explicitly
46 1.1 jtc ** or implicitly).
47 1.1 jtc ** 2. They might reference tzname[1] before calling tzset (explicitly
48 1.1 jtc ** or implicitly).
49 1.1 jtc ** 3. They might reference tzname[1] after setting to a time zone
50 1.1 jtc ** in which Daylight Saving Time is never observed.
51 1.1 jtc ** 4. They might reference tzname[0] after setting to a time zone
52 1.1 jtc ** in which Standard Time is never observed.
53 1.1 jtc ** 5. They might reference tm.TM_ZONE after calling offtime.
54 1.1 jtc ** What's best to do in the above cases is open to debate;
55 1.1 jtc ** for now, we just set things up so that in any of the five cases
56 1.1 jtc ** WILDABBR is used. Another possibility: initialize tzname[0] to the
57 1.1 jtc ** string "tzname[0] used before set", and similarly for the other cases.
58 1.1 jtc ** And another: initialize tzname[0] to "ERA", with an explanation in the
59 1.1 jtc ** manual page of what this "time zone abbreviation" means (doing this so
60 1.1 jtc ** that tzname[0] has the "normal" length of three characters).
61 1.1 jtc */
62 1.1 jtc #define WILDABBR " "
63 1.1 jtc #endif /* !defined WILDABBR */
64 1.1 jtc
65 1.1 jtc static char wildabbr[] = "WILDABBR";
66 1.1 jtc
67 1.1 jtc static const char gmt[] = "GMT";
68 1.1 jtc
69 1.1 jtc struct ttinfo { /* time type information */
70 1.1 jtc long tt_gmtoff; /* GMT offset in seconds */
71 1.1 jtc int tt_isdst; /* used to set tm_isdst */
72 1.1 jtc int tt_abbrind; /* abbreviation list index */
73 1.1 jtc int tt_ttisstd; /* TRUE if transition is std time */
74 1.1 jtc int tt_ttisgmt; /* TRUE if transition is GMT */
75 1.1 jtc };
76 1.1 jtc
77 1.1 jtc struct lsinfo { /* leap second information */
78 1.1 jtc time_t ls_trans; /* transition time */
79 1.1 jtc long ls_corr; /* correction to apply */
80 1.1 jtc };
81 1.1 jtc
82 1.1 jtc #define BIGGEST(a, b) (((a) > (b)) ? (a) : (b))
83 1.1 jtc
84 1.1 jtc #ifdef TZNAME_MAX
85 1.1 jtc #define MY_TZNAME_MAX TZNAME_MAX
86 1.1 jtc #endif /* defined TZNAME_MAX */
87 1.1 jtc #ifndef TZNAME_MAX
88 1.1 jtc #define MY_TZNAME_MAX 255
89 1.1 jtc #endif /* !defined TZNAME_MAX */
90 1.1 jtc
91 1.1 jtc struct state {
92 1.1 jtc int leapcnt;
93 1.1 jtc int timecnt;
94 1.1 jtc int typecnt;
95 1.1 jtc int charcnt;
96 1.1 jtc time_t ats[TZ_MAX_TIMES];
97 1.1 jtc unsigned char types[TZ_MAX_TIMES];
98 1.1 jtc struct ttinfo ttis[TZ_MAX_TYPES];
99 1.1 jtc char chars[BIGGEST(BIGGEST(TZ_MAX_CHARS + 1, sizeof gmt),
100 1.1 jtc (2 * (MY_TZNAME_MAX + 1)))];
101 1.1 jtc struct lsinfo lsis[TZ_MAX_LEAPS];
102 1.1 jtc };
103 1.1 jtc
104 1.1 jtc struct rule {
105 1.1 jtc int r_type; /* type of rule--see below */
106 1.1 jtc int r_day; /* day number of rule */
107 1.1 jtc int r_week; /* week number of rule */
108 1.1 jtc int r_mon; /* month number of rule */
109 1.1 jtc long r_time; /* transition time of rule */
110 1.1 jtc };
111 1.1 jtc
112 1.1 jtc #define JULIAN_DAY 0 /* Jn - Julian day */
113 1.1 jtc #define DAY_OF_YEAR 1 /* n - day of year */
114 1.1 jtc #define MONTH_NTH_DAY_OF_WEEK 2 /* Mm.n.d - month, week, day of week */
115 1.1 jtc
116 1.1 jtc /*
117 1.1 jtc ** Prototypes for static functions.
118 1.1 jtc */
119 1.1 jtc
120 1.1 jtc static long detzcode P((const char * codep));
121 1.1 jtc static const char * getzname P((const char * strp));
122 1.1 jtc static const char * getnum P((const char * strp, int * nump, int min,
123 1.1 jtc int max));
124 1.1 jtc static const char * getsecs P((const char * strp, long * secsp));
125 1.1 jtc static const char * getoffset P((const char * strp, long * offsetp));
126 1.1 jtc static const char * getrule P((const char * strp, struct rule * rulep));
127 1.1 jtc static void gmtload P((struct state * sp));
128 1.1 jtc static void gmtsub P((const time_t * timep, long offset,
129 1.1 jtc struct tm * tmp));
130 1.1 jtc static void localsub P((const time_t * timep, long offset,
131 1.1 jtc struct tm * tmp));
132 1.1 jtc static int increment_overflow P((int * number, int delta));
133 1.1 jtc static int normalize_overflow P((int * tensptr, int * unitsptr,
134 1.1 jtc int base));
135 1.1 jtc static void settzname P((void));
136 1.1 jtc static time_t time1 P((struct tm * tmp,
137 1.1 jtc void(*funcp) P((const time_t *,
138 1.1 jtc long, struct tm *)),
139 1.1 jtc long offset));
140 1.1 jtc static time_t time2 P((struct tm *tmp,
141 1.1 jtc void(*funcp) P((const time_t *,
142 1.1 jtc long, struct tm*)),
143 1.1 jtc long offset, int * okayp));
144 1.1 jtc static void timesub P((const time_t * timep, long offset,
145 1.1 jtc const struct state * sp, struct tm * tmp));
146 1.1 jtc static int tmcomp P((const struct tm * atmp,
147 1.1 jtc const struct tm * btmp));
148 1.1 jtc static time_t transtime P((time_t janfirst, int year,
149 1.1 jtc const struct rule * rulep, long offset));
150 1.1 jtc static int tzload P((const char * name, struct state * sp));
151 1.1 jtc static int tzparse P((const char * name, struct state * sp,
152 1.1 jtc int lastditch));
153 1.11 christos #ifdef STD_INSPIRED
154 1.11 christos static long leapcorr P((time_t * timep));
155 1.11 christos #endif
156 1.1 jtc
157 1.1 jtc #ifdef ALL_STATE
158 1.1 jtc static struct state * lclptr;
159 1.1 jtc static struct state * gmtptr;
160 1.1 jtc #endif /* defined ALL_STATE */
161 1.1 jtc
162 1.1 jtc #ifndef ALL_STATE
163 1.1 jtc static struct state lclmem;
164 1.1 jtc static struct state gmtmem;
165 1.1 jtc #define lclptr (&lclmem)
166 1.1 jtc #define gmtptr (&gmtmem)
167 1.1 jtc #endif /* State Farm */
168 1.1 jtc
169 1.1 jtc #ifndef TZ_STRLEN_MAX
170 1.1 jtc #define TZ_STRLEN_MAX 255
171 1.1 jtc #endif /* !defined TZ_STRLEN_MAX */
172 1.1 jtc
173 1.1 jtc static char lcl_TZname[TZ_STRLEN_MAX + 1];
174 1.1 jtc static int lcl_is_set;
175 1.1 jtc static int gmt_is_set;
176 1.1 jtc
177 1.1 jtc char * tzname[2] = {
178 1.1 jtc wildabbr,
179 1.1 jtc wildabbr
180 1.1 jtc };
181 1.1 jtc
182 1.1 jtc /*
183 1.1 jtc ** Section 4.12.3 of X3.159-1989 requires that
184 1.1 jtc ** Except for the strftime function, these functions [asctime,
185 1.1 jtc ** ctime, gmtime, localtime] return values in one of two static
186 1.1 jtc ** objects: a broken-down time structure and an array of char.
187 1.1 jtc ** Thanks to Paul Eggert (eggert (at) twinsun.com) for noting this.
188 1.1 jtc */
189 1.1 jtc
190 1.1 jtc static struct tm tm;
191 1.1 jtc
192 1.1 jtc #ifdef USG_COMPAT
193 1.1 jtc time_t timezone = 0;
194 1.1 jtc int daylight = 0;
195 1.1 jtc #endif /* defined USG_COMPAT */
196 1.1 jtc
197 1.1 jtc #ifdef ALTZONE
198 1.1 jtc time_t altzone = 0;
199 1.1 jtc #endif /* defined ALTZONE */
200 1.1 jtc
201 1.1 jtc static long
202 1.1 jtc detzcode(codep)
203 1.1 jtc const char * const codep;
204 1.1 jtc {
205 1.1 jtc register long result;
206 1.1 jtc
207 1.4 jtc /*
208 1.4 jtc ** The first character must be sign extended on systems with >32bit
209 1.4 jtc ** longs. This was solved differently in the master tzcode sources
210 1.4 jtc ** (the fix first appeared in tzcode95c.tar.gz). But I believe
211 1.4 jtc ** that this implementation is superior.
212 1.4 jtc */
213 1.4 jtc
214 1.4 jtc #ifdef __STDC__
215 1.4 jtc #define SIGN_EXTEND_CHAR(x) ((signed char) x)
216 1.4 jtc #else
217 1.4 jtc #define SIGN_EXTEND_CHAR(x) ((x & 0x80) ? ((~0 << 8) | x) : x)
218 1.4 jtc #endif
219 1.4 jtc
220 1.4 jtc result = (SIGN_EXTEND_CHAR(codep[0]) << 24) \
221 1.3 jtc | (codep[1] & 0xff) << 16 \
222 1.3 jtc | (codep[2] & 0xff) << 8
223 1.3 jtc | (codep[3] & 0xff);
224 1.1 jtc return result;
225 1.1 jtc }
226 1.1 jtc
227 1.1 jtc static void
228 1.1 jtc settzname P((void))
229 1.1 jtc {
230 1.5 jtc register struct state * const sp = lclptr;
231 1.5 jtc register int i;
232 1.1 jtc
233 1.1 jtc tzname[0] = wildabbr;
234 1.1 jtc tzname[1] = wildabbr;
235 1.1 jtc #ifdef USG_COMPAT
236 1.1 jtc daylight = 0;
237 1.1 jtc timezone = 0;
238 1.1 jtc #endif /* defined USG_COMPAT */
239 1.1 jtc #ifdef ALTZONE
240 1.1 jtc altzone = 0;
241 1.1 jtc #endif /* defined ALTZONE */
242 1.1 jtc #ifdef ALL_STATE
243 1.1 jtc if (sp == NULL) {
244 1.1 jtc tzname[0] = tzname[1] = gmt;
245 1.1 jtc return;
246 1.1 jtc }
247 1.1 jtc #endif /* defined ALL_STATE */
248 1.1 jtc for (i = 0; i < sp->typecnt; ++i) {
249 1.1 jtc register const struct ttinfo * const ttisp = &sp->ttis[i];
250 1.1 jtc
251 1.1 jtc tzname[ttisp->tt_isdst] =
252 1.1 jtc &sp->chars[ttisp->tt_abbrind];
253 1.1 jtc #ifdef USG_COMPAT
254 1.1 jtc if (ttisp->tt_isdst)
255 1.1 jtc daylight = 1;
256 1.1 jtc if (i == 0 || !ttisp->tt_isdst)
257 1.1 jtc timezone = -(ttisp->tt_gmtoff);
258 1.1 jtc #endif /* defined USG_COMPAT */
259 1.1 jtc #ifdef ALTZONE
260 1.1 jtc if (i == 0 || ttisp->tt_isdst)
261 1.1 jtc altzone = -(ttisp->tt_gmtoff);
262 1.1 jtc #endif /* defined ALTZONE */
263 1.1 jtc }
264 1.1 jtc /*
265 1.1 jtc ** And to get the latest zone names into tzname. . .
266 1.1 jtc */
267 1.1 jtc for (i = 0; i < sp->timecnt; ++i) {
268 1.1 jtc register const struct ttinfo * const ttisp =
269 1.1 jtc &sp->ttis[
270 1.1 jtc sp->types[i]];
271 1.1 jtc
272 1.1 jtc tzname[ttisp->tt_isdst] =
273 1.1 jtc &sp->chars[ttisp->tt_abbrind];
274 1.1 jtc }
275 1.1 jtc }
276 1.1 jtc
277 1.1 jtc static int
278 1.1 jtc tzload(name, sp)
279 1.1 jtc register const char * name;
280 1.1 jtc register struct state * const sp;
281 1.1 jtc {
282 1.1 jtc register const char * p;
283 1.1 jtc register int i;
284 1.1 jtc register int fid;
285 1.1 jtc
286 1.1 jtc if (name == NULL && (name = TZDEFAULT) == NULL)
287 1.1 jtc return -1;
288 1.9 mrg
289 1.1 jtc {
290 1.1 jtc register int doaccess;
291 1.1 jtc /*
292 1.1 jtc ** Section 4.9.1 of the C standard says that
293 1.1 jtc ** "FILENAME_MAX expands to an integral constant expression
294 1.10 jtc ** that is the size needed for an array of char large enough
295 1.1 jtc ** to hold the longest file name string that the implementation
296 1.1 jtc ** guarantees can be opened."
297 1.1 jtc */
298 1.1 jtc char fullname[FILENAME_MAX + 1];
299 1.1 jtc
300 1.1 jtc if (name[0] == ':')
301 1.1 jtc ++name;
302 1.1 jtc doaccess = name[0] == '/';
303 1.1 jtc if (!doaccess) {
304 1.1 jtc if ((p = TZDIR) == NULL)
305 1.1 jtc return -1;
306 1.1 jtc if ((strlen(p) + strlen(name) + 1) >= sizeof fullname)
307 1.1 jtc return -1;
308 1.8 mrg (void) strcpy(fullname, p); /* XXX strcpy is safe */
309 1.8 mrg (void) strcat(fullname, "/"); /* XXX strcat is safe */
310 1.8 mrg (void) strcat(fullname, name); /* XXX strcat is safe */
311 1.1 jtc /*
312 1.1 jtc ** Set doaccess if '.' (as in "../") shows up in name.
313 1.1 jtc */
314 1.1 jtc if (strchr(name, '.') != NULL)
315 1.1 jtc doaccess = TRUE;
316 1.1 jtc name = fullname;
317 1.1 jtc }
318 1.1 jtc if (doaccess && access(name, R_OK) != 0)
319 1.1 jtc return -1;
320 1.9 mrg /*
321 1.9 mrg * XXX potential security problem here if user of a set-id
322 1.9 mrg * program has set TZ (which is passed in as name) here,
323 1.9 mrg * and uses a race condition trick to defeat the access(2)
324 1.9 mrg * above.
325 1.9 mrg */
326 1.1 jtc if ((fid = open(name, OPEN_MODE)) == -1)
327 1.1 jtc return -1;
328 1.1 jtc }
329 1.1 jtc {
330 1.1 jtc struct tzhead * tzhp;
331 1.1 jtc char buf[sizeof *sp + sizeof *tzhp];
332 1.1 jtc int ttisstdcnt;
333 1.1 jtc int ttisgmtcnt;
334 1.1 jtc
335 1.1 jtc i = read(fid, buf, sizeof buf);
336 1.1 jtc if (close(fid) != 0)
337 1.1 jtc return -1;
338 1.1 jtc p = buf;
339 1.1 jtc p += sizeof tzhp->tzh_reserved;
340 1.1 jtc ttisstdcnt = (int) detzcode(p);
341 1.1 jtc p += 4;
342 1.1 jtc ttisgmtcnt = (int) detzcode(p);
343 1.1 jtc p += 4;
344 1.1 jtc sp->leapcnt = (int) detzcode(p);
345 1.1 jtc p += 4;
346 1.1 jtc sp->timecnt = (int) detzcode(p);
347 1.1 jtc p += 4;
348 1.1 jtc sp->typecnt = (int) detzcode(p);
349 1.1 jtc p += 4;
350 1.1 jtc sp->charcnt = (int) detzcode(p);
351 1.1 jtc p += 4;
352 1.1 jtc if (sp->leapcnt < 0 || sp->leapcnt > TZ_MAX_LEAPS ||
353 1.1 jtc sp->typecnt <= 0 || sp->typecnt > TZ_MAX_TYPES ||
354 1.1 jtc sp->timecnt < 0 || sp->timecnt > TZ_MAX_TIMES ||
355 1.1 jtc sp->charcnt < 0 || sp->charcnt > TZ_MAX_CHARS ||
356 1.1 jtc (ttisstdcnt != sp->typecnt && ttisstdcnt != 0) ||
357 1.1 jtc (ttisgmtcnt != sp->typecnt && ttisgmtcnt != 0))
358 1.1 jtc return -1;
359 1.1 jtc if (i - (p - buf) < sp->timecnt * 4 + /* ats */
360 1.1 jtc sp->timecnt + /* types */
361 1.1 jtc sp->typecnt * (4 + 2) + /* ttinfos */
362 1.1 jtc sp->charcnt + /* chars */
363 1.1 jtc sp->leapcnt * (4 + 4) + /* lsinfos */
364 1.1 jtc ttisstdcnt + /* ttisstds */
365 1.1 jtc ttisgmtcnt) /* ttisgmts */
366 1.1 jtc return -1;
367 1.1 jtc for (i = 0; i < sp->timecnt; ++i) {
368 1.1 jtc sp->ats[i] = detzcode(p);
369 1.1 jtc p += 4;
370 1.1 jtc }
371 1.1 jtc for (i = 0; i < sp->timecnt; ++i) {
372 1.1 jtc sp->types[i] = (unsigned char) *p++;
373 1.1 jtc if (sp->types[i] >= sp->typecnt)
374 1.1 jtc return -1;
375 1.1 jtc }
376 1.1 jtc for (i = 0; i < sp->typecnt; ++i) {
377 1.1 jtc register struct ttinfo * ttisp;
378 1.1 jtc
379 1.1 jtc ttisp = &sp->ttis[i];
380 1.1 jtc ttisp->tt_gmtoff = detzcode(p);
381 1.1 jtc p += 4;
382 1.1 jtc ttisp->tt_isdst = (unsigned char) *p++;
383 1.1 jtc if (ttisp->tt_isdst != 0 && ttisp->tt_isdst != 1)
384 1.1 jtc return -1;
385 1.1 jtc ttisp->tt_abbrind = (unsigned char) *p++;
386 1.1 jtc if (ttisp->tt_abbrind < 0 ||
387 1.1 jtc ttisp->tt_abbrind > sp->charcnt)
388 1.1 jtc return -1;
389 1.1 jtc }
390 1.1 jtc for (i = 0; i < sp->charcnt; ++i)
391 1.1 jtc sp->chars[i] = *p++;
392 1.1 jtc sp->chars[i] = '\0'; /* ensure '\0' at end */
393 1.1 jtc for (i = 0; i < sp->leapcnt; ++i) {
394 1.1 jtc register struct lsinfo * lsisp;
395 1.1 jtc
396 1.1 jtc lsisp = &sp->lsis[i];
397 1.1 jtc lsisp->ls_trans = detzcode(p);
398 1.1 jtc p += 4;
399 1.1 jtc lsisp->ls_corr = detzcode(p);
400 1.1 jtc p += 4;
401 1.1 jtc }
402 1.1 jtc for (i = 0; i < sp->typecnt; ++i) {
403 1.1 jtc register struct ttinfo * ttisp;
404 1.1 jtc
405 1.1 jtc ttisp = &sp->ttis[i];
406 1.1 jtc if (ttisstdcnt == 0)
407 1.1 jtc ttisp->tt_ttisstd = FALSE;
408 1.1 jtc else {
409 1.1 jtc ttisp->tt_ttisstd = *p++;
410 1.1 jtc if (ttisp->tt_ttisstd != TRUE &&
411 1.1 jtc ttisp->tt_ttisstd != FALSE)
412 1.1 jtc return -1;
413 1.1 jtc }
414 1.1 jtc }
415 1.1 jtc for (i = 0; i < sp->typecnt; ++i) {
416 1.1 jtc register struct ttinfo * ttisp;
417 1.1 jtc
418 1.1 jtc ttisp = &sp->ttis[i];
419 1.1 jtc if (ttisgmtcnt == 0)
420 1.1 jtc ttisp->tt_ttisgmt = FALSE;
421 1.1 jtc else {
422 1.1 jtc ttisp->tt_ttisgmt = *p++;
423 1.1 jtc if (ttisp->tt_ttisgmt != TRUE &&
424 1.1 jtc ttisp->tt_ttisgmt != FALSE)
425 1.1 jtc return -1;
426 1.1 jtc }
427 1.1 jtc }
428 1.1 jtc }
429 1.1 jtc return 0;
430 1.1 jtc }
431 1.1 jtc
432 1.1 jtc static const int mon_lengths[2][MONSPERYEAR] = {
433 1.1 jtc { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 },
434 1.1 jtc { 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }
435 1.1 jtc };
436 1.1 jtc
437 1.1 jtc static const int year_lengths[2] = {
438 1.1 jtc DAYSPERNYEAR, DAYSPERLYEAR
439 1.1 jtc };
440 1.1 jtc
441 1.1 jtc /*
442 1.1 jtc ** Given a pointer into a time zone string, scan until a character that is not
443 1.1 jtc ** a valid character in a zone name is found. Return a pointer to that
444 1.1 jtc ** character.
445 1.1 jtc */
446 1.1 jtc
447 1.1 jtc static const char *
448 1.1 jtc getzname(strp)
449 1.1 jtc register const char * strp;
450 1.1 jtc {
451 1.1 jtc register char c;
452 1.1 jtc
453 1.5 jtc while ((c = *strp) != '\0' && !is_digit(c) && c != ',' && c != '-' &&
454 1.1 jtc c != '+')
455 1.1 jtc ++strp;
456 1.1 jtc return strp;
457 1.1 jtc }
458 1.1 jtc
459 1.1 jtc /*
460 1.1 jtc ** Given a pointer into a time zone string, extract a number from that string.
461 1.1 jtc ** Check that the number is within a specified range; if it is not, return
462 1.1 jtc ** NULL.
463 1.1 jtc ** Otherwise, return a pointer to the first character not part of the number.
464 1.1 jtc */
465 1.1 jtc
466 1.1 jtc static const char *
467 1.1 jtc getnum(strp, nump, min, max)
468 1.1 jtc register const char * strp;
469 1.1 jtc int * const nump;
470 1.1 jtc const int min;
471 1.1 jtc const int max;
472 1.1 jtc {
473 1.1 jtc register char c;
474 1.1 jtc register int num;
475 1.1 jtc
476 1.5 jtc if (strp == NULL || !is_digit(c = *strp))
477 1.1 jtc return NULL;
478 1.1 jtc num = 0;
479 1.5 jtc do {
480 1.1 jtc num = num * 10 + (c - '0');
481 1.1 jtc if (num > max)
482 1.1 jtc return NULL; /* illegal value */
483 1.5 jtc c = *++strp;
484 1.5 jtc } while (is_digit(c));
485 1.1 jtc if (num < min)
486 1.1 jtc return NULL; /* illegal value */
487 1.1 jtc *nump = num;
488 1.1 jtc return strp;
489 1.1 jtc }
490 1.1 jtc
491 1.1 jtc /*
492 1.1 jtc ** Given a pointer into a time zone string, extract a number of seconds,
493 1.1 jtc ** in hh[:mm[:ss]] form, from the string.
494 1.1 jtc ** If any error occurs, return NULL.
495 1.1 jtc ** Otherwise, return a pointer to the first character not part of the number
496 1.1 jtc ** of seconds.
497 1.1 jtc */
498 1.1 jtc
499 1.1 jtc static const char *
500 1.1 jtc getsecs(strp, secsp)
501 1.1 jtc register const char * strp;
502 1.1 jtc long * const secsp;
503 1.1 jtc {
504 1.1 jtc int num;
505 1.1 jtc
506 1.1 jtc /*
507 1.1 jtc ** `HOURSPERDAY * DAYSPERWEEK - 1' allows quasi-Posix rules like
508 1.1 jtc ** "M10.4.6/26", which does not conform to Posix,
509 1.1 jtc ** but which specifies the equivalent of
510 1.1 jtc ** ``02:00 on the first Sunday on or after 23 Oct''.
511 1.1 jtc */
512 1.1 jtc strp = getnum(strp, &num, 0, HOURSPERDAY * DAYSPERWEEK - 1);
513 1.1 jtc if (strp == NULL)
514 1.1 jtc return NULL;
515 1.1 jtc *secsp = num * (long) SECSPERHOUR;
516 1.1 jtc if (*strp == ':') {
517 1.1 jtc ++strp;
518 1.1 jtc strp = getnum(strp, &num, 0, MINSPERHOUR - 1);
519 1.1 jtc if (strp == NULL)
520 1.1 jtc return NULL;
521 1.1 jtc *secsp += num * SECSPERMIN;
522 1.1 jtc if (*strp == ':') {
523 1.1 jtc ++strp;
524 1.1 jtc /* `SECSPERMIN' allows for leap seconds. */
525 1.1 jtc strp = getnum(strp, &num, 0, SECSPERMIN);
526 1.1 jtc if (strp == NULL)
527 1.1 jtc return NULL;
528 1.1 jtc *secsp += num;
529 1.1 jtc }
530 1.1 jtc }
531 1.1 jtc return strp;
532 1.1 jtc }
533 1.1 jtc
534 1.1 jtc /*
535 1.1 jtc ** Given a pointer into a time zone string, extract an offset, in
536 1.1 jtc ** [+-]hh[:mm[:ss]] form, from the string.
537 1.1 jtc ** If any error occurs, return NULL.
538 1.1 jtc ** Otherwise, return a pointer to the first character not part of the time.
539 1.1 jtc */
540 1.1 jtc
541 1.1 jtc static const char *
542 1.1 jtc getoffset(strp, offsetp)
543 1.1 jtc register const char * strp;
544 1.1 jtc long * const offsetp;
545 1.1 jtc {
546 1.5 jtc register int neg = 0;
547 1.1 jtc
548 1.1 jtc if (*strp == '-') {
549 1.1 jtc neg = 1;
550 1.1 jtc ++strp;
551 1.5 jtc } else if (*strp == '+')
552 1.5 jtc ++strp;
553 1.1 jtc strp = getsecs(strp, offsetp);
554 1.1 jtc if (strp == NULL)
555 1.1 jtc return NULL; /* illegal time */
556 1.1 jtc if (neg)
557 1.1 jtc *offsetp = -*offsetp;
558 1.1 jtc return strp;
559 1.1 jtc }
560 1.1 jtc
561 1.1 jtc /*
562 1.1 jtc ** Given a pointer into a time zone string, extract a rule in the form
563 1.1 jtc ** date[/time]. See POSIX section 8 for the format of "date" and "time".
564 1.1 jtc ** If a valid rule is not found, return NULL.
565 1.1 jtc ** Otherwise, return a pointer to the first character not part of the rule.
566 1.1 jtc */
567 1.1 jtc
568 1.1 jtc static const char *
569 1.1 jtc getrule(strp, rulep)
570 1.1 jtc const char * strp;
571 1.1 jtc register struct rule * const rulep;
572 1.1 jtc {
573 1.1 jtc if (*strp == 'J') {
574 1.1 jtc /*
575 1.1 jtc ** Julian day.
576 1.1 jtc */
577 1.1 jtc rulep->r_type = JULIAN_DAY;
578 1.1 jtc ++strp;
579 1.1 jtc strp = getnum(strp, &rulep->r_day, 1, DAYSPERNYEAR);
580 1.1 jtc } else if (*strp == 'M') {
581 1.1 jtc /*
582 1.1 jtc ** Month, week, day.
583 1.1 jtc */
584 1.1 jtc rulep->r_type = MONTH_NTH_DAY_OF_WEEK;
585 1.1 jtc ++strp;
586 1.1 jtc strp = getnum(strp, &rulep->r_mon, 1, MONSPERYEAR);
587 1.1 jtc if (strp == NULL)
588 1.1 jtc return NULL;
589 1.1 jtc if (*strp++ != '.')
590 1.1 jtc return NULL;
591 1.1 jtc strp = getnum(strp, &rulep->r_week, 1, 5);
592 1.1 jtc if (strp == NULL)
593 1.1 jtc return NULL;
594 1.1 jtc if (*strp++ != '.')
595 1.1 jtc return NULL;
596 1.1 jtc strp = getnum(strp, &rulep->r_day, 0, DAYSPERWEEK - 1);
597 1.5 jtc } else if (is_digit(*strp)) {
598 1.1 jtc /*
599 1.1 jtc ** Day of year.
600 1.1 jtc */
601 1.1 jtc rulep->r_type = DAY_OF_YEAR;
602 1.1 jtc strp = getnum(strp, &rulep->r_day, 0, DAYSPERLYEAR - 1);
603 1.1 jtc } else return NULL; /* invalid format */
604 1.1 jtc if (strp == NULL)
605 1.1 jtc return NULL;
606 1.1 jtc if (*strp == '/') {
607 1.1 jtc /*
608 1.1 jtc ** Time specified.
609 1.1 jtc */
610 1.1 jtc ++strp;
611 1.1 jtc strp = getsecs(strp, &rulep->r_time);
612 1.1 jtc } else rulep->r_time = 2 * SECSPERHOUR; /* default = 2:00:00 */
613 1.1 jtc return strp;
614 1.1 jtc }
615 1.1 jtc
616 1.1 jtc /*
617 1.1 jtc ** Given the Epoch-relative time of January 1, 00:00:00 GMT, in a year, the
618 1.1 jtc ** year, a rule, and the offset from GMT at the time that rule takes effect,
619 1.1 jtc ** calculate the Epoch-relative time that rule takes effect.
620 1.1 jtc */
621 1.1 jtc
622 1.1 jtc static time_t
623 1.1 jtc transtime(janfirst, year, rulep, offset)
624 1.1 jtc const time_t janfirst;
625 1.1 jtc const int year;
626 1.1 jtc register const struct rule * const rulep;
627 1.1 jtc const long offset;
628 1.1 jtc {
629 1.1 jtc register int leapyear;
630 1.1 jtc register time_t value;
631 1.1 jtc register int i;
632 1.1 jtc int d, m1, yy0, yy1, yy2, dow;
633 1.1 jtc
634 1.1 jtc INITIALIZE(value);
635 1.1 jtc leapyear = isleap(year);
636 1.1 jtc switch (rulep->r_type) {
637 1.1 jtc
638 1.1 jtc case JULIAN_DAY:
639 1.1 jtc /*
640 1.1 jtc ** Jn - Julian day, 1 == January 1, 60 == March 1 even in leap
641 1.1 jtc ** years.
642 1.1 jtc ** In non-leap years, or if the day number is 59 or less, just
643 1.1 jtc ** add SECSPERDAY times the day number-1 to the time of
644 1.1 jtc ** January 1, midnight, to get the day.
645 1.1 jtc */
646 1.1 jtc value = janfirst + (rulep->r_day - 1) * SECSPERDAY;
647 1.1 jtc if (leapyear && rulep->r_day >= 60)
648 1.1 jtc value += SECSPERDAY;
649 1.1 jtc break;
650 1.1 jtc
651 1.1 jtc case DAY_OF_YEAR:
652 1.1 jtc /*
653 1.1 jtc ** n - day of year.
654 1.1 jtc ** Just add SECSPERDAY times the day number to the time of
655 1.1 jtc ** January 1, midnight, to get the day.
656 1.1 jtc */
657 1.1 jtc value = janfirst + rulep->r_day * SECSPERDAY;
658 1.1 jtc break;
659 1.1 jtc
660 1.1 jtc case MONTH_NTH_DAY_OF_WEEK:
661 1.1 jtc /*
662 1.1 jtc ** Mm.n.d - nth "dth day" of month m.
663 1.1 jtc */
664 1.1 jtc value = janfirst;
665 1.1 jtc for (i = 0; i < rulep->r_mon - 1; ++i)
666 1.1 jtc value += mon_lengths[leapyear][i] * SECSPERDAY;
667 1.1 jtc
668 1.1 jtc /*
669 1.1 jtc ** Use Zeller's Congruence to get day-of-week of first day of
670 1.1 jtc ** month.
671 1.1 jtc */
672 1.1 jtc m1 = (rulep->r_mon + 9) % 12 + 1;
673 1.1 jtc yy0 = (rulep->r_mon <= 2) ? (year - 1) : year;
674 1.1 jtc yy1 = yy0 / 100;
675 1.1 jtc yy2 = yy0 % 100;
676 1.1 jtc dow = ((26 * m1 - 2) / 10 +
677 1.1 jtc 1 + yy2 + yy2 / 4 + yy1 / 4 - 2 * yy1) % 7;
678 1.1 jtc if (dow < 0)
679 1.1 jtc dow += DAYSPERWEEK;
680 1.1 jtc
681 1.1 jtc /*
682 1.1 jtc ** "dow" is the day-of-week of the first day of the month. Get
683 1.1 jtc ** the day-of-month (zero-origin) of the first "dow" day of the
684 1.1 jtc ** month.
685 1.1 jtc */
686 1.1 jtc d = rulep->r_day - dow;
687 1.1 jtc if (d < 0)
688 1.1 jtc d += DAYSPERWEEK;
689 1.1 jtc for (i = 1; i < rulep->r_week; ++i) {
690 1.1 jtc if (d + DAYSPERWEEK >=
691 1.1 jtc mon_lengths[leapyear][rulep->r_mon - 1])
692 1.1 jtc break;
693 1.1 jtc d += DAYSPERWEEK;
694 1.1 jtc }
695 1.1 jtc
696 1.1 jtc /*
697 1.1 jtc ** "d" is the day-of-month (zero-origin) of the day we want.
698 1.1 jtc */
699 1.1 jtc value += d * SECSPERDAY;
700 1.1 jtc break;
701 1.1 jtc }
702 1.1 jtc
703 1.1 jtc /*
704 1.1 jtc ** "value" is the Epoch-relative time of 00:00:00 GMT on the day in
705 1.1 jtc ** question. To get the Epoch-relative time of the specified local
706 1.1 jtc ** time on that day, add the transition time and the current offset
707 1.1 jtc ** from GMT.
708 1.1 jtc */
709 1.1 jtc return value + rulep->r_time + offset;
710 1.1 jtc }
711 1.1 jtc
712 1.1 jtc /*
713 1.1 jtc ** Given a POSIX section 8-style TZ string, fill in the rule tables as
714 1.1 jtc ** appropriate.
715 1.1 jtc */
716 1.1 jtc
717 1.1 jtc static int
718 1.1 jtc tzparse(name, sp, lastditch)
719 1.1 jtc const char * name;
720 1.1 jtc register struct state * const sp;
721 1.1 jtc const int lastditch;
722 1.1 jtc {
723 1.1 jtc const char * stdname;
724 1.1 jtc const char * dstname;
725 1.1 jtc size_t stdlen;
726 1.1 jtc size_t dstlen;
727 1.1 jtc long stdoffset;
728 1.1 jtc long dstoffset;
729 1.1 jtc register time_t * atp;
730 1.1 jtc register unsigned char * typep;
731 1.1 jtc register char * cp;
732 1.1 jtc register int load_result;
733 1.1 jtc
734 1.1 jtc INITIALIZE(dstname);
735 1.1 jtc stdname = name;
736 1.1 jtc if (lastditch) {
737 1.1 jtc stdlen = strlen(name); /* length of standard zone name */
738 1.1 jtc name += stdlen;
739 1.1 jtc if (stdlen >= sizeof sp->chars)
740 1.1 jtc stdlen = (sizeof sp->chars) - 1;
741 1.10 jtc stdoffset = 0;
742 1.1 jtc } else {
743 1.1 jtc name = getzname(name);
744 1.1 jtc stdlen = name - stdname;
745 1.1 jtc if (stdlen < 3)
746 1.1 jtc return -1;
747 1.10 jtc if (*name == '\0')
748 1.10 jtc return -1;
749 1.1 jtc name = getoffset(name, &stdoffset);
750 1.1 jtc if (name == NULL)
751 1.1 jtc return -1;
752 1.1 jtc }
753 1.1 jtc load_result = tzload(TZDEFRULES, sp);
754 1.1 jtc if (load_result != 0)
755 1.1 jtc sp->leapcnt = 0; /* so, we're off a little */
756 1.1 jtc if (*name != '\0') {
757 1.1 jtc dstname = name;
758 1.1 jtc name = getzname(name);
759 1.1 jtc dstlen = name - dstname; /* length of DST zone name */
760 1.1 jtc if (dstlen < 3)
761 1.1 jtc return -1;
762 1.1 jtc if (*name != '\0' && *name != ',' && *name != ';') {
763 1.1 jtc name = getoffset(name, &dstoffset);
764 1.1 jtc if (name == NULL)
765 1.1 jtc return -1;
766 1.1 jtc } else dstoffset = stdoffset - SECSPERHOUR;
767 1.1 jtc if (*name == ',' || *name == ';') {
768 1.1 jtc struct rule start;
769 1.1 jtc struct rule end;
770 1.1 jtc register int year;
771 1.1 jtc register time_t janfirst;
772 1.1 jtc time_t starttime;
773 1.1 jtc time_t endtime;
774 1.1 jtc
775 1.1 jtc ++name;
776 1.1 jtc if ((name = getrule(name, &start)) == NULL)
777 1.1 jtc return -1;
778 1.1 jtc if (*name++ != ',')
779 1.1 jtc return -1;
780 1.1 jtc if ((name = getrule(name, &end)) == NULL)
781 1.1 jtc return -1;
782 1.1 jtc if (*name != '\0')
783 1.1 jtc return -1;
784 1.1 jtc sp->typecnt = 2; /* standard time and DST */
785 1.1 jtc /*
786 1.1 jtc ** Two transitions per year, from EPOCH_YEAR to 2037.
787 1.1 jtc */
788 1.1 jtc sp->timecnt = 2 * (2037 - EPOCH_YEAR + 1);
789 1.1 jtc if (sp->timecnt > TZ_MAX_TIMES)
790 1.1 jtc return -1;
791 1.1 jtc sp->ttis[0].tt_gmtoff = -dstoffset;
792 1.1 jtc sp->ttis[0].tt_isdst = 1;
793 1.1 jtc sp->ttis[0].tt_abbrind = stdlen + 1;
794 1.1 jtc sp->ttis[1].tt_gmtoff = -stdoffset;
795 1.1 jtc sp->ttis[1].tt_isdst = 0;
796 1.1 jtc sp->ttis[1].tt_abbrind = 0;
797 1.1 jtc atp = sp->ats;
798 1.1 jtc typep = sp->types;
799 1.1 jtc janfirst = 0;
800 1.1 jtc for (year = EPOCH_YEAR; year <= 2037; ++year) {
801 1.1 jtc starttime = transtime(janfirst, year, &start,
802 1.1 jtc stdoffset);
803 1.1 jtc endtime = transtime(janfirst, year, &end,
804 1.1 jtc dstoffset);
805 1.1 jtc if (starttime > endtime) {
806 1.1 jtc *atp++ = endtime;
807 1.1 jtc *typep++ = 1; /* DST ends */
808 1.1 jtc *atp++ = starttime;
809 1.1 jtc *typep++ = 0; /* DST begins */
810 1.1 jtc } else {
811 1.1 jtc *atp++ = starttime;
812 1.1 jtc *typep++ = 0; /* DST begins */
813 1.1 jtc *atp++ = endtime;
814 1.1 jtc *typep++ = 1; /* DST ends */
815 1.1 jtc }
816 1.1 jtc janfirst += year_lengths[isleap(year)] *
817 1.1 jtc SECSPERDAY;
818 1.1 jtc }
819 1.1 jtc } else {
820 1.1 jtc register long theirstdoffset;
821 1.1 jtc register long theirdstoffset;
822 1.1 jtc register long theiroffset;
823 1.1 jtc register int isdst;
824 1.1 jtc register int i;
825 1.1 jtc register int j;
826 1.1 jtc
827 1.1 jtc if (*name != '\0')
828 1.1 jtc return -1;
829 1.1 jtc if (load_result != 0)
830 1.1 jtc return -1;
831 1.1 jtc /*
832 1.1 jtc ** Initial values of theirstdoffset and theirdstoffset.
833 1.1 jtc */
834 1.1 jtc theirstdoffset = 0;
835 1.1 jtc for (i = 0; i < sp->timecnt; ++i) {
836 1.1 jtc j = sp->types[i];
837 1.1 jtc if (!sp->ttis[j].tt_isdst) {
838 1.5 jtc theirstdoffset =
839 1.5 jtc -sp->ttis[j].tt_gmtoff;
840 1.1 jtc break;
841 1.1 jtc }
842 1.1 jtc }
843 1.1 jtc theirdstoffset = 0;
844 1.1 jtc for (i = 0; i < sp->timecnt; ++i) {
845 1.1 jtc j = sp->types[i];
846 1.1 jtc if (sp->ttis[j].tt_isdst) {
847 1.5 jtc theirdstoffset =
848 1.5 jtc -sp->ttis[j].tt_gmtoff;
849 1.1 jtc break;
850 1.1 jtc }
851 1.1 jtc }
852 1.1 jtc /*
853 1.1 jtc ** Initially we're assumed to be in standard time.
854 1.1 jtc */
855 1.1 jtc isdst = FALSE;
856 1.1 jtc theiroffset = theirstdoffset;
857 1.1 jtc /*
858 1.1 jtc ** Now juggle transition times and types
859 1.1 jtc ** tracking offsets as you do.
860 1.1 jtc */
861 1.1 jtc for (i = 0; i < sp->timecnt; ++i) {
862 1.1 jtc j = sp->types[i];
863 1.1 jtc sp->types[i] = sp->ttis[j].tt_isdst;
864 1.1 jtc if (sp->ttis[j].tt_ttisgmt) {
865 1.1 jtc /* No adjustment to transition time */
866 1.1 jtc } else {
867 1.1 jtc /*
868 1.1 jtc ** If summer time is in effect, and the
869 1.1 jtc ** transition time was not specified as
870 1.1 jtc ** standard time, add the summer time
871 1.1 jtc ** offset to the transition time;
872 1.1 jtc ** otherwise, add the standard time
873 1.1 jtc ** offset to the transition time.
874 1.1 jtc */
875 1.1 jtc /*
876 1.1 jtc ** Transitions from DST to DDST
877 1.1 jtc ** will effectively disappear since
878 1.1 jtc ** POSIX provides for only one DST
879 1.1 jtc ** offset.
880 1.1 jtc */
881 1.1 jtc if (isdst && !sp->ttis[j].tt_ttisstd) {
882 1.1 jtc sp->ats[i] += dstoffset -
883 1.1 jtc theirdstoffset;
884 1.1 jtc } else {
885 1.1 jtc sp->ats[i] += stdoffset -
886 1.1 jtc theirstdoffset;
887 1.1 jtc }
888 1.1 jtc }
889 1.1 jtc theiroffset = -sp->ttis[j].tt_gmtoff;
890 1.1 jtc if (sp->ttis[j].tt_isdst)
891 1.1 jtc theirdstoffset = theiroffset;
892 1.1 jtc else theirstdoffset = theiroffset;
893 1.1 jtc }
894 1.1 jtc /*
895 1.1 jtc ** Finally, fill in ttis.
896 1.1 jtc ** ttisstd and ttisgmt need not be handled.
897 1.1 jtc */
898 1.1 jtc sp->ttis[0].tt_gmtoff = -stdoffset;
899 1.1 jtc sp->ttis[0].tt_isdst = FALSE;
900 1.1 jtc sp->ttis[0].tt_abbrind = 0;
901 1.1 jtc sp->ttis[1].tt_gmtoff = -dstoffset;
902 1.1 jtc sp->ttis[1].tt_isdst = TRUE;
903 1.1 jtc sp->ttis[1].tt_abbrind = stdlen + 1;
904 1.7 jtc sp->typecnt = 2;
905 1.1 jtc }
906 1.1 jtc } else {
907 1.1 jtc dstlen = 0;
908 1.1 jtc sp->typecnt = 1; /* only standard time */
909 1.1 jtc sp->timecnt = 0;
910 1.1 jtc sp->ttis[0].tt_gmtoff = -stdoffset;
911 1.1 jtc sp->ttis[0].tt_isdst = 0;
912 1.1 jtc sp->ttis[0].tt_abbrind = 0;
913 1.1 jtc }
914 1.1 jtc sp->charcnt = stdlen + 1;
915 1.1 jtc if (dstlen != 0)
916 1.1 jtc sp->charcnt += dstlen + 1;
917 1.10 jtc if ((size_t) sp->charcnt > sizeof sp->chars)
918 1.1 jtc return -1;
919 1.1 jtc cp = sp->chars;
920 1.1 jtc (void) strncpy(cp, stdname, stdlen);
921 1.1 jtc cp += stdlen;
922 1.1 jtc *cp++ = '\0';
923 1.1 jtc if (dstlen != 0) {
924 1.1 jtc (void) strncpy(cp, dstname, dstlen);
925 1.1 jtc *(cp + dstlen) = '\0';
926 1.1 jtc }
927 1.1 jtc return 0;
928 1.1 jtc }
929 1.1 jtc
930 1.1 jtc static void
931 1.1 jtc gmtload(sp)
932 1.1 jtc struct state * const sp;
933 1.1 jtc {
934 1.1 jtc if (tzload(gmt, sp) != 0)
935 1.1 jtc (void) tzparse(gmt, sp, TRUE);
936 1.1 jtc }
937 1.1 jtc
938 1.1 jtc #ifndef STD_INSPIRED
939 1.1 jtc /*
940 1.1 jtc ** A non-static declaration of tzsetwall in a system header file
941 1.1 jtc ** may cause a warning about this upcoming static declaration...
942 1.1 jtc */
943 1.1 jtc static
944 1.1 jtc #endif /* !defined STD_INSPIRED */
945 1.1 jtc void
946 1.1 jtc tzsetwall P((void))
947 1.1 jtc {
948 1.1 jtc if (lcl_is_set < 0)
949 1.1 jtc return;
950 1.1 jtc lcl_is_set = -1;
951 1.1 jtc
952 1.1 jtc #ifdef ALL_STATE
953 1.1 jtc if (lclptr == NULL) {
954 1.1 jtc lclptr = (struct state *) malloc(sizeof *lclptr);
955 1.1 jtc if (lclptr == NULL) {
956 1.1 jtc settzname(); /* all we can do */
957 1.1 jtc return;
958 1.1 jtc }
959 1.1 jtc }
960 1.1 jtc #endif /* defined ALL_STATE */
961 1.1 jtc if (tzload((char *) NULL, lclptr) != 0)
962 1.1 jtc gmtload(lclptr);
963 1.1 jtc settzname();
964 1.1 jtc }
965 1.1 jtc
966 1.1 jtc void
967 1.1 jtc tzset P((void))
968 1.1 jtc {
969 1.1 jtc register const char * name;
970 1.1 jtc
971 1.1 jtc name = getenv("TZ");
972 1.1 jtc if (name == NULL) {
973 1.1 jtc tzsetwall();
974 1.1 jtc return;
975 1.1 jtc }
976 1.1 jtc
977 1.1 jtc if (lcl_is_set > 0 && strcmp(lcl_TZname, name) == 0)
978 1.1 jtc return;
979 1.1 jtc lcl_is_set = (strlen(name) < sizeof(lcl_TZname));
980 1.1 jtc if (lcl_is_set)
981 1.8 mrg (void)strncpy(lcl_TZname, name, sizeof(lcl_TZname) - 1);
982 1.1 jtc
983 1.1 jtc #ifdef ALL_STATE
984 1.1 jtc if (lclptr == NULL) {
985 1.1 jtc lclptr = (struct state *) malloc(sizeof *lclptr);
986 1.1 jtc if (lclptr == NULL) {
987 1.1 jtc settzname(); /* all we can do */
988 1.1 jtc return;
989 1.1 jtc }
990 1.1 jtc }
991 1.1 jtc #endif /* defined ALL_STATE */
992 1.1 jtc if (*name == '\0') {
993 1.1 jtc /*
994 1.1 jtc ** User wants it fast rather than right.
995 1.1 jtc */
996 1.1 jtc lclptr->leapcnt = 0; /* so, we're off a little */
997 1.1 jtc lclptr->timecnt = 0;
998 1.1 jtc lclptr->ttis[0].tt_gmtoff = 0;
999 1.1 jtc lclptr->ttis[0].tt_abbrind = 0;
1000 1.8 mrg (void)strncpy(lclptr->chars, gmt, sizeof(lclptr->chars) - 1);
1001 1.1 jtc } else if (tzload(name, lclptr) != 0)
1002 1.1 jtc if (name[0] == ':' || tzparse(name, lclptr, FALSE) != 0)
1003 1.1 jtc (void) gmtload(lclptr);
1004 1.1 jtc settzname();
1005 1.1 jtc }
1006 1.1 jtc
1007 1.1 jtc /*
1008 1.1 jtc ** The easy way to behave "as if no library function calls" localtime
1009 1.1 jtc ** is to not call it--so we drop its guts into "localsub", which can be
1010 1.1 jtc ** freely called. (And no, the PANS doesn't require the above behavior--
1011 1.1 jtc ** but it *is* desirable.)
1012 1.1 jtc **
1013 1.1 jtc ** The unused offset argument is for the benefit of mktime variants.
1014 1.1 jtc */
1015 1.1 jtc
1016 1.1 jtc /*ARGSUSED*/
1017 1.1 jtc static void
1018 1.1 jtc localsub(timep, offset, tmp)
1019 1.1 jtc const time_t * const timep;
1020 1.1 jtc const long offset;
1021 1.1 jtc struct tm * const tmp;
1022 1.1 jtc {
1023 1.1 jtc register struct state * sp;
1024 1.1 jtc register const struct ttinfo * ttisp;
1025 1.1 jtc register int i;
1026 1.1 jtc const time_t t = *timep;
1027 1.1 jtc
1028 1.1 jtc sp = lclptr;
1029 1.1 jtc #ifdef ALL_STATE
1030 1.1 jtc if (sp == NULL) {
1031 1.1 jtc gmtsub(timep, offset, tmp);
1032 1.1 jtc return;
1033 1.1 jtc }
1034 1.1 jtc #endif /* defined ALL_STATE */
1035 1.1 jtc if (sp->timecnt == 0 || t < sp->ats[0]) {
1036 1.1 jtc i = 0;
1037 1.1 jtc while (sp->ttis[i].tt_isdst)
1038 1.1 jtc if (++i >= sp->typecnt) {
1039 1.1 jtc i = 0;
1040 1.1 jtc break;
1041 1.1 jtc }
1042 1.1 jtc } else {
1043 1.1 jtc for (i = 1; i < sp->timecnt; ++i)
1044 1.1 jtc if (t < sp->ats[i])
1045 1.1 jtc break;
1046 1.1 jtc i = sp->types[i - 1];
1047 1.1 jtc }
1048 1.1 jtc ttisp = &sp->ttis[i];
1049 1.1 jtc /*
1050 1.1 jtc ** To get (wrong) behavior that's compatible with System V Release 2.0
1051 1.1 jtc ** you'd replace the statement below with
1052 1.1 jtc ** t += ttisp->tt_gmtoff;
1053 1.1 jtc ** timesub(&t, 0L, sp, tmp);
1054 1.1 jtc */
1055 1.1 jtc timesub(&t, ttisp->tt_gmtoff, sp, tmp);
1056 1.1 jtc tmp->tm_isdst = ttisp->tt_isdst;
1057 1.1 jtc tzname[tmp->tm_isdst] = &sp->chars[ttisp->tt_abbrind];
1058 1.1 jtc #ifdef TM_ZONE
1059 1.1 jtc tmp->TM_ZONE = &sp->chars[ttisp->tt_abbrind];
1060 1.1 jtc #endif /* defined TM_ZONE */
1061 1.1 jtc }
1062 1.1 jtc
1063 1.1 jtc struct tm *
1064 1.1 jtc localtime(timep)
1065 1.1 jtc const time_t * const timep;
1066 1.1 jtc {
1067 1.1 jtc tzset();
1068 1.1 jtc localsub(timep, 0L, &tm);
1069 1.1 jtc return &tm;
1070 1.1 jtc }
1071 1.1 jtc
1072 1.1 jtc /*
1073 1.1 jtc ** gmtsub is to gmtime as localsub is to localtime.
1074 1.1 jtc */
1075 1.1 jtc
1076 1.1 jtc static void
1077 1.1 jtc gmtsub(timep, offset, tmp)
1078 1.1 jtc const time_t * const timep;
1079 1.1 jtc const long offset;
1080 1.1 jtc struct tm * const tmp;
1081 1.1 jtc {
1082 1.1 jtc if (!gmt_is_set) {
1083 1.1 jtc gmt_is_set = TRUE;
1084 1.1 jtc #ifdef ALL_STATE
1085 1.1 jtc gmtptr = (struct state *) malloc(sizeof *gmtptr);
1086 1.1 jtc if (gmtptr != NULL)
1087 1.1 jtc #endif /* defined ALL_STATE */
1088 1.1 jtc gmtload(gmtptr);
1089 1.1 jtc }
1090 1.1 jtc timesub(timep, offset, gmtptr, tmp);
1091 1.1 jtc #ifdef TM_ZONE
1092 1.1 jtc /*
1093 1.1 jtc ** Could get fancy here and deliver something such as
1094 1.1 jtc ** "GMT+xxxx" or "GMT-xxxx" if offset is non-zero,
1095 1.1 jtc ** but this is no time for a treasure hunt.
1096 1.1 jtc */
1097 1.1 jtc if (offset != 0)
1098 1.1 jtc tmp->TM_ZONE = wildabbr;
1099 1.1 jtc else {
1100 1.1 jtc #ifdef ALL_STATE
1101 1.1 jtc if (gmtptr == NULL)
1102 1.1 jtc tmp->TM_ZONE = gmt;
1103 1.1 jtc else tmp->TM_ZONE = gmtptr->chars;
1104 1.1 jtc #endif /* defined ALL_STATE */
1105 1.1 jtc #ifndef ALL_STATE
1106 1.1 jtc tmp->TM_ZONE = gmtptr->chars;
1107 1.1 jtc #endif /* State Farm */
1108 1.1 jtc }
1109 1.1 jtc #endif /* defined TM_ZONE */
1110 1.1 jtc }
1111 1.1 jtc
1112 1.1 jtc struct tm *
1113 1.1 jtc gmtime(timep)
1114 1.1 jtc const time_t * const timep;
1115 1.1 jtc {
1116 1.1 jtc gmtsub(timep, 0L, &tm);
1117 1.1 jtc return &tm;
1118 1.1 jtc }
1119 1.1 jtc
1120 1.1 jtc #ifdef STD_INSPIRED
1121 1.1 jtc
1122 1.1 jtc struct tm *
1123 1.1 jtc offtime(timep, offset)
1124 1.1 jtc const time_t * const timep;
1125 1.1 jtc const long offset;
1126 1.1 jtc {
1127 1.1 jtc gmtsub(timep, offset, &tm);
1128 1.1 jtc return &tm;
1129 1.1 jtc }
1130 1.1 jtc
1131 1.1 jtc #endif /* defined STD_INSPIRED */
1132 1.1 jtc
1133 1.1 jtc static void
1134 1.1 jtc timesub(timep, offset, sp, tmp)
1135 1.1 jtc const time_t * const timep;
1136 1.1 jtc const long offset;
1137 1.1 jtc register const struct state * const sp;
1138 1.1 jtc register struct tm * const tmp;
1139 1.1 jtc {
1140 1.1 jtc register const struct lsinfo * lp;
1141 1.1 jtc register long days;
1142 1.1 jtc register long rem;
1143 1.1 jtc register int y;
1144 1.1 jtc register int yleap;
1145 1.1 jtc register const int * ip;
1146 1.1 jtc register long corr;
1147 1.1 jtc register int hit;
1148 1.1 jtc register int i;
1149 1.1 jtc
1150 1.1 jtc corr = 0;
1151 1.1 jtc hit = 0;
1152 1.1 jtc #ifdef ALL_STATE
1153 1.1 jtc i = (sp == NULL) ? 0 : sp->leapcnt;
1154 1.1 jtc #endif /* defined ALL_STATE */
1155 1.1 jtc #ifndef ALL_STATE
1156 1.1 jtc i = sp->leapcnt;
1157 1.1 jtc #endif /* State Farm */
1158 1.1 jtc while (--i >= 0) {
1159 1.1 jtc lp = &sp->lsis[i];
1160 1.1 jtc if (*timep >= lp->ls_trans) {
1161 1.1 jtc if (*timep == lp->ls_trans) {
1162 1.1 jtc hit = ((i == 0 && lp->ls_corr > 0) ||
1163 1.1 jtc lp->ls_corr > sp->lsis[i - 1].ls_corr);
1164 1.1 jtc if (hit)
1165 1.1 jtc while (i > 0 &&
1166 1.1 jtc sp->lsis[i].ls_trans ==
1167 1.1 jtc sp->lsis[i - 1].ls_trans + 1 &&
1168 1.1 jtc sp->lsis[i].ls_corr ==
1169 1.1 jtc sp->lsis[i - 1].ls_corr + 1) {
1170 1.1 jtc ++hit;
1171 1.1 jtc --i;
1172 1.1 jtc }
1173 1.1 jtc }
1174 1.1 jtc corr = lp->ls_corr;
1175 1.1 jtc break;
1176 1.1 jtc }
1177 1.1 jtc }
1178 1.1 jtc days = *timep / SECSPERDAY;
1179 1.1 jtc rem = *timep % SECSPERDAY;
1180 1.1 jtc #ifdef mc68k
1181 1.1 jtc if (*timep == 0x80000000) {
1182 1.1 jtc /*
1183 1.1 jtc ** A 3B1 muffs the division on the most negative number.
1184 1.1 jtc */
1185 1.1 jtc days = -24855;
1186 1.1 jtc rem = -11648;
1187 1.1 jtc }
1188 1.1 jtc #endif /* defined mc68k */
1189 1.1 jtc rem += (offset - corr);
1190 1.1 jtc while (rem < 0) {
1191 1.1 jtc rem += SECSPERDAY;
1192 1.1 jtc --days;
1193 1.1 jtc }
1194 1.1 jtc while (rem >= SECSPERDAY) {
1195 1.1 jtc rem -= SECSPERDAY;
1196 1.1 jtc ++days;
1197 1.1 jtc }
1198 1.1 jtc tmp->tm_hour = (int) (rem / SECSPERHOUR);
1199 1.1 jtc rem = rem % SECSPERHOUR;
1200 1.1 jtc tmp->tm_min = (int) (rem / SECSPERMIN);
1201 1.6 jtc /*
1202 1.6 jtc ** A positive leap second requires a special
1203 1.6 jtc ** representation. This uses "... ??:59:60" et seq.
1204 1.6 jtc */
1205 1.6 jtc tmp->tm_sec = (int) (rem % SECSPERMIN) + hit;
1206 1.1 jtc tmp->tm_wday = (int) ((EPOCH_WDAY + days) % DAYSPERWEEK);
1207 1.1 jtc if (tmp->tm_wday < 0)
1208 1.1 jtc tmp->tm_wday += DAYSPERWEEK;
1209 1.1 jtc y = EPOCH_YEAR;
1210 1.5 jtc #define LEAPS_THRU_END_OF(y) ((y) / 4 - (y) / 100 + (y) / 400)
1211 1.5 jtc while (days < 0 || days >= (long) year_lengths[yleap = isleap(y)]) {
1212 1.5 jtc register int newy;
1213 1.5 jtc
1214 1.5 jtc newy = y + days / DAYSPERNYEAR;
1215 1.5 jtc if (days < 0)
1216 1.5 jtc --newy;
1217 1.5 jtc days -= (newy - y) * DAYSPERNYEAR +
1218 1.5 jtc LEAPS_THRU_END_OF(newy - 1) -
1219 1.5 jtc LEAPS_THRU_END_OF(y - 1);
1220 1.5 jtc y = newy;
1221 1.5 jtc }
1222 1.1 jtc tmp->tm_year = y - TM_YEAR_BASE;
1223 1.1 jtc tmp->tm_yday = (int) days;
1224 1.1 jtc ip = mon_lengths[yleap];
1225 1.1 jtc for (tmp->tm_mon = 0; days >= (long) ip[tmp->tm_mon]; ++(tmp->tm_mon))
1226 1.1 jtc days = days - (long) ip[tmp->tm_mon];
1227 1.1 jtc tmp->tm_mday = (int) (days + 1);
1228 1.1 jtc tmp->tm_isdst = 0;
1229 1.1 jtc #ifdef TM_GMTOFF
1230 1.1 jtc tmp->TM_GMTOFF = offset;
1231 1.1 jtc #endif /* defined TM_GMTOFF */
1232 1.1 jtc }
1233 1.1 jtc
1234 1.1 jtc char *
1235 1.1 jtc ctime(timep)
1236 1.1 jtc const time_t * const timep;
1237 1.1 jtc {
1238 1.1 jtc /*
1239 1.1 jtc ** Section 4.12.3.2 of X3.159-1989 requires that
1240 1.1 jtc ** The ctime funciton converts the calendar time pointed to by timer
1241 1.1 jtc ** to local time in the form of a string. It is equivalent to
1242 1.1 jtc ** asctime(localtime(timer))
1243 1.1 jtc */
1244 1.1 jtc return asctime(localtime(timep));
1245 1.1 jtc }
1246 1.1 jtc
1247 1.1 jtc /*
1248 1.1 jtc ** Adapted from code provided by Robert Elz, who writes:
1249 1.1 jtc ** The "best" way to do mktime I think is based on an idea of Bob
1250 1.7 jtc ** Kridle's (so its said...) from a long time ago.
1251 1.7 jtc ** [kridle (at) xinet.com as of 1996-01-16.]
1252 1.1 jtc ** It does a binary search of the time_t space. Since time_t's are
1253 1.1 jtc ** just 32 bits, its a max of 32 iterations (even at 64 bits it
1254 1.1 jtc ** would still be very reasonable).
1255 1.1 jtc */
1256 1.1 jtc
1257 1.1 jtc #ifndef WRONG
1258 1.1 jtc #define WRONG (-1)
1259 1.1 jtc #endif /* !defined WRONG */
1260 1.1 jtc
1261 1.1 jtc /*
1262 1.1 jtc ** Simplified normalize logic courtesy Paul Eggert (eggert (at) twinsun.com).
1263 1.1 jtc */
1264 1.1 jtc
1265 1.1 jtc static int
1266 1.1 jtc increment_overflow(number, delta)
1267 1.1 jtc int * number;
1268 1.1 jtc int delta;
1269 1.1 jtc {
1270 1.1 jtc int number0;
1271 1.1 jtc
1272 1.1 jtc number0 = *number;
1273 1.1 jtc *number += delta;
1274 1.1 jtc return (*number < number0) != (delta < 0);
1275 1.1 jtc }
1276 1.1 jtc
1277 1.1 jtc static int
1278 1.1 jtc normalize_overflow(tensptr, unitsptr, base)
1279 1.1 jtc int * const tensptr;
1280 1.1 jtc int * const unitsptr;
1281 1.1 jtc const int base;
1282 1.1 jtc {
1283 1.1 jtc register int tensdelta;
1284 1.1 jtc
1285 1.1 jtc tensdelta = (*unitsptr >= 0) ?
1286 1.1 jtc (*unitsptr / base) :
1287 1.1 jtc (-1 - (-1 - *unitsptr) / base);
1288 1.1 jtc *unitsptr -= tensdelta * base;
1289 1.1 jtc return increment_overflow(tensptr, tensdelta);
1290 1.1 jtc }
1291 1.1 jtc
1292 1.1 jtc static int
1293 1.1 jtc tmcomp(atmp, btmp)
1294 1.1 jtc register const struct tm * const atmp;
1295 1.1 jtc register const struct tm * const btmp;
1296 1.1 jtc {
1297 1.1 jtc register int result;
1298 1.1 jtc
1299 1.1 jtc if ((result = (atmp->tm_year - btmp->tm_year)) == 0 &&
1300 1.1 jtc (result = (atmp->tm_mon - btmp->tm_mon)) == 0 &&
1301 1.1 jtc (result = (atmp->tm_mday - btmp->tm_mday)) == 0 &&
1302 1.1 jtc (result = (atmp->tm_hour - btmp->tm_hour)) == 0 &&
1303 1.1 jtc (result = (atmp->tm_min - btmp->tm_min)) == 0)
1304 1.1 jtc result = atmp->tm_sec - btmp->tm_sec;
1305 1.1 jtc return result;
1306 1.1 jtc }
1307 1.1 jtc
1308 1.1 jtc static time_t
1309 1.1 jtc time2(tmp, funcp, offset, okayp)
1310 1.1 jtc struct tm * const tmp;
1311 1.1 jtc void (* const funcp) P((const time_t*, long, struct tm*));
1312 1.1 jtc const long offset;
1313 1.1 jtc int * const okayp;
1314 1.1 jtc {
1315 1.1 jtc register const struct state * sp;
1316 1.1 jtc register int dir;
1317 1.1 jtc register int bits;
1318 1.1 jtc register int i, j ;
1319 1.1 jtc register int saved_seconds;
1320 1.1 jtc time_t newt;
1321 1.1 jtc time_t t;
1322 1.1 jtc struct tm yourtm, mytm;
1323 1.1 jtc
1324 1.1 jtc *okayp = FALSE;
1325 1.1 jtc yourtm = *tmp;
1326 1.1 jtc if (normalize_overflow(&yourtm.tm_hour, &yourtm.tm_min, MINSPERHOUR))
1327 1.1 jtc return WRONG;
1328 1.1 jtc if (normalize_overflow(&yourtm.tm_mday, &yourtm.tm_hour, HOURSPERDAY))
1329 1.1 jtc return WRONG;
1330 1.1 jtc if (normalize_overflow(&yourtm.tm_year, &yourtm.tm_mon, MONSPERYEAR))
1331 1.1 jtc return WRONG;
1332 1.1 jtc /*
1333 1.1 jtc ** Turn yourtm.tm_year into an actual year number for now.
1334 1.1 jtc ** It is converted back to an offset from TM_YEAR_BASE later.
1335 1.1 jtc */
1336 1.1 jtc if (increment_overflow(&yourtm.tm_year, TM_YEAR_BASE))
1337 1.1 jtc return WRONG;
1338 1.1 jtc while (yourtm.tm_mday <= 0) {
1339 1.1 jtc if (increment_overflow(&yourtm.tm_year, -1))
1340 1.1 jtc return WRONG;
1341 1.7 jtc i = yourtm.tm_year + (1 < yourtm.tm_mon);
1342 1.7 jtc yourtm.tm_mday += year_lengths[isleap(i)];
1343 1.1 jtc }
1344 1.1 jtc while (yourtm.tm_mday > DAYSPERLYEAR) {
1345 1.7 jtc i = yourtm.tm_year + (1 < yourtm.tm_mon);
1346 1.7 jtc yourtm.tm_mday -= year_lengths[isleap(i)];
1347 1.1 jtc if (increment_overflow(&yourtm.tm_year, 1))
1348 1.1 jtc return WRONG;
1349 1.1 jtc }
1350 1.1 jtc for ( ; ; ) {
1351 1.1 jtc i = mon_lengths[isleap(yourtm.tm_year)][yourtm.tm_mon];
1352 1.1 jtc if (yourtm.tm_mday <= i)
1353 1.1 jtc break;
1354 1.1 jtc yourtm.tm_mday -= i;
1355 1.1 jtc if (++yourtm.tm_mon >= MONSPERYEAR) {
1356 1.1 jtc yourtm.tm_mon = 0;
1357 1.1 jtc if (increment_overflow(&yourtm.tm_year, 1))
1358 1.1 jtc return WRONG;
1359 1.1 jtc }
1360 1.1 jtc }
1361 1.1 jtc if (increment_overflow(&yourtm.tm_year, -TM_YEAR_BASE))
1362 1.1 jtc return WRONG;
1363 1.1 jtc if (yourtm.tm_year + TM_YEAR_BASE < EPOCH_YEAR) {
1364 1.1 jtc /*
1365 1.1 jtc ** We can't set tm_sec to 0, because that might push the
1366 1.1 jtc ** time below the minimum representable time.
1367 1.1 jtc ** Set tm_sec to 59 instead.
1368 1.1 jtc ** This assumes that the minimum representable time is
1369 1.1 jtc ** not in the same minute that a leap second was deleted from,
1370 1.1 jtc ** which is a safer assumption than using 58 would be.
1371 1.1 jtc */
1372 1.1 jtc if (increment_overflow(&yourtm.tm_sec, 1 - SECSPERMIN))
1373 1.1 jtc return WRONG;
1374 1.1 jtc saved_seconds = yourtm.tm_sec;
1375 1.1 jtc yourtm.tm_sec = SECSPERMIN - 1;
1376 1.1 jtc } else {
1377 1.1 jtc saved_seconds = yourtm.tm_sec;
1378 1.1 jtc yourtm.tm_sec = 0;
1379 1.1 jtc }
1380 1.1 jtc /*
1381 1.6 jtc ** Divide the search space in half
1382 1.6 jtc ** (this works whether time_t is signed or unsigned).
1383 1.1 jtc */
1384 1.6 jtc bits = TYPE_BIT(time_t) - 1;
1385 1.1 jtc /*
1386 1.6 jtc ** If time_t is signed, then 0 is just above the median,
1387 1.6 jtc ** assuming two's complement arithmetic.
1388 1.6 jtc ** If time_t is unsigned, then (1 << bits) is just above the median.
1389 1.1 jtc */
1390 1.6 jtc t = TYPE_SIGNED(time_t) ? 0 : (((time_t) 1) << bits);
1391 1.1 jtc for ( ; ; ) {
1392 1.1 jtc (*funcp)(&t, offset, &mytm);
1393 1.1 jtc dir = tmcomp(&mytm, &yourtm);
1394 1.1 jtc if (dir != 0) {
1395 1.1 jtc if (bits-- < 0)
1396 1.1 jtc return WRONG;
1397 1.1 jtc if (bits < 0)
1398 1.6 jtc --t; /* may be needed if new t is minimal */
1399 1.1 jtc else if (dir > 0)
1400 1.6 jtc t -= ((time_t) 1) << bits;
1401 1.6 jtc else t += ((time_t) 1) << bits;
1402 1.1 jtc continue;
1403 1.1 jtc }
1404 1.1 jtc if (yourtm.tm_isdst < 0 || mytm.tm_isdst == yourtm.tm_isdst)
1405 1.1 jtc break;
1406 1.1 jtc /*
1407 1.1 jtc ** Right time, wrong type.
1408 1.1 jtc ** Hunt for right time, right type.
1409 1.1 jtc ** It's okay to guess wrong since the guess
1410 1.1 jtc ** gets checked.
1411 1.1 jtc */
1412 1.1 jtc /*
1413 1.1 jtc ** The (void *) casts are the benefit of SunOS 3.3 on Sun 2's.
1414 1.1 jtc */
1415 1.1 jtc sp = (const struct state *)
1416 1.1 jtc (((void *) funcp == (void *) localsub) ?
1417 1.1 jtc lclptr : gmtptr);
1418 1.1 jtc #ifdef ALL_STATE
1419 1.1 jtc if (sp == NULL)
1420 1.1 jtc return WRONG;
1421 1.1 jtc #endif /* defined ALL_STATE */
1422 1.5 jtc for (i = sp->typecnt - 1; i >= 0; --i) {
1423 1.1 jtc if (sp->ttis[i].tt_isdst != yourtm.tm_isdst)
1424 1.1 jtc continue;
1425 1.5 jtc for (j = sp->typecnt - 1; j >= 0; --j) {
1426 1.1 jtc if (sp->ttis[j].tt_isdst == yourtm.tm_isdst)
1427 1.1 jtc continue;
1428 1.1 jtc newt = t + sp->ttis[j].tt_gmtoff -
1429 1.1 jtc sp->ttis[i].tt_gmtoff;
1430 1.1 jtc (*funcp)(&newt, offset, &mytm);
1431 1.1 jtc if (tmcomp(&mytm, &yourtm) != 0)
1432 1.1 jtc continue;
1433 1.1 jtc if (mytm.tm_isdst != yourtm.tm_isdst)
1434 1.1 jtc continue;
1435 1.1 jtc /*
1436 1.1 jtc ** We have a match.
1437 1.1 jtc */
1438 1.1 jtc t = newt;
1439 1.1 jtc goto label;
1440 1.1 jtc }
1441 1.1 jtc }
1442 1.1 jtc return WRONG;
1443 1.1 jtc }
1444 1.1 jtc label:
1445 1.1 jtc newt = t + saved_seconds;
1446 1.1 jtc if ((newt < t) != (saved_seconds < 0))
1447 1.1 jtc return WRONG;
1448 1.1 jtc t = newt;
1449 1.1 jtc (*funcp)(&t, offset, tmp);
1450 1.1 jtc *okayp = TRUE;
1451 1.1 jtc return t;
1452 1.1 jtc }
1453 1.1 jtc
1454 1.1 jtc static time_t
1455 1.1 jtc time1(tmp, funcp, offset)
1456 1.1 jtc struct tm * const tmp;
1457 1.5 jtc void (* const funcp) P((const time_t *, long, struct tm *));
1458 1.1 jtc const long offset;
1459 1.1 jtc {
1460 1.1 jtc register time_t t;
1461 1.1 jtc register const struct state * sp;
1462 1.1 jtc register int samei, otheri;
1463 1.1 jtc int okay;
1464 1.1 jtc
1465 1.1 jtc if (tmp->tm_isdst > 1)
1466 1.1 jtc tmp->tm_isdst = 1;
1467 1.1 jtc t = time2(tmp, funcp, offset, &okay);
1468 1.1 jtc #ifdef PCTS
1469 1.1 jtc /*
1470 1.1 jtc ** PCTS code courtesy Grant Sullivan (grant (at) osf.org).
1471 1.1 jtc */
1472 1.1 jtc if (okay)
1473 1.1 jtc return t;
1474 1.1 jtc if (tmp->tm_isdst < 0)
1475 1.1 jtc tmp->tm_isdst = 0; /* reset to std and try again */
1476 1.1 jtc #endif /* defined PCTS */
1477 1.1 jtc #ifndef PCTS
1478 1.1 jtc if (okay || tmp->tm_isdst < 0)
1479 1.1 jtc return t;
1480 1.1 jtc #endif /* !defined PCTS */
1481 1.1 jtc /*
1482 1.1 jtc ** We're supposed to assume that somebody took a time of one type
1483 1.1 jtc ** and did some math on it that yielded a "struct tm" that's bad.
1484 1.1 jtc ** We try to divine the type they started from and adjust to the
1485 1.1 jtc ** type they need.
1486 1.1 jtc */
1487 1.1 jtc /*
1488 1.1 jtc ** The (void *) casts are the benefit of SunOS 3.3 on Sun 2's.
1489 1.1 jtc */
1490 1.1 jtc sp = (const struct state *) (((void *) funcp == (void *) localsub) ?
1491 1.1 jtc lclptr : gmtptr);
1492 1.1 jtc #ifdef ALL_STATE
1493 1.1 jtc if (sp == NULL)
1494 1.1 jtc return WRONG;
1495 1.1 jtc #endif /* defined ALL_STATE */
1496 1.5 jtc for (samei = sp->typecnt - 1; samei >= 0; --samei) {
1497 1.1 jtc if (sp->ttis[samei].tt_isdst != tmp->tm_isdst)
1498 1.1 jtc continue;
1499 1.5 jtc for (otheri = sp->typecnt - 1; otheri >= 0; --otheri) {
1500 1.1 jtc if (sp->ttis[otheri].tt_isdst == tmp->tm_isdst)
1501 1.1 jtc continue;
1502 1.1 jtc tmp->tm_sec += sp->ttis[otheri].tt_gmtoff -
1503 1.1 jtc sp->ttis[samei].tt_gmtoff;
1504 1.1 jtc tmp->tm_isdst = !tmp->tm_isdst;
1505 1.1 jtc t = time2(tmp, funcp, offset, &okay);
1506 1.1 jtc if (okay)
1507 1.1 jtc return t;
1508 1.1 jtc tmp->tm_sec -= sp->ttis[otheri].tt_gmtoff -
1509 1.1 jtc sp->ttis[samei].tt_gmtoff;
1510 1.1 jtc tmp->tm_isdst = !tmp->tm_isdst;
1511 1.1 jtc }
1512 1.1 jtc }
1513 1.1 jtc return WRONG;
1514 1.1 jtc }
1515 1.1 jtc
1516 1.1 jtc time_t
1517 1.1 jtc mktime(tmp)
1518 1.1 jtc struct tm * const tmp;
1519 1.1 jtc {
1520 1.1 jtc tzset();
1521 1.1 jtc return time1(tmp, localsub, 0L);
1522 1.1 jtc }
1523 1.1 jtc
1524 1.1 jtc #ifdef STD_INSPIRED
1525 1.1 jtc
1526 1.1 jtc time_t
1527 1.1 jtc timelocal(tmp)
1528 1.1 jtc struct tm * const tmp;
1529 1.1 jtc {
1530 1.1 jtc tmp->tm_isdst = -1; /* in case it wasn't initialized */
1531 1.1 jtc return mktime(tmp);
1532 1.1 jtc }
1533 1.1 jtc
1534 1.1 jtc time_t
1535 1.1 jtc timegm(tmp)
1536 1.1 jtc struct tm * const tmp;
1537 1.1 jtc {
1538 1.1 jtc tmp->tm_isdst = 0;
1539 1.1 jtc return time1(tmp, gmtsub, 0L);
1540 1.1 jtc }
1541 1.1 jtc
1542 1.1 jtc time_t
1543 1.1 jtc timeoff(tmp, offset)
1544 1.1 jtc struct tm * const tmp;
1545 1.1 jtc const long offset;
1546 1.1 jtc {
1547 1.1 jtc tmp->tm_isdst = 0;
1548 1.1 jtc return time1(tmp, gmtsub, offset);
1549 1.1 jtc }
1550 1.1 jtc
1551 1.1 jtc #endif /* defined STD_INSPIRED */
1552 1.1 jtc
1553 1.1 jtc #ifdef CMUCS
1554 1.1 jtc
1555 1.1 jtc /*
1556 1.1 jtc ** The following is supplied for compatibility with
1557 1.1 jtc ** previous versions of the CMUCS runtime library.
1558 1.1 jtc */
1559 1.1 jtc
1560 1.1 jtc long
1561 1.1 jtc gtime(tmp)
1562 1.1 jtc struct tm * const tmp;
1563 1.1 jtc {
1564 1.1 jtc const time_t t = mktime(tmp);
1565 1.1 jtc
1566 1.1 jtc if (t == WRONG)
1567 1.1 jtc return -1;
1568 1.1 jtc return t;
1569 1.1 jtc }
1570 1.1 jtc
1571 1.1 jtc #endif /* defined CMUCS */
1572 1.1 jtc
1573 1.1 jtc /*
1574 1.1 jtc ** XXX--is the below the right way to conditionalize??
1575 1.1 jtc */
1576 1.1 jtc
1577 1.1 jtc #ifdef STD_INSPIRED
1578 1.1 jtc
1579 1.1 jtc /*
1580 1.1 jtc ** IEEE Std 1003.1-1988 (POSIX) legislates that 536457599
1581 1.1 jtc ** shall correspond to "Wed Dec 31 23:59:59 GMT 1986", which
1582 1.1 jtc ** is not the case if we are accounting for leap seconds.
1583 1.1 jtc ** So, we provide the following conversion routines for use
1584 1.1 jtc ** when exchanging timestamps with POSIX conforming systems.
1585 1.1 jtc */
1586 1.1 jtc
1587 1.1 jtc static long
1588 1.1 jtc leapcorr(timep)
1589 1.1 jtc time_t * timep;
1590 1.1 jtc {
1591 1.1 jtc register struct state * sp;
1592 1.1 jtc register struct lsinfo * lp;
1593 1.1 jtc register int i;
1594 1.1 jtc
1595 1.1 jtc sp = lclptr;
1596 1.1 jtc i = sp->leapcnt;
1597 1.1 jtc while (--i >= 0) {
1598 1.1 jtc lp = &sp->lsis[i];
1599 1.1 jtc if (*timep >= lp->ls_trans)
1600 1.1 jtc return lp->ls_corr;
1601 1.1 jtc }
1602 1.1 jtc return 0;
1603 1.1 jtc }
1604 1.1 jtc
1605 1.1 jtc time_t
1606 1.1 jtc time2posix(t)
1607 1.1 jtc time_t t;
1608 1.1 jtc {
1609 1.1 jtc tzset();
1610 1.1 jtc return t - leapcorr(&t);
1611 1.1 jtc }
1612 1.1 jtc
1613 1.1 jtc time_t
1614 1.1 jtc posix2time(t)
1615 1.1 jtc time_t t;
1616 1.1 jtc {
1617 1.1 jtc time_t x;
1618 1.1 jtc time_t y;
1619 1.1 jtc
1620 1.1 jtc tzset();
1621 1.1 jtc /*
1622 1.1 jtc ** For a positive leap second hit, the result
1623 1.1 jtc ** is not unique. For a negative leap second
1624 1.1 jtc ** hit, the corresponding time doesn't exist,
1625 1.1 jtc ** so we return an adjacent second.
1626 1.1 jtc */
1627 1.1 jtc x = t + leapcorr(&t);
1628 1.1 jtc y = x - leapcorr(&x);
1629 1.1 jtc if (y < t) {
1630 1.1 jtc do {
1631 1.1 jtc x++;
1632 1.1 jtc y = x - leapcorr(&x);
1633 1.1 jtc } while (y < t);
1634 1.1 jtc if (t != y)
1635 1.1 jtc return x - 1;
1636 1.1 jtc } else if (y > t) {
1637 1.1 jtc do {
1638 1.1 jtc --x;
1639 1.1 jtc y = x - leapcorr(&x);
1640 1.1 jtc } while (y > t);
1641 1.1 jtc if (t != y)
1642 1.1 jtc return x + 1;
1643 1.1 jtc }
1644 1.1 jtc return x;
1645 1.1 jtc }
1646 1.1 jtc
1647 1.1 jtc #endif /* defined STD_INSPIRED */
1648