localtime.c revision 1.140 1 1.140 christos /* $NetBSD: localtime.c,v 1.140 2024/01/20 14:52:49 christos Exp $ */
2 1.113 christos
3 1.113 christos /* Convert timestamp from time_t to struct tm. */
4 1.7 jtc
5 1.7 jtc /*
6 1.7 jtc ** This file is in the public domain, so clarified as of
7 1.45 mlelstv ** 1996-06-05 by Arthur David Olson.
8 1.7 jtc */
9 1.2 jtc
10 1.11 christos #include <sys/cdefs.h>
11 1.24 msaitoh #if defined(LIBC_SCCS) && !defined(lint)
12 1.11 christos #if 0
13 1.58 christos static char elsieid[] = "@(#)localtime.c 8.17";
14 1.11 christos #else
15 1.140 christos __RCSID("$NetBSD: localtime.c,v 1.140 2024/01/20 14:52:49 christos Exp $");
16 1.11 christos #endif
17 1.24 msaitoh #endif /* LIBC_SCCS and not lint */
18 1.1 jtc
19 1.1 jtc /*
20 1.45 mlelstv ** Leap second handling from Bradley White.
21 1.45 mlelstv ** POSIX-style TZ environment variable handling from Guy Harris.
22 1.1 jtc */
23 1.1 jtc
24 1.1 jtc /*LINTLIBRARY*/
25 1.1 jtc
26 1.12 jtc #include "namespace.h"
27 1.78 christos #include <assert.h>
28 1.87 christos #define LOCALTIME_IMPLEMENTATION
29 1.1 jtc #include "private.h"
30 1.87 christos
31 1.1 jtc #include "tzfile.h"
32 1.106 christos #include <fcntl.h>
33 1.12 jtc
34 1.42 christos #if defined(__weak_alias)
35 1.25 kleink __weak_alias(daylight,_daylight)
36 1.23 mycroft __weak_alias(tzname,_tzname)
37 1.12 jtc #endif
38 1.1 jtc
39 1.45 mlelstv #ifndef TZ_ABBR_CHAR_SET
40 1.134 christos # define TZ_ABBR_CHAR_SET \
41 1.45 mlelstv "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789 :+-._"
42 1.45 mlelstv #endif /* !defined TZ_ABBR_CHAR_SET */
43 1.45 mlelstv
44 1.45 mlelstv #ifndef TZ_ABBR_ERR_CHAR
45 1.134 christos # define TZ_ABBR_ERR_CHAR '_'
46 1.45 mlelstv #endif /* !defined TZ_ABBR_ERR_CHAR */
47 1.45 mlelstv
48 1.1 jtc /*
49 1.134 christos ** Support non-POSIX platforms that distinguish between text and binary files.
50 1.1 jtc */
51 1.1 jtc
52 1.1 jtc #ifndef O_BINARY
53 1.134 christos # define O_BINARY 0
54 1.134 christos #endif
55 1.1 jtc
56 1.1 jtc #ifndef WILDABBR
57 1.1 jtc /*
58 1.1 jtc ** Someone might make incorrect use of a time zone abbreviation:
59 1.1 jtc ** 1. They might reference tzname[0] before calling tzset (explicitly
60 1.1 jtc ** or implicitly).
61 1.1 jtc ** 2. They might reference tzname[1] before calling tzset (explicitly
62 1.1 jtc ** or implicitly).
63 1.1 jtc ** 3. They might reference tzname[1] after setting to a time zone
64 1.1 jtc ** in which Daylight Saving Time is never observed.
65 1.1 jtc ** 4. They might reference tzname[0] after setting to a time zone
66 1.1 jtc ** in which Standard Time is never observed.
67 1.1 jtc ** 5. They might reference tm.TM_ZONE after calling offtime.
68 1.1 jtc ** What's best to do in the above cases is open to debate;
69 1.1 jtc ** for now, we just set things up so that in any of the five cases
70 1.45 mlelstv ** WILDABBR is used. Another possibility: initialize tzname[0] to the
71 1.1 jtc ** string "tzname[0] used before set", and similarly for the other cases.
72 1.45 mlelstv ** And another: initialize tzname[0] to "ERA", with an explanation in the
73 1.1 jtc ** manual page of what this "time zone abbreviation" means (doing this so
74 1.1 jtc ** that tzname[0] has the "normal" length of three characters).
75 1.1 jtc */
76 1.134 christos # define WILDABBR " "
77 1.1 jtc #endif /* !defined WILDABBR */
78 1.1 jtc
79 1.45 mlelstv static const char wildabbr[] = WILDABBR;
80 1.1 jtc
81 1.134 christos static char const etc_utc[] = "Etc/UTC";
82 1.134 christos static char const *utc = etc_utc + sizeof "Etc/" - 1;
83 1.1 jtc
84 1.22 kleink /*
85 1.22 kleink ** The DST rules to use if TZ has no rules and we can't load TZDEFRULES.
86 1.109 christos ** Default to US rules as of 2017-05-07.
87 1.112 christos ** POSIX does not specify the default DST rules;
88 1.112 christos ** for historical reasons, US rules are a common default.
89 1.22 kleink */
90 1.22 kleink #ifndef TZDEFRULESTRING
91 1.134 christos # define TZDEFRULESTRING ",M3.2.0,M11.1.0"
92 1.109 christos #endif
93 1.22 kleink
94 1.126 christos typedef int_fast64_t __time_t;
95 1.126 christos
96 1.1 jtc struct ttinfo { /* time type information */
97 1.122 christos int_fast32_t tt_utoff; /* UT offset in seconds */
98 1.87 christos bool tt_isdst; /* used to set tm_isdst */
99 1.122 christos int tt_desigidx; /* abbreviation list index */
100 1.87 christos bool tt_ttisstd; /* transition is std time */
101 1.122 christos bool tt_ttisut; /* transition is UT */
102 1.1 jtc };
103 1.1 jtc
104 1.1 jtc struct lsinfo { /* leap second information */
105 1.126 christos __time_t ls_trans; /* transition time */
106 1.124 christos int_fast32_t ls_corr; /* correction to apply */
107 1.1 jtc };
108 1.1 jtc
109 1.129 christos /* This abbreviation means local time is unspecified. */
110 1.129 christos static char const UNSPEC[] = "-00";
111 1.129 christos
112 1.129 christos /* How many extra bytes are needed at the end of struct state's chars array.
113 1.129 christos This needs to be at least 1 for null termination in case the input
114 1.129 christos data isn't properly terminated, and it also needs to be big enough
115 1.129 christos for ttunspecified to work without crashing. */
116 1.134 christos enum { CHARS_EXTRA = max(sizeof UNSPEC, 2) - 1 };
117 1.129 christos
118 1.138 christos /* Limit to time zone abbreviation length in POSIX-style TZ strings.
119 1.138 christos This is distinct from TZ_MAX_CHARS, which limits TZif file contents. */
120 1.138 christos #ifndef TZNAME_MAXIMUM
121 1.138 christos # define TZNAME_MAXIMUM 255
122 1.138 christos #endif
123 1.1 jtc
124 1.87 christos #define state __state
125 1.139 christos /* A representation of the contents of a TZif file. Ideally this
126 1.139 christos would have no size limits; the following sizes should suffice for
127 1.139 christos practical use. This struct should not be too large, as instances
128 1.139 christos are put on the stack and stacks are relatively small on some platforms.
129 1.139 christos See tzfile.h for more about the sizes. */
130 1.87 christos struct state {
131 1.1 jtc int leapcnt;
132 1.1 jtc int timecnt;
133 1.1 jtc int typecnt;
134 1.1 jtc int charcnt;
135 1.87 christos bool goback;
136 1.87 christos bool goahead;
137 1.126 christos __time_t ats[TZ_MAX_TIMES];
138 1.1 jtc unsigned char types[TZ_MAX_TIMES];
139 1.1 jtc struct ttinfo ttis[TZ_MAX_TYPES];
140 1.140 christos /*CONSTCOND*/
141 1.134 christos char chars[max(max(TZ_MAX_CHARS + CHARS_EXTRA, sizeof "UTC"),
142 1.138 christos 2 * (TZNAME_MAXIMUM + 1))];
143 1.1 jtc struct lsinfo lsis[TZ_MAX_LEAPS];
144 1.113 christos
145 1.113 christos /* The time type to use for early times or if no transitions.
146 1.113 christos It is always zero for recent tzdb releases.
147 1.113 christos It might be nonzero for data from tzdb 2018e or earlier. */
148 1.113 christos int defaulttype;
149 1.1 jtc };
150 1.1 jtc
151 1.96 christos enum r_type {
152 1.96 christos JULIAN_DAY, /* Jn = Julian day */
153 1.96 christos DAY_OF_YEAR, /* n = day of year */
154 1.96 christos MONTH_NTH_DAY_OF_WEEK /* Mm.n.d = month, week, day of week */
155 1.96 christos };
156 1.96 christos
157 1.1 jtc struct rule {
158 1.96 christos enum r_type r_type; /* type of rule */
159 1.1 jtc int r_day; /* day number of rule */
160 1.1 jtc int r_week; /* week number of rule */
161 1.1 jtc int r_mon; /* month number of rule */
162 1.74 christos int_fast32_t r_time; /* transition time of rule */
163 1.1 jtc };
164 1.1 jtc
165 1.87 christos static struct tm *gmtsub(struct state const *, time_t const *, int_fast32_t,
166 1.87 christos struct tm *);
167 1.87 christos static bool increment_overflow(int *, int);
168 1.126 christos static bool increment_overflow_time(__time_t *, int_fast32_t);
169 1.140 christos static int_fast32_t leapcorr(struct state const *, __time_t);
170 1.87 christos static bool normalize_overflow32(int_fast32_t *, int *, int);
171 1.87 christos static struct tm *timesub(time_t const *, int_fast32_t, struct state const *,
172 1.87 christos struct tm *);
173 1.139 christos static bool tzparse(char const *, struct state *, struct state const *);
174 1.1 jtc
175 1.49 christos static timezone_t gmtptr;
176 1.1 jtc
177 1.1 jtc #ifndef TZ_STRLEN_MAX
178 1.134 christos # define TZ_STRLEN_MAX 255
179 1.1 jtc #endif /* !defined TZ_STRLEN_MAX */
180 1.1 jtc
181 1.45 mlelstv static char lcl_TZname[TZ_STRLEN_MAX + 1];
182 1.45 mlelstv static int lcl_is_set;
183 1.42 christos
184 1.42 christos
185 1.117 christos #if !defined(__LIBC12_SOURCE__)
186 1.117 christos timezone_t __lclptr;
187 1.33 christos #ifdef _REENTRANT
188 1.117 christos rwlock_t __lcl_lock = RWLOCK_INITIALIZER;
189 1.117 christos #endif
190 1.19 kleink #endif
191 1.19 kleink
192 1.1 jtc /*
193 1.1 jtc ** Section 4.12.3 of X3.159-1989 requires that
194 1.1 jtc ** Except for the strftime function, these functions [asctime,
195 1.1 jtc ** ctime, gmtime, localtime] return values in one of two static
196 1.1 jtc ** objects: a broken-down time structure and an array of char.
197 1.45 mlelstv ** Thanks to Paul Eggert for noting this.
198 1.138 christos **
199 1.138 christos ** This requirement was removed in C99, so support it only if requested,
200 1.138 christos ** as support is more likely to lead to bugs in badly written programs.
201 1.1 jtc */
202 1.1 jtc
203 1.138 christos #if SUPPORT_C89
204 1.1 jtc static struct tm tm;
205 1.138 christos #endif
206 1.1 jtc
207 1.123 christos #if 2 <= HAVE_TZNAME + TZ_TIME_T || defined(__NetBSD__)
208 1.102 christos # if !defined(__LIBC12_SOURCE__)
209 1.102 christos
210 1.102 christos __aconst char * tzname[2] = {
211 1.102 christos (__aconst char *)__UNCONST(wildabbr),
212 1.102 christos (__aconst char *)__UNCONST(wildabbr)
213 1.102 christos };
214 1.102 christos
215 1.102 christos # else
216 1.102 christos
217 1.102 christos extern __aconst char * tzname[2];
218 1.102 christos
219 1.102 christos # endif /* __LIBC12_SOURCE__ */
220 1.123 christos #endif
221 1.102 christos
222 1.123 christos #if 2 <= USG_COMPAT + TZ_TIME_T || defined(__NetBSD__)
223 1.123 christos # if !defined(__LIBC12_SOURCE__)
224 1.42 christos long timezone = 0;
225 1.1 jtc int daylight = 0;
226 1.123 christos # endif /* __LIBC12_SOURCE__ */
227 1.123 christos #endif /* 2<= USG_COMPAT + TZ_TIME_T */
228 1.1 jtc
229 1.123 christos #if 2 <= ALTZONE + TZ_TIME_T
230 1.81 christos long altzone = 0;
231 1.123 christos #endif /* 2 <= ALTZONE + TZ_TIME_T */
232 1.1 jtc
233 1.122 christos /* Initialize *S to a value based on UTOFF, ISDST, and DESIGIDX. */
234 1.91 christos static void
235 1.122 christos init_ttinfo(struct ttinfo *s, int_fast32_t utoff, bool isdst, int desigidx)
236 1.91 christos {
237 1.131 rillig s->tt_utoff = utoff;
238 1.131 rillig s->tt_isdst = isdst;
239 1.131 rillig s->tt_desigidx = desigidx;
240 1.131 rillig s->tt_ttisstd = false;
241 1.131 rillig s->tt_ttisut = false;
242 1.91 christos }
243 1.91 christos
244 1.129 christos /* Return true if SP's time type I does not specify local time. */
245 1.129 christos static bool
246 1.129 christos ttunspecified(struct state const *sp, int i)
247 1.129 christos {
248 1.129 christos char const *abbr = &sp->chars[sp->ttis[i].tt_desigidx];
249 1.129 christos /* memcmp is likely faster than strcmp, and is safe due to CHARS_EXTRA. */
250 1.129 christos return memcmp(abbr, UNSPEC, sizeof UNSPEC) == 0;
251 1.129 christos }
252 1.129 christos
253 1.74 christos static int_fast32_t
254 1.49 christos detzcode(const char *const codep)
255 1.1 jtc {
256 1.130 rillig register int_fast32_t result;
257 1.130 rillig register int i;
258 1.95 christos int_fast32_t one = 1;
259 1.95 christos int_fast32_t halfmaxval = one << (32 - 2);
260 1.95 christos int_fast32_t maxval = halfmaxval - 1 + halfmaxval;
261 1.95 christos int_fast32_t minval = -1 - maxval;
262 1.45 mlelstv
263 1.95 christos result = codep[0] & 0x7f;
264 1.95 christos for (i = 1; i < 4; ++i)
265 1.45 mlelstv result = (result << 8) | (codep[i] & 0xff);
266 1.95 christos
267 1.95 christos if (codep[0] & 0x80) {
268 1.95 christos /* Do two's-complement negation even on non-two's-complement machines.
269 1.95 christos If the result would be minval - 1, return minval. */
270 1.131 rillig result -= !TWOS_COMPLEMENT(int_fast32_t) && result != 0;
271 1.131 rillig result += minval;
272 1.95 christos }
273 1.131 rillig return result;
274 1.45 mlelstv }
275 1.45 mlelstv
276 1.81 christos static int_fast64_t
277 1.49 christos detzcode64(const char *const codep)
278 1.45 mlelstv {
279 1.130 rillig register int_fast64_t result;
280 1.130 rillig register int i;
281 1.95 christos int_fast64_t one = 1;
282 1.95 christos int_fast64_t halfmaxval = one << (64 - 2);
283 1.95 christos int_fast64_t maxval = halfmaxval - 1 + halfmaxval;
284 1.95 christos int_fast64_t minval = -TWOS_COMPLEMENT(int_fast64_t) - maxval;
285 1.1 jtc
286 1.95 christos result = codep[0] & 0x7f;
287 1.95 christos for (i = 1; i < 8; ++i)
288 1.81 christos result = (result << 8) | (codep[i] & 0xff);
289 1.95 christos
290 1.95 christos if (codep[0] & 0x80) {
291 1.95 christos /* Do two's-complement negation even on non-two's-complement machines.
292 1.95 christos If the result would be minval - 1, return minval. */
293 1.95 christos result -= !TWOS_COMPLEMENT(int_fast64_t) && result != 0;
294 1.95 christos result += minval;
295 1.95 christos }
296 1.131 rillig return result;
297 1.1 jtc }
298 1.1 jtc
299 1.121 christos #include <stdio.h>
300 1.121 christos
301 1.49 christos const char *
302 1.49 christos tzgetname(const timezone_t sp, int isdst)
303 1.49 christos {
304 1.49 christos int i;
305 1.121 christos const char *name = NULL;
306 1.103 ginsbach for (i = 0; i < sp->typecnt; ++i) {
307 1.120 christos const struct ttinfo *const ttisp = &sp->ttis[i];
308 1.49 christos if (ttisp->tt_isdst == isdst)
309 1.122 christos name = &sp->chars[ttisp->tt_desigidx];
310 1.49 christos }
311 1.121 christos if (name != NULL)
312 1.121 christos return name;
313 1.88 christos errno = ESRCH;
314 1.49 christos return NULL;
315 1.49 christos }
316 1.49 christos
317 1.99 christos long
318 1.99 christos tzgetgmtoff(const timezone_t sp, int isdst)
319 1.99 christos {
320 1.99 christos int i;
321 1.99 christos long l = -1;
322 1.103 ginsbach for (i = 0; i < sp->typecnt; ++i) {
323 1.120 christos const struct ttinfo *const ttisp = &sp->ttis[i];
324 1.99 christos
325 1.99 christos if (ttisp->tt_isdst == isdst) {
326 1.122 christos l = ttisp->tt_utoff;
327 1.99 christos }
328 1.99 christos }
329 1.99 christos if (l == -1)
330 1.99 christos errno = ESRCH;
331 1.99 christos return l;
332 1.99 christos }
333 1.99 christos
334 1.49 christos static void
335 1.132 rillig update_tzname_etc(struct state const *sp, struct ttinfo const *ttisp)
336 1.92 christos {
337 1.109 christos #if HAVE_TZNAME
338 1.131 rillig tzname[ttisp->tt_isdst] = __UNCONST(&sp->chars[ttisp->tt_desigidx]);
339 1.109 christos #endif
340 1.109 christos #if USG_COMPAT
341 1.131 rillig if (!ttisp->tt_isdst)
342 1.131 rillig timezone = - ttisp->tt_utoff;
343 1.93 christos #endif
344 1.123 christos #if ALTZONE
345 1.131 rillig if (ttisp->tt_isdst)
346 1.131 rillig altzone = - ttisp->tt_utoff;
347 1.132 rillig #endif
348 1.92 christos }
349 1.92 christos
350 1.134 christos /* If STDDST_MASK indicates that SP's TYPE provides useful info,
351 1.134 christos update tzname, timezone, and/or altzone and return STDDST_MASK,
352 1.134 christos diminished by the provided info if it is a specified local time.
353 1.134 christos Otherwise, return STDDST_MASK. See settzname for STDDST_MASK. */
354 1.134 christos static int
355 1.134 christos may_update_tzname_etc(int stddst_mask, struct state *sp, int type)
356 1.134 christos {
357 1.134 christos struct ttinfo *ttisp = &sp->ttis[type];
358 1.134 christos int this_bit = 1 << ttisp->tt_isdst;
359 1.134 christos if (stddst_mask & this_bit) {
360 1.134 christos update_tzname_etc(sp, ttisp);
361 1.134 christos if (!ttunspecified(sp, type))
362 1.134 christos return stddst_mask & ~this_bit;
363 1.134 christos }
364 1.134 christos return stddst_mask;
365 1.134 christos }
366 1.134 christos
367 1.45 mlelstv static void
368 1.45 mlelstv settzname(void)
369 1.1 jtc {
370 1.130 rillig register timezone_t const sp = __lclptr;
371 1.130 rillig register int i;
372 1.1 jtc
373 1.134 christos /* If STDDST_MASK & 1 we need info about a standard time.
374 1.134 christos If STDDST_MASK & 2 we need info about a daylight saving time.
375 1.134 christos When STDDST_MASK becomes zero we can stop looking. */
376 1.134 christos int stddst_mask = 0;
377 1.134 christos
378 1.109 christos #if HAVE_TZNAME
379 1.134 christos tzname[0] = tzname[1] = __UNCONST(sp ? wildabbr : utc);
380 1.134 christos stddst_mask = 3;
381 1.109 christos #endif
382 1.109 christos #if USG_COMPAT
383 1.1 jtc timezone = 0;
384 1.134 christos stddst_mask = 3;
385 1.109 christos #endif
386 1.123 christos #if ALTZONE
387 1.1 jtc altzone = 0;
388 1.134 christos stddst_mask |= 2;
389 1.123 christos #endif
390 1.58 christos /*
391 1.113 christos ** And to get the latest time zone abbreviations into tzname. . .
392 1.58 christos */
393 1.134 christos if (sp) {
394 1.134 christos for (i = sp->timecnt - 1; stddst_mask && 0 <= i; i--)
395 1.134 christos stddst_mask = may_update_tzname_etc(stddst_mask, sp, sp->types[i]);
396 1.134 christos for (i = sp->typecnt - 1; stddst_mask && 0 <= i; i--)
397 1.134 christos stddst_mask = may_update_tzname_etc(stddst_mask, sp, i);
398 1.134 christos }
399 1.1 jtc
400 1.109 christos #if USG_COMPAT
401 1.140 christos daylight = (unsigned int)stddst_mask >> 1 ^ 1;
402 1.109 christos #endif
403 1.1 jtc }
404 1.1 jtc
405 1.138 christos /* Replace bogus characters in time zone abbreviations.
406 1.138 christos Return 0 on success, an errno value if a time zone abbreviation is
407 1.138 christos too long. */
408 1.138 christos static int
409 1.124 christos scrub_abbrs(struct state *sp)
410 1.45 mlelstv {
411 1.124 christos int i;
412 1.138 christos
413 1.138 christos /* Reject overlong abbreviations. */
414 1.138 christos for (i = 0; i < sp->charcnt - (TZNAME_MAXIMUM + 1); ) {
415 1.140 christos int len = (int)strlen(&sp->chars[i]);
416 1.138 christos if (TZNAME_MAXIMUM < len)
417 1.138 christos return EOVERFLOW;
418 1.138 christos i += len + 1;
419 1.138 christos }
420 1.138 christos
421 1.138 christos /* Replace bogus characters. */
422 1.124 christos for (i = 0; i < sp->charcnt; ++i)
423 1.124 christos if (strchr(TZ_ABBR_CHAR_SET, sp->chars[i]) == NULL)
424 1.124 christos sp->chars[i] = TZ_ABBR_ERR_CHAR;
425 1.124 christos
426 1.138 christos return 0;
427 1.45 mlelstv }
428 1.45 mlelstv
429 1.124 christos /* Input buffer for data read from a compiled tz file. */
430 1.91 christos union input_buffer {
431 1.131 rillig /* The first part of the buffer, interpreted as a header. */
432 1.131 rillig struct tzhead tzhead;
433 1.91 christos
434 1.139 christos /* The entire buffer. Ideally this would have no size limits;
435 1.139 christos the following should suffice for practical use. */
436 1.131 rillig char buf[2 * sizeof(struct tzhead) + 2 * sizeof(struct state)
437 1.131 rillig + 4 * TZ_MAX_TIMES];
438 1.91 christos };
439 1.91 christos
440 1.109 christos /* TZDIR with a trailing '/' rather than a trailing '\0'. */
441 1.109 christos static char const tzdirslash[sizeof TZDIR] = TZDIR "/";
442 1.109 christos
443 1.91 christos /* Local storage needed for 'tzloadbody'. */
444 1.91 christos union local_storage {
445 1.131 rillig /* The results of analyzing the file's contents after it is opened. */
446 1.131 rillig struct file_analysis {
447 1.131 rillig /* The input buffer. */
448 1.131 rillig union input_buffer u;
449 1.131 rillig
450 1.131 rillig /* A temporary state used for parsing a TZ string in the file. */
451 1.131 rillig struct state st;
452 1.131 rillig } u;
453 1.131 rillig
454 1.139 christos /* The name of the file to be opened. Ideally this would have no
455 1.139 christos size limits, to support arbitrarily long Zone names.
456 1.139 christos Limiting Zone names to 1024 bytes should suffice for practical use.
457 1.139 christos However, there is no need for this to be smaller than struct
458 1.139 christos file_analysis as that struct is allocated anyway, as the other
459 1.139 christos union member. */
460 1.134 christos char fullname[max(sizeof(struct file_analysis), sizeof tzdirslash + 1024)];
461 1.91 christos };
462 1.91 christos
463 1.91 christos /* Load tz data from the file named NAME into *SP. Read extended
464 1.91 christos format if DOEXTEND. Use *LSP for temporary storage. Return 0 on
465 1.91 christos success, an errno value on failure. */
466 1.91 christos static int
467 1.91 christos tzloadbody(char const *name, struct state *sp, bool doextend,
468 1.131 rillig union local_storage *lsp)
469 1.49 christos {
470 1.130 rillig register int i;
471 1.130 rillig register int fid;
472 1.130 rillig register int stored;
473 1.130 rillig register ssize_t nread;
474 1.130 rillig register bool doaccess;
475 1.130 rillig register union input_buffer *up = &lsp->u.u;
476 1.130 rillig register size_t tzheadsize = sizeof(struct tzhead);
477 1.83 christos
478 1.87 christos sp->goback = sp->goahead = false;
479 1.83 christos
480 1.83 christos if (! name) {
481 1.83 christos name = TZDEFAULT;
482 1.83 christos if (! name)
483 1.131 rillig return EINVAL;
484 1.83 christos }
485 1.83 christos
486 1.83 christos if (name[0] == ':')
487 1.83 christos ++name;
488 1.112 christos #ifdef SUPPRESS_TZDIR
489 1.112 christos /* Do not prepend TZDIR. This is intended for specialized
490 1.112 christos applications only, due to its security implications. */
491 1.112 christos doaccess = true;
492 1.112 christos #else
493 1.83 christos doaccess = name[0] == '/';
494 1.112 christos #endif
495 1.83 christos if (!doaccess) {
496 1.114 christos char const *dot;
497 1.136 christos if (sizeof lsp->fullname - sizeof tzdirslash <= strlen(name))
498 1.131 rillig return ENAMETOOLONG;
499 1.109 christos
500 1.109 christos /* Create a string "TZDIR/NAME". Using sprintf here
501 1.109 christos would pull in stdio (and would fail if the
502 1.109 christos resulting string length exceeded INT_MAX!). */
503 1.109 christos memcpy(lsp->fullname, tzdirslash, sizeof tzdirslash);
504 1.109 christos strcpy(lsp->fullname + sizeof tzdirslash, name);
505 1.109 christos
506 1.114 christos /* Set doaccess if NAME contains a ".." file name
507 1.114 christos component, as such a name could read a file outside
508 1.114 christos the TZDIR virtual subtree. */
509 1.132 rillig for (dot = name; (dot = strchr(dot, '.')); dot++)
510 1.114 christos if ((dot == name || dot[-1] == '/') && dot[1] == '.'
511 1.114 christos && (dot[2] == '/' || !dot[2])) {
512 1.114 christos doaccess = true;
513 1.114 christos break;
514 1.114 christos }
515 1.114 christos
516 1.110 kre name = lsp->fullname;
517 1.1 jtc }
518 1.83 christos if (doaccess && access(name, R_OK) != 0)
519 1.131 rillig return errno;
520 1.134 christos fid = open(name, O_RDONLY | O_BINARY);
521 1.83 christos if (fid < 0)
522 1.131 rillig return errno;
523 1.124 christos
524 1.58 christos nread = read(fid, up->buf, sizeof up->buf);
525 1.91 christos if (nread < (ssize_t)tzheadsize) {
526 1.131 rillig int err = nread < 0 ? errno : EINVAL;
527 1.131 rillig close(fid);
528 1.131 rillig return err;
529 1.91 christos }
530 1.91 christos if (close(fid) < 0)
531 1.131 rillig return errno;
532 1.45 mlelstv for (stored = 4; stored <= 8; stored *= 2) {
533 1.129 christos char version = up->tzhead.tzh_version[0];
534 1.129 christos bool skip_datablock = stored == 4 && version;
535 1.129 christos int_fast32_t datablock_size;
536 1.129 christos int_fast32_t ttisstdcnt = detzcode(up->tzhead.tzh_ttisstdcnt);
537 1.129 christos int_fast32_t ttisutcnt = detzcode(up->tzhead.tzh_ttisutcnt);
538 1.129 christos int_fast64_t prevtr = -1;
539 1.129 christos int_fast32_t prevcorr = 0;
540 1.129 christos int_fast32_t leapcnt = detzcode(up->tzhead.tzh_leapcnt);
541 1.129 christos int_fast32_t timecnt = detzcode(up->tzhead.tzh_timecnt);
542 1.129 christos int_fast32_t typecnt = detzcode(up->tzhead.tzh_typecnt);
543 1.129 christos int_fast32_t charcnt = detzcode(up->tzhead.tzh_charcnt);
544 1.129 christos char const *p = up->buf + tzheadsize;
545 1.129 christos /* Although tzfile(5) currently requires typecnt to be nonzero,
546 1.129 christos support future formats that may allow zero typecnt
547 1.129 christos in files that have a TZ string and no transitions. */
548 1.129 christos if (! (0 <= leapcnt && leapcnt < TZ_MAX_LEAPS
549 1.129 christos && 0 <= typecnt && typecnt < TZ_MAX_TYPES
550 1.129 christos && 0 <= timecnt && timecnt < TZ_MAX_TIMES
551 1.129 christos && 0 <= charcnt && charcnt < TZ_MAX_CHARS
552 1.129 christos && 0 <= ttisstdcnt && ttisstdcnt < TZ_MAX_TYPES
553 1.129 christos && 0 <= ttisutcnt && ttisutcnt < TZ_MAX_TYPES))
554 1.129 christos return EINVAL;
555 1.129 christos datablock_size
556 1.129 christos = (timecnt * stored /* ats */
557 1.87 christos + timecnt /* types */
558 1.87 christos + typecnt * 6 /* ttinfos */
559 1.87 christos + charcnt /* chars */
560 1.87 christos + leapcnt * (stored + 4) /* lsinfos */
561 1.87 christos + ttisstdcnt /* ttisstds */
562 1.129 christos + ttisutcnt); /* ttisuts */
563 1.129 christos if (nread < (ssize_t)(tzheadsize + datablock_size))
564 1.129 christos return EINVAL;
565 1.129 christos if (skip_datablock)
566 1.129 christos p += datablock_size;
567 1.129 christos else {
568 1.129 christos if (! ((ttisstdcnt == typecnt || ttisstdcnt == 0)
569 1.129 christos && (ttisutcnt == typecnt || ttisutcnt == 0)))
570 1.91 christos return EINVAL;
571 1.129 christos
572 1.87 christos sp->leapcnt = leapcnt;
573 1.87 christos sp->timecnt = timecnt;
574 1.87 christos sp->typecnt = typecnt;
575 1.87 christos sp->charcnt = charcnt;
576 1.87 christos
577 1.87 christos /* Read transitions, discarding those out of time_t range.
578 1.109 christos But pretend the last transition before TIME_T_MIN
579 1.109 christos occurred at TIME_T_MIN. */
580 1.81 christos timecnt = 0;
581 1.1 jtc for (i = 0; i < sp->timecnt; ++i) {
582 1.81 christos int_fast64_t at
583 1.81 christos = stored == 4 ? detzcode(p) : detzcode64(p);
584 1.109 christos sp->types[i] = at <= TIME_T_MAX;
585 1.81 christos if (sp->types[i]) {
586 1.131 rillig time_t attime
587 1.131 rillig = ((TYPE_SIGNED(time_t) ? at < TIME_T_MIN : at < 0)
588 1.131 rillig ? TIME_T_MIN : (time_t)at);
589 1.131 rillig if (timecnt && attime <= sp->ats[timecnt - 1]) {
590 1.131 rillig if (attime < sp->ats[timecnt - 1])
591 1.131 rillig return EINVAL;
592 1.131 rillig sp->types[i - 1] = 0;
593 1.131 rillig timecnt--;
594 1.131 rillig }
595 1.131 rillig sp->ats[timecnt++] = attime;
596 1.81 christos }
597 1.45 mlelstv p += stored;
598 1.1 jtc }
599 1.87 christos
600 1.81 christos timecnt = 0;
601 1.1 jtc for (i = 0; i < sp->timecnt; ++i) {
602 1.81 christos unsigned char typ = *p++;
603 1.81 christos if (sp->typecnt <= typ)
604 1.91 christos return EINVAL;
605 1.81 christos if (sp->types[i])
606 1.81 christos sp->types[timecnt++] = typ;
607 1.1 jtc }
608 1.87 christos sp->timecnt = timecnt;
609 1.1 jtc for (i = 0; i < sp->typecnt; ++i) {
610 1.130 rillig register struct ttinfo * ttisp;
611 1.122 christos unsigned char isdst, desigidx;
612 1.1 jtc
613 1.1 jtc ttisp = &sp->ttis[i];
614 1.122 christos ttisp->tt_utoff = detzcode(p);
615 1.1 jtc p += 4;
616 1.87 christos isdst = *p++;
617 1.87 christos if (! (isdst < 2))
618 1.131 rillig return EINVAL;
619 1.87 christos ttisp->tt_isdst = isdst;
620 1.122 christos desigidx = *p++;
621 1.122 christos if (! (desigidx < sp->charcnt))
622 1.131 rillig return EINVAL;
623 1.122 christos ttisp->tt_desigidx = desigidx;
624 1.1 jtc }
625 1.1 jtc for (i = 0; i < sp->charcnt; ++i)
626 1.1 jtc sp->chars[i] = *p++;
627 1.129 christos /* Ensure '\0'-terminated, and make it safe to call
628 1.129 christos ttunspecified later. */
629 1.129 christos memset(&sp->chars[i], 0, CHARS_EXTRA);
630 1.87 christos
631 1.87 christos /* Read leap seconds, discarding those out of time_t range. */
632 1.87 christos leapcnt = 0;
633 1.1 jtc for (i = 0; i < sp->leapcnt; ++i) {
634 1.131 rillig int_fast64_t tr = stored == 4 ? detzcode(p) : detzcode64(p);
635 1.131 rillig int_fast32_t corr = detzcode(p + stored);
636 1.131 rillig p += stored + 4;
637 1.131 rillig
638 1.131 rillig /* Leap seconds cannot occur before the Epoch,
639 1.131 rillig or out of order. */
640 1.131 rillig if (tr <= prevtr)
641 1.131 rillig return EINVAL;
642 1.131 rillig
643 1.131 rillig /* To avoid other botches in this code, each leap second's
644 1.131 rillig correction must differ from the previous one's by 1
645 1.131 rillig second or less, except that the first correction can be
646 1.131 rillig any value; these requirements are more generous than
647 1.131 rillig RFC 8536, to allow future RFC extensions. */
648 1.131 rillig if (! (i == 0
649 1.131 rillig || (prevcorr < corr
650 1.131 rillig ? corr == prevcorr + 1
651 1.131 rillig : (corr == prevcorr
652 1.131 rillig || corr == prevcorr - 1))))
653 1.131 rillig return EINVAL;
654 1.131 rillig prevtr = tr;
655 1.131 rillig prevcorr = corr;
656 1.131 rillig
657 1.131 rillig if (tr <= TIME_T_MAX) {
658 1.131 rillig sp->lsis[leapcnt].ls_trans = (time_t)tr;
659 1.131 rillig sp->lsis[leapcnt].ls_corr = corr;
660 1.131 rillig leapcnt++;
661 1.131 rillig }
662 1.87 christos }
663 1.87 christos sp->leapcnt = leapcnt;
664 1.1 jtc
665 1.1 jtc for (i = 0; i < sp->typecnt; ++i) {
666 1.130 rillig register struct ttinfo * ttisp;
667 1.1 jtc
668 1.1 jtc ttisp = &sp->ttis[i];
669 1.1 jtc if (ttisstdcnt == 0)
670 1.87 christos ttisp->tt_ttisstd = false;
671 1.1 jtc else {
672 1.87 christos if (*p != true && *p != false)
673 1.91 christos return EINVAL;
674 1.1 jtc ttisp->tt_ttisstd = *p++;
675 1.1 jtc }
676 1.1 jtc }
677 1.1 jtc for (i = 0; i < sp->typecnt; ++i) {
678 1.130 rillig register struct ttinfo * ttisp;
679 1.1 jtc
680 1.1 jtc ttisp = &sp->ttis[i];
681 1.122 christos if (ttisutcnt == 0)
682 1.122 christos ttisp->tt_ttisut = false;
683 1.1 jtc else {
684 1.87 christos if (*p != true && *p != false)
685 1.91 christos return EINVAL;
686 1.122 christos ttisp->tt_ttisut = *p++;
687 1.1 jtc }
688 1.1 jtc }
689 1.129 christos }
690 1.129 christos
691 1.129 christos nread -= p - up->buf;
692 1.129 christos memmove(up->buf, p, (size_t)nread);
693 1.129 christos
694 1.129 christos /* If this is an old file, we're done. */
695 1.129 christos if (!version)
696 1.129 christos break;
697 1.45 mlelstv }
698 1.45 mlelstv if (doextend && nread > 2 &&
699 1.58 christos up->buf[0] == '\n' && up->buf[nread - 1] == '\n' &&
700 1.45 mlelstv sp->typecnt + 2 <= TZ_MAX_TYPES) {
701 1.131 rillig struct state *ts = &lsp->u.st;
702 1.45 mlelstv
703 1.58 christos up->buf[nread - 1] = '\0';
704 1.124 christos if (tzparse(&up->buf[1], ts, sp)) {
705 1.98 christos
706 1.98 christos /* Attempt to reuse existing abbreviations.
707 1.106 christos Without this, America/Anchorage would be right on
708 1.106 christos the edge after 2037 when TZ_MAX_CHARS is 50, as
709 1.106 christos sp->charcnt equals 40 (for LMT AST AWT APT AHST
710 1.98 christos AHDT YST AKDT AKST) and ts->charcnt equals 10
711 1.98 christos (for AKST AKDT). Reusing means sp->charcnt can
712 1.106 christos stay 40 in this example. */
713 1.98 christos int gotabbr = 0;
714 1.98 christos int charcnt = sp->charcnt;
715 1.113 christos for (i = 0; i < ts->typecnt; i++) {
716 1.122 christos char *tsabbr = ts->chars + ts->ttis[i].tt_desigidx;
717 1.98 christos int j;
718 1.98 christos for (j = 0; j < charcnt; j++)
719 1.98 christos if (strcmp(sp->chars + j, tsabbr) == 0) {
720 1.122 christos ts->ttis[i].tt_desigidx = j;
721 1.98 christos gotabbr++;
722 1.98 christos break;
723 1.98 christos }
724 1.98 christos if (! (j < charcnt)) {
725 1.99 christos size_t tsabbrlen = strlen(tsabbr);
726 1.98 christos if (j + tsabbrlen < TZ_MAX_CHARS) {
727 1.98 christos strcpy(sp->chars + j, tsabbr);
728 1.100 christos charcnt = (int_fast32_t)(j + tsabbrlen + 1);
729 1.122 christos ts->ttis[i].tt_desigidx = j;
730 1.98 christos gotabbr++;
731 1.98 christos }
732 1.98 christos }
733 1.98 christos }
734 1.113 christos if (gotabbr == ts->typecnt) {
735 1.98 christos sp->charcnt = charcnt;
736 1.106 christos
737 1.106 christos /* Ignore any trailing, no-op transitions generated
738 1.106 christos by zic as they don't help here and can run afoul
739 1.106 christos of bugs in zic 2016j or earlier. */
740 1.106 christos while (1 < sp->timecnt
741 1.106 christos && (sp->types[sp->timecnt - 1]
742 1.106 christos == sp->types[sp->timecnt - 2]))
743 1.106 christos sp->timecnt--;
744 1.106 christos
745 1.139 christos sp->goahead = ts->goahead;
746 1.139 christos
747 1.139 christos for (i = 0; i < ts->timecnt; i++) {
748 1.126 christos __time_t t = ts->ats[i];
749 1.124 christos if (increment_overflow_time(&t, leapcorr(sp, t))
750 1.124 christos || (0 < sp->timecnt
751 1.124 christos && t <= sp->ats[sp->timecnt - 1]))
752 1.124 christos continue;
753 1.139 christos if (TZ_MAX_TIMES <= sp->timecnt) {
754 1.139 christos sp->goahead = false;
755 1.139 christos break;
756 1.139 christos }
757 1.124 christos sp->ats[sp->timecnt] = t;
758 1.98 christos sp->types[sp->timecnt] = (sp->typecnt
759 1.98 christos + ts->types[i]);
760 1.98 christos sp->timecnt++;
761 1.98 christos }
762 1.113 christos for (i = 0; i < ts->typecnt; i++)
763 1.113 christos sp->ttis[sp->typecnt++] = ts->ttis[i];
764 1.98 christos }
765 1.45 mlelstv }
766 1.45 mlelstv }
767 1.113 christos if (sp->typecnt == 0)
768 1.113 christos return EINVAL;
769 1.113 christos
770 1.113 christos /* Infer sp->defaulttype from the data. Although this default
771 1.113 christos type is always zero for data from recent tzdb releases,
772 1.113 christos things are trickier for data from tzdb 2018e or earlier.
773 1.113 christos
774 1.113 christos The first set of heuristics work around bugs in 32-bit data
775 1.113 christos generated by tzdb 2013c or earlier. The workaround is for
776 1.113 christos zones like Australia/Macquarie where timestamps before the
777 1.113 christos first transition have a time type that is not the earliest
778 1.113 christos standard-time type. See:
779 1.113 christos https://mm.icann.org/pipermail/tz/2013-May/019368.html */
780 1.74 christos /*
781 1.129 christos ** If type 0 does not specify local time, or is unused in transitions,
782 1.74 christos ** it's the type to use for early times.
783 1.74 christos */
784 1.87 christos for (i = 0; i < sp->timecnt; ++i)
785 1.74 christos if (sp->types[i] == 0)
786 1.74 christos break;
787 1.129 christos i = i < sp->timecnt && ! ttunspecified(sp, 0) ? -1 : 0;
788 1.74 christos /*
789 1.74 christos ** Absent the above,
790 1.74 christos ** if there are transition times
791 1.74 christos ** and the first transition is to a daylight time
792 1.74 christos ** find the standard type less than and closest to
793 1.74 christos ** the type of the first transition.
794 1.74 christos */
795 1.74 christos if (i < 0 && sp->timecnt > 0 && sp->ttis[sp->types[0]].tt_isdst) {
796 1.74 christos i = sp->types[0];
797 1.74 christos while (--i >= 0)
798 1.74 christos if (!sp->ttis[i].tt_isdst)
799 1.74 christos break;
800 1.74 christos }
801 1.113 christos /* The next heuristics are for data generated by tzdb 2018e or
802 1.113 christos earlier, for zones like EST5EDT where the first transition
803 1.113 christos is to DST. */
804 1.74 christos /*
805 1.74 christos ** If no result yet, find the first standard type.
806 1.74 christos ** If there is none, punt to type zero.
807 1.74 christos */
808 1.74 christos if (i < 0) {
809 1.74 christos i = 0;
810 1.74 christos while (sp->ttis[i].tt_isdst)
811 1.74 christos if (++i >= sp->typecnt) {
812 1.74 christos i = 0;
813 1.74 christos break;
814 1.74 christos }
815 1.74 christos }
816 1.113 christos /* A simple 'sp->defaulttype = 0;' would suffice here if we
817 1.113 christos didn't have to worry about 2018e-or-earlier data. Even
818 1.113 christos simpler would be to remove the defaulttype member and just
819 1.113 christos use 0 in its place. */
820 1.74 christos sp->defaulttype = i;
821 1.113 christos
822 1.91 christos return 0;
823 1.91 christos }
824 1.91 christos
825 1.91 christos /* Load tz data from the file named NAME into *SP. Read extended
826 1.91 christos format if DOEXTEND. Return 0 on success, an errno value on failure. */
827 1.91 christos static int
828 1.91 christos tzload(char const *name, struct state *sp, bool doextend)
829 1.91 christos {
830 1.131 rillig union local_storage *lsp = malloc(sizeof *lsp);
831 1.131 rillig if (!lsp) {
832 1.131 rillig return /*CONSTCOND*/HAVE_MALLOC_ERRNO ? errno : ENOMEM;
833 1.131 rillig } else {
834 1.131 rillig int err = tzloadbody(name, sp, doextend, lsp);
835 1.131 rillig free(lsp);
836 1.131 rillig return err;
837 1.131 rillig }
838 1.1 jtc }
839 1.1 jtc
840 1.1 jtc static const int mon_lengths[2][MONSPERYEAR] = {
841 1.1 jtc { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 },
842 1.1 jtc { 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }
843 1.1 jtc };
844 1.1 jtc
845 1.1 jtc static const int year_lengths[2] = {
846 1.1 jtc DAYSPERNYEAR, DAYSPERLYEAR
847 1.1 jtc };
848 1.1 jtc
849 1.124 christos /* Is C an ASCII digit? */
850 1.124 christos static bool
851 1.124 christos is_digit(char c)
852 1.124 christos {
853 1.124 christos return '0' <= c && c <= '9';
854 1.124 christos }
855 1.124 christos
856 1.1 jtc /*
857 1.113 christos ** Given a pointer into a timezone string, scan until a character that is not
858 1.113 christos ** a valid character in a time zone abbreviation is found.
859 1.113 christos ** Return a pointer to that character.
860 1.1 jtc */
861 1.1 jtc
862 1.137 christos ATTRIBUTE_REPRODUCIBLE static const char *
863 1.130 rillig getzname(register const char *strp)
864 1.1 jtc {
865 1.130 rillig register char c;
866 1.1 jtc
867 1.5 jtc while ((c = *strp) != '\0' && !is_digit(c) && c != ',' && c != '-' &&
868 1.1 jtc c != '+')
869 1.1 jtc ++strp;
870 1.1 jtc return strp;
871 1.1 jtc }
872 1.1 jtc
873 1.1 jtc /*
874 1.113 christos ** Given a pointer into an extended timezone string, scan until the ending
875 1.113 christos ** delimiter of the time zone abbreviation is located.
876 1.113 christos ** Return a pointer to the delimiter.
877 1.45 mlelstv **
878 1.45 mlelstv ** As with getzname above, the legal character set is actually quite
879 1.45 mlelstv ** restricted, with other characters producing undefined results.
880 1.45 mlelstv ** We don't do any checking here; checking is done later in common-case code.
881 1.45 mlelstv */
882 1.45 mlelstv
883 1.137 christos ATTRIBUTE_REPRODUCIBLE static const char *
884 1.130 rillig getqzname(register const char *strp, const int delim)
885 1.45 mlelstv {
886 1.130 rillig register int c;
887 1.45 mlelstv
888 1.45 mlelstv while ((c = *strp) != '\0' && c != delim)
889 1.45 mlelstv ++strp;
890 1.45 mlelstv return strp;
891 1.45 mlelstv }
892 1.45 mlelstv
893 1.45 mlelstv /*
894 1.113 christos ** Given a pointer into a timezone string, extract a number from that string.
895 1.1 jtc ** Check that the number is within a specified range; if it is not, return
896 1.1 jtc ** NULL.
897 1.1 jtc ** Otherwise, return a pointer to the first character not part of the number.
898 1.1 jtc */
899 1.1 jtc
900 1.1 jtc static const char *
901 1.130 rillig getnum(register const char *strp, int *const nump, const int min, const int max)
902 1.1 jtc {
903 1.130 rillig register char c;
904 1.130 rillig register int num;
905 1.1 jtc
906 1.46 christos if (strp == NULL || !is_digit(c = *strp)) {
907 1.46 christos errno = EINVAL;
908 1.1 jtc return NULL;
909 1.46 christos }
910 1.1 jtc num = 0;
911 1.5 jtc do {
912 1.1 jtc num = num * 10 + (c - '0');
913 1.46 christos if (num > max) {
914 1.46 christos errno = EOVERFLOW;
915 1.1 jtc return NULL; /* illegal value */
916 1.46 christos }
917 1.5 jtc c = *++strp;
918 1.5 jtc } while (is_digit(c));
919 1.46 christos if (num < min) {
920 1.46 christos errno = EINVAL;
921 1.1 jtc return NULL; /* illegal value */
922 1.46 christos }
923 1.1 jtc *nump = num;
924 1.1 jtc return strp;
925 1.1 jtc }
926 1.1 jtc
927 1.1 jtc /*
928 1.113 christos ** Given a pointer into a timezone string, extract a number of seconds,
929 1.1 jtc ** in hh[:mm[:ss]] form, from the string.
930 1.1 jtc ** If any error occurs, return NULL.
931 1.1 jtc ** Otherwise, return a pointer to the first character not part of the number
932 1.1 jtc ** of seconds.
933 1.1 jtc */
934 1.1 jtc
935 1.1 jtc static const char *
936 1.130 rillig getsecs(register const char *strp, int_fast32_t *const secsp)
937 1.1 jtc {
938 1.1 jtc int num;
939 1.124 christos int_fast32_t secsperhour = SECSPERHOUR;
940 1.1 jtc
941 1.1 jtc /*
942 1.139 christos ** 'HOURSPERDAY * DAYSPERWEEK - 1' allows quasi-POSIX rules like
943 1.139 christos ** "M10.4.6/26", which does not conform to POSIX,
944 1.1 jtc ** but which specifies the equivalent of
945 1.83 christos ** "02:00 on the first Sunday on or after 23 Oct".
946 1.1 jtc */
947 1.1 jtc strp = getnum(strp, &num, 0, HOURSPERDAY * DAYSPERWEEK - 1);
948 1.1 jtc if (strp == NULL)
949 1.1 jtc return NULL;
950 1.124 christos *secsp = num * secsperhour;
951 1.1 jtc if (*strp == ':') {
952 1.1 jtc ++strp;
953 1.1 jtc strp = getnum(strp, &num, 0, MINSPERHOUR - 1);
954 1.1 jtc if (strp == NULL)
955 1.1 jtc return NULL;
956 1.1 jtc *secsp += num * SECSPERMIN;
957 1.1 jtc if (*strp == ':') {
958 1.1 jtc ++strp;
959 1.83 christos /* 'SECSPERMIN' allows for leap seconds. */
960 1.1 jtc strp = getnum(strp, &num, 0, SECSPERMIN);
961 1.1 jtc if (strp == NULL)
962 1.1 jtc return NULL;
963 1.1 jtc *secsp += num;
964 1.1 jtc }
965 1.1 jtc }
966 1.1 jtc return strp;
967 1.1 jtc }
968 1.1 jtc
969 1.1 jtc /*
970 1.113 christos ** Given a pointer into a timezone string, extract an offset, in
971 1.1 jtc ** [+-]hh[:mm[:ss]] form, from the string.
972 1.1 jtc ** If any error occurs, return NULL.
973 1.1 jtc ** Otherwise, return a pointer to the first character not part of the time.
974 1.1 jtc */
975 1.1 jtc
976 1.1 jtc static const char *
977 1.130 rillig getoffset(register const char *strp, int_fast32_t *const offsetp)
978 1.1 jtc {
979 1.130 rillig register bool neg = false;
980 1.1 jtc
981 1.1 jtc if (*strp == '-') {
982 1.87 christos neg = true;
983 1.1 jtc ++strp;
984 1.5 jtc } else if (*strp == '+')
985 1.5 jtc ++strp;
986 1.1 jtc strp = getsecs(strp, offsetp);
987 1.1 jtc if (strp == NULL)
988 1.1 jtc return NULL; /* illegal time */
989 1.1 jtc if (neg)
990 1.1 jtc *offsetp = -*offsetp;
991 1.1 jtc return strp;
992 1.1 jtc }
993 1.1 jtc
994 1.1 jtc /*
995 1.113 christos ** Given a pointer into a timezone string, extract a rule in the form
996 1.45 mlelstv ** date[/time]. See POSIX section 8 for the format of "date" and "time".
997 1.1 jtc ** If a valid rule is not found, return NULL.
998 1.1 jtc ** Otherwise, return a pointer to the first character not part of the rule.
999 1.1 jtc */
1000 1.1 jtc
1001 1.1 jtc static const char *
1002 1.130 rillig getrule(const char *strp, register struct rule *const rulep)
1003 1.1 jtc {
1004 1.1 jtc if (*strp == 'J') {
1005 1.1 jtc /*
1006 1.1 jtc ** Julian day.
1007 1.1 jtc */
1008 1.1 jtc rulep->r_type = JULIAN_DAY;
1009 1.1 jtc ++strp;
1010 1.1 jtc strp = getnum(strp, &rulep->r_day, 1, DAYSPERNYEAR);
1011 1.1 jtc } else if (*strp == 'M') {
1012 1.1 jtc /*
1013 1.1 jtc ** Month, week, day.
1014 1.1 jtc */
1015 1.1 jtc rulep->r_type = MONTH_NTH_DAY_OF_WEEK;
1016 1.1 jtc ++strp;
1017 1.1 jtc strp = getnum(strp, &rulep->r_mon, 1, MONSPERYEAR);
1018 1.1 jtc if (strp == NULL)
1019 1.1 jtc return NULL;
1020 1.1 jtc if (*strp++ != '.')
1021 1.1 jtc return NULL;
1022 1.1 jtc strp = getnum(strp, &rulep->r_week, 1, 5);
1023 1.1 jtc if (strp == NULL)
1024 1.1 jtc return NULL;
1025 1.1 jtc if (*strp++ != '.')
1026 1.1 jtc return NULL;
1027 1.1 jtc strp = getnum(strp, &rulep->r_day, 0, DAYSPERWEEK - 1);
1028 1.5 jtc } else if (is_digit(*strp)) {
1029 1.1 jtc /*
1030 1.1 jtc ** Day of year.
1031 1.1 jtc */
1032 1.1 jtc rulep->r_type = DAY_OF_YEAR;
1033 1.1 jtc strp = getnum(strp, &rulep->r_day, 0, DAYSPERLYEAR - 1);
1034 1.1 jtc } else return NULL; /* invalid format */
1035 1.1 jtc if (strp == NULL)
1036 1.1 jtc return NULL;
1037 1.1 jtc if (*strp == '/') {
1038 1.1 jtc /*
1039 1.1 jtc ** Time specified.
1040 1.1 jtc */
1041 1.1 jtc ++strp;
1042 1.78 christos strp = getoffset(strp, &rulep->r_time);
1043 1.1 jtc } else rulep->r_time = 2 * SECSPERHOUR; /* default = 2:00:00 */
1044 1.1 jtc return strp;
1045 1.1 jtc }
1046 1.1 jtc
1047 1.1 jtc /*
1048 1.81 christos ** Given a year, a rule, and the offset from UT at the time that rule takes
1049 1.81 christos ** effect, calculate the year-relative time that rule takes effect.
1050 1.1 jtc */
1051 1.1 jtc
1052 1.109 christos static int_fast32_t
1053 1.130 rillig transtime(const int year, register const struct rule *const rulep,
1054 1.81 christos const int_fast32_t offset)
1055 1.49 christos {
1056 1.130 rillig register bool leapyear;
1057 1.130 rillig register int_fast32_t value;
1058 1.130 rillig register int i;
1059 1.1 jtc int d, m1, yy0, yy1, yy2, dow;
1060 1.1 jtc
1061 1.1 jtc leapyear = isleap(year);
1062 1.1 jtc switch (rulep->r_type) {
1063 1.1 jtc
1064 1.1 jtc case JULIAN_DAY:
1065 1.1 jtc /*
1066 1.1 jtc ** Jn - Julian day, 1 == January 1, 60 == March 1 even in leap
1067 1.1 jtc ** years.
1068 1.1 jtc ** In non-leap years, or if the day number is 59 or less, just
1069 1.1 jtc ** add SECSPERDAY times the day number-1 to the time of
1070 1.1 jtc ** January 1, midnight, to get the day.
1071 1.1 jtc */
1072 1.81 christos value = (rulep->r_day - 1) * SECSPERDAY;
1073 1.1 jtc if (leapyear && rulep->r_day >= 60)
1074 1.1 jtc value += SECSPERDAY;
1075 1.1 jtc break;
1076 1.1 jtc
1077 1.1 jtc case DAY_OF_YEAR:
1078 1.1 jtc /*
1079 1.1 jtc ** n - day of year.
1080 1.1 jtc ** Just add SECSPERDAY times the day number to the time of
1081 1.1 jtc ** January 1, midnight, to get the day.
1082 1.1 jtc */
1083 1.81 christos value = rulep->r_day * SECSPERDAY;
1084 1.1 jtc break;
1085 1.1 jtc
1086 1.1 jtc case MONTH_NTH_DAY_OF_WEEK:
1087 1.1 jtc /*
1088 1.1 jtc ** Mm.n.d - nth "dth day" of month m.
1089 1.1 jtc */
1090 1.1 jtc
1091 1.1 jtc /*
1092 1.1 jtc ** Use Zeller's Congruence to get day-of-week of first day of
1093 1.1 jtc ** month.
1094 1.1 jtc */
1095 1.1 jtc m1 = (rulep->r_mon + 9) % 12 + 1;
1096 1.1 jtc yy0 = (rulep->r_mon <= 2) ? (year - 1) : year;
1097 1.1 jtc yy1 = yy0 / 100;
1098 1.1 jtc yy2 = yy0 % 100;
1099 1.1 jtc dow = ((26 * m1 - 2) / 10 +
1100 1.1 jtc 1 + yy2 + yy2 / 4 + yy1 / 4 - 2 * yy1) % 7;
1101 1.1 jtc if (dow < 0)
1102 1.1 jtc dow += DAYSPERWEEK;
1103 1.1 jtc
1104 1.1 jtc /*
1105 1.45 mlelstv ** "dow" is the day-of-week of the first day of the month. Get
1106 1.1 jtc ** the day-of-month (zero-origin) of the first "dow" day of the
1107 1.1 jtc ** month.
1108 1.1 jtc */
1109 1.1 jtc d = rulep->r_day - dow;
1110 1.1 jtc if (d < 0)
1111 1.1 jtc d += DAYSPERWEEK;
1112 1.1 jtc for (i = 1; i < rulep->r_week; ++i) {
1113 1.1 jtc if (d + DAYSPERWEEK >=
1114 1.1 jtc mon_lengths[leapyear][rulep->r_mon - 1])
1115 1.1 jtc break;
1116 1.1 jtc d += DAYSPERWEEK;
1117 1.1 jtc }
1118 1.1 jtc
1119 1.1 jtc /*
1120 1.1 jtc ** "d" is the day-of-month (zero-origin) of the day we want.
1121 1.1 jtc */
1122 1.81 christos value = d * SECSPERDAY;
1123 1.81 christos for (i = 0; i < rulep->r_mon - 1; ++i)
1124 1.81 christos value += mon_lengths[leapyear][i] * SECSPERDAY;
1125 1.1 jtc break;
1126 1.124 christos
1127 1.135 christos default: unreachable();
1128 1.1 jtc }
1129 1.1 jtc
1130 1.1 jtc /*
1131 1.81 christos ** "value" is the year-relative time of 00:00:00 UT on the day in
1132 1.81 christos ** question. To get the year-relative time of the specified local
1133 1.1 jtc ** time on that day, add the transition time and the current offset
1134 1.78 christos ** from UT.
1135 1.1 jtc */
1136 1.81 christos return value + rulep->r_time + offset;
1137 1.1 jtc }
1138 1.1 jtc
1139 1.1 jtc /*
1140 1.1 jtc ** Given a POSIX section 8-style TZ string, fill in the rule tables as
1141 1.1 jtc ** appropriate.
1142 1.1 jtc */
1143 1.1 jtc
1144 1.87 christos static bool
1145 1.139 christos tzparse(const char *name, struct state *sp, struct state const *basep)
1146 1.87 christos {
1147 1.131 rillig const char * stdname;
1148 1.131 rillig const char * dstname;
1149 1.131 rillig int_fast32_t stdoffset;
1150 1.131 rillig int_fast32_t dstoffset;
1151 1.130 rillig register char * cp;
1152 1.130 rillig register bool load_ok;
1153 1.136 christos ptrdiff_t stdlen, dstlen, charcnt;
1154 1.140 christos __time_t atlo = TIME_T_MIN, leaplo = TIME_T_MIN;
1155 1.1 jtc
1156 1.84 martin dstname = NULL; /* XXX gcc */
1157 1.1 jtc stdname = name;
1158 1.124 christos if (*name == '<') {
1159 1.124 christos name++;
1160 1.124 christos stdname = name;
1161 1.124 christos name = getqzname(name, '>');
1162 1.124 christos if (*name != '>')
1163 1.124 christos return false;
1164 1.124 christos stdlen = name - stdname;
1165 1.124 christos name++;
1166 1.1 jtc } else {
1167 1.124 christos name = getzname(name);
1168 1.124 christos stdlen = name - stdname;
1169 1.1 jtc }
1170 1.138 christos if (! (0 < stdlen && stdlen <= TZNAME_MAXIMUM))
1171 1.124 christos return false;
1172 1.124 christos name = getoffset(name, &stdoffset);
1173 1.124 christos if (name == NULL)
1174 1.124 christos return false;
1175 1.96 christos charcnt = stdlen + 1;
1176 1.124 christos if (basep) {
1177 1.124 christos if (0 < basep->timecnt)
1178 1.124 christos atlo = basep->ats[basep->timecnt - 1];
1179 1.124 christos load_ok = false;
1180 1.124 christos sp->leapcnt = basep->leapcnt;
1181 1.124 christos memcpy(sp->lsis, basep->lsis, sp->leapcnt * sizeof *sp->lsis);
1182 1.124 christos } else {
1183 1.124 christos load_ok = tzload(TZDEFRULES, sp, false) == 0;
1184 1.124 christos if (!load_ok)
1185 1.124 christos sp->leapcnt = 0; /* So, we're off a little. */
1186 1.124 christos }
1187 1.124 christos if (0 < sp->leapcnt)
1188 1.124 christos leaplo = sp->lsis[sp->leapcnt - 1].ls_trans;
1189 1.139 christos sp->goback = sp->goahead = false;
1190 1.1 jtc if (*name != '\0') {
1191 1.45 mlelstv if (*name == '<') {
1192 1.45 mlelstv dstname = ++name;
1193 1.45 mlelstv name = getqzname(name, '>');
1194 1.45 mlelstv if (*name != '>')
1195 1.131 rillig return false;
1196 1.45 mlelstv dstlen = name - dstname;
1197 1.45 mlelstv name++;
1198 1.45 mlelstv } else {
1199 1.45 mlelstv dstname = name;
1200 1.45 mlelstv name = getzname(name);
1201 1.113 christos dstlen = name - dstname; /* length of DST abbr. */
1202 1.45 mlelstv }
1203 1.138 christos if (! (0 < dstlen && dstlen <= TZNAME_MAXIMUM))
1204 1.96 christos return false;
1205 1.96 christos charcnt += dstlen + 1;
1206 1.1 jtc if (*name != '\0' && *name != ',' && *name != ';') {
1207 1.45 mlelstv name = getoffset(name, &dstoffset);
1208 1.1 jtc if (name == NULL)
1209 1.87 christos return false;
1210 1.1 jtc } else dstoffset = stdoffset - SECSPERHOUR;
1211 1.87 christos if (*name == '\0' && !load_ok)
1212 1.22 kleink name = TZDEFRULESTRING;
1213 1.1 jtc if (*name == ',' || *name == ';') {
1214 1.1 jtc struct rule start;
1215 1.1 jtc struct rule end;
1216 1.130 rillig register int year;
1217 1.130 rillig register int timecnt;
1218 1.126 christos __time_t janfirst;
1219 1.106 christos int_fast32_t janoffset = 0;
1220 1.124 christos int yearbeg, yearlim;
1221 1.1 jtc
1222 1.1 jtc ++name;
1223 1.45 mlelstv if ((name = getrule(name, &start)) == NULL)
1224 1.131 rillig return false;
1225 1.1 jtc if (*name++ != ',')
1226 1.131 rillig return false;
1227 1.45 mlelstv if ((name = getrule(name, &end)) == NULL)
1228 1.131 rillig return false;
1229 1.1 jtc if (*name != '\0')
1230 1.131 rillig return false;
1231 1.1 jtc sp->typecnt = 2; /* standard time and DST */
1232 1.1 jtc /*
1233 1.45 mlelstv ** Two transitions per year, from EPOCH_YEAR forward.
1234 1.1 jtc */
1235 1.113 christos init_ttinfo(&sp->ttis[0], -stdoffset, false, 0);
1236 1.130 rillig init_ttinfo(&sp->ttis[1], -dstoffset, true,
1237 1.91 christos (int)(stdlen + 1));
1238 1.81 christos timecnt = 0;
1239 1.1 jtc janfirst = 0;
1240 1.106 christos yearbeg = EPOCH_YEAR;
1241 1.106 christos
1242 1.106 christos do {
1243 1.106 christos int_fast32_t yearsecs
1244 1.106 christos = year_lengths[isleap(yearbeg - 1)] * SECSPERDAY;
1245 1.106 christos yearbeg--;
1246 1.106 christos if (increment_overflow_time(&janfirst, -yearsecs)) {
1247 1.106 christos janoffset = -yearsecs;
1248 1.106 christos break;
1249 1.106 christos }
1250 1.124 christos } while (atlo < janfirst
1251 1.124 christos && EPOCH_YEAR - YEARSPERREPEAT / 2 < yearbeg);
1252 1.124 christos
1253 1.140 christos for (;;) {
1254 1.124 christos int_fast32_t yearsecs
1255 1.124 christos = year_lengths[isleap(yearbeg)] * SECSPERDAY;
1256 1.124 christos int yearbeg1 = yearbeg;
1257 1.126 christos __time_t janfirst1 = janfirst;
1258 1.124 christos if (increment_overflow_time(&janfirst1, yearsecs)
1259 1.124 christos || increment_overflow(&yearbeg1, 1)
1260 1.124 christos || atlo <= janfirst1)
1261 1.124 christos break;
1262 1.124 christos yearbeg = yearbeg1;
1263 1.124 christos janfirst = janfirst1;
1264 1.124 christos }
1265 1.106 christos
1266 1.124 christos yearlim = yearbeg;
1267 1.124 christos if (increment_overflow(&yearlim, YEARSPERREPEAT + 1))
1268 1.124 christos yearlim = INT_MAX;
1269 1.106 christos for (year = yearbeg; year < yearlim; year++) {
1270 1.81 christos int_fast32_t
1271 1.81 christos starttime = transtime(year, &start, stdoffset),
1272 1.81 christos endtime = transtime(year, &end, dstoffset);
1273 1.81 christos int_fast32_t
1274 1.81 christos yearsecs = (year_lengths[isleap(year)]
1275 1.81 christos * SECSPERDAY);
1276 1.87 christos bool reversed = endtime < starttime;
1277 1.81 christos if (reversed) {
1278 1.81 christos int_fast32_t swap = starttime;
1279 1.81 christos starttime = endtime;
1280 1.81 christos endtime = swap;
1281 1.81 christos }
1282 1.81 christos if (reversed
1283 1.78 christos || (starttime < endtime
1284 1.124 christos && endtime - starttime < yearsecs)) {
1285 1.81 christos if (TZ_MAX_TIMES - 2 < timecnt)
1286 1.78 christos break;
1287 1.81 christos sp->ats[timecnt] = janfirst;
1288 1.106 christos if (! increment_overflow_time
1289 1.106 christos (&sp->ats[timecnt],
1290 1.124 christos janoffset + starttime)
1291 1.124 christos && atlo <= sp->ats[timecnt])
1292 1.113 christos sp->types[timecnt++] = !reversed;
1293 1.81 christos sp->ats[timecnt] = janfirst;
1294 1.106 christos if (! increment_overflow_time
1295 1.106 christos (&sp->ats[timecnt],
1296 1.124 christos janoffset + endtime)
1297 1.124 christos && atlo <= sp->ats[timecnt]) {
1298 1.113 christos sp->types[timecnt++] = reversed;
1299 1.113 christos }
1300 1.1 jtc }
1301 1.124 christos if (endtime < leaplo) {
1302 1.124 christos yearlim = year;
1303 1.124 christos if (increment_overflow(&yearlim,
1304 1.124 christos YEARSPERREPEAT + 1))
1305 1.124 christos yearlim = INT_MAX;
1306 1.124 christos }
1307 1.106 christos if (increment_overflow_time
1308 1.106 christos (&janfirst, janoffset + yearsecs))
1309 1.45 mlelstv break;
1310 1.106 christos janoffset = 0;
1311 1.1 jtc }
1312 1.81 christos sp->timecnt = timecnt;
1313 1.113 christos if (! timecnt) {
1314 1.113 christos sp->ttis[0] = sp->ttis[1];
1315 1.78 christos sp->typecnt = 1; /* Perpetual DST. */
1316 1.113 christos } else if (YEARSPERREPEAT < year - yearbeg)
1317 1.106 christos sp->goback = sp->goahead = true;
1318 1.1 jtc } else {
1319 1.130 rillig register int_fast32_t theirstdoffset;
1320 1.130 rillig register int_fast32_t theirdstoffset;
1321 1.130 rillig register int_fast32_t theiroffset;
1322 1.130 rillig register bool isdst;
1323 1.130 rillig register int i;
1324 1.130 rillig register int j;
1325 1.1 jtc
1326 1.1 jtc if (*name != '\0')
1327 1.131 rillig return false;
1328 1.1 jtc /*
1329 1.69 christos ** Initial values of theirstdoffset and theirdstoffset.
1330 1.1 jtc */
1331 1.1 jtc theirstdoffset = 0;
1332 1.1 jtc for (i = 0; i < sp->timecnt; ++i) {
1333 1.1 jtc j = sp->types[i];
1334 1.1 jtc if (!sp->ttis[j].tt_isdst) {
1335 1.5 jtc theirstdoffset =
1336 1.122 christos - sp->ttis[j].tt_utoff;
1337 1.1 jtc break;
1338 1.1 jtc }
1339 1.1 jtc }
1340 1.45 mlelstv theirdstoffset = 0;
1341 1.45 mlelstv for (i = 0; i < sp->timecnt; ++i) {
1342 1.45 mlelstv j = sp->types[i];
1343 1.45 mlelstv if (sp->ttis[j].tt_isdst) {
1344 1.45 mlelstv theirdstoffset =
1345 1.122 christos - sp->ttis[j].tt_utoff;
1346 1.45 mlelstv break;
1347 1.45 mlelstv }
1348 1.45 mlelstv }
1349 1.1 jtc /*
1350 1.1 jtc ** Initially we're assumed to be in standard time.
1351 1.1 jtc */
1352 1.87 christos isdst = false;
1353 1.1 jtc /*
1354 1.1 jtc ** Now juggle transition times and types
1355 1.1 jtc ** tracking offsets as you do.
1356 1.1 jtc */
1357 1.1 jtc for (i = 0; i < sp->timecnt; ++i) {
1358 1.1 jtc j = sp->types[i];
1359 1.1 jtc sp->types[i] = sp->ttis[j].tt_isdst;
1360 1.122 christos if (sp->ttis[j].tt_ttisut) {
1361 1.1 jtc /* No adjustment to transition time */
1362 1.1 jtc } else {
1363 1.1 jtc /*
1364 1.112 christos ** If daylight saving time is in
1365 1.112 christos ** effect, and the transition time was
1366 1.112 christos ** not specified as standard time, add
1367 1.112 christos ** the daylight saving time offset to
1368 1.112 christos ** the transition time; otherwise, add
1369 1.112 christos ** the standard time offset to the
1370 1.112 christos ** transition time.
1371 1.1 jtc */
1372 1.1 jtc /*
1373 1.1 jtc ** Transitions from DST to DDST
1374 1.1 jtc ** will effectively disappear since
1375 1.1 jtc ** POSIX provides for only one DST
1376 1.1 jtc ** offset.
1377 1.1 jtc */
1378 1.45 mlelstv if (isdst && !sp->ttis[j].tt_ttisstd) {
1379 1.66 christos sp->ats[i] += (time_t)
1380 1.66 christos (dstoffset - theirdstoffset);
1381 1.45 mlelstv } else {
1382 1.66 christos sp->ats[i] += (time_t)
1383 1.66 christos (stdoffset - theirstdoffset);
1384 1.45 mlelstv }
1385 1.1 jtc }
1386 1.122 christos theiroffset = -sp->ttis[j].tt_utoff;
1387 1.87 christos if (sp->ttis[j].tt_isdst)
1388 1.39 christos theirstdoffset = theiroffset;
1389 1.45 mlelstv else theirdstoffset = theiroffset;
1390 1.1 jtc }
1391 1.1 jtc /*
1392 1.1 jtc ** Finally, fill in ttis.
1393 1.1 jtc */
1394 1.91 christos init_ttinfo(&sp->ttis[0], -stdoffset, false, 0);
1395 1.91 christos init_ttinfo(&sp->ttis[1], -dstoffset, true,
1396 1.91 christos (int)(stdlen + 1));
1397 1.7 jtc sp->typecnt = 2;
1398 1.1 jtc }
1399 1.1 jtc } else {
1400 1.1 jtc dstlen = 0;
1401 1.1 jtc sp->typecnt = 1; /* only standard time */
1402 1.1 jtc sp->timecnt = 0;
1403 1.91 christos init_ttinfo(&sp->ttis[0], -stdoffset, false, 0);
1404 1.91 christos init_ttinfo(&sp->ttis[1], 0, false, 0);
1405 1.1 jtc }
1406 1.139 christos sp->defaulttype = 0;
1407 1.99 christos sp->charcnt = (int)charcnt;
1408 1.1 jtc cp = sp->chars;
1409 1.124 christos memcpy(cp, stdname, stdlen);
1410 1.1 jtc cp += stdlen;
1411 1.1 jtc *cp++ = '\0';
1412 1.1 jtc if (dstlen != 0) {
1413 1.87 christos (void) memcpy(cp, dstname, dstlen);
1414 1.1 jtc *(cp + dstlen) = '\0';
1415 1.1 jtc }
1416 1.87 christos return true;
1417 1.1 jtc }
1418 1.1 jtc
1419 1.1 jtc static void
1420 1.87 christos gmtload(struct state *const sp)
1421 1.49 christos {
1422 1.134 christos if (tzload(etc_utc, sp, true) != 0)
1423 1.134 christos (void)tzparse("UTC0", sp, NULL);
1424 1.49 christos }
1425 1.49 christos
1426 1.124 christos /* Initialize *SP to a value appropriate for the TZ setting NAME.
1427 1.124 christos Return 0 on success, an errno value on failure. */
1428 1.91 christos static int
1429 1.87 christos zoneinit(struct state *sp, char const *name)
1430 1.49 christos {
1431 1.131 rillig if (name && ! name[0]) {
1432 1.131 rillig /*
1433 1.131 rillig ** User wants it fast rather than right.
1434 1.131 rillig */
1435 1.131 rillig sp->leapcnt = 0; /* so, we're off a little */
1436 1.131 rillig sp->timecnt = 0;
1437 1.131 rillig sp->typecnt = 1;
1438 1.131 rillig sp->charcnt = 0;
1439 1.131 rillig sp->goback = sp->goahead = false;
1440 1.131 rillig init_ttinfo(&sp->ttis[0], 0, false, 0);
1441 1.134 christos strcpy(sp->chars, utc);
1442 1.131 rillig sp->defaulttype = 0;
1443 1.131 rillig return 0;
1444 1.131 rillig } else {
1445 1.131 rillig int err = tzload(name, sp, true);
1446 1.131 rillig if (err != 0 && name && name[0] != ':' && tzparse(name, sp, NULL))
1447 1.131 rillig err = 0;
1448 1.131 rillig if (err == 0)
1449 1.138 christos err = scrub_abbrs(sp);
1450 1.131 rillig return err;
1451 1.131 rillig }
1452 1.49 christos }
1453 1.130 rillig
1454 1.19 kleink static void
1455 1.87 christos tzsetlcl(char const *name)
1456 1.1 jtc {
1457 1.131 rillig struct state *sp = __lclptr;
1458 1.131 rillig int lcl = name ? strlen(name) < sizeof lcl_TZname : -1;
1459 1.132 rillig if (lcl < 0
1460 1.132 rillig ? lcl_is_set < 0
1461 1.131 rillig : 0 < lcl_is_set && strcmp(lcl_TZname, name) == 0)
1462 1.131 rillig return;
1463 1.131 rillig
1464 1.131 rillig if (! sp)
1465 1.131 rillig __lclptr = sp = malloc(sizeof *__lclptr);
1466 1.131 rillig if (sp) {
1467 1.131 rillig if (zoneinit(sp, name) != 0)
1468 1.131 rillig zoneinit(sp, "");
1469 1.131 rillig if (0 < lcl)
1470 1.131 rillig strcpy(lcl_TZname, name);
1471 1.131 rillig }
1472 1.131 rillig settzname();
1473 1.131 rillig lcl_is_set = lcl;
1474 1.1 jtc }
1475 1.1 jtc
1476 1.87 christos #ifdef STD_INSPIRED
1477 1.1 jtc void
1478 1.45 mlelstv tzsetwall(void)
1479 1.19 kleink {
1480 1.117 christos rwlock_wrlock(&__lcl_lock);
1481 1.87 christos tzsetlcl(NULL);
1482 1.117 christos rwlock_unlock(&__lcl_lock);
1483 1.19 kleink }
1484 1.87 christos #endif
1485 1.87 christos
1486 1.117 christos void
1487 1.87 christos tzset_unlocked(void)
1488 1.87 christos {
1489 1.87 christos tzsetlcl(getenv("TZ"));
1490 1.87 christos }
1491 1.19 kleink
1492 1.45 mlelstv void
1493 1.87 christos tzset(void)
1494 1.1 jtc {
1495 1.131 rillig rwlock_wrlock(&__lcl_lock);
1496 1.131 rillig tzset_unlocked();
1497 1.131 rillig rwlock_unlock(&__lcl_lock);
1498 1.87 christos }
1499 1.1 jtc
1500 1.87 christos static void
1501 1.87 christos gmtcheck(void)
1502 1.87 christos {
1503 1.131 rillig static bool gmt_is_set;
1504 1.131 rillig rwlock_wrlock(&__lcl_lock);
1505 1.131 rillig if (! gmt_is_set) {
1506 1.131 rillig gmtptr = malloc(sizeof *gmtptr);
1507 1.131 rillig if (gmtptr)
1508 1.131 rillig gmtload(gmtptr);
1509 1.131 rillig gmt_is_set = true;
1510 1.131 rillig }
1511 1.131 rillig rwlock_unlock(&__lcl_lock);
1512 1.87 christos }
1513 1.1 jtc
1514 1.87 christos #if NETBSD_INSPIRED
1515 1.1 jtc
1516 1.87 christos timezone_t
1517 1.132 rillig tzalloc(char const *name)
1518 1.87 christos {
1519 1.131 rillig timezone_t sp = malloc(sizeof *sp);
1520 1.131 rillig if (sp) {
1521 1.131 rillig int err = zoneinit(sp, name);
1522 1.131 rillig if (err != 0) {
1523 1.131 rillig free(sp);
1524 1.131 rillig errno = err;
1525 1.131 rillig return NULL;
1526 1.131 rillig }
1527 1.140 christos } else if (/*CONSTCOND*/!HAVE_MALLOC_ERRNO)
1528 1.140 christos /*NOTREACHED*/
1529 1.131 rillig errno = ENOMEM;
1530 1.131 rillig return sp;
1531 1.1 jtc }
1532 1.1 jtc
1533 1.19 kleink void
1534 1.87 christos tzfree(timezone_t sp)
1535 1.19 kleink {
1536 1.131 rillig free(sp);
1537 1.19 kleink }
1538 1.19 kleink
1539 1.1 jtc /*
1540 1.87 christos ** NetBSD 6.1.4 has ctime_rz, but omit it because POSIX says ctime and
1541 1.87 christos ** ctime_r are obsolescent and have potential security problems that
1542 1.87 christos ** ctime_rz would share. Callers can instead use localtime_rz + strftime.
1543 1.87 christos **
1544 1.87 christos ** NetBSD 6.1.4 has tzgetname, but omit it because it doesn't work
1545 1.87 christos ** in zones with three or more time zone abbreviations.
1546 1.87 christos ** Callers can instead use localtime_rz + strftime.
1547 1.87 christos */
1548 1.87 christos
1549 1.87 christos #endif
1550 1.87 christos
1551 1.87 christos /*
1552 1.1 jtc ** The easy way to behave "as if no library function calls" localtime
1553 1.83 christos ** is to not call it, so we drop its guts into "localsub", which can be
1554 1.83 christos ** freely called. (And no, the PANS doesn't require the above behavior,
1555 1.1 jtc ** but it *is* desirable.)
1556 1.1 jtc **
1557 1.93 christos ** If successful and SETNAME is nonzero,
1558 1.91 christos ** set the applicable parts of tzname, timezone and altzone;
1559 1.113 christos ** however, it's OK to omit this step if the timezone is POSIX-compatible,
1560 1.91 christos ** since in that case tzset should have already done this step correctly.
1561 1.134 christos ** SETNAME's type is int_fast32_t for compatibility with gmtsub,
1562 1.93 christos ** but it is actually a boolean and its value should be 0 or 1.
1563 1.1 jtc */
1564 1.1 jtc
1565 1.1 jtc /*ARGSUSED*/
1566 1.45 mlelstv static struct tm *
1567 1.93 christos localsub(struct state const *sp, time_t const *timep, int_fast32_t setname,
1568 1.87 christos struct tm *const tmp)
1569 1.49 christos {
1570 1.130 rillig register const struct ttinfo * ttisp;
1571 1.130 rillig register int i;
1572 1.130 rillig register struct tm * result;
1573 1.1 jtc const time_t t = *timep;
1574 1.1 jtc
1575 1.87 christos if (sp == NULL) {
1576 1.131 rillig /* Don't bother to set tzname etc.; tzset has already done it. */
1577 1.131 rillig return gmtsub(gmtptr, timep, 0, tmp);
1578 1.87 christos }
1579 1.45 mlelstv if ((sp->goback && t < sp->ats[0]) ||
1580 1.45 mlelstv (sp->goahead && t > sp->ats[sp->timecnt - 1])) {
1581 1.131 rillig time_t newt;
1582 1.140 christos register __time_t seconds;
1583 1.130 rillig register time_t years;
1584 1.45 mlelstv
1585 1.45 mlelstv if (t < sp->ats[0])
1586 1.45 mlelstv seconds = sp->ats[0] - t;
1587 1.45 mlelstv else seconds = t - sp->ats[sp->timecnt - 1];
1588 1.45 mlelstv --seconds;
1589 1.124 christos
1590 1.124 christos /* Beware integer overflow, as SECONDS might
1591 1.124 christos be close to the maximum time_t. */
1592 1.124 christos years = (time_t)(seconds / SECSPERREPEAT
1593 1.124 christos * YEARSPERREPEAT);
1594 1.78 christos seconds = (time_t)(years * AVGSECSPERYEAR);
1595 1.124 christos years += YEARSPERREPEAT;
1596 1.45 mlelstv if (t < sp->ats[0])
1597 1.124 christos newt = (time_t)(t + seconds + SECSPERREPEAT);
1598 1.124 christos else
1599 1.124 christos newt = (time_t)(t - seconds - SECSPERREPEAT);
1600 1.124 christos
1601 1.45 mlelstv if (newt < sp->ats[0] ||
1602 1.88 christos newt > sp->ats[sp->timecnt - 1]) {
1603 1.88 christos errno = EINVAL;
1604 1.88 christos return NULL; /* "cannot happen" */
1605 1.88 christos }
1606 1.93 christos result = localsub(sp, &newt, setname, tmp);
1607 1.87 christos if (result) {
1608 1.136 christos #if defined ckd_add && defined ckd_sub
1609 1.136 christos if (t < sp->ats[0]
1610 1.136 christos ? ckd_sub(&result->tm_year,
1611 1.136 christos result->tm_year, years)
1612 1.136 christos : ckd_add(&result->tm_year,
1613 1.136 christos result->tm_year, years))
1614 1.136 christos return NULL;
1615 1.136 christos #else
1616 1.130 rillig register int_fast64_t newy;
1617 1.45 mlelstv
1618 1.87 christos newy = result->tm_year;
1619 1.45 mlelstv if (t < sp->ats[0])
1620 1.78 christos newy -= years;
1621 1.78 christos else newy += years;
1622 1.88 christos if (! (INT_MIN <= newy && newy <= INT_MAX)) {
1623 1.88 christos errno = EOVERFLOW;
1624 1.45 mlelstv return NULL;
1625 1.88 christos }
1626 1.87 christos result->tm_year = (int)newy;
1627 1.136 christos #endif
1628 1.45 mlelstv }
1629 1.45 mlelstv return result;
1630 1.1 jtc }
1631 1.1 jtc if (sp->timecnt == 0 || t < sp->ats[0]) {
1632 1.74 christos i = sp->defaulttype;
1633 1.1 jtc } else {
1634 1.130 rillig register int lo = 1;
1635 1.130 rillig register int hi = sp->timecnt;
1636 1.45 mlelstv
1637 1.45 mlelstv while (lo < hi) {
1638 1.130 rillig register int mid = (lo + hi) / 2;
1639 1.45 mlelstv
1640 1.45 mlelstv if (t < sp->ats[mid])
1641 1.45 mlelstv hi = mid;
1642 1.45 mlelstv else lo = mid + 1;
1643 1.45 mlelstv }
1644 1.124 christos i = sp->types[lo - 1];
1645 1.1 jtc }
1646 1.1 jtc ttisp = &sp->ttis[i];
1647 1.1 jtc /*
1648 1.1 jtc ** To get (wrong) behavior that's compatible with System V Release 2.0
1649 1.1 jtc ** you'd replace the statement below with
1650 1.122 christos ** t += ttisp->tt_utoff;
1651 1.1 jtc ** timesub(&t, 0L, sp, tmp);
1652 1.1 jtc */
1653 1.122 christos result = timesub(&t, ttisp->tt_utoff, sp, tmp);
1654 1.87 christos if (result) {
1655 1.131 rillig result->tm_isdst = ttisp->tt_isdst;
1656 1.92 christos #ifdef TM_ZONE
1657 1.131 rillig result->TM_ZONE = __UNCONST(&sp->chars[ttisp->tt_desigidx]);
1658 1.92 christos #endif /* defined TM_ZONE */
1659 1.131 rillig if (setname)
1660 1.131 rillig update_tzname_etc(sp, ttisp);
1661 1.87 christos }
1662 1.45 mlelstv return result;
1663 1.1 jtc }
1664 1.1 jtc
1665 1.87 christos #if NETBSD_INSPIRED
1666 1.49 christos
1667 1.1 jtc struct tm *
1668 1.138 christos localtime_rz(struct state *__restrict sp, time_t const *__restrict timep,
1669 1.138 christos struct tm *__restrict tmp)
1670 1.87 christos {
1671 1.131 rillig return localsub(sp, timep, 0, tmp);
1672 1.87 christos }
1673 1.87 christos
1674 1.87 christos #endif
1675 1.87 christos
1676 1.87 christos static struct tm *
1677 1.87 christos localtime_tzset(time_t const *timep, struct tm *tmp, bool setname)
1678 1.1 jtc {
1679 1.131 rillig rwlock_wrlock(&__lcl_lock);
1680 1.131 rillig if (setname || !lcl_is_set)
1681 1.131 rillig tzset_unlocked();
1682 1.131 rillig tmp = localsub(__lclptr, timep, setname, tmp);
1683 1.131 rillig rwlock_unlock(&__lcl_lock);
1684 1.131 rillig return tmp;
1685 1.1 jtc }
1686 1.1 jtc
1687 1.49 christos struct tm *
1688 1.96 christos localtime(const time_t *timep)
1689 1.49 christos {
1690 1.138 christos #if !SUPPORT_C89
1691 1.138 christos static struct tm tm;
1692 1.138 christos #endif
1693 1.131 rillig return localtime_tzset(timep, &tm, true);
1694 1.49 christos }
1695 1.35 kleink
1696 1.18 kleink struct tm *
1697 1.138 christos localtime_r(const time_t *__restrict timep, struct tm *__restrict tmp)
1698 1.18 kleink {
1699 1.131 rillig return localtime_tzset(timep, tmp, true);
1700 1.18 kleink }
1701 1.18 kleink
1702 1.18 kleink /*
1703 1.1 jtc ** gmtsub is to gmtime as localsub is to localtime.
1704 1.1 jtc */
1705 1.1 jtc
1706 1.45 mlelstv static struct tm *
1707 1.136 christos gmtsub(ATTRIBUTE_MAYBE_UNUSED struct state const *sp, time_t const *timep,
1708 1.136 christos int_fast32_t offset, struct tm *tmp)
1709 1.1 jtc {
1710 1.130 rillig register struct tm * result;
1711 1.19 kleink
1712 1.87 christos result = timesub(timep, offset, gmtptr, tmp);
1713 1.1 jtc #ifdef TM_ZONE
1714 1.1 jtc /*
1715 1.1 jtc ** Could get fancy here and deliver something such as
1716 1.104 christos ** "+xx" or "-xx" if offset is non-zero,
1717 1.1 jtc ** but this is no time for a treasure hunt.
1718 1.1 jtc */
1719 1.88 christos if (result)
1720 1.88 christos result->TM_ZONE = offset ? __UNCONST(wildabbr) : gmtptr ?
1721 1.134 christos gmtptr->chars : __UNCONST(utc);
1722 1.1 jtc #endif /* defined TM_ZONE */
1723 1.45 mlelstv return result;
1724 1.1 jtc }
1725 1.1 jtc
1726 1.18 kleink /*
1727 1.131 rillig * Re-entrant version of gmtime.
1728 1.35 kleink */
1729 1.35 kleink
1730 1.18 kleink struct tm *
1731 1.138 christos gmtime_r(time_t const *__restrict timep, struct tm *__restrict tmp)
1732 1.18 kleink {
1733 1.131 rillig gmtcheck();
1734 1.131 rillig return gmtsub(NULL, timep, 0, tmp);
1735 1.18 kleink }
1736 1.18 kleink
1737 1.96 christos struct tm *
1738 1.96 christos gmtime(const time_t *timep)
1739 1.96 christos {
1740 1.138 christos #if !SUPPORT_C89
1741 1.138 christos static struct tm tm;
1742 1.138 christos #endif
1743 1.131 rillig return gmtime_r(timep, &tm);
1744 1.96 christos }
1745 1.124 christos
1746 1.138 christos #if STD_INSPIRED
1747 1.1 jtc
1748 1.139 christos /* This function is obsolescent and may disappear in future releases.
1749 1.139 christos Callers can instead use localtime_rz with a fixed-offset zone. */
1750 1.139 christos
1751 1.1 jtc struct tm *
1752 1.96 christos offtime(const time_t *timep, long offset)
1753 1.1 jtc {
1754 1.131 rillig gmtcheck();
1755 1.138 christos
1756 1.138 christos #if !SUPPORT_C89
1757 1.138 christos static struct tm tm;
1758 1.138 christos #endif
1759 1.131 rillig return gmtsub(gmtptr, timep, (int_fast32_t)offset, &tm);
1760 1.49 christos }
1761 1.49 christos
1762 1.49 christos struct tm *
1763 1.49 christos offtime_r(const time_t *timep, long offset, struct tm *tmp)
1764 1.49 christos {
1765 1.87 christos gmtcheck();
1766 1.90 christos return gmtsub(NULL, timep, (int_fast32_t)offset, tmp);
1767 1.1 jtc }
1768 1.1 jtc
1769 1.138 christos #endif /* STD_INSPIRED */
1770 1.1 jtc
1771 1.109 christos #if TZ_TIME_T
1772 1.105 christos
1773 1.109 christos # if USG_COMPAT
1774 1.105 christos # define daylight 0
1775 1.105 christos # define timezone 0
1776 1.105 christos # endif
1777 1.123 christos # if !ALTZONE
1778 1.105 christos # define altzone 0
1779 1.105 christos # endif
1780 1.130 rillig
1781 1.105 christos /* Convert from the underlying system's time_t to the ersatz time_tz,
1782 1.105 christos which is called 'time_t' in this file. Typically, this merely
1783 1.105 christos converts the time's integer width. On some platforms, the system
1784 1.105 christos time is local time not UT, or uses some epoch other than the POSIX
1785 1.105 christos epoch.
1786 1.105 christos
1787 1.105 christos Although this code appears to define a function named 'time' that
1788 1.105 christos returns time_t, the macros in private.h cause this code to actually
1789 1.105 christos define a function named 'tz_time' that returns tz_time_t. The call
1790 1.105 christos to sys_time invokes the underlying system's 'time' function. */
1791 1.130 rillig
1792 1.105 christos time_t
1793 1.105 christos time(time_t *p)
1794 1.105 christos {
1795 1.126 christos __time_t r = sys_time(0);
1796 1.105 christos if (r != (time_t) -1) {
1797 1.105 christos int_fast32_t offset = EPOCH_LOCAL ? (daylight ? timezone : altzone) : 0;
1798 1.105 christos if (increment_overflow32(&offset, -EPOCH_OFFSET)
1799 1.124 christos || increment_overflow_time(&r, offset)) {
1800 1.105 christos errno = EOVERFLOW;
1801 1.105 christos r = -1;
1802 1.105 christos }
1803 1.105 christos }
1804 1.105 christos if (p)
1805 1.126 christos *p = (time_t)r;
1806 1.126 christos return (time_t)r;
1807 1.105 christos }
1808 1.105 christos #endif
1809 1.105 christos
1810 1.45 mlelstv /*
1811 1.45 mlelstv ** Return the number of leap years through the end of the given year
1812 1.45 mlelstv ** where, to make the math easy, the answer for year zero is defined as zero.
1813 1.45 mlelstv */
1814 1.132 rillig
1815 1.124 christos static time_t
1816 1.124 christos leaps_thru_end_of_nonneg(time_t y)
1817 1.109 christos {
1818 1.131 rillig return y / 4 - y / 100 + y / 400;
1819 1.109 christos }
1820 1.45 mlelstv
1821 1.124 christos static time_t
1822 1.132 rillig leaps_thru_end_of(time_t y)
1823 1.45 mlelstv {
1824 1.131 rillig return (y < 0
1825 1.131 rillig ? -1 - leaps_thru_end_of_nonneg(-1 - y)
1826 1.131 rillig : leaps_thru_end_of_nonneg(y));
1827 1.45 mlelstv }
1828 1.45 mlelstv
1829 1.45 mlelstv static struct tm *
1830 1.96 christos timesub(const time_t *timep, int_fast32_t offset,
1831 1.131 rillig const struct state *sp, struct tm *tmp)
1832 1.49 christos {
1833 1.130 rillig register const struct lsinfo * lp;
1834 1.130 rillig register time_t tdays;
1835 1.130 rillig register const int * ip;
1836 1.130 rillig register int_fast32_t corr;
1837 1.130 rillig register int i;
1838 1.124 christos int_fast32_t idays, rem, dayoff, dayrem;
1839 1.124 christos time_t y;
1840 1.124 christos
1841 1.124 christos /* If less than SECSPERMIN, the number of seconds since the
1842 1.124 christos most recent positive leap second; otherwise, do not add 1
1843 1.124 christos to localtime tm_sec because of leap seconds. */
1844 1.140 christos __time_t secs_since_posleap = SECSPERMIN;
1845 1.1 jtc
1846 1.1 jtc corr = 0;
1847 1.1 jtc i = (sp == NULL) ? 0 : sp->leapcnt;
1848 1.1 jtc while (--i >= 0) {
1849 1.1 jtc lp = &sp->lsis[i];
1850 1.1 jtc if (*timep >= lp->ls_trans) {
1851 1.1 jtc corr = lp->ls_corr;
1852 1.124 christos if ((i == 0 ? 0 : lp[-1].ls_corr) < corr)
1853 1.124 christos secs_since_posleap = *timep - lp->ls_trans;
1854 1.1 jtc break;
1855 1.1 jtc }
1856 1.1 jtc }
1857 1.124 christos
1858 1.124 christos /* Calculate the year, avoiding integer overflow even if
1859 1.124 christos time_t is unsigned. */
1860 1.66 christos tdays = (time_t)(*timep / SECSPERDAY);
1861 1.124 christos rem = (int)(*timep % SECSPERDAY);
1862 1.124 christos rem += offset % SECSPERDAY - corr % SECSPERDAY + 3 * SECSPERDAY;
1863 1.124 christos dayoff = offset / SECSPERDAY - corr / SECSPERDAY + rem / SECSPERDAY - 3;
1864 1.124 christos rem %= SECSPERDAY;
1865 1.124 christos /* y = (EPOCH_YEAR
1866 1.124 christos + floor((tdays + dayoff) / DAYSPERREPEAT) * YEARSPERREPEAT),
1867 1.124 christos sans overflow. But calculate against 1570 (EPOCH_YEAR -
1868 1.124 christos YEARSPERREPEAT) instead of against 1970 so that things work
1869 1.124 christos for localtime values before 1970 when time_t is unsigned. */
1870 1.124 christos dayrem = (int)(tdays % DAYSPERREPEAT);
1871 1.124 christos dayrem += dayoff % DAYSPERREPEAT;
1872 1.124 christos y = (EPOCH_YEAR - YEARSPERREPEAT
1873 1.124 christos + ((1 + dayoff / DAYSPERREPEAT + dayrem / DAYSPERREPEAT
1874 1.124 christos - ((dayrem % DAYSPERREPEAT) < 0)
1875 1.124 christos + tdays / DAYSPERREPEAT)
1876 1.124 christos * YEARSPERREPEAT));
1877 1.124 christos /* idays = (tdays + dayoff) mod DAYSPERREPEAT, sans overflow. */
1878 1.124 christos idays = (int)(tdays % DAYSPERREPEAT);
1879 1.124 christos idays += dayoff % DAYSPERREPEAT + 2 * DAYSPERREPEAT;
1880 1.124 christos idays %= DAYSPERREPEAT;
1881 1.124 christos /* Increase Y and decrease IDAYS until IDAYS is in range for Y. */
1882 1.124 christos while (year_lengths[isleap(y)] <= idays) {
1883 1.124 christos int tdelta = idays / DAYSPERLYEAR;
1884 1.124 christos int_fast32_t ydelta = tdelta + !tdelta;
1885 1.124 christos time_t newy = y + ydelta;
1886 1.130 rillig register int leapdays;
1887 1.124 christos leapdays = (int)(leaps_thru_end_of(newy - 1) -
1888 1.124 christos leaps_thru_end_of(y - 1));
1889 1.124 christos idays -= ydelta * DAYSPERNYEAR;
1890 1.124 christos idays -= leapdays;
1891 1.45 mlelstv y = newy;
1892 1.45 mlelstv }
1893 1.124 christos
1894 1.136 christos #ifdef ckd_add
1895 1.136 christos if (ckd_add(&tmp->tm_year, y, -TM_YEAR_BASE)) {
1896 1.136 christos errno = EOVERFLOW;
1897 1.136 christos return NULL;
1898 1.136 christos }
1899 1.136 christos #else
1900 1.124 christos if (!TYPE_SIGNED(time_t) && y < TM_YEAR_BASE) {
1901 1.124 christos int signed_y = (int)y;
1902 1.124 christos tmp->tm_year = signed_y - TM_YEAR_BASE;
1903 1.124 christos } else if ((!TYPE_SIGNED(time_t) || INT_MIN + TM_YEAR_BASE <= y)
1904 1.124 christos && y - TM_YEAR_BASE <= INT_MAX)
1905 1.124 christos tmp->tm_year = (int)(y - TM_YEAR_BASE);
1906 1.124 christos else {
1907 1.124 christos errno = EOVERFLOW;
1908 1.124 christos return NULL;
1909 1.45 mlelstv }
1910 1.136 christos #endif
1911 1.45 mlelstv tmp->tm_yday = idays;
1912 1.45 mlelstv /*
1913 1.45 mlelstv ** The "extra" mods below avoid overflow problems.
1914 1.45 mlelstv */
1915 1.124 christos tmp->tm_wday = (int)(TM_WDAY_BASE
1916 1.124 christos + ((tmp->tm_year % DAYSPERWEEK)
1917 1.124 christos * (DAYSPERNYEAR % DAYSPERWEEK))
1918 1.124 christos + leaps_thru_end_of(y - 1)
1919 1.124 christos - leaps_thru_end_of(TM_YEAR_BASE - 1)
1920 1.124 christos + idays);
1921 1.45 mlelstv tmp->tm_wday %= DAYSPERWEEK;
1922 1.45 mlelstv if (tmp->tm_wday < 0)
1923 1.45 mlelstv tmp->tm_wday += DAYSPERWEEK;
1924 1.1 jtc tmp->tm_hour = (int) (rem / SECSPERHOUR);
1925 1.45 mlelstv rem %= SECSPERHOUR;
1926 1.124 christos tmp->tm_min = rem / SECSPERMIN;
1927 1.124 christos tmp->tm_sec = rem % SECSPERMIN;
1928 1.124 christos
1929 1.124 christos /* Use "... ??:??:60" at the end of the localtime minute containing
1930 1.124 christos the second just before the positive leap second. */
1931 1.124 christos tmp->tm_sec += secs_since_posleap <= tmp->tm_sec;
1932 1.124 christos
1933 1.45 mlelstv ip = mon_lengths[isleap(y)];
1934 1.45 mlelstv for (tmp->tm_mon = 0; idays >= ip[tmp->tm_mon]; ++(tmp->tm_mon))
1935 1.45 mlelstv idays -= ip[tmp->tm_mon];
1936 1.124 christos tmp->tm_mday = idays + 1;
1937 1.1 jtc tmp->tm_isdst = 0;
1938 1.1 jtc #ifdef TM_GMTOFF
1939 1.1 jtc tmp->TM_GMTOFF = offset;
1940 1.1 jtc #endif /* defined TM_GMTOFF */
1941 1.45 mlelstv return tmp;
1942 1.1 jtc }
1943 1.1 jtc
1944 1.1 jtc /*
1945 1.1 jtc ** Adapted from code provided by Robert Elz, who writes:
1946 1.1 jtc ** The "best" way to do mktime I think is based on an idea of Bob
1947 1.7 jtc ** Kridle's (so its said...) from a long time ago.
1948 1.45 mlelstv ** It does a binary search of the time_t space. Since time_t's are
1949 1.1 jtc ** just 32 bits, its a max of 32 iterations (even at 64 bits it
1950 1.1 jtc ** would still be very reasonable).
1951 1.1 jtc */
1952 1.1 jtc
1953 1.1 jtc #ifndef WRONG
1954 1.134 christos # define WRONG ((time_t)-1)
1955 1.1 jtc #endif /* !defined WRONG */
1956 1.1 jtc
1957 1.1 jtc /*
1958 1.87 christos ** Normalize logic courtesy Paul Eggert.
1959 1.1 jtc */
1960 1.1 jtc
1961 1.87 christos static bool
1962 1.96 christos increment_overflow(int *ip, int j)
1963 1.1 jtc {
1964 1.136 christos #ifdef ckd_add
1965 1.136 christos return ckd_add(ip, *ip, j);
1966 1.136 christos #else
1967 1.130 rillig register int const i = *ip;
1968 1.1 jtc
1969 1.58 christos /*
1970 1.58 christos ** If i >= 0 there can only be overflow if i + j > INT_MAX
1971 1.58 christos ** or if j > INT_MAX - i; given i >= 0, INT_MAX - i cannot overflow.
1972 1.58 christos ** If i < 0 there can only be overflow if i + j < INT_MIN
1973 1.58 christos ** or if j < INT_MIN - i; given i < 0, INT_MIN - i cannot overflow.
1974 1.58 christos */
1975 1.58 christos if ((i >= 0) ? (j > INT_MAX - i) : (j < INT_MIN - i))
1976 1.87 christos return true;
1977 1.58 christos *ip += j;
1978 1.87 christos return false;
1979 1.136 christos #endif
1980 1.1 jtc }
1981 1.1 jtc
1982 1.87 christos static bool
1983 1.74 christos increment_overflow32(int_fast32_t *const lp, int const m)
1984 1.45 mlelstv {
1985 1.136 christos #ifdef ckd_add
1986 1.136 christos return ckd_add(lp, *lp, m);
1987 1.136 christos #else
1988 1.130 rillig register int_fast32_t const l = *lp;
1989 1.45 mlelstv
1990 1.74 christos if ((l >= 0) ? (m > INT_FAST32_MAX - l) : (m < INT_FAST32_MIN - l))
1991 1.87 christos return true;
1992 1.58 christos *lp += m;
1993 1.87 christos return false;
1994 1.136 christos #endif
1995 1.45 mlelstv }
1996 1.45 mlelstv
1997 1.87 christos static bool
1998 1.126 christos increment_overflow_time(__time_t *tp, int_fast32_t j)
1999 1.81 christos {
2000 1.136 christos #ifdef ckd_add
2001 1.136 christos return ckd_add(tp, *tp, j);
2002 1.136 christos #else
2003 1.81 christos /*
2004 1.81 christos ** This is like
2005 1.109 christos ** 'if (! (TIME_T_MIN <= *tp + j && *tp + j <= TIME_T_MAX)) ...',
2006 1.81 christos ** except that it does the right thing even if *tp + j would overflow.
2007 1.81 christos */
2008 1.81 christos if (! (j < 0
2009 1.109 christos ? (TYPE_SIGNED(time_t) ? TIME_T_MIN - j <= *tp : -1 - j < *tp)
2010 1.109 christos : *tp <= TIME_T_MAX - j))
2011 1.87 christos return true;
2012 1.81 christos *tp += j;
2013 1.87 christos return false;
2014 1.136 christos #endif
2015 1.81 christos }
2016 1.81 christos
2017 1.87 christos static bool
2018 1.49 christos normalize_overflow(int *const tensptr, int *const unitsptr, const int base)
2019 1.1 jtc {
2020 1.130 rillig register int tensdelta;
2021 1.1 jtc
2022 1.1 jtc tensdelta = (*unitsptr >= 0) ?
2023 1.1 jtc (*unitsptr / base) :
2024 1.1 jtc (-1 - (-1 - *unitsptr) / base);
2025 1.1 jtc *unitsptr -= tensdelta * base;
2026 1.1 jtc return increment_overflow(tensptr, tensdelta);
2027 1.1 jtc }
2028 1.1 jtc
2029 1.87 christos static bool
2030 1.96 christos normalize_overflow32(int_fast32_t *tensptr, int *unitsptr, int base)
2031 1.45 mlelstv {
2032 1.130 rillig register int tensdelta;
2033 1.45 mlelstv
2034 1.45 mlelstv tensdelta = (*unitsptr >= 0) ?
2035 1.45 mlelstv (*unitsptr / base) :
2036 1.45 mlelstv (-1 - (-1 - *unitsptr) / base);
2037 1.45 mlelstv *unitsptr -= tensdelta * base;
2038 1.74 christos return increment_overflow32(tensptr, tensdelta);
2039 1.45 mlelstv }
2040 1.45 mlelstv
2041 1.45 mlelstv static int
2042 1.130 rillig tmcomp(register const struct tm *const atmp,
2043 1.130 rillig register const struct tm *const btmp)
2044 1.1 jtc {
2045 1.130 rillig register int result;
2046 1.1 jtc
2047 1.78 christos if (atmp->tm_year != btmp->tm_year)
2048 1.78 christos return atmp->tm_year < btmp->tm_year ? -1 : 1;
2049 1.78 christos if ((result = (atmp->tm_mon - btmp->tm_mon)) == 0 &&
2050 1.1 jtc (result = (atmp->tm_mday - btmp->tm_mday)) == 0 &&
2051 1.1 jtc (result = (atmp->tm_hour - btmp->tm_hour)) == 0 &&
2052 1.1 jtc (result = (atmp->tm_min - btmp->tm_min)) == 0)
2053 1.1 jtc result = atmp->tm_sec - btmp->tm_sec;
2054 1.1 jtc return result;
2055 1.1 jtc }
2056 1.1 jtc
2057 1.136 christos /* Copy to *DEST from *SRC. Copy only the members needed for mktime,
2058 1.136 christos as other members might not be initialized. */
2059 1.136 christos static void
2060 1.136 christos mktmcpy(struct tm *dest, struct tm const *src)
2061 1.136 christos {
2062 1.136 christos dest->tm_sec = src->tm_sec;
2063 1.136 christos dest->tm_min = src->tm_min;
2064 1.136 christos dest->tm_hour = src->tm_hour;
2065 1.136 christos dest->tm_mday = src->tm_mday;
2066 1.136 christos dest->tm_mon = src->tm_mon;
2067 1.136 christos dest->tm_year = src->tm_year;
2068 1.136 christos dest->tm_isdst = src->tm_isdst;
2069 1.136 christos #if defined TM_GMTOFF && ! UNINIT_TRAP
2070 1.136 christos dest->TM_GMTOFF = src->TM_GMTOFF;
2071 1.136 christos #endif
2072 1.136 christos }
2073 1.136 christos
2074 1.1 jtc static time_t
2075 1.87 christos time2sub(struct tm *const tmp,
2076 1.87 christos struct tm *(*funcp)(struct state const *, time_t const *,
2077 1.87 christos int_fast32_t, struct tm *),
2078 1.87 christos struct state const *sp,
2079 1.131 rillig const int_fast32_t offset,
2080 1.87 christos bool *okayp,
2081 1.87 christos bool do_norm_secs)
2082 1.49 christos {
2083 1.130 rillig register int dir;
2084 1.130 rillig register int i, j;
2085 1.130 rillig register int saved_seconds;
2086 1.130 rillig register int_fast32_t li;
2087 1.130 rillig register time_t lo;
2088 1.130 rillig register time_t hi;
2089 1.61 christos #ifdef NO_ERROR_IN_DST_GAP
2090 1.132 rillig time_t ilo;
2091 1.61 christos #endif
2092 1.131 rillig int_fast32_t y;
2093 1.131 rillig time_t newt;
2094 1.131 rillig time_t t;
2095 1.131 rillig struct tm yourtm, mytm;
2096 1.1 jtc
2097 1.87 christos *okayp = false;
2098 1.136 christos mktmcpy(&yourtm, tmp);
2099 1.136 christos
2100 1.64 christos #ifdef NO_ERROR_IN_DST_GAP
2101 1.64 christos again:
2102 1.64 christos #endif
2103 1.13 jtc if (do_norm_secs) {
2104 1.13 jtc if (normalize_overflow(&yourtm.tm_min, &yourtm.tm_sec,
2105 1.60 christos SECSPERMIN))
2106 1.91 christos goto out_of_range;
2107 1.13 jtc }
2108 1.1 jtc if (normalize_overflow(&yourtm.tm_hour, &yourtm.tm_min, MINSPERHOUR))
2109 1.91 christos goto out_of_range;
2110 1.1 jtc if (normalize_overflow(&yourtm.tm_mday, &yourtm.tm_hour, HOURSPERDAY))
2111 1.91 christos goto out_of_range;
2112 1.45 mlelstv y = yourtm.tm_year;
2113 1.74 christos if (normalize_overflow32(&y, &yourtm.tm_mon, MONSPERYEAR))
2114 1.91 christos goto out_of_range;
2115 1.1 jtc /*
2116 1.45 mlelstv ** Turn y into an actual year number for now.
2117 1.1 jtc ** It is converted back to an offset from TM_YEAR_BASE later.
2118 1.1 jtc */
2119 1.74 christos if (increment_overflow32(&y, TM_YEAR_BASE))
2120 1.91 christos goto out_of_range;
2121 1.1 jtc while (yourtm.tm_mday <= 0) {
2122 1.74 christos if (increment_overflow32(&y, -1))
2123 1.91 christos goto out_of_range;
2124 1.45 mlelstv li = y + (1 < yourtm.tm_mon);
2125 1.45 mlelstv yourtm.tm_mday += year_lengths[isleap(li)];
2126 1.1 jtc }
2127 1.1 jtc while (yourtm.tm_mday > DAYSPERLYEAR) {
2128 1.45 mlelstv li = y + (1 < yourtm.tm_mon);
2129 1.45 mlelstv yourtm.tm_mday -= year_lengths[isleap(li)];
2130 1.74 christos if (increment_overflow32(&y, 1))
2131 1.91 christos goto out_of_range;
2132 1.1 jtc }
2133 1.1 jtc for ( ; ; ) {
2134 1.45 mlelstv i = mon_lengths[isleap(y)][yourtm.tm_mon];
2135 1.1 jtc if (yourtm.tm_mday <= i)
2136 1.1 jtc break;
2137 1.1 jtc yourtm.tm_mday -= i;
2138 1.1 jtc if (++yourtm.tm_mon >= MONSPERYEAR) {
2139 1.1 jtc yourtm.tm_mon = 0;
2140 1.74 christos if (increment_overflow32(&y, 1))
2141 1.91 christos goto out_of_range;
2142 1.1 jtc }
2143 1.1 jtc }
2144 1.136 christos #ifdef ckd_add
2145 1.136 christos if (ckd_add(&yourtm.tm_year, y, -TM_YEAR_BASE))
2146 1.136 christos return WRONG;
2147 1.136 christos #else
2148 1.74 christos if (increment_overflow32(&y, -TM_YEAR_BASE))
2149 1.91 christos goto out_of_range;
2150 1.87 christos if (! (INT_MIN <= y && y <= INT_MAX))
2151 1.91 christos goto out_of_range;
2152 1.66 christos yourtm.tm_year = (int)y;
2153 1.136 christos #endif
2154 1.29 kleink if (yourtm.tm_sec >= 0 && yourtm.tm_sec < SECSPERMIN)
2155 1.29 kleink saved_seconds = 0;
2156 1.136 christos else if (yourtm.tm_year + TM_YEAR_BASE < EPOCH_YEAR) {
2157 1.1 jtc /*
2158 1.1 jtc ** We can't set tm_sec to 0, because that might push the
2159 1.1 jtc ** time below the minimum representable time.
2160 1.1 jtc ** Set tm_sec to 59 instead.
2161 1.1 jtc ** This assumes that the minimum representable time is
2162 1.1 jtc ** not in the same minute that a leap second was deleted from,
2163 1.1 jtc ** which is a safer assumption than using 58 would be.
2164 1.1 jtc */
2165 1.1 jtc if (increment_overflow(&yourtm.tm_sec, 1 - SECSPERMIN))
2166 1.91 christos goto out_of_range;
2167 1.1 jtc saved_seconds = yourtm.tm_sec;
2168 1.1 jtc yourtm.tm_sec = SECSPERMIN - 1;
2169 1.1 jtc } else {
2170 1.1 jtc saved_seconds = yourtm.tm_sec;
2171 1.1 jtc yourtm.tm_sec = 0;
2172 1.1 jtc }
2173 1.1 jtc /*
2174 1.45 mlelstv ** Do a binary search (this works whatever time_t's type is).
2175 1.1 jtc */
2176 1.109 christos lo = TIME_T_MIN;
2177 1.109 christos hi = TIME_T_MAX;
2178 1.61 christos #ifdef NO_ERROR_IN_DST_GAP
2179 1.61 christos ilo = lo;
2180 1.61 christos #endif
2181 1.1 jtc for ( ; ; ) {
2182 1.45 mlelstv t = lo / 2 + hi / 2;
2183 1.45 mlelstv if (t < lo)
2184 1.45 mlelstv t = lo;
2185 1.45 mlelstv else if (t > hi)
2186 1.45 mlelstv t = hi;
2187 1.87 christos if (! funcp(sp, &t, offset, &mytm)) {
2188 1.45 mlelstv /*
2189 1.45 mlelstv ** Assume that t is too extreme to be represented in
2190 1.45 mlelstv ** a struct tm; arrange things so that it is less
2191 1.45 mlelstv ** extreme on the next pass.
2192 1.45 mlelstv */
2193 1.45 mlelstv dir = (t > 0) ? 1 : -1;
2194 1.45 mlelstv } else dir = tmcomp(&mytm, &yourtm);
2195 1.1 jtc if (dir != 0) {
2196 1.45 mlelstv if (t == lo) {
2197 1.109 christos if (t == TIME_T_MAX)
2198 1.91 christos goto out_of_range;
2199 1.45 mlelstv ++t;
2200 1.45 mlelstv ++lo;
2201 1.45 mlelstv } else if (t == hi) {
2202 1.109 christos if (t == TIME_T_MIN)
2203 1.91 christos goto out_of_range;
2204 1.45 mlelstv --t;
2205 1.45 mlelstv --hi;
2206 1.45 mlelstv }
2207 1.59 christos #ifdef NO_ERROR_IN_DST_GAP
2208 1.64 christos if (ilo != lo && lo - 1 == hi && yourtm.tm_isdst < 0 &&
2209 1.64 christos do_norm_secs) {
2210 1.59 christos for (i = sp->typecnt - 1; i >= 0; --i) {
2211 1.59 christos for (j = sp->typecnt - 1; j >= 0; --j) {
2212 1.64 christos time_t off;
2213 1.59 christos if (sp->ttis[j].tt_isdst ==
2214 1.59 christos sp->ttis[i].tt_isdst)
2215 1.59 christos continue;
2216 1.129 christos if (ttunspecified(sp, j))
2217 1.129 christos continue;
2218 1.122 christos off = sp->ttis[j].tt_utoff -
2219 1.122 christos sp->ttis[i].tt_utoff;
2220 1.64 christos yourtm.tm_sec += off < 0 ?
2221 1.64 christos -off : off;
2222 1.64 christos goto again;
2223 1.59 christos }
2224 1.59 christos }
2225 1.59 christos }
2226 1.59 christos #endif
2227 1.45 mlelstv if (lo > hi)
2228 1.60 christos goto invalid;
2229 1.45 mlelstv if (dir > 0)
2230 1.45 mlelstv hi = t;
2231 1.45 mlelstv else lo = t;
2232 1.1 jtc continue;
2233 1.1 jtc }
2234 1.87 christos #if defined TM_GMTOFF && ! UNINIT_TRAP
2235 1.87 christos if (mytm.TM_GMTOFF != yourtm.TM_GMTOFF
2236 1.87 christos && (yourtm.TM_GMTOFF < 0
2237 1.87 christos ? (-SECSPERDAY <= yourtm.TM_GMTOFF
2238 1.87 christos && (mytm.TM_GMTOFF <=
2239 1.140 christos /*CONSTCOND*/
2240 1.134 christos (min(INT_FAST32_MAX, LONG_MAX)
2241 1.87 christos + yourtm.TM_GMTOFF)))
2242 1.87 christos : (yourtm.TM_GMTOFF <= SECSPERDAY
2243 1.140 christos /*CONSTCOND*/
2244 1.134 christos && ((max(INT_FAST32_MIN, LONG_MIN)
2245 1.87 christos + yourtm.TM_GMTOFF)
2246 1.87 christos <= mytm.TM_GMTOFF)))) {
2247 1.111 christos /* MYTM matches YOURTM except with the wrong UT offset.
2248 1.87 christos YOURTM.TM_GMTOFF is plausible, so try it instead.
2249 1.87 christos It's OK if YOURTM.TM_GMTOFF contains uninitialized data,
2250 1.87 christos since the guess gets checked. */
2251 1.126 christos __time_t altt = t;
2252 1.87 christos int_fast32_t diff = (int_fast32_t)
2253 1.87 christos (mytm.TM_GMTOFF - yourtm.TM_GMTOFF);
2254 1.87 christos if (!increment_overflow_time(&altt, diff)) {
2255 1.87 christos struct tm alttm;
2256 1.126 christos time_t xaltt = (time_t)altt;
2257 1.126 christos if (funcp(sp, &xaltt, offset, &alttm)
2258 1.87 christos && alttm.tm_isdst == mytm.tm_isdst
2259 1.87 christos && alttm.TM_GMTOFF == yourtm.TM_GMTOFF
2260 1.124 christos && tmcomp(&alttm, &yourtm) == 0) {
2261 1.126 christos t = xaltt;
2262 1.87 christos mytm = alttm;
2263 1.87 christos }
2264 1.87 christos }
2265 1.87 christos }
2266 1.87 christos #endif
2267 1.1 jtc if (yourtm.tm_isdst < 0 || mytm.tm_isdst == yourtm.tm_isdst)
2268 1.1 jtc break;
2269 1.1 jtc /*
2270 1.1 jtc ** Right time, wrong type.
2271 1.1 jtc ** Hunt for right time, right type.
2272 1.1 jtc ** It's okay to guess wrong since the guess
2273 1.1 jtc ** gets checked.
2274 1.1 jtc */
2275 1.1 jtc if (sp == NULL)
2276 1.60 christos goto invalid;
2277 1.5 jtc for (i = sp->typecnt - 1; i >= 0; --i) {
2278 1.1 jtc if (sp->ttis[i].tt_isdst != yourtm.tm_isdst)
2279 1.1 jtc continue;
2280 1.5 jtc for (j = sp->typecnt - 1; j >= 0; --j) {
2281 1.1 jtc if (sp->ttis[j].tt_isdst == yourtm.tm_isdst)
2282 1.1 jtc continue;
2283 1.122 christos newt = (time_t)(t + sp->ttis[j].tt_utoff -
2284 1.122 christos sp->ttis[i].tt_utoff);
2285 1.87 christos if (! funcp(sp, &newt, offset, &mytm))
2286 1.45 mlelstv continue;
2287 1.1 jtc if (tmcomp(&mytm, &yourtm) != 0)
2288 1.1 jtc continue;
2289 1.1 jtc if (mytm.tm_isdst != yourtm.tm_isdst)
2290 1.1 jtc continue;
2291 1.1 jtc /*
2292 1.1 jtc ** We have a match.
2293 1.1 jtc */
2294 1.1 jtc t = newt;
2295 1.1 jtc goto label;
2296 1.1 jtc }
2297 1.1 jtc }
2298 1.60 christos goto invalid;
2299 1.1 jtc }
2300 1.1 jtc label:
2301 1.1 jtc newt = t + saved_seconds;
2302 1.1 jtc if ((newt < t) != (saved_seconds < 0))
2303 1.91 christos goto out_of_range;
2304 1.1 jtc t = newt;
2305 1.87 christos if (funcp(sp, &t, offset, tmp)) {
2306 1.87 christos *okayp = true;
2307 1.51 christos return t;
2308 1.60 christos }
2309 1.91 christos out_of_range:
2310 1.60 christos errno = EOVERFLOW;
2311 1.60 christos return WRONG;
2312 1.60 christos invalid:
2313 1.60 christos errno = EINVAL;
2314 1.60 christos return WRONG;
2315 1.13 jtc }
2316 1.13 jtc
2317 1.13 jtc static time_t
2318 1.87 christos time2(struct tm * const tmp,
2319 1.87 christos struct tm *(*funcp)(struct state const *, time_t const *,
2320 1.87 christos int_fast32_t, struct tm *),
2321 1.87 christos struct state const *sp,
2322 1.87 christos const int_fast32_t offset,
2323 1.87 christos bool *okayp)
2324 1.13 jtc {
2325 1.13 jtc time_t t;
2326 1.13 jtc
2327 1.13 jtc /*
2328 1.13 jtc ** First try without normalization of seconds
2329 1.13 jtc ** (in case tm_sec contains a value associated with a leap second).
2330 1.13 jtc ** If that fails, try with normalization of seconds.
2331 1.13 jtc */
2332 1.87 christos t = time2sub(tmp, funcp, sp, offset, okayp, false);
2333 1.87 christos return *okayp ? t : time2sub(tmp, funcp, sp, offset, okayp, true);
2334 1.1 jtc }
2335 1.1 jtc
2336 1.1 jtc static time_t
2337 1.87 christos time1(struct tm *const tmp,
2338 1.124 christos struct tm *(*funcp)(struct state const *, time_t const *,
2339 1.124 christos int_fast32_t, struct tm *),
2340 1.87 christos struct state const *sp,
2341 1.87 christos const int_fast32_t offset)
2342 1.49 christos {
2343 1.130 rillig register time_t t;
2344 1.130 rillig register int samei, otheri;
2345 1.130 rillig register int sameind, otherind;
2346 1.130 rillig register int i;
2347 1.130 rillig register int nseen;
2348 1.130 rillig int save_errno;
2349 1.83 christos char seen[TZ_MAX_TYPES];
2350 1.83 christos unsigned char types[TZ_MAX_TYPES];
2351 1.87 christos bool okay;
2352 1.1 jtc
2353 1.58 christos if (tmp == NULL) {
2354 1.58 christos errno = EINVAL;
2355 1.58 christos return WRONG;
2356 1.58 christos }
2357 1.1 jtc if (tmp->tm_isdst > 1)
2358 1.1 jtc tmp->tm_isdst = 1;
2359 1.90 christos save_errno = errno;
2360 1.87 christos t = time2(tmp, funcp, sp, offset, &okay);
2361 1.90 christos if (okay) {
2362 1.90 christos errno = save_errno;
2363 1.1 jtc return t;
2364 1.90 christos }
2365 1.1 jtc if (tmp->tm_isdst < 0)
2366 1.82 christos #ifdef PCTS
2367 1.82 christos /*
2368 1.82 christos ** POSIX Conformance Test Suite code courtesy Grant Sullivan.
2369 1.82 christos */
2370 1.1 jtc tmp->tm_isdst = 0; /* reset to std and try again */
2371 1.82 christos #else
2372 1.1 jtc return t;
2373 1.1 jtc #endif /* !defined PCTS */
2374 1.1 jtc /*
2375 1.1 jtc ** We're supposed to assume that somebody took a time of one type
2376 1.1 jtc ** and did some math on it that yielded a "struct tm" that's bad.
2377 1.1 jtc ** We try to divine the type they started from and adjust to the
2378 1.1 jtc ** type they need.
2379 1.1 jtc */
2380 1.60 christos if (sp == NULL) {
2381 1.60 christos errno = EINVAL;
2382 1.1 jtc return WRONG;
2383 1.60 christos }
2384 1.35 kleink for (i = 0; i < sp->typecnt; ++i)
2385 1.87 christos seen[i] = false;
2386 1.35 kleink nseen = 0;
2387 1.35 kleink for (i = sp->timecnt - 1; i >= 0; --i)
2388 1.129 christos if (!seen[sp->types[i]] && !ttunspecified(sp, sp->types[i])) {
2389 1.87 christos seen[sp->types[i]] = true;
2390 1.35 kleink types[nseen++] = sp->types[i];
2391 1.35 kleink }
2392 1.35 kleink for (sameind = 0; sameind < nseen; ++sameind) {
2393 1.35 kleink samei = types[sameind];
2394 1.1 jtc if (sp->ttis[samei].tt_isdst != tmp->tm_isdst)
2395 1.1 jtc continue;
2396 1.35 kleink for (otherind = 0; otherind < nseen; ++otherind) {
2397 1.35 kleink otheri = types[otherind];
2398 1.1 jtc if (sp->ttis[otheri].tt_isdst == tmp->tm_isdst)
2399 1.1 jtc continue;
2400 1.131 rillig tmp->tm_sec += (int)(sp->ttis[otheri].tt_utoff
2401 1.131 rillig - sp->ttis[samei].tt_utoff);
2402 1.1 jtc tmp->tm_isdst = !tmp->tm_isdst;
2403 1.87 christos t = time2(tmp, funcp, sp, offset, &okay);
2404 1.90 christos if (okay) {
2405 1.90 christos errno = save_errno;
2406 1.1 jtc return t;
2407 1.90 christos }
2408 1.131 rillig tmp->tm_sec -= (int)(sp->ttis[otheri].tt_utoff
2409 1.131 rillig - sp->ttis[samei].tt_utoff);
2410 1.1 jtc tmp->tm_isdst = !tmp->tm_isdst;
2411 1.1 jtc }
2412 1.1 jtc }
2413 1.60 christos errno = EOVERFLOW;
2414 1.1 jtc return WRONG;
2415 1.1 jtc }
2416 1.1 jtc
2417 1.87 christos static time_t
2418 1.87 christos mktime_tzname(timezone_t sp, struct tm *tmp, bool setname)
2419 1.87 christos {
2420 1.131 rillig if (sp)
2421 1.131 rillig return time1(tmp, localsub, sp, setname);
2422 1.131 rillig else {
2423 1.131 rillig gmtcheck();
2424 1.131 rillig return time1(tmp, gmtsub, gmtptr, 0);
2425 1.131 rillig }
2426 1.87 christos }
2427 1.87 christos
2428 1.87 christos #if NETBSD_INSPIRED
2429 1.87 christos
2430 1.1 jtc time_t
2431 1.138 christos mktime_z(struct state *__restrict sp, struct tm *__restrict tmp)
2432 1.49 christos {
2433 1.131 rillig return mktime_tzname(sp, tmp, false);
2434 1.49 christos }
2435 1.49 christos
2436 1.87 christos #endif
2437 1.87 christos
2438 1.49 christos time_t
2439 1.96 christos mktime(struct tm *tmp)
2440 1.1 jtc {
2441 1.131 rillig time_t t;
2442 1.19 kleink
2443 1.131 rillig rwlock_wrlock(&__lcl_lock);
2444 1.131 rillig tzset_unlocked();
2445 1.131 rillig t = mktime_tzname(__lclptr, tmp, true);
2446 1.131 rillig rwlock_unlock(&__lcl_lock);
2447 1.131 rillig return t;
2448 1.1 jtc }
2449 1.1 jtc
2450 1.138 christos #if STD_INSPIRED
2451 1.139 christos /* This function is obsolescent and may disapper in future releases.
2452 1.139 christos Callers can instead use mktime. */
2453 1.1 jtc time_t
2454 1.68 christos timelocal_z(const timezone_t sp, struct tm *const tmp)
2455 1.49 christos {
2456 1.49 christos if (tmp != NULL)
2457 1.49 christos tmp->tm_isdst = -1; /* in case it wasn't initialized */
2458 1.49 christos return mktime_z(sp, tmp);
2459 1.49 christos }
2460 1.49 christos
2461 1.49 christos time_t
2462 1.96 christos timelocal(struct tm *tmp)
2463 1.1 jtc {
2464 1.58 christos if (tmp != NULL)
2465 1.58 christos tmp->tm_isdst = -1; /* in case it wasn't initialized */
2466 1.1 jtc return mktime(tmp);
2467 1.1 jtc }
2468 1.136 christos #else
2469 1.139 christos # ifndef timeoff
2470 1.139 christos # define timeoff my_timeoff /* Don't collide with OpenBSD 7.4 <time.h>. */
2471 1.139 christos # endif
2472 1.136 christos static
2473 1.136 christos #endif
2474 1.139 christos /* This function is obsolescent and may disapper in future releases.
2475 1.139 christos Callers can instead use mktime_z with a fixed-offset zone. */
2476 1.1 jtc time_t
2477 1.96 christos timeoff(struct tm *tmp, long offset)
2478 1.1 jtc {
2479 1.131 rillig if (tmp)
2480 1.131 rillig tmp->tm_isdst = 0;
2481 1.131 rillig gmtcheck();
2482 1.131 rillig return time1(tmp, gmtsub, gmtptr, (int_fast32_t)offset);
2483 1.1 jtc }
2484 1.1 jtc
2485 1.136 christos time_t
2486 1.136 christos timegm(struct tm *tmp)
2487 1.136 christos {
2488 1.136 christos time_t t;
2489 1.136 christos struct tm tmcpy;
2490 1.136 christos mktmcpy(&tmcpy, tmp);
2491 1.136 christos tmcpy.tm_wday = -1;
2492 1.136 christos t = timeoff(&tmcpy, 0);
2493 1.136 christos if (0 <= tmcpy.tm_wday)
2494 1.136 christos *tmp = tmcpy;
2495 1.136 christos return t;
2496 1.136 christos }
2497 1.1 jtc
2498 1.124 christos static int_fast32_t
2499 1.140 christos leapcorr(struct state const *sp, __time_t t)
2500 1.1 jtc {
2501 1.130 rillig register struct lsinfo const * lp;
2502 1.130 rillig register int i;
2503 1.1 jtc
2504 1.1 jtc i = sp->leapcnt;
2505 1.1 jtc while (--i >= 0) {
2506 1.1 jtc lp = &sp->lsis[i];
2507 1.87 christos if (t >= lp->ls_trans)
2508 1.1 jtc return lp->ls_corr;
2509 1.1 jtc }
2510 1.1 jtc return 0;
2511 1.1 jtc }
2512 1.1 jtc
2513 1.124 christos /* NETBSD_INSPIRED_EXTERN functions are exported to callers if
2514 1.124 christos NETBSD_INSPIRED is defined, and are private otherwise. */
2515 1.132 rillig # if NETBSD_INSPIRED
2516 1.132 rillig # define NETBSD_INSPIRED_EXTERN
2517 1.132 rillig # else
2518 1.132 rillig # define NETBSD_INSPIRED_EXTERN static
2519 1.132 rillig # endif
2520 1.124 christos
2521 1.132 rillig /*
2522 1.132 rillig ** IEEE Std 1003.1 (POSIX) says that 536457599
2523 1.132 rillig ** shall correspond to "Wed Dec 31 23:59:59 UTC 1986", which
2524 1.132 rillig ** is not the case if we are accounting for leap seconds.
2525 1.132 rillig ** So, we provide the following conversion routines for use
2526 1.132 rillig ** when exchanging timestamps with POSIX conforming systems.
2527 1.132 rillig */
2528 1.124 christos
2529 1.109 christos NETBSD_INSPIRED_EXTERN time_t
2530 1.87 christos time2posix_z(timezone_t sp, time_t t)
2531 1.49 christos {
2532 1.131 rillig return (time_t)(t - leapcorr(sp, t));
2533 1.49 christos }
2534 1.49 christos
2535 1.49 christos time_t
2536 1.49 christos time2posix(time_t t)
2537 1.1 jtc {
2538 1.131 rillig rwlock_wrlock(&__lcl_lock);
2539 1.131 rillig if (!lcl_is_set)
2540 1.131 rillig tzset_unlocked();
2541 1.131 rillig if (__lclptr)
2542 1.131 rillig t = (time_t)(t - leapcorr(__lclptr, t));
2543 1.131 rillig rwlock_unlock(&__lcl_lock);
2544 1.131 rillig return t;
2545 1.1 jtc }
2546 1.1 jtc
2547 1.123 christos /*
2548 1.123 christos ** XXX--is the below the right way to conditionalize??
2549 1.123 christos */
2550 1.123 christos
2551 1.138 christos #if STD_INSPIRED
2552 1.123 christos
2553 1.109 christos NETBSD_INSPIRED_EXTERN time_t
2554 1.87 christos posix2time_z(timezone_t sp, time_t t)
2555 1.1 jtc {
2556 1.1 jtc time_t x;
2557 1.1 jtc time_t y;
2558 1.1 jtc /*
2559 1.1 jtc ** For a positive leap second hit, the result
2560 1.45 mlelstv ** is not unique. For a negative leap second
2561 1.1 jtc ** hit, the corresponding time doesn't exist,
2562 1.1 jtc ** so we return an adjacent second.
2563 1.1 jtc */
2564 1.87 christos x = (time_t)(t + leapcorr(sp, t));
2565 1.87 christos y = (time_t)(x - leapcorr(sp, x));
2566 1.1 jtc if (y < t) {
2567 1.1 jtc do {
2568 1.1 jtc x++;
2569 1.87 christos y = (time_t)(x - leapcorr(sp, x));
2570 1.1 jtc } while (y < t);
2571 1.87 christos x -= y != t;
2572 1.1 jtc } else if (y > t) {
2573 1.1 jtc do {
2574 1.1 jtc --x;
2575 1.87 christos y = (time_t)(x - leapcorr(sp, x));
2576 1.1 jtc } while (y > t);
2577 1.87 christos x += y != t;
2578 1.1 jtc }
2579 1.49 christos return x;
2580 1.49 christos }
2581 1.49 christos
2582 1.49 christos time_t
2583 1.49 christos posix2time(time_t t)
2584 1.49 christos {
2585 1.131 rillig rwlock_wrlock(&__lcl_lock);
2586 1.131 rillig if (!lcl_is_set)
2587 1.131 rillig tzset_unlocked();
2588 1.131 rillig if (__lclptr)
2589 1.131 rillig t = posix2time_z(__lclptr, t);
2590 1.131 rillig rwlock_unlock(&__lcl_lock);
2591 1.131 rillig return t;
2592 1.1 jtc }
2593 1.1 jtc
2594 1.1 jtc #endif /* defined STD_INSPIRED */
2595