Home | History | Annotate | Line # | Download | only in time
localtime.c revision 1.135
      1  1.135  christos /*	$NetBSD: localtime.c,v 1.135 2022/10/29 13:55:50 christos Exp $	*/
      2  1.113  christos 
      3  1.113  christos /* Convert timestamp from time_t to struct tm.  */
      4    1.7       jtc 
      5    1.7       jtc /*
      6    1.7       jtc ** This file is in the public domain, so clarified as of
      7   1.45   mlelstv ** 1996-06-05 by Arthur David Olson.
      8    1.7       jtc */
      9    1.2       jtc 
     10   1.11  christos #include <sys/cdefs.h>
     11   1.24   msaitoh #if defined(LIBC_SCCS) && !defined(lint)
     12   1.11  christos #if 0
     13   1.58  christos static char	elsieid[] = "@(#)localtime.c	8.17";
     14   1.11  christos #else
     15  1.135  christos __RCSID("$NetBSD: localtime.c,v 1.135 2022/10/29 13:55:50 christos Exp $");
     16   1.11  christos #endif
     17   1.24   msaitoh #endif /* LIBC_SCCS and not lint */
     18    1.1       jtc 
     19    1.1       jtc /*
     20   1.45   mlelstv ** Leap second handling from Bradley White.
     21   1.45   mlelstv ** POSIX-style TZ environment variable handling from Guy Harris.
     22    1.1       jtc */
     23    1.1       jtc 
     24    1.1       jtc /*LINTLIBRARY*/
     25    1.1       jtc 
     26   1.12       jtc #include "namespace.h"
     27   1.78  christos #include <assert.h>
     28   1.87  christos #define LOCALTIME_IMPLEMENTATION
     29    1.1       jtc #include "private.h"
     30   1.87  christos 
     31    1.1       jtc #include "tzfile.h"
     32  1.106  christos #include <fcntl.h>
     33   1.12       jtc 
     34   1.42  christos #if defined(__weak_alias)
     35   1.25    kleink __weak_alias(daylight,_daylight)
     36   1.23   mycroft __weak_alias(tzname,_tzname)
     37   1.12       jtc #endif
     38    1.1       jtc 
     39   1.45   mlelstv #ifndef TZ_ABBR_MAX_LEN
     40  1.134  christos # define TZ_ABBR_MAX_LEN 16
     41   1.45   mlelstv #endif /* !defined TZ_ABBR_MAX_LEN */
     42   1.45   mlelstv 
     43   1.45   mlelstv #ifndef TZ_ABBR_CHAR_SET
     44  1.134  christos # define TZ_ABBR_CHAR_SET \
     45   1.45   mlelstv 	"abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789 :+-._"
     46   1.45   mlelstv #endif /* !defined TZ_ABBR_CHAR_SET */
     47   1.45   mlelstv 
     48   1.45   mlelstv #ifndef TZ_ABBR_ERR_CHAR
     49  1.134  christos # define TZ_ABBR_ERR_CHAR '_'
     50   1.45   mlelstv #endif /* !defined TZ_ABBR_ERR_CHAR */
     51   1.45   mlelstv 
     52    1.1       jtc /*
     53  1.134  christos ** Support non-POSIX platforms that distinguish between text and binary files.
     54    1.1       jtc */
     55    1.1       jtc 
     56    1.1       jtc #ifndef O_BINARY
     57  1.134  christos # define O_BINARY 0
     58  1.134  christos #endif
     59    1.1       jtc 
     60    1.1       jtc #ifndef WILDABBR
     61    1.1       jtc /*
     62    1.1       jtc ** Someone might make incorrect use of a time zone abbreviation:
     63    1.1       jtc **	1.	They might reference tzname[0] before calling tzset (explicitly
     64    1.1       jtc **		or implicitly).
     65    1.1       jtc **	2.	They might reference tzname[1] before calling tzset (explicitly
     66    1.1       jtc **		or implicitly).
     67    1.1       jtc **	3.	They might reference tzname[1] after setting to a time zone
     68    1.1       jtc **		in which Daylight Saving Time is never observed.
     69    1.1       jtc **	4.	They might reference tzname[0] after setting to a time zone
     70    1.1       jtc **		in which Standard Time is never observed.
     71    1.1       jtc **	5.	They might reference tm.TM_ZONE after calling offtime.
     72    1.1       jtc ** What's best to do in the above cases is open to debate;
     73    1.1       jtc ** for now, we just set things up so that in any of the five cases
     74   1.45   mlelstv ** WILDABBR is used. Another possibility: initialize tzname[0] to the
     75    1.1       jtc ** string "tzname[0] used before set", and similarly for the other cases.
     76   1.45   mlelstv ** And another: initialize tzname[0] to "ERA", with an explanation in the
     77    1.1       jtc ** manual page of what this "time zone abbreviation" means (doing this so
     78    1.1       jtc ** that tzname[0] has the "normal" length of three characters).
     79    1.1       jtc */
     80  1.134  christos # define WILDABBR "   "
     81    1.1       jtc #endif /* !defined WILDABBR */
     82    1.1       jtc 
     83   1.45   mlelstv static const char	wildabbr[] = WILDABBR;
     84    1.1       jtc 
     85  1.134  christos static char const etc_utc[] = "Etc/UTC";
     86  1.134  christos static char const *utc = etc_utc + sizeof "Etc/" - 1;
     87    1.1       jtc 
     88   1.22    kleink /*
     89   1.22    kleink ** The DST rules to use if TZ has no rules and we can't load TZDEFRULES.
     90  1.109  christos ** Default to US rules as of 2017-05-07.
     91  1.112  christos ** POSIX does not specify the default DST rules;
     92  1.112  christos ** for historical reasons, US rules are a common default.
     93   1.22    kleink */
     94   1.22    kleink #ifndef TZDEFRULESTRING
     95  1.134  christos # define TZDEFRULESTRING ",M3.2.0,M11.1.0"
     96  1.109  christos #endif
     97   1.22    kleink 
     98  1.126  christos typedef int_fast64_t __time_t;
     99  1.126  christos 
    100    1.1       jtc struct ttinfo {				/* time type information */
    101  1.122  christos 	int_fast32_t	tt_utoff;	/* UT offset in seconds */
    102   1.87  christos 	bool		tt_isdst;	/* used to set tm_isdst */
    103  1.122  christos 	int		tt_desigidx;	/* abbreviation list index */
    104   1.87  christos 	bool		tt_ttisstd;	/* transition is std time */
    105  1.122  christos 	bool		tt_ttisut;	/* transition is UT */
    106    1.1       jtc };
    107    1.1       jtc 
    108    1.1       jtc struct lsinfo {				/* leap second information */
    109  1.126  christos 	__time_t	ls_trans;	/* transition time */
    110  1.124  christos 	int_fast32_t	ls_corr;	/* correction to apply */
    111    1.1       jtc };
    112    1.1       jtc 
    113  1.129  christos /* This abbreviation means local time is unspecified.  */
    114  1.129  christos static char const UNSPEC[] = "-00";
    115  1.129  christos 
    116  1.129  christos /* How many extra bytes are needed at the end of struct state's chars array.
    117  1.129  christos    This needs to be at least 1 for null termination in case the input
    118  1.129  christos    data isn't properly terminated, and it also needs to be big enough
    119  1.129  christos    for ttunspecified to work without crashing.  */
    120  1.134  christos enum { CHARS_EXTRA = max(sizeof UNSPEC, 2) - 1 };
    121  1.129  christos 
    122    1.1       jtc #ifdef TZNAME_MAX
    123  1.134  christos # define MY_TZNAME_MAX TZNAME_MAX
    124    1.1       jtc #endif /* defined TZNAME_MAX */
    125    1.1       jtc #ifndef TZNAME_MAX
    126  1.134  christos # define MY_TZNAME_MAX 255
    127    1.1       jtc #endif /* !defined TZNAME_MAX */
    128    1.1       jtc 
    129   1.87  christos #define state __state
    130   1.87  christos struct state {
    131    1.1       jtc 	int		leapcnt;
    132    1.1       jtc 	int		timecnt;
    133    1.1       jtc 	int		typecnt;
    134    1.1       jtc 	int		charcnt;
    135   1.87  christos 	bool		goback;
    136   1.87  christos 	bool		goahead;
    137  1.126  christos 	__time_t	ats[TZ_MAX_TIMES];
    138    1.1       jtc 	unsigned char	types[TZ_MAX_TIMES];
    139    1.1       jtc 	struct ttinfo	ttis[TZ_MAX_TYPES];
    140  1.134  christos 	char chars[max(max(TZ_MAX_CHARS + CHARS_EXTRA, sizeof "UTC"),
    141  1.134  christos 		       2 * (MY_TZNAME_MAX + 1))];
    142    1.1       jtc 	struct lsinfo	lsis[TZ_MAX_LEAPS];
    143  1.113  christos 
    144  1.113  christos 	/* The time type to use for early times or if no transitions.
    145  1.113  christos 	   It is always zero for recent tzdb releases.
    146  1.113  christos 	   It might be nonzero for data from tzdb 2018e or earlier.  */
    147  1.113  christos 	int defaulttype;
    148    1.1       jtc };
    149    1.1       jtc 
    150   1.96  christos enum r_type {
    151   1.96  christos   JULIAN_DAY,		/* Jn = Julian day */
    152   1.96  christos   DAY_OF_YEAR,		/* n = day of year */
    153   1.96  christos   MONTH_NTH_DAY_OF_WEEK	/* Mm.n.d = month, week, day of week */
    154   1.96  christos };
    155   1.96  christos 
    156    1.1       jtc struct rule {
    157   1.96  christos 	enum r_type	r_type;		/* type of rule */
    158    1.1       jtc 	int		r_day;		/* day number of rule */
    159    1.1       jtc 	int		r_week;		/* week number of rule */
    160    1.1       jtc 	int		r_mon;		/* month number of rule */
    161   1.74  christos 	int_fast32_t	r_time;		/* transition time of rule */
    162    1.1       jtc };
    163    1.1       jtc 
    164   1.87  christos static struct tm *gmtsub(struct state const *, time_t const *, int_fast32_t,
    165   1.87  christos 			 struct tm *);
    166   1.87  christos static bool increment_overflow(int *, int);
    167  1.126  christos static bool increment_overflow_time(__time_t *, int_fast32_t);
    168  1.124  christos static int_fast32_t leapcorr(struct state const *, time_t);
    169   1.87  christos static bool normalize_overflow32(int_fast32_t *, int *, int);
    170   1.87  christos static struct tm *timesub(time_t const *, int_fast32_t, struct state const *,
    171   1.87  christos 			  struct tm *);
    172   1.87  christos static bool typesequiv(struct state const *, int, int);
    173  1.124  christos static bool tzparse(char const *, struct state *, struct state *);
    174    1.1       jtc 
    175   1.49  christos static timezone_t gmtptr;
    176    1.1       jtc 
    177    1.1       jtc #ifndef TZ_STRLEN_MAX
    178  1.134  christos # define TZ_STRLEN_MAX 255
    179    1.1       jtc #endif /* !defined TZ_STRLEN_MAX */
    180    1.1       jtc 
    181   1.45   mlelstv static char		lcl_TZname[TZ_STRLEN_MAX + 1];
    182   1.45   mlelstv static int		lcl_is_set;
    183   1.42  christos 
    184   1.42  christos 
    185  1.117  christos #if !defined(__LIBC12_SOURCE__)
    186  1.117  christos timezone_t __lclptr;
    187   1.33  christos #ifdef _REENTRANT
    188  1.117  christos rwlock_t __lcl_lock = RWLOCK_INITIALIZER;
    189  1.117  christos #endif
    190   1.19    kleink #endif
    191   1.19    kleink 
    192    1.1       jtc /*
    193    1.1       jtc ** Section 4.12.3 of X3.159-1989 requires that
    194    1.1       jtc **	Except for the strftime function, these functions [asctime,
    195    1.1       jtc **	ctime, gmtime, localtime] return values in one of two static
    196    1.1       jtc **	objects: a broken-down time structure and an array of char.
    197   1.45   mlelstv ** Thanks to Paul Eggert for noting this.
    198    1.1       jtc */
    199    1.1       jtc 
    200    1.1       jtc static struct tm	tm;
    201    1.1       jtc 
    202  1.123  christos #if 2 <= HAVE_TZNAME + TZ_TIME_T || defined(__NetBSD__)
    203  1.102  christos # if !defined(__LIBC12_SOURCE__)
    204  1.102  christos 
    205  1.102  christos __aconst char *		tzname[2] = {
    206  1.102  christos 	(__aconst char *)__UNCONST(wildabbr),
    207  1.102  christos 	(__aconst char *)__UNCONST(wildabbr)
    208  1.102  christos };
    209  1.102  christos 
    210  1.102  christos # else
    211  1.102  christos 
    212  1.102  christos extern __aconst char *	tzname[2];
    213  1.102  christos 
    214  1.102  christos # endif /* __LIBC12_SOURCE__ */
    215  1.123  christos #endif
    216  1.102  christos 
    217  1.123  christos #if 2 <= USG_COMPAT + TZ_TIME_T || defined(__NetBSD__)
    218  1.123  christos # if !defined(__LIBC12_SOURCE__)
    219   1.42  christos long 			timezone = 0;
    220    1.1       jtc int			daylight = 0;
    221  1.123  christos # else
    222   1.42  christos extern int		daylight;
    223   1.42  christos extern long		timezone __RENAME(__timezone13);
    224  1.123  christos # endif /* __LIBC12_SOURCE__ */
    225  1.123  christos #endif /* 2<= USG_COMPAT + TZ_TIME_T */
    226    1.1       jtc 
    227  1.123  christos #if 2 <= ALTZONE + TZ_TIME_T
    228   1.81  christos long			altzone = 0;
    229  1.123  christos #endif /* 2 <= ALTZONE + TZ_TIME_T */
    230    1.1       jtc 
    231  1.122  christos /* Initialize *S to a value based on UTOFF, ISDST, and DESIGIDX.  */
    232   1.91  christos static void
    233  1.122  christos init_ttinfo(struct ttinfo *s, int_fast32_t utoff, bool isdst, int desigidx)
    234   1.91  christos {
    235  1.131    rillig   s->tt_utoff = utoff;
    236  1.131    rillig   s->tt_isdst = isdst;
    237  1.131    rillig   s->tt_desigidx = desigidx;
    238  1.131    rillig   s->tt_ttisstd = false;
    239  1.131    rillig   s->tt_ttisut = false;
    240   1.91  christos }
    241   1.91  christos 
    242  1.129  christos /* Return true if SP's time type I does not specify local time.  */
    243  1.129  christos static bool
    244  1.129  christos ttunspecified(struct state const *sp, int i)
    245  1.129  christos {
    246  1.129  christos   char const *abbr = &sp->chars[sp->ttis[i].tt_desigidx];
    247  1.129  christos   /* memcmp is likely faster than strcmp, and is safe due to CHARS_EXTRA.  */
    248  1.129  christos   return memcmp(abbr, UNSPEC, sizeof UNSPEC) == 0;
    249  1.129  christos }
    250  1.129  christos 
    251   1.74  christos static int_fast32_t
    252   1.49  christos detzcode(const char *const codep)
    253    1.1       jtc {
    254  1.130    rillig 	register int_fast32_t	result;
    255  1.130    rillig 	register int		i;
    256   1.95  christos 	int_fast32_t one = 1;
    257   1.95  christos 	int_fast32_t halfmaxval = one << (32 - 2);
    258   1.95  christos 	int_fast32_t maxval = halfmaxval - 1 + halfmaxval;
    259   1.95  christos 	int_fast32_t minval = -1 - maxval;
    260   1.45   mlelstv 
    261   1.95  christos 	result = codep[0] & 0x7f;
    262   1.95  christos 	for (i = 1; i < 4; ++i)
    263   1.45   mlelstv 		result = (result << 8) | (codep[i] & 0xff);
    264   1.95  christos 
    265   1.95  christos 	if (codep[0] & 0x80) {
    266   1.95  christos 	  /* Do two's-complement negation even on non-two's-complement machines.
    267   1.95  christos 	     If the result would be minval - 1, return minval.  */
    268  1.131    rillig 	  result -= !TWOS_COMPLEMENT(int_fast32_t) && result != 0;
    269  1.131    rillig 	  result += minval;
    270   1.95  christos 	}
    271  1.131    rillig 	return result;
    272   1.45   mlelstv }
    273   1.45   mlelstv 
    274   1.81  christos static int_fast64_t
    275   1.49  christos detzcode64(const char *const codep)
    276   1.45   mlelstv {
    277  1.130    rillig 	register int_fast64_t result;
    278  1.130    rillig 	register int	i;
    279   1.95  christos 	int_fast64_t one = 1;
    280   1.95  christos 	int_fast64_t halfmaxval = one << (64 - 2);
    281   1.95  christos 	int_fast64_t maxval = halfmaxval - 1 + halfmaxval;
    282   1.95  christos 	int_fast64_t minval = -TWOS_COMPLEMENT(int_fast64_t) - maxval;
    283    1.1       jtc 
    284   1.95  christos 	result = codep[0] & 0x7f;
    285   1.95  christos 	for (i = 1; i < 8; ++i)
    286   1.81  christos 		result = (result << 8) | (codep[i] & 0xff);
    287   1.95  christos 
    288   1.95  christos 	if (codep[0] & 0x80) {
    289   1.95  christos 	  /* Do two's-complement negation even on non-two's-complement machines.
    290   1.95  christos 	     If the result would be minval - 1, return minval.  */
    291   1.95  christos 	  result -= !TWOS_COMPLEMENT(int_fast64_t) && result != 0;
    292   1.95  christos 	  result += minval;
    293   1.95  christos 	}
    294  1.131    rillig 	return result;
    295    1.1       jtc }
    296    1.1       jtc 
    297  1.121  christos #include <stdio.h>
    298  1.121  christos 
    299   1.49  christos const char *
    300   1.49  christos tzgetname(const timezone_t sp, int isdst)
    301   1.49  christos {
    302   1.49  christos 	int i;
    303  1.121  christos 	const char *name = NULL;
    304  1.103  ginsbach 	for (i = 0; i < sp->typecnt; ++i) {
    305  1.120  christos 		const struct ttinfo *const ttisp = &sp->ttis[i];
    306   1.49  christos 		if (ttisp->tt_isdst == isdst)
    307  1.122  christos 			name = &sp->chars[ttisp->tt_desigidx];
    308   1.49  christos 	}
    309  1.121  christos 	if (name != NULL)
    310  1.121  christos 		return name;
    311   1.88  christos 	errno = ESRCH;
    312   1.49  christos 	return NULL;
    313   1.49  christos }
    314   1.49  christos 
    315   1.99  christos long
    316   1.99  christos tzgetgmtoff(const timezone_t sp, int isdst)
    317   1.99  christos {
    318   1.99  christos 	int i;
    319   1.99  christos 	long l = -1;
    320  1.103  ginsbach 	for (i = 0; i < sp->typecnt; ++i) {
    321  1.120  christos 		const struct ttinfo *const ttisp = &sp->ttis[i];
    322   1.99  christos 
    323   1.99  christos 		if (ttisp->tt_isdst == isdst) {
    324  1.122  christos 			l = ttisp->tt_utoff;
    325   1.99  christos 		}
    326   1.99  christos 	}
    327   1.99  christos 	if (l == -1)
    328   1.99  christos 		errno = ESRCH;
    329   1.99  christos 	return l;
    330   1.99  christos }
    331   1.99  christos 
    332   1.49  christos static void
    333  1.132    rillig update_tzname_etc(struct state const *sp, struct ttinfo const *ttisp)
    334   1.92  christos {
    335  1.109  christos #if HAVE_TZNAME
    336  1.131    rillig   tzname[ttisp->tt_isdst] = __UNCONST(&sp->chars[ttisp->tt_desigidx]);
    337  1.109  christos #endif
    338  1.109  christos #if USG_COMPAT
    339  1.131    rillig   if (!ttisp->tt_isdst)
    340  1.131    rillig     timezone = - ttisp->tt_utoff;
    341   1.93  christos #endif
    342  1.123  christos #if ALTZONE
    343  1.131    rillig   if (ttisp->tt_isdst)
    344  1.131    rillig     altzone = - ttisp->tt_utoff;
    345  1.132    rillig #endif
    346   1.92  christos }
    347   1.92  christos 
    348  1.134  christos /* If STDDST_MASK indicates that SP's TYPE provides useful info,
    349  1.134  christos    update tzname, timezone, and/or altzone and return STDDST_MASK,
    350  1.134  christos    diminished by the provided info if it is a specified local time.
    351  1.134  christos    Otherwise, return STDDST_MASK.  See settzname for STDDST_MASK.  */
    352  1.134  christos static int
    353  1.134  christos may_update_tzname_etc(int stddst_mask, struct state *sp, int type)
    354  1.134  christos {
    355  1.134  christos   struct ttinfo *ttisp = &sp->ttis[type];
    356  1.134  christos   int this_bit = 1 << ttisp->tt_isdst;
    357  1.134  christos   if (stddst_mask & this_bit) {
    358  1.134  christos     update_tzname_etc(sp, ttisp);
    359  1.134  christos     if (!ttunspecified(sp, type))
    360  1.134  christos       return stddst_mask & ~this_bit;
    361  1.134  christos   }
    362  1.134  christos   return stddst_mask;
    363  1.134  christos }
    364  1.134  christos 
    365   1.45   mlelstv static void
    366   1.45   mlelstv settzname(void)
    367    1.1       jtc {
    368  1.130    rillig 	register timezone_t const	sp = __lclptr;
    369  1.130    rillig 	register int			i;
    370    1.1       jtc 
    371  1.134  christos 	/* If STDDST_MASK & 1 we need info about a standard time.
    372  1.134  christos 	   If STDDST_MASK & 2 we need info about a daylight saving time.
    373  1.134  christos 	   When STDDST_MASK becomes zero we can stop looking.  */
    374  1.134  christos 	int stddst_mask = 0;
    375  1.134  christos 
    376  1.109  christos #if HAVE_TZNAME
    377  1.134  christos 	tzname[0] = tzname[1] = __UNCONST(sp ? wildabbr : utc);
    378  1.134  christos 	stddst_mask = 3;
    379  1.109  christos #endif
    380  1.109  christos #if USG_COMPAT
    381    1.1       jtc 	timezone = 0;
    382  1.134  christos 	stddst_mask = 3;
    383  1.109  christos #endif
    384  1.123  christos #if ALTZONE
    385    1.1       jtc 	altzone = 0;
    386  1.134  christos 	stddst_mask |= 2;
    387  1.123  christos #endif
    388   1.58  christos 	/*
    389  1.113  christos 	** And to get the latest time zone abbreviations into tzname. . .
    390   1.58  christos 	*/
    391  1.134  christos 	if (sp) {
    392  1.134  christos 	  for (i = sp->timecnt - 1; stddst_mask && 0 <= i; i--)
    393  1.134  christos 	    stddst_mask = may_update_tzname_etc(stddst_mask, sp, sp->types[i]);
    394  1.134  christos 	  for (i = sp->typecnt - 1; stddst_mask && 0 <= i; i--)
    395  1.134  christos 	    stddst_mask = may_update_tzname_etc(stddst_mask, sp, i);
    396  1.134  christos  	}
    397    1.1       jtc 
    398  1.109  christos #if USG_COMPAT
    399  1.134  christos 	daylight = stddst_mask >> 1 ^ 1;
    400  1.109  christos #endif
    401    1.1       jtc }
    402    1.1       jtc 
    403  1.124  christos static void
    404  1.124  christos scrub_abbrs(struct state *sp)
    405   1.45   mlelstv {
    406  1.124  christos 	int i;
    407  1.124  christos 	/*
    408  1.124  christos 	** First, replace bogus characters.
    409  1.124  christos 	*/
    410  1.124  christos 	for (i = 0; i < sp->charcnt; ++i)
    411  1.124  christos 		if (strchr(TZ_ABBR_CHAR_SET, sp->chars[i]) == NULL)
    412  1.124  christos 			sp->chars[i] = TZ_ABBR_ERR_CHAR;
    413  1.124  christos 	/*
    414  1.124  christos 	** Second, truncate long abbreviations.
    415  1.124  christos 	*/
    416  1.124  christos 	for (i = 0; i < sp->typecnt; ++i) {
    417  1.130    rillig 		register const struct ttinfo * const	ttisp = &sp->ttis[i];
    418  1.124  christos 		char *cp = &sp->chars[ttisp->tt_desigidx];
    419  1.124  christos 
    420  1.124  christos 		if (strlen(cp) > TZ_ABBR_MAX_LEN &&
    421  1.124  christos 			strcmp(cp, GRANDPARENTED) != 0)
    422  1.124  christos 				*(cp + TZ_ABBR_MAX_LEN) = '\0';
    423  1.124  christos 	}
    424   1.45   mlelstv }
    425   1.45   mlelstv 
    426  1.124  christos /* Input buffer for data read from a compiled tz file.  */
    427   1.91  christos union input_buffer {
    428  1.131    rillig   /* The first part of the buffer, interpreted as a header.  */
    429  1.131    rillig   struct tzhead tzhead;
    430   1.91  christos 
    431  1.131    rillig   /* The entire buffer.  */
    432  1.131    rillig   char buf[2 * sizeof(struct tzhead) + 2 * sizeof(struct state)
    433  1.131    rillig 	   + 4 * TZ_MAX_TIMES];
    434   1.91  christos };
    435   1.91  christos 
    436  1.109  christos /* TZDIR with a trailing '/' rather than a trailing '\0'.  */
    437  1.109  christos static char const tzdirslash[sizeof TZDIR] = TZDIR "/";
    438  1.109  christos 
    439   1.91  christos /* Local storage needed for 'tzloadbody'.  */
    440   1.91  christos union local_storage {
    441  1.131    rillig   /* The results of analyzing the file's contents after it is opened.  */
    442  1.131    rillig   struct file_analysis {
    443  1.131    rillig     /* The input buffer.  */
    444  1.131    rillig     union input_buffer u;
    445  1.131    rillig 
    446  1.131    rillig     /* A temporary state used for parsing a TZ string in the file.  */
    447  1.131    rillig     struct state st;
    448  1.131    rillig   } u;
    449  1.131    rillig 
    450  1.131    rillig   /* The file name to be opened.  */
    451  1.134  christos   char fullname[max(sizeof(struct file_analysis), sizeof tzdirslash + 1024)];
    452   1.91  christos };
    453   1.91  christos 
    454   1.91  christos /* Load tz data from the file named NAME into *SP.  Read extended
    455   1.91  christos    format if DOEXTEND.  Use *LSP for temporary storage.  Return 0 on
    456   1.91  christos    success, an errno value on failure.  */
    457   1.91  christos static int
    458   1.91  christos tzloadbody(char const *name, struct state *sp, bool doextend,
    459  1.131    rillig 	   union local_storage *lsp)
    460   1.49  christos {
    461  1.130    rillig 	register int			i;
    462  1.130    rillig 	register int			fid;
    463  1.130    rillig 	register int			stored;
    464  1.130    rillig 	register ssize_t		nread;
    465  1.130    rillig 	register bool doaccess;
    466  1.130    rillig 	register union input_buffer *up = &lsp->u.u;
    467  1.130    rillig 	register size_t tzheadsize = sizeof(struct tzhead);
    468   1.83  christos 
    469   1.87  christos 	sp->goback = sp->goahead = false;
    470   1.83  christos 
    471   1.83  christos 	if (! name) {
    472   1.83  christos 		name = TZDEFAULT;
    473   1.83  christos 		if (! name)
    474  1.131    rillig 		  return EINVAL;
    475   1.83  christos 	}
    476   1.83  christos 
    477   1.83  christos 	if (name[0] == ':')
    478   1.83  christos 		++name;
    479  1.112  christos #ifdef SUPPRESS_TZDIR
    480  1.112  christos 	/* Do not prepend TZDIR.  This is intended for specialized
    481  1.112  christos 	   applications only, due to its security implications.  */
    482  1.112  christos 	doaccess = true;
    483  1.112  christos #else
    484   1.83  christos 	doaccess = name[0] == '/';
    485  1.112  christos #endif
    486   1.83  christos 	if (!doaccess) {
    487  1.114  christos 		char const *dot;
    488  1.109  christos 		size_t namelen = strlen(name);
    489  1.109  christos 		if (sizeof lsp->fullname - sizeof tzdirslash <= namelen)
    490  1.131    rillig 		  return ENAMETOOLONG;
    491  1.109  christos 
    492  1.109  christos 		/* Create a string "TZDIR/NAME".  Using sprintf here
    493  1.109  christos 		   would pull in stdio (and would fail if the
    494  1.109  christos 		   resulting string length exceeded INT_MAX!).  */
    495  1.109  christos 		memcpy(lsp->fullname, tzdirslash, sizeof tzdirslash);
    496  1.109  christos 		strcpy(lsp->fullname + sizeof tzdirslash, name);
    497  1.109  christos 
    498  1.114  christos 		/* Set doaccess if NAME contains a ".." file name
    499  1.114  christos 		   component, as such a name could read a file outside
    500  1.114  christos 		   the TZDIR virtual subtree.  */
    501  1.132    rillig 		for (dot = name; (dot = strchr(dot, '.')); dot++)
    502  1.114  christos 		  if ((dot == name || dot[-1] == '/') && dot[1] == '.'
    503  1.114  christos 		      && (dot[2] == '/' || !dot[2])) {
    504  1.114  christos 		    doaccess = true;
    505  1.114  christos 		    break;
    506  1.114  christos 		  }
    507  1.114  christos 
    508  1.110       kre 		name = lsp->fullname;
    509    1.1       jtc 	}
    510   1.83  christos 	if (doaccess && access(name, R_OK) != 0)
    511  1.131    rillig 	  return errno;
    512  1.134  christos 	fid = open(name, O_RDONLY | O_BINARY);
    513   1.83  christos 	if (fid < 0)
    514  1.131    rillig 	  return errno;
    515  1.124  christos 
    516   1.58  christos 	nread = read(fid, up->buf, sizeof up->buf);
    517   1.91  christos 	if (nread < (ssize_t)tzheadsize) {
    518  1.131    rillig 	  int err = nread < 0 ? errno : EINVAL;
    519  1.131    rillig 	  close(fid);
    520  1.131    rillig 	  return err;
    521   1.91  christos 	}
    522   1.91  christos 	if (close(fid) < 0)
    523  1.131    rillig 	  return errno;
    524   1.45   mlelstv 	for (stored = 4; stored <= 8; stored *= 2) {
    525  1.129  christos 	    char version = up->tzhead.tzh_version[0];
    526  1.129  christos 	    bool skip_datablock = stored == 4 && version;
    527  1.129  christos 	    int_fast32_t datablock_size;
    528  1.129  christos 	    int_fast32_t ttisstdcnt = detzcode(up->tzhead.tzh_ttisstdcnt);
    529  1.129  christos 	    int_fast32_t ttisutcnt = detzcode(up->tzhead.tzh_ttisutcnt);
    530  1.129  christos 	    int_fast64_t prevtr = -1;
    531  1.129  christos 	    int_fast32_t prevcorr = 0;
    532  1.129  christos 	    int_fast32_t leapcnt = detzcode(up->tzhead.tzh_leapcnt);
    533  1.129  christos 	    int_fast32_t timecnt = detzcode(up->tzhead.tzh_timecnt);
    534  1.129  christos 	    int_fast32_t typecnt = detzcode(up->tzhead.tzh_typecnt);
    535  1.129  christos 	    int_fast32_t charcnt = detzcode(up->tzhead.tzh_charcnt);
    536  1.129  christos 	    char const *p = up->buf + tzheadsize;
    537  1.129  christos 	    /* Although tzfile(5) currently requires typecnt to be nonzero,
    538  1.129  christos 	       support future formats that may allow zero typecnt
    539  1.129  christos 	       in files that have a TZ string and no transitions.  */
    540  1.129  christos 	    if (! (0 <= leapcnt && leapcnt < TZ_MAX_LEAPS
    541  1.129  christos 		   && 0 <= typecnt && typecnt < TZ_MAX_TYPES
    542  1.129  christos 		   && 0 <= timecnt && timecnt < TZ_MAX_TIMES
    543  1.129  christos 		   && 0 <= charcnt && charcnt < TZ_MAX_CHARS
    544  1.129  christos 		   && 0 <= ttisstdcnt && ttisstdcnt < TZ_MAX_TYPES
    545  1.129  christos 		   && 0 <= ttisutcnt && ttisutcnt < TZ_MAX_TYPES))
    546  1.129  christos 	      return EINVAL;
    547  1.129  christos 	    datablock_size
    548  1.129  christos 		    = (timecnt * stored		/* ats */
    549   1.87  christos 		       + timecnt		/* types */
    550   1.87  christos 		       + typecnt * 6		/* ttinfos */
    551   1.87  christos 		       + charcnt		/* chars */
    552   1.87  christos 		       + leapcnt * (stored + 4)	/* lsinfos */
    553   1.87  christos 		       + ttisstdcnt		/* ttisstds */
    554  1.129  christos 		       + ttisutcnt);		/* ttisuts */
    555  1.129  christos 	    if (nread < (ssize_t)(tzheadsize + datablock_size))
    556  1.129  christos 	      return EINVAL;
    557  1.129  christos 	    if (skip_datablock)
    558  1.129  christos 		p += datablock_size;
    559  1.129  christos 	    else {
    560  1.129  christos 		if (! ((ttisstdcnt == typecnt || ttisstdcnt == 0)
    561  1.129  christos 		       && (ttisutcnt == typecnt || ttisutcnt == 0)))
    562   1.91  christos 		  return EINVAL;
    563  1.129  christos 
    564   1.87  christos 		sp->leapcnt = leapcnt;
    565   1.87  christos 		sp->timecnt = timecnt;
    566   1.87  christos 		sp->typecnt = typecnt;
    567   1.87  christos 		sp->charcnt = charcnt;
    568   1.87  christos 
    569   1.87  christos 		/* Read transitions, discarding those out of time_t range.
    570  1.109  christos 		   But pretend the last transition before TIME_T_MIN
    571  1.109  christos 		   occurred at TIME_T_MIN.  */
    572   1.81  christos 		timecnt = 0;
    573    1.1       jtc 		for (i = 0; i < sp->timecnt; ++i) {
    574   1.81  christos 			int_fast64_t at
    575   1.81  christos 			  = stored == 4 ? detzcode(p) : detzcode64(p);
    576  1.109  christos 			sp->types[i] = at <= TIME_T_MAX;
    577   1.81  christos 			if (sp->types[i]) {
    578  1.131    rillig 			  time_t attime
    579  1.131    rillig 			    = ((TYPE_SIGNED(time_t) ? at < TIME_T_MIN : at < 0)
    580  1.131    rillig 			       ? TIME_T_MIN : (time_t)at);
    581  1.131    rillig 			  if (timecnt && attime <= sp->ats[timecnt - 1]) {
    582  1.131    rillig 			    if (attime < sp->ats[timecnt - 1])
    583  1.131    rillig 			      return EINVAL;
    584  1.131    rillig 			    sp->types[i - 1] = 0;
    585  1.131    rillig 			    timecnt--;
    586  1.131    rillig 			  }
    587  1.131    rillig 			  sp->ats[timecnt++] = attime;
    588   1.81  christos 			}
    589   1.45   mlelstv 			p += stored;
    590    1.1       jtc 		}
    591   1.87  christos 
    592   1.81  christos 		timecnt = 0;
    593    1.1       jtc 		for (i = 0; i < sp->timecnt; ++i) {
    594   1.81  christos 			unsigned char typ = *p++;
    595   1.81  christos 			if (sp->typecnt <= typ)
    596   1.91  christos 			  return EINVAL;
    597   1.81  christos 			if (sp->types[i])
    598   1.81  christos 				sp->types[timecnt++] = typ;
    599    1.1       jtc 		}
    600   1.87  christos 		sp->timecnt = timecnt;
    601    1.1       jtc 		for (i = 0; i < sp->typecnt; ++i) {
    602  1.130    rillig 			register struct ttinfo *	ttisp;
    603  1.122  christos 			unsigned char isdst, desigidx;
    604    1.1       jtc 
    605    1.1       jtc 			ttisp = &sp->ttis[i];
    606  1.122  christos 			ttisp->tt_utoff = detzcode(p);
    607    1.1       jtc 			p += 4;
    608   1.87  christos 			isdst = *p++;
    609   1.87  christos 			if (! (isdst < 2))
    610  1.131    rillig 			  return EINVAL;
    611   1.87  christos 			ttisp->tt_isdst = isdst;
    612  1.122  christos 			desigidx = *p++;
    613  1.122  christos 			if (! (desigidx < sp->charcnt))
    614  1.131    rillig 			  return EINVAL;
    615  1.122  christos 			ttisp->tt_desigidx = desigidx;
    616    1.1       jtc 		}
    617    1.1       jtc 		for (i = 0; i < sp->charcnt; ++i)
    618    1.1       jtc 			sp->chars[i] = *p++;
    619  1.129  christos 		/* Ensure '\0'-terminated, and make it safe to call
    620  1.129  christos 		   ttunspecified later.  */
    621  1.129  christos 		memset(&sp->chars[i], 0, CHARS_EXTRA);
    622   1.87  christos 
    623   1.87  christos 		/* Read leap seconds, discarding those out of time_t range.  */
    624   1.87  christos 		leapcnt = 0;
    625    1.1       jtc 		for (i = 0; i < sp->leapcnt; ++i) {
    626  1.131    rillig 		  int_fast64_t tr = stored == 4 ? detzcode(p) : detzcode64(p);
    627  1.131    rillig 		  int_fast32_t corr = detzcode(p + stored);
    628  1.131    rillig 		  p += stored + 4;
    629  1.131    rillig 
    630  1.131    rillig 		  /* Leap seconds cannot occur before the Epoch,
    631  1.131    rillig 		     or out of order.  */
    632  1.131    rillig 		  if (tr <= prevtr)
    633  1.131    rillig 		    return EINVAL;
    634  1.131    rillig 
    635  1.131    rillig 		  /* To avoid other botches in this code, each leap second's
    636  1.131    rillig 		     correction must differ from the previous one's by 1
    637  1.131    rillig 		     second or less, except that the first correction can be
    638  1.131    rillig 		     any value; these requirements are more generous than
    639  1.131    rillig 		     RFC 8536, to allow future RFC extensions.  */
    640  1.131    rillig 		  if (! (i == 0
    641  1.131    rillig 			 || (prevcorr < corr
    642  1.131    rillig 			     ? corr == prevcorr + 1
    643  1.131    rillig 			     : (corr == prevcorr
    644  1.131    rillig 				|| corr == prevcorr - 1))))
    645  1.131    rillig 		    return EINVAL;
    646  1.131    rillig 		  prevtr = tr;
    647  1.131    rillig 		  prevcorr = corr;
    648  1.131    rillig 
    649  1.131    rillig 		  if (tr <= TIME_T_MAX) {
    650  1.131    rillig 		    sp->lsis[leapcnt].ls_trans = (time_t)tr;
    651  1.131    rillig 		    sp->lsis[leapcnt].ls_corr = corr;
    652  1.131    rillig 		    leapcnt++;
    653  1.131    rillig 		  }
    654   1.87  christos 		}
    655   1.87  christos 		sp->leapcnt = leapcnt;
    656    1.1       jtc 
    657    1.1       jtc 		for (i = 0; i < sp->typecnt; ++i) {
    658  1.130    rillig 			register struct ttinfo *	ttisp;
    659    1.1       jtc 
    660    1.1       jtc 			ttisp = &sp->ttis[i];
    661    1.1       jtc 			if (ttisstdcnt == 0)
    662   1.87  christos 				ttisp->tt_ttisstd = false;
    663    1.1       jtc 			else {
    664   1.87  christos 				if (*p != true && *p != false)
    665   1.91  christos 				  return EINVAL;
    666    1.1       jtc 				ttisp->tt_ttisstd = *p++;
    667    1.1       jtc 			}
    668    1.1       jtc 		}
    669    1.1       jtc 		for (i = 0; i < sp->typecnt; ++i) {
    670  1.130    rillig 			register struct ttinfo *	ttisp;
    671    1.1       jtc 
    672    1.1       jtc 			ttisp = &sp->ttis[i];
    673  1.122  christos 			if (ttisutcnt == 0)
    674  1.122  christos 				ttisp->tt_ttisut = false;
    675    1.1       jtc 			else {
    676   1.87  christos 				if (*p != true && *p != false)
    677   1.91  christos 						return EINVAL;
    678  1.122  christos 				ttisp->tt_ttisut = *p++;
    679    1.1       jtc 			}
    680    1.1       jtc 		}
    681  1.129  christos 	    }
    682  1.129  christos 
    683  1.129  christos 	    nread -= p - up->buf;
    684  1.129  christos 	    memmove(up->buf, p, (size_t)nread);
    685  1.129  christos 
    686  1.129  christos 	    /* If this is an old file, we're done.  */
    687  1.129  christos 	    if (!version)
    688  1.129  christos 	      break;
    689   1.45   mlelstv 	}
    690   1.45   mlelstv 	if (doextend && nread > 2 &&
    691   1.58  christos 		up->buf[0] == '\n' && up->buf[nread - 1] == '\n' &&
    692   1.45   mlelstv 		sp->typecnt + 2 <= TZ_MAX_TYPES) {
    693  1.131    rillig 			struct state	*ts = &lsp->u.st;
    694   1.45   mlelstv 
    695   1.58  christos 			up->buf[nread - 1] = '\0';
    696  1.124  christos 			if (tzparse(&up->buf[1], ts, sp)) {
    697   1.98  christos 
    698   1.98  christos 			  /* Attempt to reuse existing abbreviations.
    699  1.106  christos 			     Without this, America/Anchorage would be right on
    700  1.106  christos 			     the edge after 2037 when TZ_MAX_CHARS is 50, as
    701  1.106  christos 			     sp->charcnt equals 40 (for LMT AST AWT APT AHST
    702   1.98  christos 			     AHDT YST AKDT AKST) and ts->charcnt equals 10
    703   1.98  christos 			     (for AKST AKDT).  Reusing means sp->charcnt can
    704  1.106  christos 			     stay 40 in this example.  */
    705   1.98  christos 			  int gotabbr = 0;
    706   1.98  christos 			  int charcnt = sp->charcnt;
    707  1.113  christos 			  for (i = 0; i < ts->typecnt; i++) {
    708  1.122  christos 			    char *tsabbr = ts->chars + ts->ttis[i].tt_desigidx;
    709   1.98  christos 			    int j;
    710   1.98  christos 			    for (j = 0; j < charcnt; j++)
    711   1.98  christos 			      if (strcmp(sp->chars + j, tsabbr) == 0) {
    712  1.122  christos 				ts->ttis[i].tt_desigidx = j;
    713   1.98  christos 				gotabbr++;
    714   1.98  christos 				break;
    715   1.98  christos 			      }
    716   1.98  christos 			    if (! (j < charcnt)) {
    717   1.99  christos 			      size_t tsabbrlen = strlen(tsabbr);
    718   1.98  christos 			      if (j + tsabbrlen < TZ_MAX_CHARS) {
    719   1.98  christos 				strcpy(sp->chars + j, tsabbr);
    720  1.100  christos 				charcnt = (int_fast32_t)(j + tsabbrlen + 1);
    721  1.122  christos 				ts->ttis[i].tt_desigidx = j;
    722   1.98  christos 				gotabbr++;
    723   1.98  christos 			      }
    724   1.98  christos 			    }
    725   1.98  christos 			  }
    726  1.113  christos 			  if (gotabbr == ts->typecnt) {
    727   1.98  christos 			    sp->charcnt = charcnt;
    728  1.106  christos 
    729  1.106  christos 			    /* Ignore any trailing, no-op transitions generated
    730  1.106  christos 			       by zic as they don't help here and can run afoul
    731  1.106  christos 			       of bugs in zic 2016j or earlier.  */
    732  1.106  christos 			    while (1 < sp->timecnt
    733  1.106  christos 				   && (sp->types[sp->timecnt - 1]
    734  1.106  christos 				       == sp->types[sp->timecnt - 2]))
    735  1.106  christos 			      sp->timecnt--;
    736  1.106  christos 
    737  1.124  christos 			    for (i = 0;
    738  1.124  christos 				 i < ts->timecnt && sp->timecnt < TZ_MAX_TIMES;
    739  1.124  christos 				 i++) {
    740  1.126  christos 			      __time_t t = ts->ats[i];
    741  1.124  christos 			      if (increment_overflow_time(&t, leapcorr(sp, t))
    742  1.124  christos 				  || (0 < sp->timecnt
    743  1.124  christos 				      && t <= sp->ats[sp->timecnt - 1]))
    744  1.124  christos 				continue;
    745  1.124  christos 			      sp->ats[sp->timecnt] = t;
    746   1.98  christos 			      sp->types[sp->timecnt] = (sp->typecnt
    747   1.98  christos 							+ ts->types[i]);
    748   1.98  christos 			      sp->timecnt++;
    749   1.98  christos 			    }
    750  1.113  christos 			    for (i = 0; i < ts->typecnt; i++)
    751  1.113  christos 			      sp->ttis[sp->typecnt++] = ts->ttis[i];
    752   1.98  christos 			  }
    753   1.45   mlelstv 			}
    754   1.45   mlelstv 	}
    755  1.113  christos 	if (sp->typecnt == 0)
    756  1.113  christos 	  return EINVAL;
    757   1.45   mlelstv 	if (sp->timecnt > 1) {
    758  1.124  christos 	    if (sp->ats[0] <= (time_t)(TIME_T_MAX - SECSPERREPEAT)) {
    759  1.124  christos 		time_t repeatat = (time_t)(sp->ats[0] + SECSPERREPEAT);
    760  1.124  christos 		int repeattype = sp->types[0];
    761   1.45   mlelstv 		for (i = 1; i < sp->timecnt; ++i)
    762  1.124  christos 		  if (sp->ats[i] == repeatat
    763  1.124  christos 		      && typesequiv(sp, sp->types[i], repeattype)) {
    764   1.87  christos 					sp->goback = true;
    765   1.45   mlelstv 					break;
    766  1.124  christos 		  }
    767  1.124  christos 	    }
    768  1.124  christos 	    if ((time_t)(TIME_T_MIN + SECSPERREPEAT) <= sp->ats[sp->timecnt - 1]) {
    769  1.124  christos 		time_t repeatat =
    770  1.124  christos 		    (time_t)(sp->ats[sp->timecnt - 1] - SECSPERREPEAT);
    771  1.124  christos 		int repeattype = sp->types[sp->timecnt - 1];
    772   1.45   mlelstv 		for (i = sp->timecnt - 2; i >= 0; --i)
    773  1.124  christos 		  if (sp->ats[i] == repeatat
    774  1.124  christos 		      && typesequiv(sp, sp->types[i], repeattype)) {
    775   1.87  christos 					sp->goahead = true;
    776   1.45   mlelstv 					break;
    777  1.124  christos 		  }
    778  1.124  christos 	    }
    779    1.1       jtc 	}
    780  1.113  christos 
    781  1.113  christos 	/* Infer sp->defaulttype from the data.  Although this default
    782  1.113  christos 	   type is always zero for data from recent tzdb releases,
    783  1.113  christos 	   things are trickier for data from tzdb 2018e or earlier.
    784  1.113  christos 
    785  1.113  christos 	   The first set of heuristics work around bugs in 32-bit data
    786  1.113  christos 	   generated by tzdb 2013c or earlier.  The workaround is for
    787  1.113  christos 	   zones like Australia/Macquarie where timestamps before the
    788  1.113  christos 	   first transition have a time type that is not the earliest
    789  1.113  christos 	   standard-time type.  See:
    790  1.113  christos 	   https://mm.icann.org/pipermail/tz/2013-May/019368.html */
    791   1.74  christos 	/*
    792  1.129  christos 	** If type 0 does not specify local time, or is unused in transitions,
    793   1.74  christos 	** it's the type to use for early times.
    794   1.74  christos 	*/
    795   1.87  christos 	for (i = 0; i < sp->timecnt; ++i)
    796   1.74  christos 		if (sp->types[i] == 0)
    797   1.74  christos 			break;
    798  1.129  christos 	i = i < sp->timecnt && ! ttunspecified(sp, 0) ? -1 : 0;
    799   1.74  christos 	/*
    800   1.74  christos 	** Absent the above,
    801   1.74  christos 	** if there are transition times
    802   1.74  christos 	** and the first transition is to a daylight time
    803   1.74  christos 	** find the standard type less than and closest to
    804   1.74  christos 	** the type of the first transition.
    805   1.74  christos 	*/
    806   1.74  christos 	if (i < 0 && sp->timecnt > 0 && sp->ttis[sp->types[0]].tt_isdst) {
    807   1.74  christos 		i = sp->types[0];
    808   1.74  christos 		while (--i >= 0)
    809   1.74  christos 			if (!sp->ttis[i].tt_isdst)
    810   1.74  christos 				break;
    811   1.74  christos 	}
    812  1.113  christos 	/* The next heuristics are for data generated by tzdb 2018e or
    813  1.113  christos 	   earlier, for zones like EST5EDT where the first transition
    814  1.113  christos 	   is to DST.  */
    815   1.74  christos 	/*
    816   1.74  christos 	** If no result yet, find the first standard type.
    817   1.74  christos 	** If there is none, punt to type zero.
    818   1.74  christos 	*/
    819   1.74  christos 	if (i < 0) {
    820   1.74  christos 		i = 0;
    821   1.74  christos 		while (sp->ttis[i].tt_isdst)
    822   1.74  christos 			if (++i >= sp->typecnt) {
    823   1.74  christos 				i = 0;
    824   1.74  christos 				break;
    825   1.74  christos 			}
    826   1.74  christos 	}
    827  1.113  christos 	/* A simple 'sp->defaulttype = 0;' would suffice here if we
    828  1.113  christos 	   didn't have to worry about 2018e-or-earlier data.  Even
    829  1.113  christos 	   simpler would be to remove the defaulttype member and just
    830  1.113  christos 	   use 0 in its place.  */
    831   1.74  christos 	sp->defaulttype = i;
    832  1.113  christos 
    833   1.91  christos 	return 0;
    834   1.91  christos }
    835   1.91  christos 
    836   1.91  christos /* Load tz data from the file named NAME into *SP.  Read extended
    837   1.91  christos    format if DOEXTEND.  Return 0 on success, an errno value on failure.  */
    838   1.91  christos static int
    839   1.91  christos tzload(char const *name, struct state *sp, bool doextend)
    840   1.91  christos {
    841  1.131    rillig   union local_storage *lsp = malloc(sizeof *lsp);
    842  1.131    rillig   if (!lsp) {
    843  1.131    rillig     return /*CONSTCOND*/HAVE_MALLOC_ERRNO ? errno : ENOMEM;
    844  1.131    rillig   } else {
    845  1.131    rillig     int err = tzloadbody(name, sp, doextend, lsp);
    846  1.131    rillig     free(lsp);
    847  1.131    rillig     return err;
    848  1.131    rillig   }
    849    1.1       jtc }
    850    1.1       jtc 
    851   1.87  christos static bool
    852   1.96  christos typesequiv(const struct state *sp, int a, int b)
    853   1.45   mlelstv {
    854  1.130    rillig 	register bool result;
    855   1.45   mlelstv 
    856   1.45   mlelstv 	if (sp == NULL ||
    857   1.45   mlelstv 		a < 0 || a >= sp->typecnt ||
    858   1.45   mlelstv 		b < 0 || b >= sp->typecnt)
    859   1.87  christos 			result = false;
    860   1.45   mlelstv 	else {
    861  1.135  christos 		/* Compare the relevant members of *AP and *BP.
    862  1.135  christos 		   Ignore tt_ttisstd and tt_ttisut, as they are
    863  1.135  christos 		   irrelevant now and counting them could cause
    864  1.135  christos 		   sp->goahead to mistakenly remain false.  */
    865  1.130    rillig 		register const struct ttinfo *	ap = &sp->ttis[a];
    866  1.130    rillig 		register const struct ttinfo *	bp = &sp->ttis[b];
    867  1.122  christos 		result = (ap->tt_utoff == bp->tt_utoff
    868  1.122  christos 			  && ap->tt_isdst == bp->tt_isdst
    869  1.122  christos 			  && (strcmp(&sp->chars[ap->tt_desigidx],
    870  1.122  christos 				     &sp->chars[bp->tt_desigidx])
    871  1.122  christos 			      == 0));
    872   1.45   mlelstv 	}
    873   1.45   mlelstv 	return result;
    874   1.45   mlelstv }
    875   1.45   mlelstv 
    876    1.1       jtc static const int	mon_lengths[2][MONSPERYEAR] = {
    877    1.1       jtc 	{ 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 },
    878    1.1       jtc 	{ 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }
    879    1.1       jtc };
    880    1.1       jtc 
    881    1.1       jtc static const int	year_lengths[2] = {
    882    1.1       jtc 	DAYSPERNYEAR, DAYSPERLYEAR
    883    1.1       jtc };
    884    1.1       jtc 
    885  1.124  christos /* Is C an ASCII digit?  */
    886  1.124  christos static bool
    887  1.124  christos is_digit(char c)
    888  1.124  christos {
    889  1.124  christos   return '0' <= c && c <= '9';
    890  1.124  christos }
    891  1.124  christos 
    892    1.1       jtc /*
    893  1.113  christos ** Given a pointer into a timezone string, scan until a character that is not
    894  1.113  christos ** a valid character in a time zone abbreviation is found.
    895  1.113  christos ** Return a pointer to that character.
    896    1.1       jtc */
    897    1.1       jtc 
    898  1.114  christos static ATTRIBUTE_PURE const char *
    899  1.130    rillig getzname(register const char *strp)
    900    1.1       jtc {
    901  1.130    rillig 	register char	c;
    902    1.1       jtc 
    903    1.5       jtc 	while ((c = *strp) != '\0' && !is_digit(c) && c != ',' && c != '-' &&
    904    1.1       jtc 		c != '+')
    905    1.1       jtc 			++strp;
    906    1.1       jtc 	return strp;
    907    1.1       jtc }
    908    1.1       jtc 
    909    1.1       jtc /*
    910  1.113  christos ** Given a pointer into an extended timezone string, scan until the ending
    911  1.113  christos ** delimiter of the time zone abbreviation is located.
    912  1.113  christos ** Return a pointer to the delimiter.
    913   1.45   mlelstv **
    914   1.45   mlelstv ** As with getzname above, the legal character set is actually quite
    915   1.45   mlelstv ** restricted, with other characters producing undefined results.
    916   1.45   mlelstv ** We don't do any checking here; checking is done later in common-case code.
    917   1.45   mlelstv */
    918   1.45   mlelstv 
    919  1.114  christos static ATTRIBUTE_PURE const char *
    920  1.130    rillig getqzname(register const char *strp, const int delim)
    921   1.45   mlelstv {
    922  1.130    rillig 	register int	c;
    923   1.45   mlelstv 
    924   1.45   mlelstv 	while ((c = *strp) != '\0' && c != delim)
    925   1.45   mlelstv 		++strp;
    926   1.45   mlelstv 	return strp;
    927   1.45   mlelstv }
    928   1.45   mlelstv 
    929   1.45   mlelstv /*
    930  1.113  christos ** Given a pointer into a timezone string, extract a number from that string.
    931    1.1       jtc ** Check that the number is within a specified range; if it is not, return
    932    1.1       jtc ** NULL.
    933    1.1       jtc ** Otherwise, return a pointer to the first character not part of the number.
    934    1.1       jtc */
    935    1.1       jtc 
    936    1.1       jtc static const char *
    937  1.130    rillig getnum(register const char *strp, int *const nump, const int min, const int max)
    938    1.1       jtc {
    939  1.130    rillig 	register char	c;
    940  1.130    rillig 	register int	num;
    941    1.1       jtc 
    942   1.46  christos 	if (strp == NULL || !is_digit(c = *strp)) {
    943   1.46  christos 		errno = EINVAL;
    944    1.1       jtc 		return NULL;
    945   1.46  christos 	}
    946    1.1       jtc 	num = 0;
    947    1.5       jtc 	do {
    948    1.1       jtc 		num = num * 10 + (c - '0');
    949   1.46  christos 		if (num > max) {
    950   1.46  christos 			errno = EOVERFLOW;
    951    1.1       jtc 			return NULL;	/* illegal value */
    952   1.46  christos 		}
    953    1.5       jtc 		c = *++strp;
    954    1.5       jtc 	} while (is_digit(c));
    955   1.46  christos 	if (num < min) {
    956   1.46  christos 		errno = EINVAL;
    957    1.1       jtc 		return NULL;		/* illegal value */
    958   1.46  christos 	}
    959    1.1       jtc 	*nump = num;
    960    1.1       jtc 	return strp;
    961    1.1       jtc }
    962    1.1       jtc 
    963    1.1       jtc /*
    964  1.113  christos ** Given a pointer into a timezone string, extract a number of seconds,
    965    1.1       jtc ** in hh[:mm[:ss]] form, from the string.
    966    1.1       jtc ** If any error occurs, return NULL.
    967    1.1       jtc ** Otherwise, return a pointer to the first character not part of the number
    968    1.1       jtc ** of seconds.
    969    1.1       jtc */
    970    1.1       jtc 
    971    1.1       jtc static const char *
    972  1.130    rillig getsecs(register const char *strp, int_fast32_t *const secsp)
    973    1.1       jtc {
    974    1.1       jtc 	int	num;
    975  1.124  christos 	int_fast32_t secsperhour = SECSPERHOUR;
    976    1.1       jtc 
    977    1.1       jtc 	/*
    978   1.83  christos 	** 'HOURSPERDAY * DAYSPERWEEK - 1' allows quasi-Posix rules like
    979    1.1       jtc 	** "M10.4.6/26", which does not conform to Posix,
    980    1.1       jtc 	** but which specifies the equivalent of
    981   1.83  christos 	** "02:00 on the first Sunday on or after 23 Oct".
    982    1.1       jtc 	*/
    983    1.1       jtc 	strp = getnum(strp, &num, 0, HOURSPERDAY * DAYSPERWEEK - 1);
    984    1.1       jtc 	if (strp == NULL)
    985    1.1       jtc 		return NULL;
    986  1.124  christos 	*secsp = num * secsperhour;
    987    1.1       jtc 	if (*strp == ':') {
    988    1.1       jtc 		++strp;
    989    1.1       jtc 		strp = getnum(strp, &num, 0, MINSPERHOUR - 1);
    990    1.1       jtc 		if (strp == NULL)
    991    1.1       jtc 			return NULL;
    992    1.1       jtc 		*secsp += num * SECSPERMIN;
    993    1.1       jtc 		if (*strp == ':') {
    994    1.1       jtc 			++strp;
    995   1.83  christos 			/* 'SECSPERMIN' allows for leap seconds.  */
    996    1.1       jtc 			strp = getnum(strp, &num, 0, SECSPERMIN);
    997    1.1       jtc 			if (strp == NULL)
    998    1.1       jtc 				return NULL;
    999    1.1       jtc 			*secsp += num;
   1000    1.1       jtc 		}
   1001    1.1       jtc 	}
   1002    1.1       jtc 	return strp;
   1003    1.1       jtc }
   1004    1.1       jtc 
   1005    1.1       jtc /*
   1006  1.113  christos ** Given a pointer into a timezone string, extract an offset, in
   1007    1.1       jtc ** [+-]hh[:mm[:ss]] form, from the string.
   1008    1.1       jtc ** If any error occurs, return NULL.
   1009    1.1       jtc ** Otherwise, return a pointer to the first character not part of the time.
   1010    1.1       jtc */
   1011    1.1       jtc 
   1012    1.1       jtc static const char *
   1013  1.130    rillig getoffset(register const char *strp, int_fast32_t *const offsetp)
   1014    1.1       jtc {
   1015  1.130    rillig 	register bool neg = false;
   1016    1.1       jtc 
   1017    1.1       jtc 	if (*strp == '-') {
   1018   1.87  christos 		neg = true;
   1019    1.1       jtc 		++strp;
   1020    1.5       jtc 	} else if (*strp == '+')
   1021    1.5       jtc 		++strp;
   1022    1.1       jtc 	strp = getsecs(strp, offsetp);
   1023    1.1       jtc 	if (strp == NULL)
   1024    1.1       jtc 		return NULL;		/* illegal time */
   1025    1.1       jtc 	if (neg)
   1026    1.1       jtc 		*offsetp = -*offsetp;
   1027    1.1       jtc 	return strp;
   1028    1.1       jtc }
   1029    1.1       jtc 
   1030    1.1       jtc /*
   1031  1.113  christos ** Given a pointer into a timezone string, extract a rule in the form
   1032   1.45   mlelstv ** date[/time]. See POSIX section 8 for the format of "date" and "time".
   1033    1.1       jtc ** If a valid rule is not found, return NULL.
   1034    1.1       jtc ** Otherwise, return a pointer to the first character not part of the rule.
   1035    1.1       jtc */
   1036    1.1       jtc 
   1037    1.1       jtc static const char *
   1038  1.130    rillig getrule(const char *strp, register struct rule *const rulep)
   1039    1.1       jtc {
   1040    1.1       jtc 	if (*strp == 'J') {
   1041    1.1       jtc 		/*
   1042    1.1       jtc 		** Julian day.
   1043    1.1       jtc 		*/
   1044    1.1       jtc 		rulep->r_type = JULIAN_DAY;
   1045    1.1       jtc 		++strp;
   1046    1.1       jtc 		strp = getnum(strp, &rulep->r_day, 1, DAYSPERNYEAR);
   1047    1.1       jtc 	} else if (*strp == 'M') {
   1048    1.1       jtc 		/*
   1049    1.1       jtc 		** Month, week, day.
   1050    1.1       jtc 		*/
   1051    1.1       jtc 		rulep->r_type = MONTH_NTH_DAY_OF_WEEK;
   1052    1.1       jtc 		++strp;
   1053    1.1       jtc 		strp = getnum(strp, &rulep->r_mon, 1, MONSPERYEAR);
   1054    1.1       jtc 		if (strp == NULL)
   1055    1.1       jtc 			return NULL;
   1056    1.1       jtc 		if (*strp++ != '.')
   1057    1.1       jtc 			return NULL;
   1058    1.1       jtc 		strp = getnum(strp, &rulep->r_week, 1, 5);
   1059    1.1       jtc 		if (strp == NULL)
   1060    1.1       jtc 			return NULL;
   1061    1.1       jtc 		if (*strp++ != '.')
   1062    1.1       jtc 			return NULL;
   1063    1.1       jtc 		strp = getnum(strp, &rulep->r_day, 0, DAYSPERWEEK - 1);
   1064    1.5       jtc 	} else if (is_digit(*strp)) {
   1065    1.1       jtc 		/*
   1066    1.1       jtc 		** Day of year.
   1067    1.1       jtc 		*/
   1068    1.1       jtc 		rulep->r_type = DAY_OF_YEAR;
   1069    1.1       jtc 		strp = getnum(strp, &rulep->r_day, 0, DAYSPERLYEAR - 1);
   1070    1.1       jtc 	} else	return NULL;		/* invalid format */
   1071    1.1       jtc 	if (strp == NULL)
   1072    1.1       jtc 		return NULL;
   1073    1.1       jtc 	if (*strp == '/') {
   1074    1.1       jtc 		/*
   1075    1.1       jtc 		** Time specified.
   1076    1.1       jtc 		*/
   1077    1.1       jtc 		++strp;
   1078   1.78  christos 		strp = getoffset(strp, &rulep->r_time);
   1079    1.1       jtc 	} else	rulep->r_time = 2 * SECSPERHOUR;	/* default = 2:00:00 */
   1080    1.1       jtc 	return strp;
   1081    1.1       jtc }
   1082    1.1       jtc 
   1083    1.1       jtc /*
   1084   1.81  christos ** Given a year, a rule, and the offset from UT at the time that rule takes
   1085   1.81  christos ** effect, calculate the year-relative time that rule takes effect.
   1086    1.1       jtc */
   1087    1.1       jtc 
   1088  1.109  christos static int_fast32_t
   1089  1.130    rillig transtime(const int year, register const struct rule *const rulep,
   1090   1.81  christos 	  const int_fast32_t offset)
   1091   1.49  christos {
   1092  1.130    rillig 	register bool	leapyear;
   1093  1.130    rillig 	register int_fast32_t value;
   1094  1.130    rillig 	register int	i;
   1095    1.1       jtc 	int		d, m1, yy0, yy1, yy2, dow;
   1096    1.1       jtc 
   1097    1.1       jtc 	leapyear = isleap(year);
   1098    1.1       jtc 	switch (rulep->r_type) {
   1099    1.1       jtc 
   1100    1.1       jtc 	case JULIAN_DAY:
   1101    1.1       jtc 		/*
   1102    1.1       jtc 		** Jn - Julian day, 1 == January 1, 60 == March 1 even in leap
   1103    1.1       jtc 		** years.
   1104    1.1       jtc 		** In non-leap years, or if the day number is 59 or less, just
   1105    1.1       jtc 		** add SECSPERDAY times the day number-1 to the time of
   1106    1.1       jtc 		** January 1, midnight, to get the day.
   1107    1.1       jtc 		*/
   1108   1.81  christos 		value = (rulep->r_day - 1) * SECSPERDAY;
   1109    1.1       jtc 		if (leapyear && rulep->r_day >= 60)
   1110    1.1       jtc 			value += SECSPERDAY;
   1111    1.1       jtc 		break;
   1112    1.1       jtc 
   1113    1.1       jtc 	case DAY_OF_YEAR:
   1114    1.1       jtc 		/*
   1115    1.1       jtc 		** n - day of year.
   1116    1.1       jtc 		** Just add SECSPERDAY times the day number to the time of
   1117    1.1       jtc 		** January 1, midnight, to get the day.
   1118    1.1       jtc 		*/
   1119   1.81  christos 		value = rulep->r_day * SECSPERDAY;
   1120    1.1       jtc 		break;
   1121    1.1       jtc 
   1122    1.1       jtc 	case MONTH_NTH_DAY_OF_WEEK:
   1123    1.1       jtc 		/*
   1124    1.1       jtc 		** Mm.n.d - nth "dth day" of month m.
   1125    1.1       jtc 		*/
   1126    1.1       jtc 
   1127    1.1       jtc 		/*
   1128    1.1       jtc 		** Use Zeller's Congruence to get day-of-week of first day of
   1129    1.1       jtc 		** month.
   1130    1.1       jtc 		*/
   1131    1.1       jtc 		m1 = (rulep->r_mon + 9) % 12 + 1;
   1132    1.1       jtc 		yy0 = (rulep->r_mon <= 2) ? (year - 1) : year;
   1133    1.1       jtc 		yy1 = yy0 / 100;
   1134    1.1       jtc 		yy2 = yy0 % 100;
   1135    1.1       jtc 		dow = ((26 * m1 - 2) / 10 +
   1136    1.1       jtc 			1 + yy2 + yy2 / 4 + yy1 / 4 - 2 * yy1) % 7;
   1137    1.1       jtc 		if (dow < 0)
   1138    1.1       jtc 			dow += DAYSPERWEEK;
   1139    1.1       jtc 
   1140    1.1       jtc 		/*
   1141   1.45   mlelstv 		** "dow" is the day-of-week of the first day of the month. Get
   1142    1.1       jtc 		** the day-of-month (zero-origin) of the first "dow" day of the
   1143    1.1       jtc 		** month.
   1144    1.1       jtc 		*/
   1145    1.1       jtc 		d = rulep->r_day - dow;
   1146    1.1       jtc 		if (d < 0)
   1147    1.1       jtc 			d += DAYSPERWEEK;
   1148    1.1       jtc 		for (i = 1; i < rulep->r_week; ++i) {
   1149    1.1       jtc 			if (d + DAYSPERWEEK >=
   1150    1.1       jtc 				mon_lengths[leapyear][rulep->r_mon - 1])
   1151    1.1       jtc 					break;
   1152    1.1       jtc 			d += DAYSPERWEEK;
   1153    1.1       jtc 		}
   1154    1.1       jtc 
   1155    1.1       jtc 		/*
   1156    1.1       jtc 		** "d" is the day-of-month (zero-origin) of the day we want.
   1157    1.1       jtc 		*/
   1158   1.81  christos 		value = d * SECSPERDAY;
   1159   1.81  christos 		for (i = 0; i < rulep->r_mon - 1; ++i)
   1160   1.81  christos 			value += mon_lengths[leapyear][i] * SECSPERDAY;
   1161    1.1       jtc 		break;
   1162  1.124  christos 
   1163  1.135  christos 	default: unreachable();
   1164    1.1       jtc 	}
   1165    1.1       jtc 
   1166    1.1       jtc 	/*
   1167   1.81  christos 	** "value" is the year-relative time of 00:00:00 UT on the day in
   1168   1.81  christos 	** question. To get the year-relative time of the specified local
   1169    1.1       jtc 	** time on that day, add the transition time and the current offset
   1170   1.78  christos 	** from UT.
   1171    1.1       jtc 	*/
   1172   1.81  christos 	return value + rulep->r_time + offset;
   1173    1.1       jtc }
   1174    1.1       jtc 
   1175    1.1       jtc /*
   1176    1.1       jtc ** Given a POSIX section 8-style TZ string, fill in the rule tables as
   1177    1.1       jtc ** appropriate.
   1178    1.1       jtc */
   1179    1.1       jtc 
   1180   1.87  christos static bool
   1181  1.124  christos tzparse(const char *name, struct state *sp, struct state *basep)
   1182   1.87  christos {
   1183  1.131    rillig 	const char *			stdname;
   1184  1.131    rillig 	const char *			dstname;
   1185  1.131    rillig 	size_t				stdlen;
   1186  1.131    rillig 	size_t				dstlen;
   1187  1.131    rillig 	size_t				charcnt;
   1188  1.131    rillig 	int_fast32_t			stdoffset;
   1189  1.131    rillig 	int_fast32_t			dstoffset;
   1190  1.130    rillig 	register char *			cp;
   1191  1.130    rillig 	register bool			load_ok;
   1192  1.124  christos 	time_t atlo = TIME_T_MIN, leaplo = TIME_T_MIN;
   1193    1.1       jtc 
   1194   1.84    martin 	dstname = NULL; /* XXX gcc */
   1195    1.1       jtc 	stdname = name;
   1196  1.124  christos 	if (*name == '<') {
   1197  1.124  christos 	  name++;
   1198  1.124  christos 	  stdname = name;
   1199  1.124  christos 	  name = getqzname(name, '>');
   1200  1.124  christos 	  if (*name != '>')
   1201  1.124  christos 	    return false;
   1202  1.124  christos 	  stdlen = name - stdname;
   1203  1.124  christos 	  name++;
   1204    1.1       jtc 	} else {
   1205  1.124  christos 	  name = getzname(name);
   1206  1.124  christos 	  stdlen = name - stdname;
   1207    1.1       jtc 	}
   1208  1.124  christos 	if (!stdlen)
   1209  1.124  christos 	  return false;
   1210  1.124  christos 	name = getoffset(name, &stdoffset);
   1211  1.124  christos 	if (name == NULL)
   1212  1.124  christos 	  return false;
   1213   1.96  christos 	charcnt = stdlen + 1;
   1214   1.96  christos 	if (sizeof sp->chars < charcnt)
   1215  1.131    rillig 	  return false;
   1216  1.124  christos 	if (basep) {
   1217  1.124  christos 	  if (0 < basep->timecnt)
   1218  1.124  christos 	    atlo = basep->ats[basep->timecnt - 1];
   1219  1.124  christos 	  load_ok = false;
   1220  1.124  christos 	  sp->leapcnt = basep->leapcnt;
   1221  1.124  christos 	  memcpy(sp->lsis, basep->lsis, sp->leapcnt * sizeof *sp->lsis);
   1222  1.124  christos 	} else {
   1223  1.124  christos 	  load_ok = tzload(TZDEFRULES, sp, false) == 0;
   1224  1.124  christos 	  if (!load_ok)
   1225  1.124  christos 	    sp->leapcnt = 0;	/* So, we're off a little.  */
   1226  1.124  christos 	}
   1227  1.124  christos 	if (0 < sp->leapcnt)
   1228  1.124  christos 	  leaplo = sp->lsis[sp->leapcnt - 1].ls_trans;
   1229    1.1       jtc 	if (*name != '\0') {
   1230   1.45   mlelstv 		if (*name == '<') {
   1231   1.45   mlelstv 			dstname = ++name;
   1232   1.45   mlelstv 			name = getqzname(name, '>');
   1233   1.45   mlelstv 			if (*name != '>')
   1234  1.131    rillig 			  return false;
   1235   1.45   mlelstv 			dstlen = name - dstname;
   1236   1.45   mlelstv 			name++;
   1237   1.45   mlelstv 		} else {
   1238   1.45   mlelstv 			dstname = name;
   1239   1.45   mlelstv 			name = getzname(name);
   1240  1.113  christos 			dstlen = name - dstname; /* length of DST abbr. */
   1241   1.45   mlelstv 		}
   1242   1.96  christos 		if (!dstlen)
   1243   1.96  christos 		  return false;
   1244   1.96  christos 		charcnt += dstlen + 1;
   1245   1.96  christos 		if (sizeof sp->chars < charcnt)
   1246   1.96  christos 		  return false;
   1247    1.1       jtc 		if (*name != '\0' && *name != ',' && *name != ';') {
   1248   1.45   mlelstv 			name = getoffset(name, &dstoffset);
   1249    1.1       jtc 			if (name == NULL)
   1250   1.87  christos 			  return false;
   1251    1.1       jtc 		} else	dstoffset = stdoffset - SECSPERHOUR;
   1252   1.87  christos 		if (*name == '\0' && !load_ok)
   1253   1.22    kleink 			name = TZDEFRULESTRING;
   1254    1.1       jtc 		if (*name == ',' || *name == ';') {
   1255    1.1       jtc 			struct rule	start;
   1256    1.1       jtc 			struct rule	end;
   1257  1.130    rillig 			register int	year;
   1258  1.130    rillig 			register int	timecnt;
   1259  1.126  christos 			__time_t	janfirst;
   1260  1.106  christos 			int_fast32_t janoffset = 0;
   1261  1.124  christos 			int yearbeg, yearlim;
   1262    1.1       jtc 
   1263    1.1       jtc 			++name;
   1264   1.45   mlelstv 			if ((name = getrule(name, &start)) == NULL)
   1265  1.131    rillig 			  return false;
   1266    1.1       jtc 			if (*name++ != ',')
   1267  1.131    rillig 			  return false;
   1268   1.45   mlelstv 			if ((name = getrule(name, &end)) == NULL)
   1269  1.131    rillig 			  return false;
   1270    1.1       jtc 			if (*name != '\0')
   1271  1.131    rillig 			  return false;
   1272    1.1       jtc 			sp->typecnt = 2;	/* standard time and DST */
   1273    1.1       jtc 			/*
   1274   1.45   mlelstv 			** Two transitions per year, from EPOCH_YEAR forward.
   1275    1.1       jtc 			*/
   1276  1.113  christos 			init_ttinfo(&sp->ttis[0], -stdoffset, false, 0);
   1277  1.130    rillig 			init_ttinfo(&sp->ttis[1], -dstoffset, true,
   1278   1.91  christos 			    (int)(stdlen + 1));
   1279   1.82  christos 			sp->defaulttype = 0;
   1280   1.81  christos 			timecnt = 0;
   1281    1.1       jtc 			janfirst = 0;
   1282  1.106  christos 			yearbeg = EPOCH_YEAR;
   1283  1.106  christos 
   1284  1.106  christos 			do {
   1285  1.106  christos 			  int_fast32_t yearsecs
   1286  1.106  christos 			    = year_lengths[isleap(yearbeg - 1)] * SECSPERDAY;
   1287  1.106  christos 			  yearbeg--;
   1288  1.106  christos 			  if (increment_overflow_time(&janfirst, -yearsecs)) {
   1289  1.106  christos 			    janoffset = -yearsecs;
   1290  1.106  christos 			    break;
   1291  1.106  christos 			  }
   1292  1.124  christos 			} while (atlo < janfirst
   1293  1.124  christos 				 && EPOCH_YEAR - YEARSPERREPEAT / 2 < yearbeg);
   1294  1.124  christos 
   1295  1.132    rillig 			while (true) {
   1296  1.124  christos 			  int_fast32_t yearsecs
   1297  1.124  christos 			    = year_lengths[isleap(yearbeg)] * SECSPERDAY;
   1298  1.124  christos 			  int yearbeg1 = yearbeg;
   1299  1.126  christos 			  __time_t janfirst1 = janfirst;
   1300  1.124  christos 			  if (increment_overflow_time(&janfirst1, yearsecs)
   1301  1.124  christos 			      || increment_overflow(&yearbeg1, 1)
   1302  1.124  christos 			      || atlo <= janfirst1)
   1303  1.124  christos 			    break;
   1304  1.124  christos 			  yearbeg = yearbeg1;
   1305  1.124  christos 			  janfirst = janfirst1;
   1306  1.124  christos 			}
   1307  1.106  christos 
   1308  1.124  christos 			yearlim = yearbeg;
   1309  1.124  christos 			if (increment_overflow(&yearlim, YEARSPERREPEAT + 1))
   1310  1.124  christos 			  yearlim = INT_MAX;
   1311  1.106  christos 			for (year = yearbeg; year < yearlim; year++) {
   1312   1.81  christos 				int_fast32_t
   1313   1.81  christos 				  starttime = transtime(year, &start, stdoffset),
   1314   1.81  christos 				  endtime = transtime(year, &end, dstoffset);
   1315   1.81  christos 				int_fast32_t
   1316   1.81  christos 				  yearsecs = (year_lengths[isleap(year)]
   1317   1.81  christos 					      * SECSPERDAY);
   1318   1.87  christos 				bool reversed = endtime < starttime;
   1319   1.81  christos 				if (reversed) {
   1320   1.81  christos 					int_fast32_t swap = starttime;
   1321   1.81  christos 					starttime = endtime;
   1322   1.81  christos 					endtime = swap;
   1323   1.81  christos 				}
   1324   1.81  christos 				if (reversed
   1325   1.78  christos 				    || (starttime < endtime
   1326  1.124  christos 					&& endtime - starttime < yearsecs)) {
   1327   1.81  christos 					if (TZ_MAX_TIMES - 2 < timecnt)
   1328   1.78  christos 						break;
   1329   1.81  christos 					sp->ats[timecnt] = janfirst;
   1330  1.106  christos 					if (! increment_overflow_time
   1331  1.106  christos 					    (&sp->ats[timecnt],
   1332  1.124  christos 					     janoffset + starttime)
   1333  1.124  christos 					    && atlo <= sp->ats[timecnt])
   1334  1.113  christos 					  sp->types[timecnt++] = !reversed;
   1335   1.81  christos 					sp->ats[timecnt] = janfirst;
   1336  1.106  christos 					if (! increment_overflow_time
   1337  1.106  christos 					    (&sp->ats[timecnt],
   1338  1.124  christos 					     janoffset + endtime)
   1339  1.124  christos 					    && atlo <= sp->ats[timecnt]) {
   1340  1.113  christos 					  sp->types[timecnt++] = reversed;
   1341  1.113  christos 					}
   1342    1.1       jtc 				}
   1343  1.124  christos 				if (endtime < leaplo) {
   1344  1.124  christos 				  yearlim = year;
   1345  1.124  christos 				  if (increment_overflow(&yearlim,
   1346  1.124  christos 							 YEARSPERREPEAT + 1))
   1347  1.124  christos 				    yearlim = INT_MAX;
   1348  1.124  christos 				}
   1349  1.106  christos 				if (increment_overflow_time
   1350  1.106  christos 				    (&janfirst, janoffset + yearsecs))
   1351   1.45   mlelstv 					break;
   1352  1.106  christos 				janoffset = 0;
   1353    1.1       jtc 			}
   1354   1.81  christos 			sp->timecnt = timecnt;
   1355  1.113  christos 			if (! timecnt) {
   1356  1.113  christos 				sp->ttis[0] = sp->ttis[1];
   1357   1.78  christos 				sp->typecnt = 1;	/* Perpetual DST.  */
   1358  1.113  christos 			} else if (YEARSPERREPEAT < year - yearbeg)
   1359  1.106  christos 				sp->goback = sp->goahead = true;
   1360    1.1       jtc 		} else {
   1361  1.130    rillig 			register int_fast32_t	theirstdoffset;
   1362  1.130    rillig 			register int_fast32_t	theirdstoffset;
   1363  1.130    rillig 			register int_fast32_t	theiroffset;
   1364  1.130    rillig 			register bool		isdst;
   1365  1.130    rillig 			register int		i;
   1366  1.130    rillig 			register int		j;
   1367    1.1       jtc 
   1368    1.1       jtc 			if (*name != '\0')
   1369  1.131    rillig 			  return false;
   1370    1.1       jtc 			/*
   1371   1.69  christos 			** Initial values of theirstdoffset and theirdstoffset.
   1372    1.1       jtc 			*/
   1373    1.1       jtc 			theirstdoffset = 0;
   1374    1.1       jtc 			for (i = 0; i < sp->timecnt; ++i) {
   1375    1.1       jtc 				j = sp->types[i];
   1376    1.1       jtc 				if (!sp->ttis[j].tt_isdst) {
   1377    1.5       jtc 					theirstdoffset =
   1378  1.122  christos 						- sp->ttis[j].tt_utoff;
   1379    1.1       jtc 					break;
   1380    1.1       jtc 				}
   1381    1.1       jtc 			}
   1382   1.45   mlelstv 			theirdstoffset = 0;
   1383   1.45   mlelstv 			for (i = 0; i < sp->timecnt; ++i) {
   1384   1.45   mlelstv 				j = sp->types[i];
   1385   1.45   mlelstv 				if (sp->ttis[j].tt_isdst) {
   1386   1.45   mlelstv 					theirdstoffset =
   1387  1.122  christos 						- sp->ttis[j].tt_utoff;
   1388   1.45   mlelstv 					break;
   1389   1.45   mlelstv 				}
   1390   1.45   mlelstv 			}
   1391    1.1       jtc 			/*
   1392    1.1       jtc 			** Initially we're assumed to be in standard time.
   1393    1.1       jtc 			*/
   1394   1.87  christos 			isdst = false;
   1395    1.1       jtc 			/*
   1396    1.1       jtc 			** Now juggle transition times and types
   1397    1.1       jtc 			** tracking offsets as you do.
   1398    1.1       jtc 			*/
   1399    1.1       jtc 			for (i = 0; i < sp->timecnt; ++i) {
   1400    1.1       jtc 				j = sp->types[i];
   1401    1.1       jtc 				sp->types[i] = sp->ttis[j].tt_isdst;
   1402  1.122  christos 				if (sp->ttis[j].tt_ttisut) {
   1403    1.1       jtc 					/* No adjustment to transition time */
   1404    1.1       jtc 				} else {
   1405    1.1       jtc 					/*
   1406  1.112  christos 					** If daylight saving time is in
   1407  1.112  christos 					** effect, and the transition time was
   1408  1.112  christos 					** not specified as standard time, add
   1409  1.112  christos 					** the daylight saving time offset to
   1410  1.112  christos 					** the transition time; otherwise, add
   1411  1.112  christos 					** the standard time offset to the
   1412  1.112  christos 					** transition time.
   1413    1.1       jtc 					*/
   1414    1.1       jtc 					/*
   1415    1.1       jtc 					** Transitions from DST to DDST
   1416    1.1       jtc 					** will effectively disappear since
   1417    1.1       jtc 					** POSIX provides for only one DST
   1418    1.1       jtc 					** offset.
   1419    1.1       jtc 					*/
   1420   1.45   mlelstv 					if (isdst && !sp->ttis[j].tt_ttisstd) {
   1421   1.66  christos 						sp->ats[i] += (time_t)
   1422   1.66  christos 						    (dstoffset - theirdstoffset);
   1423   1.45   mlelstv 					} else {
   1424   1.66  christos 						sp->ats[i] += (time_t)
   1425   1.66  christos 						    (stdoffset - theirstdoffset);
   1426   1.45   mlelstv 					}
   1427    1.1       jtc 				}
   1428  1.122  christos 				theiroffset = -sp->ttis[j].tt_utoff;
   1429   1.87  christos 				if (sp->ttis[j].tt_isdst)
   1430   1.39  christos 					theirstdoffset = theiroffset;
   1431   1.45   mlelstv 				else	theirdstoffset = theiroffset;
   1432    1.1       jtc 			}
   1433    1.1       jtc 			/*
   1434    1.1       jtc 			** Finally, fill in ttis.
   1435    1.1       jtc 			*/
   1436   1.91  christos 			init_ttinfo(&sp->ttis[0], -stdoffset, false, 0);
   1437   1.91  christos 			init_ttinfo(&sp->ttis[1], -dstoffset, true,
   1438   1.91  christos 			    (int)(stdlen + 1));
   1439    1.7       jtc 			sp->typecnt = 2;
   1440   1.82  christos 			sp->defaulttype = 0;
   1441    1.1       jtc 		}
   1442    1.1       jtc 	} else {
   1443    1.1       jtc 		dstlen = 0;
   1444    1.1       jtc 		sp->typecnt = 1;		/* only standard time */
   1445    1.1       jtc 		sp->timecnt = 0;
   1446   1.91  christos 		init_ttinfo(&sp->ttis[0], -stdoffset, false, 0);
   1447   1.91  christos 		init_ttinfo(&sp->ttis[1], 0, false, 0);
   1448   1.82  christos 		sp->defaulttype = 0;
   1449    1.1       jtc 	}
   1450   1.99  christos 	sp->charcnt = (int)charcnt;
   1451    1.1       jtc 	cp = sp->chars;
   1452  1.124  christos 	memcpy(cp, stdname, stdlen);
   1453    1.1       jtc 	cp += stdlen;
   1454    1.1       jtc 	*cp++ = '\0';
   1455    1.1       jtc 	if (dstlen != 0) {
   1456   1.87  christos 		(void) memcpy(cp, dstname, dstlen);
   1457    1.1       jtc 		*(cp + dstlen) = '\0';
   1458    1.1       jtc 	}
   1459   1.87  christos 	return true;
   1460    1.1       jtc }
   1461    1.1       jtc 
   1462    1.1       jtc static void
   1463   1.87  christos gmtload(struct state *const sp)
   1464   1.49  christos {
   1465  1.134  christos 	if (tzload(etc_utc, sp, true) != 0)
   1466  1.134  christos 	  (void)tzparse("UTC0", sp, NULL);
   1467   1.49  christos }
   1468   1.49  christos 
   1469  1.124  christos /* Initialize *SP to a value appropriate for the TZ setting NAME.
   1470  1.124  christos    Return 0 on success, an errno value on failure.  */
   1471   1.91  christos static int
   1472   1.87  christos zoneinit(struct state *sp, char const *name)
   1473   1.49  christos {
   1474  1.131    rillig   if (name && ! name[0]) {
   1475  1.131    rillig     /*
   1476  1.131    rillig     ** User wants it fast rather than right.
   1477  1.131    rillig     */
   1478  1.131    rillig     sp->leapcnt = 0;		/* so, we're off a little */
   1479  1.131    rillig     sp->timecnt = 0;
   1480  1.131    rillig     sp->typecnt = 1;
   1481  1.131    rillig     sp->charcnt = 0;
   1482  1.131    rillig     sp->goback = sp->goahead = false;
   1483  1.131    rillig     init_ttinfo(&sp->ttis[0], 0, false, 0);
   1484  1.134  christos     strcpy(sp->chars, utc);
   1485  1.131    rillig     sp->defaulttype = 0;
   1486  1.131    rillig     return 0;
   1487  1.131    rillig   } else {
   1488  1.131    rillig     int err = tzload(name, sp, true);
   1489  1.131    rillig     if (err != 0 && name && name[0] != ':' && tzparse(name, sp, NULL))
   1490  1.131    rillig       err = 0;
   1491  1.131    rillig     if (err == 0)
   1492  1.131    rillig       scrub_abbrs(sp);
   1493  1.131    rillig     return err;
   1494  1.131    rillig   }
   1495   1.49  christos }
   1496  1.130    rillig 
   1497   1.19    kleink static void
   1498   1.87  christos tzsetlcl(char const *name)
   1499    1.1       jtc {
   1500  1.131    rillig   struct state *sp = __lclptr;
   1501  1.131    rillig   int lcl = name ? strlen(name) < sizeof lcl_TZname : -1;
   1502  1.132    rillig   if (lcl < 0
   1503  1.132    rillig       ? lcl_is_set < 0
   1504  1.131    rillig       : 0 < lcl_is_set && strcmp(lcl_TZname, name) == 0)
   1505  1.131    rillig     return;
   1506  1.131    rillig 
   1507  1.131    rillig   if (! sp)
   1508  1.131    rillig     __lclptr = sp = malloc(sizeof *__lclptr);
   1509  1.131    rillig   if (sp) {
   1510  1.131    rillig     if (zoneinit(sp, name) != 0)
   1511  1.131    rillig       zoneinit(sp, "");
   1512  1.131    rillig     if (0 < lcl)
   1513  1.131    rillig       strcpy(lcl_TZname, name);
   1514  1.131    rillig   }
   1515  1.131    rillig   settzname();
   1516  1.131    rillig   lcl_is_set = lcl;
   1517    1.1       jtc }
   1518    1.1       jtc 
   1519   1.87  christos #ifdef STD_INSPIRED
   1520    1.1       jtc void
   1521   1.45   mlelstv tzsetwall(void)
   1522   1.19    kleink {
   1523  1.117  christos 	rwlock_wrlock(&__lcl_lock);
   1524   1.87  christos 	tzsetlcl(NULL);
   1525  1.117  christos 	rwlock_unlock(&__lcl_lock);
   1526   1.19    kleink }
   1527   1.87  christos #endif
   1528   1.87  christos 
   1529  1.117  christos void
   1530   1.87  christos tzset_unlocked(void)
   1531   1.87  christos {
   1532   1.87  christos 	tzsetlcl(getenv("TZ"));
   1533   1.87  christos }
   1534   1.19    kleink 
   1535   1.45   mlelstv void
   1536   1.87  christos tzset(void)
   1537    1.1       jtc {
   1538  1.131    rillig   rwlock_wrlock(&__lcl_lock);
   1539  1.131    rillig   tzset_unlocked();
   1540  1.131    rillig   rwlock_unlock(&__lcl_lock);
   1541   1.87  christos }
   1542    1.1       jtc 
   1543   1.87  christos static void
   1544   1.87  christos gmtcheck(void)
   1545   1.87  christos {
   1546  1.131    rillig   static bool gmt_is_set;
   1547  1.131    rillig   rwlock_wrlock(&__lcl_lock);
   1548  1.131    rillig   if (! gmt_is_set) {
   1549  1.131    rillig     gmtptr = malloc(sizeof *gmtptr);
   1550  1.131    rillig     if (gmtptr)
   1551  1.131    rillig       gmtload(gmtptr);
   1552  1.131    rillig     gmt_is_set = true;
   1553  1.131    rillig   }
   1554  1.131    rillig   rwlock_unlock(&__lcl_lock);
   1555   1.87  christos }
   1556    1.1       jtc 
   1557   1.87  christos #if NETBSD_INSPIRED
   1558    1.1       jtc 
   1559   1.87  christos timezone_t
   1560  1.132    rillig tzalloc(char const *name)
   1561   1.87  christos {
   1562  1.131    rillig   timezone_t sp = malloc(sizeof *sp);
   1563  1.131    rillig   if (sp) {
   1564  1.131    rillig     int err = zoneinit(sp, name);
   1565  1.131    rillig     if (err != 0) {
   1566  1.131    rillig       free(sp);
   1567  1.131    rillig       errno = err;
   1568  1.131    rillig       return NULL;
   1569  1.131    rillig     }
   1570  1.133    rillig   } else if (!HAVE_MALLOC_ERRNO)
   1571  1.131    rillig     errno = ENOMEM;
   1572  1.131    rillig   return sp;
   1573    1.1       jtc }
   1574    1.1       jtc 
   1575   1.19    kleink void
   1576   1.87  christos tzfree(timezone_t sp)
   1577   1.19    kleink {
   1578  1.131    rillig   free(sp);
   1579   1.19    kleink }
   1580   1.19    kleink 
   1581    1.1       jtc /*
   1582   1.87  christos ** NetBSD 6.1.4 has ctime_rz, but omit it because POSIX says ctime and
   1583   1.87  christos ** ctime_r are obsolescent and have potential security problems that
   1584   1.87  christos ** ctime_rz would share.  Callers can instead use localtime_rz + strftime.
   1585   1.87  christos **
   1586   1.87  christos ** NetBSD 6.1.4 has tzgetname, but omit it because it doesn't work
   1587   1.87  christos ** in zones with three or more time zone abbreviations.
   1588   1.87  christos ** Callers can instead use localtime_rz + strftime.
   1589   1.87  christos */
   1590   1.87  christos 
   1591   1.87  christos #endif
   1592   1.87  christos 
   1593   1.87  christos /*
   1594    1.1       jtc ** The easy way to behave "as if no library function calls" localtime
   1595   1.83  christos ** is to not call it, so we drop its guts into "localsub", which can be
   1596   1.83  christos ** freely called. (And no, the PANS doesn't require the above behavior,
   1597    1.1       jtc ** but it *is* desirable.)
   1598    1.1       jtc **
   1599   1.93  christos ** If successful and SETNAME is nonzero,
   1600   1.91  christos ** set the applicable parts of tzname, timezone and altzone;
   1601  1.113  christos ** however, it's OK to omit this step if the timezone is POSIX-compatible,
   1602   1.91  christos ** since in that case tzset should have already done this step correctly.
   1603  1.134  christos ** SETNAME's type is int_fast32_t for compatibility with gmtsub,
   1604   1.93  christos ** but it is actually a boolean and its value should be 0 or 1.
   1605    1.1       jtc */
   1606    1.1       jtc 
   1607    1.1       jtc /*ARGSUSED*/
   1608   1.45   mlelstv static struct tm *
   1609   1.93  christos localsub(struct state const *sp, time_t const *timep, int_fast32_t setname,
   1610   1.87  christos 	 struct tm *const tmp)
   1611   1.49  christos {
   1612  1.130    rillig 	register const struct ttinfo *	ttisp;
   1613  1.130    rillig 	register int			i;
   1614  1.130    rillig 	register struct tm *		result;
   1615    1.1       jtc 	const time_t			t = *timep;
   1616    1.1       jtc 
   1617   1.87  christos 	if (sp == NULL) {
   1618  1.131    rillig 	  /* Don't bother to set tzname etc.; tzset has already done it.  */
   1619  1.131    rillig 	  return gmtsub(gmtptr, timep, 0, tmp);
   1620   1.87  christos 	}
   1621   1.45   mlelstv 	if ((sp->goback && t < sp->ats[0]) ||
   1622   1.45   mlelstv 		(sp->goahead && t > sp->ats[sp->timecnt - 1])) {
   1623  1.131    rillig 			time_t newt;
   1624  1.130    rillig 			register time_t		seconds;
   1625  1.130    rillig 			register time_t		years;
   1626   1.45   mlelstv 
   1627   1.45   mlelstv 			if (t < sp->ats[0])
   1628   1.45   mlelstv 				seconds = sp->ats[0] - t;
   1629   1.45   mlelstv 			else	seconds = t - sp->ats[sp->timecnt - 1];
   1630   1.45   mlelstv 			--seconds;
   1631  1.124  christos 
   1632  1.124  christos 			/* Beware integer overflow, as SECONDS might
   1633  1.124  christos 			   be close to the maximum time_t.  */
   1634  1.124  christos 			years = (time_t)(seconds / SECSPERREPEAT
   1635  1.124  christos 			    * YEARSPERREPEAT);
   1636   1.78  christos 			seconds = (time_t)(years * AVGSECSPERYEAR);
   1637  1.124  christos 			years += YEARSPERREPEAT;
   1638   1.45   mlelstv 			if (t < sp->ats[0])
   1639  1.124  christos 			  newt = (time_t)(t + seconds + SECSPERREPEAT);
   1640  1.124  christos 			else
   1641  1.124  christos 			  newt = (time_t)(t - seconds - SECSPERREPEAT);
   1642  1.124  christos 
   1643   1.45   mlelstv 			if (newt < sp->ats[0] ||
   1644   1.88  christos 				newt > sp->ats[sp->timecnt - 1]) {
   1645   1.88  christos 				errno = EINVAL;
   1646   1.88  christos 				return NULL;	/* "cannot happen" */
   1647   1.88  christos 			}
   1648   1.93  christos 			result = localsub(sp, &newt, setname, tmp);
   1649   1.87  christos 			if (result) {
   1650  1.130    rillig 				register int_fast64_t newy;
   1651   1.45   mlelstv 
   1652   1.87  christos 				newy = result->tm_year;
   1653   1.45   mlelstv 				if (t < sp->ats[0])
   1654   1.78  christos 					newy -= years;
   1655   1.78  christos 				else	newy += years;
   1656   1.88  christos 				if (! (INT_MIN <= newy && newy <= INT_MAX)) {
   1657   1.88  christos 					errno = EOVERFLOW;
   1658   1.45   mlelstv 					return NULL;
   1659   1.88  christos 				}
   1660   1.87  christos 				result->tm_year = (int)newy;
   1661   1.45   mlelstv 			}
   1662   1.45   mlelstv 			return result;
   1663    1.1       jtc 	}
   1664    1.1       jtc 	if (sp->timecnt == 0 || t < sp->ats[0]) {
   1665   1.74  christos 		i = sp->defaulttype;
   1666    1.1       jtc 	} else {
   1667  1.130    rillig 		register int	lo = 1;
   1668  1.130    rillig 		register int	hi = sp->timecnt;
   1669   1.45   mlelstv 
   1670   1.45   mlelstv 		while (lo < hi) {
   1671  1.130    rillig 			register int	mid = (lo + hi) / 2;
   1672   1.45   mlelstv 
   1673   1.45   mlelstv 			if (t < sp->ats[mid])
   1674   1.45   mlelstv 				hi = mid;
   1675   1.45   mlelstv 			else	lo = mid + 1;
   1676   1.45   mlelstv 		}
   1677  1.124  christos 		i = sp->types[lo - 1];
   1678    1.1       jtc 	}
   1679    1.1       jtc 	ttisp = &sp->ttis[i];
   1680    1.1       jtc 	/*
   1681    1.1       jtc 	** To get (wrong) behavior that's compatible with System V Release 2.0
   1682    1.1       jtc 	** you'd replace the statement below with
   1683  1.122  christos 	**	t += ttisp->tt_utoff;
   1684    1.1       jtc 	**	timesub(&t, 0L, sp, tmp);
   1685    1.1       jtc 	*/
   1686  1.122  christos 	result = timesub(&t, ttisp->tt_utoff, sp, tmp);
   1687   1.87  christos 	if (result) {
   1688  1.131    rillig 	  result->tm_isdst = ttisp->tt_isdst;
   1689   1.92  christos #ifdef TM_ZONE
   1690  1.131    rillig 	  result->TM_ZONE = __UNCONST(&sp->chars[ttisp->tt_desigidx]);
   1691   1.92  christos #endif /* defined TM_ZONE */
   1692  1.131    rillig 	  if (setname)
   1693  1.131    rillig 	    update_tzname_etc(sp, ttisp);
   1694   1.87  christos 	}
   1695   1.45   mlelstv 	return result;
   1696    1.1       jtc }
   1697    1.1       jtc 
   1698   1.87  christos #if NETBSD_INSPIRED
   1699   1.49  christos 
   1700    1.1       jtc struct tm *
   1701   1.87  christos localtime_rz(timezone_t sp, time_t const *timep, struct tm *tmp)
   1702   1.87  christos {
   1703  1.131    rillig   return localsub(sp, timep, 0, tmp);
   1704   1.87  christos }
   1705   1.87  christos 
   1706   1.87  christos #endif
   1707   1.87  christos 
   1708   1.87  christos static struct tm *
   1709   1.87  christos localtime_tzset(time_t const *timep, struct tm *tmp, bool setname)
   1710    1.1       jtc {
   1711  1.131    rillig   rwlock_wrlock(&__lcl_lock);
   1712  1.131    rillig   if (setname || !lcl_is_set)
   1713  1.131    rillig     tzset_unlocked();
   1714  1.131    rillig   tmp = localsub(__lclptr, timep, setname, tmp);
   1715  1.131    rillig   rwlock_unlock(&__lcl_lock);
   1716  1.131    rillig   return tmp;
   1717    1.1       jtc }
   1718    1.1       jtc 
   1719   1.49  christos struct tm *
   1720   1.96  christos localtime(const time_t *timep)
   1721   1.49  christos {
   1722  1.131    rillig   return localtime_tzset(timep, &tm, true);
   1723   1.49  christos }
   1724   1.35    kleink 
   1725   1.18    kleink struct tm *
   1726   1.87  christos localtime_r(const time_t * __restrict timep, struct tm *tmp)
   1727   1.18    kleink {
   1728  1.131    rillig   return localtime_tzset(timep, tmp, true);
   1729   1.18    kleink }
   1730   1.18    kleink 
   1731   1.18    kleink /*
   1732    1.1       jtc ** gmtsub is to gmtime as localsub is to localtime.
   1733    1.1       jtc */
   1734    1.1       jtc 
   1735   1.45   mlelstv static struct tm *
   1736  1.132    rillig gmtsub(struct state const *sp, time_t const *timep, int_fast32_t offset,
   1737   1.87  christos        struct tm *tmp)
   1738    1.1       jtc {
   1739  1.130    rillig 	register struct tm *	result;
   1740   1.19    kleink 
   1741   1.87  christos 	result = timesub(timep, offset, gmtptr, tmp);
   1742    1.1       jtc #ifdef TM_ZONE
   1743    1.1       jtc 	/*
   1744    1.1       jtc 	** Could get fancy here and deliver something such as
   1745  1.104  christos 	** "+xx" or "-xx" if offset is non-zero,
   1746    1.1       jtc 	** but this is no time for a treasure hunt.
   1747    1.1       jtc 	*/
   1748   1.88  christos 	if (result)
   1749   1.88  christos 		result->TM_ZONE = offset ? __UNCONST(wildabbr) : gmtptr ?
   1750  1.134  christos 		    gmtptr->chars : __UNCONST(utc);
   1751    1.1       jtc #endif /* defined TM_ZONE */
   1752   1.45   mlelstv 	return result;
   1753    1.1       jtc }
   1754    1.1       jtc 
   1755   1.18    kleink /*
   1756  1.131    rillig * Re-entrant version of gmtime.
   1757   1.35    kleink */
   1758   1.35    kleink 
   1759   1.18    kleink struct tm *
   1760   1.96  christos gmtime_r(const time_t *timep, struct tm *tmp)
   1761   1.18    kleink {
   1762  1.131    rillig   gmtcheck();
   1763  1.131    rillig   return gmtsub(NULL, timep, 0, tmp);
   1764   1.18    kleink }
   1765   1.18    kleink 
   1766   1.96  christos struct tm *
   1767   1.96  christos gmtime(const time_t *timep)
   1768   1.96  christos {
   1769  1.131    rillig   return gmtime_r(timep, &tm);
   1770   1.96  christos }
   1771  1.124  christos 
   1772    1.1       jtc #ifdef STD_INSPIRED
   1773    1.1       jtc 
   1774    1.1       jtc struct tm *
   1775   1.96  christos offtime(const time_t *timep, long offset)
   1776    1.1       jtc {
   1777  1.131    rillig   gmtcheck();
   1778  1.131    rillig   return gmtsub(gmtptr, timep, (int_fast32_t)offset, &tm);
   1779   1.49  christos }
   1780   1.49  christos 
   1781   1.49  christos struct tm *
   1782   1.49  christos offtime_r(const time_t *timep, long offset, struct tm *tmp)
   1783   1.49  christos {
   1784   1.87  christos 	gmtcheck();
   1785   1.90  christos 	return gmtsub(NULL, timep, (int_fast32_t)offset, tmp);
   1786    1.1       jtc }
   1787    1.1       jtc 
   1788    1.1       jtc #endif /* defined STD_INSPIRED */
   1789    1.1       jtc 
   1790  1.109  christos #if TZ_TIME_T
   1791  1.105  christos 
   1792  1.109  christos # if USG_COMPAT
   1793  1.105  christos #  define daylight 0
   1794  1.105  christos #  define timezone 0
   1795  1.105  christos # endif
   1796  1.123  christos # if !ALTZONE
   1797  1.105  christos #  define altzone 0
   1798  1.105  christos # endif
   1799  1.130    rillig 
   1800  1.105  christos /* Convert from the underlying system's time_t to the ersatz time_tz,
   1801  1.105  christos    which is called 'time_t' in this file.  Typically, this merely
   1802  1.105  christos    converts the time's integer width.  On some platforms, the system
   1803  1.105  christos    time is local time not UT, or uses some epoch other than the POSIX
   1804  1.105  christos    epoch.
   1805  1.105  christos 
   1806  1.105  christos    Although this code appears to define a function named 'time' that
   1807  1.105  christos    returns time_t, the macros in private.h cause this code to actually
   1808  1.105  christos    define a function named 'tz_time' that returns tz_time_t.  The call
   1809  1.105  christos    to sys_time invokes the underlying system's 'time' function.  */
   1810  1.130    rillig 
   1811  1.105  christos time_t
   1812  1.105  christos time(time_t *p)
   1813  1.105  christos {
   1814  1.126  christos   __time_t r = sys_time(0);
   1815  1.105  christos   if (r != (time_t) -1) {
   1816  1.105  christos     int_fast32_t offset = EPOCH_LOCAL ? (daylight ? timezone : altzone) : 0;
   1817  1.105  christos     if (increment_overflow32(&offset, -EPOCH_OFFSET)
   1818  1.124  christos 	|| increment_overflow_time(&r, offset)) {
   1819  1.105  christos       errno = EOVERFLOW;
   1820  1.105  christos       r = -1;
   1821  1.105  christos     }
   1822  1.105  christos   }
   1823  1.105  christos   if (p)
   1824  1.126  christos     *p = (time_t)r;
   1825  1.126  christos   return (time_t)r;
   1826  1.105  christos }
   1827  1.105  christos #endif
   1828  1.105  christos 
   1829   1.45   mlelstv /*
   1830   1.45   mlelstv ** Return the number of leap years through the end of the given year
   1831   1.45   mlelstv ** where, to make the math easy, the answer for year zero is defined as zero.
   1832   1.45   mlelstv */
   1833  1.132    rillig 
   1834  1.124  christos static time_t
   1835  1.124  christos leaps_thru_end_of_nonneg(time_t y)
   1836  1.109  christos {
   1837  1.131    rillig   return y / 4 - y / 100 + y / 400;
   1838  1.109  christos }
   1839   1.45   mlelstv 
   1840  1.124  christos static time_t
   1841  1.132    rillig leaps_thru_end_of(time_t y)
   1842   1.45   mlelstv {
   1843  1.131    rillig   return (y < 0
   1844  1.131    rillig 	  ? -1 - leaps_thru_end_of_nonneg(-1 - y)
   1845  1.131    rillig 	  : leaps_thru_end_of_nonneg(y));
   1846   1.45   mlelstv }
   1847   1.45   mlelstv 
   1848   1.45   mlelstv static struct tm *
   1849   1.96  christos timesub(const time_t *timep, int_fast32_t offset,
   1850  1.131    rillig 	const struct state *sp, struct tm *tmp)
   1851   1.49  christos {
   1852  1.130    rillig 	register const struct lsinfo *	lp;
   1853  1.130    rillig 	register time_t			tdays;
   1854  1.130    rillig 	register const int *		ip;
   1855  1.130    rillig 	register int_fast32_t		corr;
   1856  1.130    rillig 	register int			i;
   1857  1.124  christos 	int_fast32_t idays, rem, dayoff, dayrem;
   1858  1.124  christos 	time_t y;
   1859  1.124  christos 
   1860  1.124  christos 	/* If less than SECSPERMIN, the number of seconds since the
   1861  1.124  christos 	   most recent positive leap second; otherwise, do not add 1
   1862  1.124  christos 	   to localtime tm_sec because of leap seconds.  */
   1863  1.124  christos 	time_t secs_since_posleap = SECSPERMIN;
   1864    1.1       jtc 
   1865    1.1       jtc 	corr = 0;
   1866    1.1       jtc 	i = (sp == NULL) ? 0 : sp->leapcnt;
   1867    1.1       jtc 	while (--i >= 0) {
   1868    1.1       jtc 		lp = &sp->lsis[i];
   1869    1.1       jtc 		if (*timep >= lp->ls_trans) {
   1870    1.1       jtc 			corr = lp->ls_corr;
   1871  1.124  christos 			if ((i == 0 ? 0 : lp[-1].ls_corr) < corr)
   1872  1.124  christos 			  secs_since_posleap = *timep - lp->ls_trans;
   1873    1.1       jtc 			break;
   1874    1.1       jtc 		}
   1875    1.1       jtc 	}
   1876  1.124  christos 
   1877  1.124  christos 	/* Calculate the year, avoiding integer overflow even if
   1878  1.124  christos 	   time_t is unsigned.  */
   1879   1.66  christos 	tdays = (time_t)(*timep / SECSPERDAY);
   1880  1.124  christos 	rem = (int)(*timep % SECSPERDAY);
   1881  1.124  christos 	rem += offset % SECSPERDAY - corr % SECSPERDAY + 3 * SECSPERDAY;
   1882  1.124  christos 	dayoff = offset / SECSPERDAY - corr / SECSPERDAY + rem / SECSPERDAY - 3;
   1883  1.124  christos 	rem %= SECSPERDAY;
   1884  1.124  christos 	/* y = (EPOCH_YEAR
   1885  1.124  christos 	        + floor((tdays + dayoff) / DAYSPERREPEAT) * YEARSPERREPEAT),
   1886  1.124  christos 	   sans overflow.  But calculate against 1570 (EPOCH_YEAR -
   1887  1.124  christos 	   YEARSPERREPEAT) instead of against 1970 so that things work
   1888  1.124  christos 	   for localtime values before 1970 when time_t is unsigned.  */
   1889  1.124  christos 	dayrem = (int)(tdays % DAYSPERREPEAT);
   1890  1.124  christos 	dayrem += dayoff % DAYSPERREPEAT;
   1891  1.124  christos 	y = (EPOCH_YEAR - YEARSPERREPEAT
   1892  1.124  christos 	     + ((1 + dayoff / DAYSPERREPEAT + dayrem / DAYSPERREPEAT
   1893  1.124  christos 		 - ((dayrem % DAYSPERREPEAT) < 0)
   1894  1.124  christos 		 + tdays / DAYSPERREPEAT)
   1895  1.124  christos 		* YEARSPERREPEAT));
   1896  1.124  christos 	/* idays = (tdays + dayoff) mod DAYSPERREPEAT, sans overflow.  */
   1897  1.124  christos 	idays = (int)(tdays % DAYSPERREPEAT);
   1898  1.124  christos 	idays += dayoff % DAYSPERREPEAT + 2 * DAYSPERREPEAT;
   1899  1.124  christos 	idays %= DAYSPERREPEAT;
   1900  1.124  christos 	/* Increase Y and decrease IDAYS until IDAYS is in range for Y.  */
   1901  1.124  christos 	while (year_lengths[isleap(y)] <= idays) {
   1902  1.124  christos 		int tdelta = idays / DAYSPERLYEAR;
   1903  1.124  christos 		int_fast32_t ydelta = tdelta + !tdelta;
   1904  1.124  christos 		time_t newy = y + ydelta;
   1905  1.130    rillig 		register int	leapdays;
   1906  1.124  christos 		leapdays = (int)(leaps_thru_end_of(newy - 1) -
   1907  1.124  christos 			leaps_thru_end_of(y - 1));
   1908  1.124  christos 		idays -= ydelta * DAYSPERNYEAR;
   1909  1.124  christos 		idays -= leapdays;
   1910   1.45   mlelstv 		y = newy;
   1911   1.45   mlelstv 	}
   1912  1.124  christos 
   1913  1.124  christos 	if (!TYPE_SIGNED(time_t) && y < TM_YEAR_BASE) {
   1914  1.124  christos 	  int signed_y = (int)y;
   1915  1.124  christos 	  tmp->tm_year = signed_y - TM_YEAR_BASE;
   1916  1.124  christos 	} else if ((!TYPE_SIGNED(time_t) || INT_MIN + TM_YEAR_BASE <= y)
   1917  1.124  christos 		   && y - TM_YEAR_BASE <= INT_MAX)
   1918  1.124  christos 	  tmp->tm_year = (int)(y - TM_YEAR_BASE);
   1919  1.124  christos 	else {
   1920  1.124  christos 	  errno = EOVERFLOW;
   1921  1.124  christos 	  return NULL;
   1922   1.45   mlelstv 	}
   1923   1.45   mlelstv 	tmp->tm_yday = idays;
   1924   1.45   mlelstv 	/*
   1925   1.45   mlelstv 	** The "extra" mods below avoid overflow problems.
   1926   1.45   mlelstv 	*/
   1927  1.124  christos 	tmp->tm_wday = (int)(TM_WDAY_BASE
   1928  1.124  christos 			+ ((tmp->tm_year % DAYSPERWEEK)
   1929  1.124  christos 			   * (DAYSPERNYEAR % DAYSPERWEEK))
   1930  1.124  christos 			+ leaps_thru_end_of(y - 1)
   1931  1.124  christos 			- leaps_thru_end_of(TM_YEAR_BASE - 1)
   1932  1.124  christos 			+ idays);
   1933   1.45   mlelstv 	tmp->tm_wday %= DAYSPERWEEK;
   1934   1.45   mlelstv 	if (tmp->tm_wday < 0)
   1935   1.45   mlelstv 		tmp->tm_wday += DAYSPERWEEK;
   1936    1.1       jtc 	tmp->tm_hour = (int) (rem / SECSPERHOUR);
   1937   1.45   mlelstv 	rem %= SECSPERHOUR;
   1938  1.124  christos 	tmp->tm_min = rem / SECSPERMIN;
   1939  1.124  christos 	tmp->tm_sec = rem % SECSPERMIN;
   1940  1.124  christos 
   1941  1.124  christos 	/* Use "... ??:??:60" at the end of the localtime minute containing
   1942  1.124  christos 	   the second just before the positive leap second.  */
   1943  1.124  christos 	tmp->tm_sec += secs_since_posleap <= tmp->tm_sec;
   1944  1.124  christos 
   1945   1.45   mlelstv 	ip = mon_lengths[isleap(y)];
   1946   1.45   mlelstv 	for (tmp->tm_mon = 0; idays >= ip[tmp->tm_mon]; ++(tmp->tm_mon))
   1947   1.45   mlelstv 		idays -= ip[tmp->tm_mon];
   1948  1.124  christos 	tmp->tm_mday = idays + 1;
   1949    1.1       jtc 	tmp->tm_isdst = 0;
   1950    1.1       jtc #ifdef TM_GMTOFF
   1951    1.1       jtc 	tmp->TM_GMTOFF = offset;
   1952    1.1       jtc #endif /* defined TM_GMTOFF */
   1953   1.45   mlelstv 	return tmp;
   1954    1.1       jtc }
   1955    1.1       jtc 
   1956    1.1       jtc char *
   1957   1.96  christos ctime(const time_t *timep)
   1958    1.1       jtc {
   1959    1.1       jtc /*
   1960    1.1       jtc ** Section 4.12.3.2 of X3.159-1989 requires that
   1961   1.18    kleink **	The ctime function converts the calendar time pointed to by timer
   1962   1.45   mlelstv **	to local time in the form of a string. It is equivalent to
   1963    1.1       jtc **		asctime(localtime(timer))
   1964    1.1       jtc */
   1965  1.131    rillig   struct tm *tmp = localtime(timep);
   1966  1.131    rillig   return tmp ? asctime(tmp) : NULL;
   1967   1.18    kleink }
   1968   1.18    kleink 
   1969   1.18    kleink char *
   1970   1.96  christos ctime_r(const time_t *timep, char *buf)
   1971   1.18    kleink {
   1972  1.131    rillig   struct tm mytm;
   1973  1.131    rillig   struct tm *tmp = localtime_r(timep, &mytm);
   1974  1.131    rillig   return tmp ? asctime_r(tmp, buf) : NULL;
   1975    1.1       jtc }
   1976    1.1       jtc 
   1977   1.49  christos char *
   1978   1.49  christos ctime_rz(const timezone_t sp, const time_t * timep, char *buf)
   1979   1.49  christos {
   1980   1.49  christos 	struct tm	mytm, *rtm;
   1981   1.49  christos 
   1982   1.49  christos 	rtm = localtime_rz(sp, timep, &mytm);
   1983   1.49  christos 	if (rtm == NULL)
   1984   1.49  christos 		return NULL;
   1985   1.49  christos 	return asctime_r(rtm, buf);
   1986   1.49  christos }
   1987   1.49  christos 
   1988    1.1       jtc /*
   1989    1.1       jtc ** Adapted from code provided by Robert Elz, who writes:
   1990    1.1       jtc **	The "best" way to do mktime I think is based on an idea of Bob
   1991    1.7       jtc **	Kridle's (so its said...) from a long time ago.
   1992   1.45   mlelstv **	It does a binary search of the time_t space. Since time_t's are
   1993    1.1       jtc **	just 32 bits, its a max of 32 iterations (even at 64 bits it
   1994    1.1       jtc **	would still be very reasonable).
   1995    1.1       jtc */
   1996    1.1       jtc 
   1997    1.1       jtc #ifndef WRONG
   1998  1.134  christos # define WRONG ((time_t)-1)
   1999    1.1       jtc #endif /* !defined WRONG */
   2000    1.1       jtc 
   2001    1.1       jtc /*
   2002   1.87  christos ** Normalize logic courtesy Paul Eggert.
   2003    1.1       jtc */
   2004    1.1       jtc 
   2005   1.87  christos static bool
   2006   1.96  christos increment_overflow(int *ip, int j)
   2007    1.1       jtc {
   2008  1.130    rillig 	register int const	i = *ip;
   2009    1.1       jtc 
   2010   1.58  christos 	/*
   2011   1.58  christos 	** If i >= 0 there can only be overflow if i + j > INT_MAX
   2012   1.58  christos 	** or if j > INT_MAX - i; given i >= 0, INT_MAX - i cannot overflow.
   2013   1.58  christos 	** If i < 0 there can only be overflow if i + j < INT_MIN
   2014   1.58  christos 	** or if j < INT_MIN - i; given i < 0, INT_MIN - i cannot overflow.
   2015   1.58  christos 	*/
   2016   1.58  christos 	if ((i >= 0) ? (j > INT_MAX - i) : (j < INT_MIN - i))
   2017   1.87  christos 		return true;
   2018   1.58  christos 	*ip += j;
   2019   1.87  christos 	return false;
   2020    1.1       jtc }
   2021    1.1       jtc 
   2022   1.87  christos static bool
   2023   1.74  christos increment_overflow32(int_fast32_t *const lp, int const m)
   2024   1.45   mlelstv {
   2025  1.130    rillig 	register int_fast32_t const	l = *lp;
   2026   1.45   mlelstv 
   2027   1.74  christos 	if ((l >= 0) ? (m > INT_FAST32_MAX - l) : (m < INT_FAST32_MIN - l))
   2028   1.87  christos 		return true;
   2029   1.58  christos 	*lp += m;
   2030   1.87  christos 	return false;
   2031   1.45   mlelstv }
   2032   1.45   mlelstv 
   2033   1.87  christos static bool
   2034  1.126  christos increment_overflow_time(__time_t *tp, int_fast32_t j)
   2035   1.81  christos {
   2036   1.81  christos 	/*
   2037   1.81  christos 	** This is like
   2038  1.109  christos 	** 'if (! (TIME_T_MIN <= *tp + j && *tp + j <= TIME_T_MAX)) ...',
   2039   1.81  christos 	** except that it does the right thing even if *tp + j would overflow.
   2040   1.81  christos 	*/
   2041   1.81  christos 	if (! (j < 0
   2042  1.109  christos 	       ? (TYPE_SIGNED(time_t) ? TIME_T_MIN - j <= *tp : -1 - j < *tp)
   2043  1.109  christos 	       : *tp <= TIME_T_MAX - j))
   2044   1.87  christos 		return true;
   2045   1.81  christos 	*tp += j;
   2046   1.87  christos 	return false;
   2047   1.81  christos }
   2048   1.81  christos 
   2049   1.87  christos static bool
   2050   1.49  christos normalize_overflow(int *const tensptr, int *const unitsptr, const int base)
   2051    1.1       jtc {
   2052  1.130    rillig 	register int	tensdelta;
   2053    1.1       jtc 
   2054    1.1       jtc 	tensdelta = (*unitsptr >= 0) ?
   2055    1.1       jtc 		(*unitsptr / base) :
   2056    1.1       jtc 		(-1 - (-1 - *unitsptr) / base);
   2057    1.1       jtc 	*unitsptr -= tensdelta * base;
   2058    1.1       jtc 	return increment_overflow(tensptr, tensdelta);
   2059    1.1       jtc }
   2060    1.1       jtc 
   2061   1.87  christos static bool
   2062   1.96  christos normalize_overflow32(int_fast32_t *tensptr, int *unitsptr, int base)
   2063   1.45   mlelstv {
   2064  1.130    rillig 	register int	tensdelta;
   2065   1.45   mlelstv 
   2066   1.45   mlelstv 	tensdelta = (*unitsptr >= 0) ?
   2067   1.45   mlelstv 		(*unitsptr / base) :
   2068   1.45   mlelstv 		(-1 - (-1 - *unitsptr) / base);
   2069   1.45   mlelstv 	*unitsptr -= tensdelta * base;
   2070   1.74  christos 	return increment_overflow32(tensptr, tensdelta);
   2071   1.45   mlelstv }
   2072   1.45   mlelstv 
   2073   1.45   mlelstv static int
   2074  1.130    rillig tmcomp(register const struct tm *const atmp,
   2075  1.130    rillig        register const struct tm *const btmp)
   2076    1.1       jtc {
   2077  1.130    rillig 	register int	result;
   2078    1.1       jtc 
   2079   1.78  christos 	if (atmp->tm_year != btmp->tm_year)
   2080   1.78  christos 		return atmp->tm_year < btmp->tm_year ? -1 : 1;
   2081   1.78  christos 	if ((result = (atmp->tm_mon - btmp->tm_mon)) == 0 &&
   2082    1.1       jtc 		(result = (atmp->tm_mday - btmp->tm_mday)) == 0 &&
   2083    1.1       jtc 		(result = (atmp->tm_hour - btmp->tm_hour)) == 0 &&
   2084    1.1       jtc 		(result = (atmp->tm_min - btmp->tm_min)) == 0)
   2085    1.1       jtc 			result = atmp->tm_sec - btmp->tm_sec;
   2086    1.1       jtc 	return result;
   2087    1.1       jtc }
   2088    1.1       jtc 
   2089    1.1       jtc static time_t
   2090   1.87  christos time2sub(struct tm *const tmp,
   2091   1.87  christos 	 struct tm *(*funcp)(struct state const *, time_t const *,
   2092   1.87  christos 			     int_fast32_t, struct tm *),
   2093   1.87  christos 	 struct state const *sp,
   2094  1.131    rillig 	 const int_fast32_t offset,
   2095   1.87  christos 	 bool *okayp,
   2096   1.87  christos 	 bool do_norm_secs)
   2097   1.49  christos {
   2098  1.130    rillig 	register int			dir;
   2099  1.130    rillig 	register int			i, j;
   2100  1.130    rillig 	register int			saved_seconds;
   2101  1.130    rillig 	register int_fast32_t		li;
   2102  1.130    rillig 	register time_t			lo;
   2103  1.130    rillig 	register time_t			hi;
   2104   1.61  christos #ifdef NO_ERROR_IN_DST_GAP
   2105  1.132    rillig 	time_t				ilo;
   2106   1.61  christos #endif
   2107  1.131    rillig 	int_fast32_t			y;
   2108  1.131    rillig 	time_t				newt;
   2109  1.131    rillig 	time_t				t;
   2110  1.131    rillig 	struct tm			yourtm, mytm;
   2111    1.1       jtc 
   2112   1.87  christos 	*okayp = false;
   2113    1.1       jtc 	yourtm = *tmp;
   2114   1.64  christos #ifdef NO_ERROR_IN_DST_GAP
   2115   1.64  christos again:
   2116   1.64  christos #endif
   2117   1.13       jtc 	if (do_norm_secs) {
   2118   1.13       jtc 		if (normalize_overflow(&yourtm.tm_min, &yourtm.tm_sec,
   2119   1.60  christos 		    SECSPERMIN))
   2120   1.91  christos 			goto out_of_range;
   2121   1.13       jtc 	}
   2122    1.1       jtc 	if (normalize_overflow(&yourtm.tm_hour, &yourtm.tm_min, MINSPERHOUR))
   2123   1.91  christos 		goto out_of_range;
   2124    1.1       jtc 	if (normalize_overflow(&yourtm.tm_mday, &yourtm.tm_hour, HOURSPERDAY))
   2125   1.91  christos 		goto out_of_range;
   2126   1.45   mlelstv 	y = yourtm.tm_year;
   2127   1.74  christos 	if (normalize_overflow32(&y, &yourtm.tm_mon, MONSPERYEAR))
   2128   1.91  christos 		goto out_of_range;
   2129    1.1       jtc 	/*
   2130   1.45   mlelstv 	** Turn y into an actual year number for now.
   2131    1.1       jtc 	** It is converted back to an offset from TM_YEAR_BASE later.
   2132    1.1       jtc 	*/
   2133   1.74  christos 	if (increment_overflow32(&y, TM_YEAR_BASE))
   2134   1.91  christos 		goto out_of_range;
   2135    1.1       jtc 	while (yourtm.tm_mday <= 0) {
   2136   1.74  christos 		if (increment_overflow32(&y, -1))
   2137   1.91  christos 			goto out_of_range;
   2138   1.45   mlelstv 		li = y + (1 < yourtm.tm_mon);
   2139   1.45   mlelstv 		yourtm.tm_mday += year_lengths[isleap(li)];
   2140    1.1       jtc 	}
   2141    1.1       jtc 	while (yourtm.tm_mday > DAYSPERLYEAR) {
   2142   1.45   mlelstv 		li = y + (1 < yourtm.tm_mon);
   2143   1.45   mlelstv 		yourtm.tm_mday -= year_lengths[isleap(li)];
   2144   1.74  christos 		if (increment_overflow32(&y, 1))
   2145   1.91  christos 			goto out_of_range;
   2146    1.1       jtc 	}
   2147    1.1       jtc 	for ( ; ; ) {
   2148   1.45   mlelstv 		i = mon_lengths[isleap(y)][yourtm.tm_mon];
   2149    1.1       jtc 		if (yourtm.tm_mday <= i)
   2150    1.1       jtc 			break;
   2151    1.1       jtc 		yourtm.tm_mday -= i;
   2152    1.1       jtc 		if (++yourtm.tm_mon >= MONSPERYEAR) {
   2153    1.1       jtc 			yourtm.tm_mon = 0;
   2154   1.74  christos 			if (increment_overflow32(&y, 1))
   2155   1.91  christos 				goto out_of_range;
   2156    1.1       jtc 		}
   2157    1.1       jtc 	}
   2158   1.74  christos 	if (increment_overflow32(&y, -TM_YEAR_BASE))
   2159   1.91  christos 		goto out_of_range;
   2160   1.87  christos 	if (! (INT_MIN <= y && y <= INT_MAX))
   2161   1.91  christos 		goto out_of_range;
   2162   1.66  christos 	yourtm.tm_year = (int)y;
   2163   1.29    kleink 	if (yourtm.tm_sec >= 0 && yourtm.tm_sec < SECSPERMIN)
   2164   1.29    kleink 		saved_seconds = 0;
   2165   1.45   mlelstv 	else if (y + TM_YEAR_BASE < EPOCH_YEAR) {
   2166    1.1       jtc 		/*
   2167    1.1       jtc 		** We can't set tm_sec to 0, because that might push the
   2168    1.1       jtc 		** time below the minimum representable time.
   2169    1.1       jtc 		** Set tm_sec to 59 instead.
   2170    1.1       jtc 		** This assumes that the minimum representable time is
   2171    1.1       jtc 		** not in the same minute that a leap second was deleted from,
   2172    1.1       jtc 		** which is a safer assumption than using 58 would be.
   2173    1.1       jtc 		*/
   2174    1.1       jtc 		if (increment_overflow(&yourtm.tm_sec, 1 - SECSPERMIN))
   2175   1.91  christos 			goto out_of_range;
   2176    1.1       jtc 		saved_seconds = yourtm.tm_sec;
   2177    1.1       jtc 		yourtm.tm_sec = SECSPERMIN - 1;
   2178    1.1       jtc 	} else {
   2179    1.1       jtc 		saved_seconds = yourtm.tm_sec;
   2180    1.1       jtc 		yourtm.tm_sec = 0;
   2181    1.1       jtc 	}
   2182    1.1       jtc 	/*
   2183   1.45   mlelstv 	** Do a binary search (this works whatever time_t's type is).
   2184    1.1       jtc 	*/
   2185  1.109  christos 	lo = TIME_T_MIN;
   2186  1.109  christos 	hi = TIME_T_MAX;
   2187   1.61  christos #ifdef NO_ERROR_IN_DST_GAP
   2188   1.61  christos 	ilo = lo;
   2189   1.61  christos #endif
   2190    1.1       jtc 	for ( ; ; ) {
   2191   1.45   mlelstv 		t = lo / 2 + hi / 2;
   2192   1.45   mlelstv 		if (t < lo)
   2193   1.45   mlelstv 			t = lo;
   2194   1.45   mlelstv 		else if (t > hi)
   2195   1.45   mlelstv 			t = hi;
   2196   1.87  christos 		if (! funcp(sp, &t, offset, &mytm)) {
   2197   1.45   mlelstv 			/*
   2198   1.45   mlelstv 			** Assume that t is too extreme to be represented in
   2199   1.45   mlelstv 			** a struct tm; arrange things so that it is less
   2200   1.45   mlelstv 			** extreme on the next pass.
   2201   1.45   mlelstv 			*/
   2202   1.45   mlelstv 			dir = (t > 0) ? 1 : -1;
   2203   1.45   mlelstv 		} else	dir = tmcomp(&mytm, &yourtm);
   2204    1.1       jtc 		if (dir != 0) {
   2205   1.45   mlelstv 			if (t == lo) {
   2206  1.109  christos 				if (t == TIME_T_MAX)
   2207   1.91  christos 					goto out_of_range;
   2208   1.45   mlelstv 				++t;
   2209   1.45   mlelstv 				++lo;
   2210   1.45   mlelstv 			} else if (t == hi) {
   2211  1.109  christos 				if (t == TIME_T_MIN)
   2212   1.91  christos 					goto out_of_range;
   2213   1.45   mlelstv 				--t;
   2214   1.45   mlelstv 				--hi;
   2215   1.45   mlelstv 			}
   2216   1.59  christos #ifdef NO_ERROR_IN_DST_GAP
   2217   1.64  christos 			if (ilo != lo && lo - 1 == hi && yourtm.tm_isdst < 0 &&
   2218   1.64  christos 			    do_norm_secs) {
   2219   1.59  christos 				for (i = sp->typecnt - 1; i >= 0; --i) {
   2220   1.59  christos 					for (j = sp->typecnt - 1; j >= 0; --j) {
   2221   1.64  christos 						time_t off;
   2222   1.59  christos 						if (sp->ttis[j].tt_isdst ==
   2223   1.59  christos 						    sp->ttis[i].tt_isdst)
   2224   1.59  christos 							continue;
   2225  1.129  christos 						if (ttunspecified(sp, j))
   2226  1.129  christos 							continue;
   2227  1.122  christos 						off = sp->ttis[j].tt_utoff -
   2228  1.122  christos 						    sp->ttis[i].tt_utoff;
   2229   1.64  christos 						yourtm.tm_sec += off < 0 ?
   2230   1.64  christos 						    -off : off;
   2231   1.64  christos 						goto again;
   2232   1.59  christos 					}
   2233   1.59  christos 				}
   2234   1.59  christos 			}
   2235   1.59  christos #endif
   2236   1.45   mlelstv 			if (lo > hi)
   2237   1.60  christos 				goto invalid;
   2238   1.45   mlelstv 			if (dir > 0)
   2239   1.45   mlelstv 				hi = t;
   2240   1.45   mlelstv 			else	lo = t;
   2241    1.1       jtc 			continue;
   2242    1.1       jtc 		}
   2243   1.87  christos #if defined TM_GMTOFF && ! UNINIT_TRAP
   2244   1.87  christos 		if (mytm.TM_GMTOFF != yourtm.TM_GMTOFF
   2245   1.87  christos 		    && (yourtm.TM_GMTOFF < 0
   2246   1.87  christos 			? (-SECSPERDAY <= yourtm.TM_GMTOFF
   2247   1.87  christos 			   && (mytm.TM_GMTOFF <=
   2248  1.134  christos 			       (min(INT_FAST32_MAX, LONG_MAX)
   2249   1.87  christos 				+ yourtm.TM_GMTOFF)))
   2250   1.87  christos 			: (yourtm.TM_GMTOFF <= SECSPERDAY
   2251  1.134  christos 			   && ((max(INT_FAST32_MIN, LONG_MIN)
   2252   1.87  christos 				+ yourtm.TM_GMTOFF)
   2253   1.87  christos 			       <= mytm.TM_GMTOFF)))) {
   2254  1.111  christos 		  /* MYTM matches YOURTM except with the wrong UT offset.
   2255   1.87  christos 		     YOURTM.TM_GMTOFF is plausible, so try it instead.
   2256   1.87  christos 		     It's OK if YOURTM.TM_GMTOFF contains uninitialized data,
   2257   1.87  christos 		     since the guess gets checked.  */
   2258  1.126  christos 		  __time_t altt = t;
   2259   1.87  christos 		  int_fast32_t diff = (int_fast32_t)
   2260   1.87  christos 		      (mytm.TM_GMTOFF - yourtm.TM_GMTOFF);
   2261   1.87  christos 		  if (!increment_overflow_time(&altt, diff)) {
   2262   1.87  christos 		    struct tm alttm;
   2263  1.126  christos 		    time_t xaltt = (time_t)altt;
   2264  1.126  christos 		    if (funcp(sp, &xaltt, offset, &alttm)
   2265   1.87  christos 			&& alttm.tm_isdst == mytm.tm_isdst
   2266   1.87  christos 			&& alttm.TM_GMTOFF == yourtm.TM_GMTOFF
   2267  1.124  christos 			&& tmcomp(&alttm, &yourtm) == 0) {
   2268  1.126  christos 		      t = xaltt;
   2269   1.87  christos 		      mytm = alttm;
   2270   1.87  christos 		    }
   2271   1.87  christos 		  }
   2272   1.87  christos 		}
   2273   1.87  christos #endif
   2274    1.1       jtc 		if (yourtm.tm_isdst < 0 || mytm.tm_isdst == yourtm.tm_isdst)
   2275    1.1       jtc 			break;
   2276    1.1       jtc 		/*
   2277    1.1       jtc 		** Right time, wrong type.
   2278    1.1       jtc 		** Hunt for right time, right type.
   2279    1.1       jtc 		** It's okay to guess wrong since the guess
   2280    1.1       jtc 		** gets checked.
   2281    1.1       jtc 		*/
   2282    1.1       jtc 		if (sp == NULL)
   2283   1.60  christos 			goto invalid;
   2284    1.5       jtc 		for (i = sp->typecnt - 1; i >= 0; --i) {
   2285    1.1       jtc 			if (sp->ttis[i].tt_isdst != yourtm.tm_isdst)
   2286    1.1       jtc 				continue;
   2287    1.5       jtc 			for (j = sp->typecnt - 1; j >= 0; --j) {
   2288    1.1       jtc 				if (sp->ttis[j].tt_isdst == yourtm.tm_isdst)
   2289    1.1       jtc 					continue;
   2290  1.122  christos 				newt = (time_t)(t + sp->ttis[j].tt_utoff -
   2291  1.122  christos 				    sp->ttis[i].tt_utoff);
   2292   1.87  christos 				if (! funcp(sp, &newt, offset, &mytm))
   2293   1.45   mlelstv 					continue;
   2294    1.1       jtc 				if (tmcomp(&mytm, &yourtm) != 0)
   2295    1.1       jtc 					continue;
   2296    1.1       jtc 				if (mytm.tm_isdst != yourtm.tm_isdst)
   2297    1.1       jtc 					continue;
   2298    1.1       jtc 				/*
   2299    1.1       jtc 				** We have a match.
   2300    1.1       jtc 				*/
   2301    1.1       jtc 				t = newt;
   2302    1.1       jtc 				goto label;
   2303    1.1       jtc 			}
   2304    1.1       jtc 		}
   2305   1.60  christos 		goto invalid;
   2306    1.1       jtc 	}
   2307    1.1       jtc label:
   2308    1.1       jtc 	newt = t + saved_seconds;
   2309    1.1       jtc 	if ((newt < t) != (saved_seconds < 0))
   2310   1.91  christos 		goto out_of_range;
   2311    1.1       jtc 	t = newt;
   2312   1.87  christos 	if (funcp(sp, &t, offset, tmp)) {
   2313   1.87  christos 		*okayp = true;
   2314   1.51  christos 		return t;
   2315   1.60  christos 	}
   2316   1.91  christos out_of_range:
   2317   1.60  christos 	errno = EOVERFLOW;
   2318   1.60  christos 	return WRONG;
   2319   1.60  christos invalid:
   2320   1.60  christos 	errno = EINVAL;
   2321   1.60  christos 	return WRONG;
   2322   1.13       jtc }
   2323   1.13       jtc 
   2324   1.13       jtc static time_t
   2325   1.87  christos time2(struct tm * const	tmp,
   2326   1.87  christos       struct tm *(*funcp)(struct state const *, time_t const *,
   2327   1.87  christos 			  int_fast32_t, struct tm *),
   2328   1.87  christos       struct state const *sp,
   2329   1.87  christos       const int_fast32_t offset,
   2330   1.87  christos       bool *okayp)
   2331   1.13       jtc {
   2332   1.13       jtc 	time_t	t;
   2333   1.13       jtc 
   2334   1.13       jtc 	/*
   2335   1.13       jtc 	** First try without normalization of seconds
   2336   1.13       jtc 	** (in case tm_sec contains a value associated with a leap second).
   2337   1.13       jtc 	** If that fails, try with normalization of seconds.
   2338   1.13       jtc 	*/
   2339   1.87  christos 	t = time2sub(tmp, funcp, sp, offset, okayp, false);
   2340   1.87  christos 	return *okayp ? t : time2sub(tmp, funcp, sp, offset, okayp, true);
   2341    1.1       jtc }
   2342    1.1       jtc 
   2343    1.1       jtc static time_t
   2344   1.87  christos time1(struct tm *const tmp,
   2345  1.124  christos       struct tm *(*funcp)(struct state const *, time_t const *,
   2346  1.124  christos 			  int_fast32_t, struct tm *),
   2347   1.87  christos       struct state const *sp,
   2348   1.87  christos       const int_fast32_t offset)
   2349   1.49  christos {
   2350  1.130    rillig 	register time_t			t;
   2351  1.130    rillig 	register int			samei, otheri;
   2352  1.130    rillig 	register int			sameind, otherind;
   2353  1.130    rillig 	register int			i;
   2354  1.130    rillig 	register int			nseen;
   2355  1.130    rillig 	int				save_errno;
   2356   1.83  christos 	char				seen[TZ_MAX_TYPES];
   2357   1.83  christos 	unsigned char			types[TZ_MAX_TYPES];
   2358   1.87  christos 	bool				okay;
   2359    1.1       jtc 
   2360   1.58  christos 	if (tmp == NULL) {
   2361   1.58  christos 		errno = EINVAL;
   2362   1.58  christos 		return WRONG;
   2363   1.58  christos 	}
   2364    1.1       jtc 	if (tmp->tm_isdst > 1)
   2365    1.1       jtc 		tmp->tm_isdst = 1;
   2366   1.90  christos 	save_errno = errno;
   2367   1.87  christos 	t = time2(tmp, funcp, sp, offset, &okay);
   2368   1.90  christos 	if (okay) {
   2369   1.90  christos 		errno = save_errno;
   2370    1.1       jtc 		return t;
   2371   1.90  christos 	}
   2372    1.1       jtc 	if (tmp->tm_isdst < 0)
   2373   1.82  christos #ifdef PCTS
   2374   1.82  christos 		/*
   2375   1.82  christos 		** POSIX Conformance Test Suite code courtesy Grant Sullivan.
   2376   1.82  christos 		*/
   2377    1.1       jtc 		tmp->tm_isdst = 0;	/* reset to std and try again */
   2378   1.82  christos #else
   2379    1.1       jtc 		return t;
   2380    1.1       jtc #endif /* !defined PCTS */
   2381    1.1       jtc 	/*
   2382    1.1       jtc 	** We're supposed to assume that somebody took a time of one type
   2383    1.1       jtc 	** and did some math on it that yielded a "struct tm" that's bad.
   2384    1.1       jtc 	** We try to divine the type they started from and adjust to the
   2385    1.1       jtc 	** type they need.
   2386    1.1       jtc 	*/
   2387   1.60  christos 	if (sp == NULL) {
   2388   1.60  christos 		errno = EINVAL;
   2389    1.1       jtc 		return WRONG;
   2390   1.60  christos 	}
   2391   1.35    kleink 	for (i = 0; i < sp->typecnt; ++i)
   2392   1.87  christos 		seen[i] = false;
   2393   1.35    kleink 	nseen = 0;
   2394   1.35    kleink 	for (i = sp->timecnt - 1; i >= 0; --i)
   2395  1.129  christos 		if (!seen[sp->types[i]] && !ttunspecified(sp, sp->types[i])) {
   2396   1.87  christos 			seen[sp->types[i]] = true;
   2397   1.35    kleink 			types[nseen++] = sp->types[i];
   2398   1.35    kleink 		}
   2399   1.35    kleink 	for (sameind = 0; sameind < nseen; ++sameind) {
   2400   1.35    kleink 		samei = types[sameind];
   2401    1.1       jtc 		if (sp->ttis[samei].tt_isdst != tmp->tm_isdst)
   2402    1.1       jtc 			continue;
   2403   1.35    kleink 		for (otherind = 0; otherind < nseen; ++otherind) {
   2404   1.35    kleink 			otheri = types[otherind];
   2405    1.1       jtc 			if (sp->ttis[otheri].tt_isdst == tmp->tm_isdst)
   2406    1.1       jtc 				continue;
   2407  1.131    rillig 			tmp->tm_sec += (int)(sp->ttis[otheri].tt_utoff
   2408  1.131    rillig 					- sp->ttis[samei].tt_utoff);
   2409    1.1       jtc 			tmp->tm_isdst = !tmp->tm_isdst;
   2410   1.87  christos 			t = time2(tmp, funcp, sp, offset, &okay);
   2411   1.90  christos 			if (okay) {
   2412   1.90  christos 				errno = save_errno;
   2413    1.1       jtc 				return t;
   2414   1.90  christos 			}
   2415  1.131    rillig 			tmp->tm_sec -= (int)(sp->ttis[otheri].tt_utoff
   2416  1.131    rillig 					- sp->ttis[samei].tt_utoff);
   2417    1.1       jtc 			tmp->tm_isdst = !tmp->tm_isdst;
   2418    1.1       jtc 		}
   2419    1.1       jtc 	}
   2420   1.60  christos 	errno = EOVERFLOW;
   2421    1.1       jtc 	return WRONG;
   2422    1.1       jtc }
   2423    1.1       jtc 
   2424   1.87  christos static time_t
   2425   1.87  christos mktime_tzname(timezone_t sp, struct tm *tmp, bool setname)
   2426   1.87  christos {
   2427  1.131    rillig   if (sp)
   2428  1.131    rillig     return time1(tmp, localsub, sp, setname);
   2429  1.131    rillig   else {
   2430  1.131    rillig     gmtcheck();
   2431  1.131    rillig     return time1(tmp, gmtsub, gmtptr, 0);
   2432  1.131    rillig   }
   2433   1.87  christos }
   2434   1.87  christos 
   2435   1.87  christos #if NETBSD_INSPIRED
   2436   1.87  christos 
   2437    1.1       jtc time_t
   2438   1.87  christos mktime_z(timezone_t sp, struct tm *const tmp)
   2439   1.49  christos {
   2440  1.131    rillig   return mktime_tzname(sp, tmp, false);
   2441   1.49  christos }
   2442   1.49  christos 
   2443   1.87  christos #endif
   2444   1.87  christos 
   2445   1.49  christos time_t
   2446   1.96  christos mktime(struct tm *tmp)
   2447    1.1       jtc {
   2448  1.131    rillig   time_t t;
   2449   1.19    kleink 
   2450  1.131    rillig   rwlock_wrlock(&__lcl_lock);
   2451  1.131    rillig   tzset_unlocked();
   2452  1.131    rillig   t = mktime_tzname(__lclptr, tmp, true);
   2453  1.131    rillig   rwlock_unlock(&__lcl_lock);
   2454  1.131    rillig   return t;
   2455    1.1       jtc }
   2456    1.1       jtc 
   2457    1.1       jtc #ifdef STD_INSPIRED
   2458    1.1       jtc 
   2459    1.1       jtc time_t
   2460   1.68  christos timelocal_z(const timezone_t sp, struct tm *const tmp)
   2461   1.49  christos {
   2462   1.49  christos 	if (tmp != NULL)
   2463   1.49  christos 		tmp->tm_isdst = -1;	/* in case it wasn't initialized */
   2464   1.49  christos 	return mktime_z(sp, tmp);
   2465   1.49  christos }
   2466   1.49  christos 
   2467   1.49  christos time_t
   2468   1.96  christos timelocal(struct tm *tmp)
   2469    1.1       jtc {
   2470   1.58  christos 	if (tmp != NULL)
   2471   1.58  christos 		tmp->tm_isdst = -1;	/* in case it wasn't initialized */
   2472    1.1       jtc 	return mktime(tmp);
   2473    1.1       jtc }
   2474    1.1       jtc 
   2475    1.1       jtc time_t
   2476   1.96  christos timegm(struct tm *tmp)
   2477    1.1       jtc {
   2478  1.131    rillig   return timeoff(tmp, 0);
   2479    1.1       jtc }
   2480    1.1       jtc 
   2481    1.1       jtc time_t
   2482   1.96  christos timeoff(struct tm *tmp, long offset)
   2483    1.1       jtc {
   2484  1.131    rillig   if (tmp)
   2485  1.131    rillig     tmp->tm_isdst = 0;
   2486  1.131    rillig   gmtcheck();
   2487  1.131    rillig   return time1(tmp, gmtsub, gmtptr, (int_fast32_t)offset);
   2488    1.1       jtc }
   2489    1.1       jtc 
   2490    1.1       jtc #endif /* defined STD_INSPIRED */
   2491    1.1       jtc 
   2492  1.124  christos static int_fast32_t
   2493  1.123  christos leapcorr(struct state const *sp, time_t t)
   2494    1.1       jtc {
   2495  1.130    rillig 	register struct lsinfo const *	lp;
   2496  1.130    rillig 	register int			i;
   2497    1.1       jtc 
   2498    1.1       jtc 	i = sp->leapcnt;
   2499    1.1       jtc 	while (--i >= 0) {
   2500    1.1       jtc 		lp = &sp->lsis[i];
   2501   1.87  christos 		if (t >= lp->ls_trans)
   2502    1.1       jtc 			return lp->ls_corr;
   2503    1.1       jtc 	}
   2504    1.1       jtc 	return 0;
   2505    1.1       jtc }
   2506    1.1       jtc 
   2507  1.124  christos /* NETBSD_INSPIRED_EXTERN functions are exported to callers if
   2508  1.124  christos    NETBSD_INSPIRED is defined, and are private otherwise.  */
   2509  1.132    rillig # if NETBSD_INSPIRED
   2510  1.132    rillig #  define NETBSD_INSPIRED_EXTERN
   2511  1.132    rillig # else
   2512  1.132    rillig #  define NETBSD_INSPIRED_EXTERN static
   2513  1.132    rillig # endif
   2514  1.124  christos 
   2515  1.132    rillig /*
   2516  1.132    rillig ** IEEE Std 1003.1 (POSIX) says that 536457599
   2517  1.132    rillig ** shall correspond to "Wed Dec 31 23:59:59 UTC 1986", which
   2518  1.132    rillig ** is not the case if we are accounting for leap seconds.
   2519  1.132    rillig ** So, we provide the following conversion routines for use
   2520  1.132    rillig ** when exchanging timestamps with POSIX conforming systems.
   2521  1.132    rillig */
   2522  1.124  christos 
   2523  1.109  christos NETBSD_INSPIRED_EXTERN time_t
   2524   1.87  christos time2posix_z(timezone_t sp, time_t t)
   2525   1.49  christos {
   2526  1.131    rillig   return (time_t)(t - leapcorr(sp, t));
   2527   1.49  christos }
   2528   1.49  christos 
   2529   1.49  christos time_t
   2530   1.49  christos time2posix(time_t t)
   2531    1.1       jtc {
   2532  1.131    rillig   rwlock_wrlock(&__lcl_lock);
   2533  1.131    rillig   if (!lcl_is_set)
   2534  1.131    rillig     tzset_unlocked();
   2535  1.131    rillig   if (__lclptr)
   2536  1.131    rillig     t = (time_t)(t - leapcorr(__lclptr, t));
   2537  1.131    rillig   rwlock_unlock(&__lcl_lock);
   2538  1.131    rillig   return t;
   2539    1.1       jtc }
   2540    1.1       jtc 
   2541  1.123  christos /*
   2542  1.123  christos ** XXX--is the below the right way to conditionalize??
   2543  1.123  christos */
   2544  1.123  christos 
   2545  1.123  christos #ifdef STD_INSPIRED
   2546  1.123  christos 
   2547  1.109  christos NETBSD_INSPIRED_EXTERN time_t
   2548   1.87  christos posix2time_z(timezone_t sp, time_t t)
   2549    1.1       jtc {
   2550    1.1       jtc 	time_t	x;
   2551    1.1       jtc 	time_t	y;
   2552    1.1       jtc 	/*
   2553    1.1       jtc 	** For a positive leap second hit, the result
   2554   1.45   mlelstv 	** is not unique. For a negative leap second
   2555    1.1       jtc 	** hit, the corresponding time doesn't exist,
   2556    1.1       jtc 	** so we return an adjacent second.
   2557    1.1       jtc 	*/
   2558   1.87  christos 	x = (time_t)(t + leapcorr(sp, t));
   2559   1.87  christos 	y = (time_t)(x - leapcorr(sp, x));
   2560    1.1       jtc 	if (y < t) {
   2561    1.1       jtc 		do {
   2562    1.1       jtc 			x++;
   2563   1.87  christos 			y = (time_t)(x - leapcorr(sp, x));
   2564    1.1       jtc 		} while (y < t);
   2565   1.87  christos 		x -= y != t;
   2566    1.1       jtc 	} else if (y > t) {
   2567    1.1       jtc 		do {
   2568    1.1       jtc 			--x;
   2569   1.87  christos 			y = (time_t)(x - leapcorr(sp, x));
   2570    1.1       jtc 		} while (y > t);
   2571   1.87  christos 		x += y != t;
   2572    1.1       jtc 	}
   2573   1.49  christos 	return x;
   2574   1.49  christos }
   2575   1.49  christos 
   2576   1.49  christos time_t
   2577   1.49  christos posix2time(time_t t)
   2578   1.49  christos {
   2579  1.131    rillig   rwlock_wrlock(&__lcl_lock);
   2580  1.131    rillig   if (!lcl_is_set)
   2581  1.131    rillig     tzset_unlocked();
   2582  1.131    rillig   if (__lclptr)
   2583  1.131    rillig     t = posix2time_z(__lclptr, t);
   2584  1.131    rillig   rwlock_unlock(&__lcl_lock);
   2585  1.131    rillig   return t;
   2586    1.1       jtc }
   2587    1.1       jtc 
   2588    1.1       jtc #endif /* defined STD_INSPIRED */
   2589