localtime.c revision 1.20 1 1.20 kleink /* $NetBSD: localtime.c,v 1.20 1998/10/16 12:56:44 kleink Exp $ */
2 1.7 jtc
3 1.7 jtc /*
4 1.7 jtc ** This file is in the public domain, so clarified as of
5 1.10 jtc ** 1996-06-05 by Arthur David Olson (arthur_david_olson (at) nih.gov).
6 1.7 jtc */
7 1.2 jtc
8 1.11 christos #include <sys/cdefs.h>
9 1.1 jtc #ifndef lint
10 1.1 jtc #ifndef NOID
11 1.11 christos #if 0
12 1.18 kleink static char elsieid[] = "@(#)localtime.c 7.66";
13 1.11 christos #else
14 1.20 kleink __RCSID("$NetBSD: localtime.c,v 1.20 1998/10/16 12:56:44 kleink Exp $");
15 1.11 christos #endif
16 1.1 jtc #endif /* !defined NOID */
17 1.1 jtc #endif /* !defined lint */
18 1.1 jtc
19 1.1 jtc /*
20 1.1 jtc ** Leap second handling from Bradley White (bww (at) k.gp.cs.cmu.edu).
21 1.1 jtc ** POSIX-style TZ environment variable handling from Guy Harris
22 1.1 jtc ** (guy (at) auspex.com).
23 1.1 jtc */
24 1.1 jtc
25 1.1 jtc /*LINTLIBRARY*/
26 1.1 jtc
27 1.12 jtc #include "namespace.h"
28 1.1 jtc #include "private.h"
29 1.1 jtc #include "tzfile.h"
30 1.1 jtc #include "fcntl.h"
31 1.19 kleink #include "reentrant.h"
32 1.12 jtc
33 1.12 jtc #ifdef __weak_alias
34 1.18 kleink __weak_alias(ctime_r,_ctime_r);
35 1.18 kleink __weak_alias(gmtime_r,_gmtime_r);
36 1.18 kleink __weak_alias(localtime_r,_localtime_r);
37 1.12 jtc __weak_alias(offtime,_offtime);
38 1.12 jtc __weak_alias(posix2time,_posix2time);
39 1.12 jtc __weak_alias(time2posix,_time2posix);
40 1.12 jtc __weak_alias(timegm,_timegm);
41 1.12 jtc __weak_alias(timelocal,_timelocal);
42 1.12 jtc __weak_alias(timeoff,_timeoff);
43 1.20 kleink __weak_alias(tzname,_tzname);
44 1.12 jtc __weak_alias(tzset,_tzset);
45 1.12 jtc __weak_alias(tzsetwall,_tzsetwall);
46 1.12 jtc #endif
47 1.1 jtc
48 1.1 jtc /*
49 1.1 jtc ** SunOS 4.1.1 headers lack O_BINARY.
50 1.1 jtc */
51 1.1 jtc
52 1.1 jtc #ifdef O_BINARY
53 1.1 jtc #define OPEN_MODE (O_RDONLY | O_BINARY)
54 1.1 jtc #endif /* defined O_BINARY */
55 1.1 jtc #ifndef O_BINARY
56 1.1 jtc #define OPEN_MODE O_RDONLY
57 1.1 jtc #endif /* !defined O_BINARY */
58 1.1 jtc
59 1.1 jtc #ifndef WILDABBR
60 1.1 jtc /*
61 1.1 jtc ** Someone might make incorrect use of a time zone abbreviation:
62 1.1 jtc ** 1. They might reference tzname[0] before calling tzset (explicitly
63 1.1 jtc ** or implicitly).
64 1.1 jtc ** 2. They might reference tzname[1] before calling tzset (explicitly
65 1.1 jtc ** or implicitly).
66 1.1 jtc ** 3. They might reference tzname[1] after setting to a time zone
67 1.1 jtc ** in which Daylight Saving Time is never observed.
68 1.1 jtc ** 4. They might reference tzname[0] after setting to a time zone
69 1.1 jtc ** in which Standard Time is never observed.
70 1.1 jtc ** 5. They might reference tm.TM_ZONE after calling offtime.
71 1.1 jtc ** What's best to do in the above cases is open to debate;
72 1.1 jtc ** for now, we just set things up so that in any of the five cases
73 1.1 jtc ** WILDABBR is used. Another possibility: initialize tzname[0] to the
74 1.1 jtc ** string "tzname[0] used before set", and similarly for the other cases.
75 1.1 jtc ** And another: initialize tzname[0] to "ERA", with an explanation in the
76 1.1 jtc ** manual page of what this "time zone abbreviation" means (doing this so
77 1.1 jtc ** that tzname[0] has the "normal" length of three characters).
78 1.1 jtc */
79 1.1 jtc #define WILDABBR " "
80 1.1 jtc #endif /* !defined WILDABBR */
81 1.1 jtc
82 1.15 mycroft static const char wildabbr[] = "WILDABBR";
83 1.1 jtc
84 1.1 jtc static const char gmt[] = "GMT";
85 1.1 jtc
86 1.1 jtc struct ttinfo { /* time type information */
87 1.14 jtc long tt_gmtoff; /* UTC offset in seconds */
88 1.1 jtc int tt_isdst; /* used to set tm_isdst */
89 1.1 jtc int tt_abbrind; /* abbreviation list index */
90 1.1 jtc int tt_ttisstd; /* TRUE if transition is std time */
91 1.14 jtc int tt_ttisgmt; /* TRUE if transition is UTC */
92 1.1 jtc };
93 1.1 jtc
94 1.1 jtc struct lsinfo { /* leap second information */
95 1.1 jtc time_t ls_trans; /* transition time */
96 1.1 jtc long ls_corr; /* correction to apply */
97 1.1 jtc };
98 1.1 jtc
99 1.1 jtc #define BIGGEST(a, b) (((a) > (b)) ? (a) : (b))
100 1.1 jtc
101 1.1 jtc #ifdef TZNAME_MAX
102 1.1 jtc #define MY_TZNAME_MAX TZNAME_MAX
103 1.1 jtc #endif /* defined TZNAME_MAX */
104 1.1 jtc #ifndef TZNAME_MAX
105 1.1 jtc #define MY_TZNAME_MAX 255
106 1.1 jtc #endif /* !defined TZNAME_MAX */
107 1.1 jtc
108 1.1 jtc struct state {
109 1.1 jtc int leapcnt;
110 1.1 jtc int timecnt;
111 1.1 jtc int typecnt;
112 1.1 jtc int charcnt;
113 1.1 jtc time_t ats[TZ_MAX_TIMES];
114 1.1 jtc unsigned char types[TZ_MAX_TIMES];
115 1.1 jtc struct ttinfo ttis[TZ_MAX_TYPES];
116 1.1 jtc char chars[BIGGEST(BIGGEST(TZ_MAX_CHARS + 1, sizeof gmt),
117 1.1 jtc (2 * (MY_TZNAME_MAX + 1)))];
118 1.1 jtc struct lsinfo lsis[TZ_MAX_LEAPS];
119 1.1 jtc };
120 1.1 jtc
121 1.1 jtc struct rule {
122 1.1 jtc int r_type; /* type of rule--see below */
123 1.1 jtc int r_day; /* day number of rule */
124 1.1 jtc int r_week; /* week number of rule */
125 1.1 jtc int r_mon; /* month number of rule */
126 1.1 jtc long r_time; /* transition time of rule */
127 1.1 jtc };
128 1.1 jtc
129 1.1 jtc #define JULIAN_DAY 0 /* Jn - Julian day */
130 1.1 jtc #define DAY_OF_YEAR 1 /* n - day of year */
131 1.1 jtc #define MONTH_NTH_DAY_OF_WEEK 2 /* Mm.n.d - month, week, day of week */
132 1.1 jtc
133 1.1 jtc /*
134 1.1 jtc ** Prototypes for static functions.
135 1.1 jtc */
136 1.1 jtc
137 1.1 jtc static long detzcode P((const char * codep));
138 1.1 jtc static const char * getzname P((const char * strp));
139 1.1 jtc static const char * getnum P((const char * strp, int * nump, int min,
140 1.1 jtc int max));
141 1.1 jtc static const char * getsecs P((const char * strp, long * secsp));
142 1.1 jtc static const char * getoffset P((const char * strp, long * offsetp));
143 1.1 jtc static const char * getrule P((const char * strp, struct rule * rulep));
144 1.1 jtc static void gmtload P((struct state * sp));
145 1.1 jtc static void gmtsub P((const time_t * timep, long offset,
146 1.1 jtc struct tm * tmp));
147 1.1 jtc static void localsub P((const time_t * timep, long offset,
148 1.1 jtc struct tm * tmp));
149 1.1 jtc static int increment_overflow P((int * number, int delta));
150 1.1 jtc static int normalize_overflow P((int * tensptr, int * unitsptr,
151 1.1 jtc int base));
152 1.1 jtc static void settzname P((void));
153 1.1 jtc static time_t time1 P((struct tm * tmp,
154 1.1 jtc void(*funcp) P((const time_t *,
155 1.1 jtc long, struct tm *)),
156 1.1 jtc long offset));
157 1.1 jtc static time_t time2 P((struct tm *tmp,
158 1.1 jtc void(*funcp) P((const time_t *,
159 1.1 jtc long, struct tm*)),
160 1.1 jtc long offset, int * okayp));
161 1.13 jtc static time_t time2sub P((struct tm *tmp,
162 1.13 jtc void(*funcp) P((const time_t *,
163 1.13 jtc long, struct tm*)),
164 1.13 jtc long offset, int * okayp, int do_norm_secs));
165 1.1 jtc static void timesub P((const time_t * timep, long offset,
166 1.1 jtc const struct state * sp, struct tm * tmp));
167 1.1 jtc static int tmcomp P((const struct tm * atmp,
168 1.1 jtc const struct tm * btmp));
169 1.1 jtc static time_t transtime P((time_t janfirst, int year,
170 1.1 jtc const struct rule * rulep, long offset));
171 1.1 jtc static int tzload P((const char * name, struct state * sp));
172 1.1 jtc static int tzparse P((const char * name, struct state * sp,
173 1.1 jtc int lastditch));
174 1.19 kleink static void tzset_unlocked P((void));
175 1.19 kleink static void tzsetwall_unlocked P((void));
176 1.11 christos #ifdef STD_INSPIRED
177 1.11 christos static long leapcorr P((time_t * timep));
178 1.11 christos #endif
179 1.1 jtc
180 1.1 jtc #ifdef ALL_STATE
181 1.1 jtc static struct state * lclptr;
182 1.1 jtc static struct state * gmtptr;
183 1.1 jtc #endif /* defined ALL_STATE */
184 1.1 jtc
185 1.1 jtc #ifndef ALL_STATE
186 1.1 jtc static struct state lclmem;
187 1.1 jtc static struct state gmtmem;
188 1.1 jtc #define lclptr (&lclmem)
189 1.1 jtc #define gmtptr (&gmtmem)
190 1.1 jtc #endif /* State Farm */
191 1.1 jtc
192 1.1 jtc #ifndef TZ_STRLEN_MAX
193 1.1 jtc #define TZ_STRLEN_MAX 255
194 1.1 jtc #endif /* !defined TZ_STRLEN_MAX */
195 1.1 jtc
196 1.1 jtc static char lcl_TZname[TZ_STRLEN_MAX + 1];
197 1.1 jtc static int lcl_is_set;
198 1.1 jtc static int gmt_is_set;
199 1.1 jtc
200 1.16 mycroft __aconst char * tzname[2] = {
201 1.16 mycroft (__aconst char *)wildabbr,
202 1.16 mycroft (__aconst char *)wildabbr
203 1.1 jtc };
204 1.1 jtc
205 1.19 kleink #ifdef _REENT
206 1.19 kleink static rwlock_t lcl_lock = RWLOCK_INITIALIZER;
207 1.19 kleink #endif
208 1.19 kleink
209 1.1 jtc /*
210 1.1 jtc ** Section 4.12.3 of X3.159-1989 requires that
211 1.1 jtc ** Except for the strftime function, these functions [asctime,
212 1.1 jtc ** ctime, gmtime, localtime] return values in one of two static
213 1.1 jtc ** objects: a broken-down time structure and an array of char.
214 1.1 jtc ** Thanks to Paul Eggert (eggert (at) twinsun.com) for noting this.
215 1.1 jtc */
216 1.1 jtc
217 1.1 jtc static struct tm tm;
218 1.1 jtc
219 1.1 jtc #ifdef USG_COMPAT
220 1.1 jtc time_t timezone = 0;
221 1.1 jtc int daylight = 0;
222 1.1 jtc #endif /* defined USG_COMPAT */
223 1.1 jtc
224 1.1 jtc #ifdef ALTZONE
225 1.1 jtc time_t altzone = 0;
226 1.1 jtc #endif /* defined ALTZONE */
227 1.1 jtc
228 1.1 jtc static long
229 1.1 jtc detzcode(codep)
230 1.1 jtc const char * const codep;
231 1.1 jtc {
232 1.1 jtc register long result;
233 1.1 jtc
234 1.4 jtc /*
235 1.4 jtc ** The first character must be sign extended on systems with >32bit
236 1.4 jtc ** longs. This was solved differently in the master tzcode sources
237 1.4 jtc ** (the fix first appeared in tzcode95c.tar.gz). But I believe
238 1.4 jtc ** that this implementation is superior.
239 1.4 jtc */
240 1.4 jtc
241 1.4 jtc #ifdef __STDC__
242 1.4 jtc #define SIGN_EXTEND_CHAR(x) ((signed char) x)
243 1.4 jtc #else
244 1.4 jtc #define SIGN_EXTEND_CHAR(x) ((x & 0x80) ? ((~0 << 8) | x) : x)
245 1.4 jtc #endif
246 1.4 jtc
247 1.4 jtc result = (SIGN_EXTEND_CHAR(codep[0]) << 24) \
248 1.3 jtc | (codep[1] & 0xff) << 16 \
249 1.3 jtc | (codep[2] & 0xff) << 8
250 1.3 jtc | (codep[3] & 0xff);
251 1.1 jtc return result;
252 1.1 jtc }
253 1.1 jtc
254 1.1 jtc static void
255 1.1 jtc settzname P((void))
256 1.1 jtc {
257 1.5 jtc register struct state * const sp = lclptr;
258 1.5 jtc register int i;
259 1.1 jtc
260 1.16 mycroft tzname[0] = (__aconst char *)wildabbr;
261 1.16 mycroft tzname[1] = (__aconst char *)wildabbr;
262 1.1 jtc #ifdef USG_COMPAT
263 1.1 jtc daylight = 0;
264 1.1 jtc timezone = 0;
265 1.1 jtc #endif /* defined USG_COMPAT */
266 1.1 jtc #ifdef ALTZONE
267 1.1 jtc altzone = 0;
268 1.1 jtc #endif /* defined ALTZONE */
269 1.1 jtc #ifdef ALL_STATE
270 1.1 jtc if (sp == NULL) {
271 1.17 mycroft tzname[0] = tzname[1] = (__aconst char *)gmt;
272 1.1 jtc return;
273 1.1 jtc }
274 1.1 jtc #endif /* defined ALL_STATE */
275 1.1 jtc for (i = 0; i < sp->typecnt; ++i) {
276 1.1 jtc register const struct ttinfo * const ttisp = &sp->ttis[i];
277 1.1 jtc
278 1.1 jtc tzname[ttisp->tt_isdst] =
279 1.1 jtc &sp->chars[ttisp->tt_abbrind];
280 1.1 jtc #ifdef USG_COMPAT
281 1.1 jtc if (ttisp->tt_isdst)
282 1.1 jtc daylight = 1;
283 1.1 jtc if (i == 0 || !ttisp->tt_isdst)
284 1.1 jtc timezone = -(ttisp->tt_gmtoff);
285 1.1 jtc #endif /* defined USG_COMPAT */
286 1.1 jtc #ifdef ALTZONE
287 1.1 jtc if (i == 0 || ttisp->tt_isdst)
288 1.1 jtc altzone = -(ttisp->tt_gmtoff);
289 1.1 jtc #endif /* defined ALTZONE */
290 1.1 jtc }
291 1.1 jtc /*
292 1.1 jtc ** And to get the latest zone names into tzname. . .
293 1.1 jtc */
294 1.1 jtc for (i = 0; i < sp->timecnt; ++i) {
295 1.1 jtc register const struct ttinfo * const ttisp =
296 1.1 jtc &sp->ttis[
297 1.1 jtc sp->types[i]];
298 1.1 jtc
299 1.1 jtc tzname[ttisp->tt_isdst] =
300 1.1 jtc &sp->chars[ttisp->tt_abbrind];
301 1.1 jtc }
302 1.1 jtc }
303 1.1 jtc
304 1.1 jtc static int
305 1.1 jtc tzload(name, sp)
306 1.1 jtc register const char * name;
307 1.1 jtc register struct state * const sp;
308 1.1 jtc {
309 1.1 jtc register const char * p;
310 1.1 jtc register int i;
311 1.1 jtc register int fid;
312 1.1 jtc
313 1.1 jtc if (name == NULL && (name = TZDEFAULT) == NULL)
314 1.1 jtc return -1;
315 1.9 mrg
316 1.1 jtc {
317 1.1 jtc register int doaccess;
318 1.1 jtc /*
319 1.1 jtc ** Section 4.9.1 of the C standard says that
320 1.1 jtc ** "FILENAME_MAX expands to an integral constant expression
321 1.10 jtc ** that is the size needed for an array of char large enough
322 1.1 jtc ** to hold the longest file name string that the implementation
323 1.1 jtc ** guarantees can be opened."
324 1.1 jtc */
325 1.1 jtc char fullname[FILENAME_MAX + 1];
326 1.1 jtc
327 1.1 jtc if (name[0] == ':')
328 1.1 jtc ++name;
329 1.1 jtc doaccess = name[0] == '/';
330 1.1 jtc if (!doaccess) {
331 1.1 jtc if ((p = TZDIR) == NULL)
332 1.1 jtc return -1;
333 1.1 jtc if ((strlen(p) + strlen(name) + 1) >= sizeof fullname)
334 1.1 jtc return -1;
335 1.8 mrg (void) strcpy(fullname, p); /* XXX strcpy is safe */
336 1.8 mrg (void) strcat(fullname, "/"); /* XXX strcat is safe */
337 1.8 mrg (void) strcat(fullname, name); /* XXX strcat is safe */
338 1.1 jtc /*
339 1.1 jtc ** Set doaccess if '.' (as in "../") shows up in name.
340 1.1 jtc */
341 1.1 jtc if (strchr(name, '.') != NULL)
342 1.1 jtc doaccess = TRUE;
343 1.1 jtc name = fullname;
344 1.1 jtc }
345 1.1 jtc if (doaccess && access(name, R_OK) != 0)
346 1.1 jtc return -1;
347 1.9 mrg /*
348 1.9 mrg * XXX potential security problem here if user of a set-id
349 1.9 mrg * program has set TZ (which is passed in as name) here,
350 1.9 mrg * and uses a race condition trick to defeat the access(2)
351 1.9 mrg * above.
352 1.9 mrg */
353 1.1 jtc if ((fid = open(name, OPEN_MODE)) == -1)
354 1.1 jtc return -1;
355 1.1 jtc }
356 1.1 jtc {
357 1.1 jtc struct tzhead * tzhp;
358 1.14 jtc union {
359 1.14 jtc struct tzhead tzhead;
360 1.14 jtc char buf[sizeof *sp + sizeof *tzhp];
361 1.14 jtc } u;
362 1.1 jtc int ttisstdcnt;
363 1.1 jtc int ttisgmtcnt;
364 1.1 jtc
365 1.14 jtc i = read(fid, u.buf, sizeof u.buf);
366 1.1 jtc if (close(fid) != 0)
367 1.1 jtc return -1;
368 1.14 jtc ttisstdcnt = (int) detzcode(u.tzhead.tzh_ttisgmtcnt);
369 1.14 jtc ttisgmtcnt = (int) detzcode(u.tzhead.tzh_ttisstdcnt);
370 1.14 jtc sp->leapcnt = (int) detzcode(u.tzhead.tzh_leapcnt);
371 1.14 jtc sp->timecnt = (int) detzcode(u.tzhead.tzh_timecnt);
372 1.14 jtc sp->typecnt = (int) detzcode(u.tzhead.tzh_typecnt);
373 1.14 jtc sp->charcnt = (int) detzcode(u.tzhead.tzh_charcnt);
374 1.14 jtc p = u.tzhead.tzh_charcnt + sizeof u.tzhead.tzh_charcnt;
375 1.1 jtc if (sp->leapcnt < 0 || sp->leapcnt > TZ_MAX_LEAPS ||
376 1.1 jtc sp->typecnt <= 0 || sp->typecnt > TZ_MAX_TYPES ||
377 1.1 jtc sp->timecnt < 0 || sp->timecnt > TZ_MAX_TIMES ||
378 1.1 jtc sp->charcnt < 0 || sp->charcnt > TZ_MAX_CHARS ||
379 1.1 jtc (ttisstdcnt != sp->typecnt && ttisstdcnt != 0) ||
380 1.1 jtc (ttisgmtcnt != sp->typecnt && ttisgmtcnt != 0))
381 1.1 jtc return -1;
382 1.14 jtc if (i - (p - u.buf) < sp->timecnt * 4 + /* ats */
383 1.1 jtc sp->timecnt + /* types */
384 1.1 jtc sp->typecnt * (4 + 2) + /* ttinfos */
385 1.1 jtc sp->charcnt + /* chars */
386 1.1 jtc sp->leapcnt * (4 + 4) + /* lsinfos */
387 1.1 jtc ttisstdcnt + /* ttisstds */
388 1.1 jtc ttisgmtcnt) /* ttisgmts */
389 1.1 jtc return -1;
390 1.1 jtc for (i = 0; i < sp->timecnt; ++i) {
391 1.1 jtc sp->ats[i] = detzcode(p);
392 1.1 jtc p += 4;
393 1.1 jtc }
394 1.1 jtc for (i = 0; i < sp->timecnt; ++i) {
395 1.1 jtc sp->types[i] = (unsigned char) *p++;
396 1.1 jtc if (sp->types[i] >= sp->typecnt)
397 1.1 jtc return -1;
398 1.1 jtc }
399 1.1 jtc for (i = 0; i < sp->typecnt; ++i) {
400 1.1 jtc register struct ttinfo * ttisp;
401 1.1 jtc
402 1.1 jtc ttisp = &sp->ttis[i];
403 1.1 jtc ttisp->tt_gmtoff = detzcode(p);
404 1.1 jtc p += 4;
405 1.1 jtc ttisp->tt_isdst = (unsigned char) *p++;
406 1.1 jtc if (ttisp->tt_isdst != 0 && ttisp->tt_isdst != 1)
407 1.1 jtc return -1;
408 1.1 jtc ttisp->tt_abbrind = (unsigned char) *p++;
409 1.1 jtc if (ttisp->tt_abbrind < 0 ||
410 1.1 jtc ttisp->tt_abbrind > sp->charcnt)
411 1.1 jtc return -1;
412 1.1 jtc }
413 1.1 jtc for (i = 0; i < sp->charcnt; ++i)
414 1.1 jtc sp->chars[i] = *p++;
415 1.1 jtc sp->chars[i] = '\0'; /* ensure '\0' at end */
416 1.1 jtc for (i = 0; i < sp->leapcnt; ++i) {
417 1.1 jtc register struct lsinfo * lsisp;
418 1.1 jtc
419 1.1 jtc lsisp = &sp->lsis[i];
420 1.1 jtc lsisp->ls_trans = detzcode(p);
421 1.1 jtc p += 4;
422 1.1 jtc lsisp->ls_corr = detzcode(p);
423 1.1 jtc p += 4;
424 1.1 jtc }
425 1.1 jtc for (i = 0; i < sp->typecnt; ++i) {
426 1.1 jtc register struct ttinfo * ttisp;
427 1.1 jtc
428 1.1 jtc ttisp = &sp->ttis[i];
429 1.1 jtc if (ttisstdcnt == 0)
430 1.1 jtc ttisp->tt_ttisstd = FALSE;
431 1.1 jtc else {
432 1.1 jtc ttisp->tt_ttisstd = *p++;
433 1.1 jtc if (ttisp->tt_ttisstd != TRUE &&
434 1.1 jtc ttisp->tt_ttisstd != FALSE)
435 1.1 jtc return -1;
436 1.1 jtc }
437 1.1 jtc }
438 1.1 jtc for (i = 0; i < sp->typecnt; ++i) {
439 1.1 jtc register struct ttinfo * ttisp;
440 1.1 jtc
441 1.1 jtc ttisp = &sp->ttis[i];
442 1.1 jtc if (ttisgmtcnt == 0)
443 1.1 jtc ttisp->tt_ttisgmt = FALSE;
444 1.1 jtc else {
445 1.1 jtc ttisp->tt_ttisgmt = *p++;
446 1.1 jtc if (ttisp->tt_ttisgmt != TRUE &&
447 1.1 jtc ttisp->tt_ttisgmt != FALSE)
448 1.1 jtc return -1;
449 1.1 jtc }
450 1.1 jtc }
451 1.1 jtc }
452 1.1 jtc return 0;
453 1.1 jtc }
454 1.1 jtc
455 1.1 jtc static const int mon_lengths[2][MONSPERYEAR] = {
456 1.1 jtc { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 },
457 1.1 jtc { 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }
458 1.1 jtc };
459 1.1 jtc
460 1.1 jtc static const int year_lengths[2] = {
461 1.1 jtc DAYSPERNYEAR, DAYSPERLYEAR
462 1.1 jtc };
463 1.1 jtc
464 1.1 jtc /*
465 1.1 jtc ** Given a pointer into a time zone string, scan until a character that is not
466 1.1 jtc ** a valid character in a zone name is found. Return a pointer to that
467 1.1 jtc ** character.
468 1.1 jtc */
469 1.1 jtc
470 1.1 jtc static const char *
471 1.1 jtc getzname(strp)
472 1.1 jtc register const char * strp;
473 1.1 jtc {
474 1.1 jtc register char c;
475 1.1 jtc
476 1.5 jtc while ((c = *strp) != '\0' && !is_digit(c) && c != ',' && c != '-' &&
477 1.1 jtc c != '+')
478 1.1 jtc ++strp;
479 1.1 jtc return strp;
480 1.1 jtc }
481 1.1 jtc
482 1.1 jtc /*
483 1.1 jtc ** Given a pointer into a time zone string, extract a number from that string.
484 1.1 jtc ** Check that the number is within a specified range; if it is not, return
485 1.1 jtc ** NULL.
486 1.1 jtc ** Otherwise, return a pointer to the first character not part of the number.
487 1.1 jtc */
488 1.1 jtc
489 1.1 jtc static const char *
490 1.1 jtc getnum(strp, nump, min, max)
491 1.1 jtc register const char * strp;
492 1.1 jtc int * const nump;
493 1.1 jtc const int min;
494 1.1 jtc const int max;
495 1.1 jtc {
496 1.1 jtc register char c;
497 1.1 jtc register int num;
498 1.1 jtc
499 1.5 jtc if (strp == NULL || !is_digit(c = *strp))
500 1.1 jtc return NULL;
501 1.1 jtc num = 0;
502 1.5 jtc do {
503 1.1 jtc num = num * 10 + (c - '0');
504 1.1 jtc if (num > max)
505 1.1 jtc return NULL; /* illegal value */
506 1.5 jtc c = *++strp;
507 1.5 jtc } while (is_digit(c));
508 1.1 jtc if (num < min)
509 1.1 jtc return NULL; /* illegal value */
510 1.1 jtc *nump = num;
511 1.1 jtc return strp;
512 1.1 jtc }
513 1.1 jtc
514 1.1 jtc /*
515 1.1 jtc ** Given a pointer into a time zone string, extract a number of seconds,
516 1.1 jtc ** in hh[:mm[:ss]] form, from the string.
517 1.1 jtc ** If any error occurs, return NULL.
518 1.1 jtc ** Otherwise, return a pointer to the first character not part of the number
519 1.1 jtc ** of seconds.
520 1.1 jtc */
521 1.1 jtc
522 1.1 jtc static const char *
523 1.1 jtc getsecs(strp, secsp)
524 1.1 jtc register const char * strp;
525 1.1 jtc long * const secsp;
526 1.1 jtc {
527 1.1 jtc int num;
528 1.1 jtc
529 1.1 jtc /*
530 1.1 jtc ** `HOURSPERDAY * DAYSPERWEEK - 1' allows quasi-Posix rules like
531 1.1 jtc ** "M10.4.6/26", which does not conform to Posix,
532 1.1 jtc ** but which specifies the equivalent of
533 1.1 jtc ** ``02:00 on the first Sunday on or after 23 Oct''.
534 1.1 jtc */
535 1.1 jtc strp = getnum(strp, &num, 0, HOURSPERDAY * DAYSPERWEEK - 1);
536 1.1 jtc if (strp == NULL)
537 1.1 jtc return NULL;
538 1.1 jtc *secsp = num * (long) SECSPERHOUR;
539 1.1 jtc if (*strp == ':') {
540 1.1 jtc ++strp;
541 1.1 jtc strp = getnum(strp, &num, 0, MINSPERHOUR - 1);
542 1.1 jtc if (strp == NULL)
543 1.1 jtc return NULL;
544 1.1 jtc *secsp += num * SECSPERMIN;
545 1.1 jtc if (*strp == ':') {
546 1.1 jtc ++strp;
547 1.1 jtc /* `SECSPERMIN' allows for leap seconds. */
548 1.1 jtc strp = getnum(strp, &num, 0, SECSPERMIN);
549 1.1 jtc if (strp == NULL)
550 1.1 jtc return NULL;
551 1.1 jtc *secsp += num;
552 1.1 jtc }
553 1.1 jtc }
554 1.1 jtc return strp;
555 1.1 jtc }
556 1.1 jtc
557 1.1 jtc /*
558 1.1 jtc ** Given a pointer into a time zone string, extract an offset, in
559 1.1 jtc ** [+-]hh[:mm[:ss]] form, from the string.
560 1.1 jtc ** If any error occurs, return NULL.
561 1.1 jtc ** Otherwise, return a pointer to the first character not part of the time.
562 1.1 jtc */
563 1.1 jtc
564 1.1 jtc static const char *
565 1.1 jtc getoffset(strp, offsetp)
566 1.1 jtc register const char * strp;
567 1.1 jtc long * const offsetp;
568 1.1 jtc {
569 1.5 jtc register int neg = 0;
570 1.1 jtc
571 1.1 jtc if (*strp == '-') {
572 1.1 jtc neg = 1;
573 1.1 jtc ++strp;
574 1.5 jtc } else if (*strp == '+')
575 1.5 jtc ++strp;
576 1.1 jtc strp = getsecs(strp, offsetp);
577 1.1 jtc if (strp == NULL)
578 1.1 jtc return NULL; /* illegal time */
579 1.1 jtc if (neg)
580 1.1 jtc *offsetp = -*offsetp;
581 1.1 jtc return strp;
582 1.1 jtc }
583 1.1 jtc
584 1.1 jtc /*
585 1.1 jtc ** Given a pointer into a time zone string, extract a rule in the form
586 1.1 jtc ** date[/time]. See POSIX section 8 for the format of "date" and "time".
587 1.1 jtc ** If a valid rule is not found, return NULL.
588 1.1 jtc ** Otherwise, return a pointer to the first character not part of the rule.
589 1.1 jtc */
590 1.1 jtc
591 1.1 jtc static const char *
592 1.1 jtc getrule(strp, rulep)
593 1.1 jtc const char * strp;
594 1.1 jtc register struct rule * const rulep;
595 1.1 jtc {
596 1.1 jtc if (*strp == 'J') {
597 1.1 jtc /*
598 1.1 jtc ** Julian day.
599 1.1 jtc */
600 1.1 jtc rulep->r_type = JULIAN_DAY;
601 1.1 jtc ++strp;
602 1.1 jtc strp = getnum(strp, &rulep->r_day, 1, DAYSPERNYEAR);
603 1.1 jtc } else if (*strp == 'M') {
604 1.1 jtc /*
605 1.1 jtc ** Month, week, day.
606 1.1 jtc */
607 1.1 jtc rulep->r_type = MONTH_NTH_DAY_OF_WEEK;
608 1.1 jtc ++strp;
609 1.1 jtc strp = getnum(strp, &rulep->r_mon, 1, MONSPERYEAR);
610 1.1 jtc if (strp == NULL)
611 1.1 jtc return NULL;
612 1.1 jtc if (*strp++ != '.')
613 1.1 jtc return NULL;
614 1.1 jtc strp = getnum(strp, &rulep->r_week, 1, 5);
615 1.1 jtc if (strp == NULL)
616 1.1 jtc return NULL;
617 1.1 jtc if (*strp++ != '.')
618 1.1 jtc return NULL;
619 1.1 jtc strp = getnum(strp, &rulep->r_day, 0, DAYSPERWEEK - 1);
620 1.5 jtc } else if (is_digit(*strp)) {
621 1.1 jtc /*
622 1.1 jtc ** Day of year.
623 1.1 jtc */
624 1.1 jtc rulep->r_type = DAY_OF_YEAR;
625 1.1 jtc strp = getnum(strp, &rulep->r_day, 0, DAYSPERLYEAR - 1);
626 1.1 jtc } else return NULL; /* invalid format */
627 1.1 jtc if (strp == NULL)
628 1.1 jtc return NULL;
629 1.1 jtc if (*strp == '/') {
630 1.1 jtc /*
631 1.1 jtc ** Time specified.
632 1.1 jtc */
633 1.1 jtc ++strp;
634 1.1 jtc strp = getsecs(strp, &rulep->r_time);
635 1.1 jtc } else rulep->r_time = 2 * SECSPERHOUR; /* default = 2:00:00 */
636 1.1 jtc return strp;
637 1.1 jtc }
638 1.1 jtc
639 1.1 jtc /*
640 1.14 jtc ** Given the Epoch-relative time of January 1, 00:00:00 UTC, in a year, the
641 1.14 jtc ** year, a rule, and the offset from UTC at the time that rule takes effect,
642 1.1 jtc ** calculate the Epoch-relative time that rule takes effect.
643 1.1 jtc */
644 1.1 jtc
645 1.1 jtc static time_t
646 1.1 jtc transtime(janfirst, year, rulep, offset)
647 1.1 jtc const time_t janfirst;
648 1.1 jtc const int year;
649 1.1 jtc register const struct rule * const rulep;
650 1.1 jtc const long offset;
651 1.1 jtc {
652 1.1 jtc register int leapyear;
653 1.1 jtc register time_t value;
654 1.1 jtc register int i;
655 1.1 jtc int d, m1, yy0, yy1, yy2, dow;
656 1.1 jtc
657 1.1 jtc INITIALIZE(value);
658 1.1 jtc leapyear = isleap(year);
659 1.1 jtc switch (rulep->r_type) {
660 1.1 jtc
661 1.1 jtc case JULIAN_DAY:
662 1.1 jtc /*
663 1.1 jtc ** Jn - Julian day, 1 == January 1, 60 == March 1 even in leap
664 1.1 jtc ** years.
665 1.1 jtc ** In non-leap years, or if the day number is 59 or less, just
666 1.1 jtc ** add SECSPERDAY times the day number-1 to the time of
667 1.1 jtc ** January 1, midnight, to get the day.
668 1.1 jtc */
669 1.1 jtc value = janfirst + (rulep->r_day - 1) * SECSPERDAY;
670 1.1 jtc if (leapyear && rulep->r_day >= 60)
671 1.1 jtc value += SECSPERDAY;
672 1.1 jtc break;
673 1.1 jtc
674 1.1 jtc case DAY_OF_YEAR:
675 1.1 jtc /*
676 1.1 jtc ** n - day of year.
677 1.1 jtc ** Just add SECSPERDAY times the day number to the time of
678 1.1 jtc ** January 1, midnight, to get the day.
679 1.1 jtc */
680 1.1 jtc value = janfirst + rulep->r_day * SECSPERDAY;
681 1.1 jtc break;
682 1.1 jtc
683 1.1 jtc case MONTH_NTH_DAY_OF_WEEK:
684 1.1 jtc /*
685 1.1 jtc ** Mm.n.d - nth "dth day" of month m.
686 1.1 jtc */
687 1.1 jtc value = janfirst;
688 1.1 jtc for (i = 0; i < rulep->r_mon - 1; ++i)
689 1.1 jtc value += mon_lengths[leapyear][i] * SECSPERDAY;
690 1.1 jtc
691 1.1 jtc /*
692 1.1 jtc ** Use Zeller's Congruence to get day-of-week of first day of
693 1.1 jtc ** month.
694 1.1 jtc */
695 1.1 jtc m1 = (rulep->r_mon + 9) % 12 + 1;
696 1.1 jtc yy0 = (rulep->r_mon <= 2) ? (year - 1) : year;
697 1.1 jtc yy1 = yy0 / 100;
698 1.1 jtc yy2 = yy0 % 100;
699 1.1 jtc dow = ((26 * m1 - 2) / 10 +
700 1.1 jtc 1 + yy2 + yy2 / 4 + yy1 / 4 - 2 * yy1) % 7;
701 1.1 jtc if (dow < 0)
702 1.1 jtc dow += DAYSPERWEEK;
703 1.1 jtc
704 1.1 jtc /*
705 1.1 jtc ** "dow" is the day-of-week of the first day of the month. Get
706 1.1 jtc ** the day-of-month (zero-origin) of the first "dow" day of the
707 1.1 jtc ** month.
708 1.1 jtc */
709 1.1 jtc d = rulep->r_day - dow;
710 1.1 jtc if (d < 0)
711 1.1 jtc d += DAYSPERWEEK;
712 1.1 jtc for (i = 1; i < rulep->r_week; ++i) {
713 1.1 jtc if (d + DAYSPERWEEK >=
714 1.1 jtc mon_lengths[leapyear][rulep->r_mon - 1])
715 1.1 jtc break;
716 1.1 jtc d += DAYSPERWEEK;
717 1.1 jtc }
718 1.1 jtc
719 1.1 jtc /*
720 1.1 jtc ** "d" is the day-of-month (zero-origin) of the day we want.
721 1.1 jtc */
722 1.1 jtc value += d * SECSPERDAY;
723 1.1 jtc break;
724 1.1 jtc }
725 1.1 jtc
726 1.1 jtc /*
727 1.14 jtc ** "value" is the Epoch-relative time of 00:00:00 UTC on the day in
728 1.1 jtc ** question. To get the Epoch-relative time of the specified local
729 1.1 jtc ** time on that day, add the transition time and the current offset
730 1.14 jtc ** from UTC.
731 1.1 jtc */
732 1.1 jtc return value + rulep->r_time + offset;
733 1.1 jtc }
734 1.1 jtc
735 1.1 jtc /*
736 1.1 jtc ** Given a POSIX section 8-style TZ string, fill in the rule tables as
737 1.1 jtc ** appropriate.
738 1.1 jtc */
739 1.1 jtc
740 1.1 jtc static int
741 1.1 jtc tzparse(name, sp, lastditch)
742 1.1 jtc const char * name;
743 1.1 jtc register struct state * const sp;
744 1.1 jtc const int lastditch;
745 1.1 jtc {
746 1.1 jtc const char * stdname;
747 1.1 jtc const char * dstname;
748 1.1 jtc size_t stdlen;
749 1.1 jtc size_t dstlen;
750 1.1 jtc long stdoffset;
751 1.1 jtc long dstoffset;
752 1.1 jtc register time_t * atp;
753 1.1 jtc register unsigned char * typep;
754 1.1 jtc register char * cp;
755 1.1 jtc register int load_result;
756 1.1 jtc
757 1.1 jtc INITIALIZE(dstname);
758 1.1 jtc stdname = name;
759 1.1 jtc if (lastditch) {
760 1.1 jtc stdlen = strlen(name); /* length of standard zone name */
761 1.1 jtc name += stdlen;
762 1.1 jtc if (stdlen >= sizeof sp->chars)
763 1.1 jtc stdlen = (sizeof sp->chars) - 1;
764 1.10 jtc stdoffset = 0;
765 1.1 jtc } else {
766 1.1 jtc name = getzname(name);
767 1.1 jtc stdlen = name - stdname;
768 1.1 jtc if (stdlen < 3)
769 1.1 jtc return -1;
770 1.10 jtc if (*name == '\0')
771 1.10 jtc return -1;
772 1.1 jtc name = getoffset(name, &stdoffset);
773 1.1 jtc if (name == NULL)
774 1.1 jtc return -1;
775 1.1 jtc }
776 1.1 jtc load_result = tzload(TZDEFRULES, sp);
777 1.1 jtc if (load_result != 0)
778 1.1 jtc sp->leapcnt = 0; /* so, we're off a little */
779 1.1 jtc if (*name != '\0') {
780 1.1 jtc dstname = name;
781 1.1 jtc name = getzname(name);
782 1.1 jtc dstlen = name - dstname; /* length of DST zone name */
783 1.1 jtc if (dstlen < 3)
784 1.1 jtc return -1;
785 1.1 jtc if (*name != '\0' && *name != ',' && *name != ';') {
786 1.1 jtc name = getoffset(name, &dstoffset);
787 1.1 jtc if (name == NULL)
788 1.1 jtc return -1;
789 1.1 jtc } else dstoffset = stdoffset - SECSPERHOUR;
790 1.1 jtc if (*name == ',' || *name == ';') {
791 1.1 jtc struct rule start;
792 1.1 jtc struct rule end;
793 1.1 jtc register int year;
794 1.1 jtc register time_t janfirst;
795 1.1 jtc time_t starttime;
796 1.1 jtc time_t endtime;
797 1.1 jtc
798 1.1 jtc ++name;
799 1.1 jtc if ((name = getrule(name, &start)) == NULL)
800 1.1 jtc return -1;
801 1.1 jtc if (*name++ != ',')
802 1.1 jtc return -1;
803 1.1 jtc if ((name = getrule(name, &end)) == NULL)
804 1.1 jtc return -1;
805 1.1 jtc if (*name != '\0')
806 1.1 jtc return -1;
807 1.1 jtc sp->typecnt = 2; /* standard time and DST */
808 1.1 jtc /*
809 1.1 jtc ** Two transitions per year, from EPOCH_YEAR to 2037.
810 1.1 jtc */
811 1.1 jtc sp->timecnt = 2 * (2037 - EPOCH_YEAR + 1);
812 1.1 jtc if (sp->timecnt > TZ_MAX_TIMES)
813 1.1 jtc return -1;
814 1.1 jtc sp->ttis[0].tt_gmtoff = -dstoffset;
815 1.1 jtc sp->ttis[0].tt_isdst = 1;
816 1.1 jtc sp->ttis[0].tt_abbrind = stdlen + 1;
817 1.1 jtc sp->ttis[1].tt_gmtoff = -stdoffset;
818 1.1 jtc sp->ttis[1].tt_isdst = 0;
819 1.1 jtc sp->ttis[1].tt_abbrind = 0;
820 1.1 jtc atp = sp->ats;
821 1.1 jtc typep = sp->types;
822 1.1 jtc janfirst = 0;
823 1.1 jtc for (year = EPOCH_YEAR; year <= 2037; ++year) {
824 1.1 jtc starttime = transtime(janfirst, year, &start,
825 1.1 jtc stdoffset);
826 1.1 jtc endtime = transtime(janfirst, year, &end,
827 1.1 jtc dstoffset);
828 1.1 jtc if (starttime > endtime) {
829 1.1 jtc *atp++ = endtime;
830 1.1 jtc *typep++ = 1; /* DST ends */
831 1.1 jtc *atp++ = starttime;
832 1.1 jtc *typep++ = 0; /* DST begins */
833 1.1 jtc } else {
834 1.1 jtc *atp++ = starttime;
835 1.1 jtc *typep++ = 0; /* DST begins */
836 1.1 jtc *atp++ = endtime;
837 1.1 jtc *typep++ = 1; /* DST ends */
838 1.1 jtc }
839 1.1 jtc janfirst += year_lengths[isleap(year)] *
840 1.1 jtc SECSPERDAY;
841 1.1 jtc }
842 1.1 jtc } else {
843 1.1 jtc register long theirstdoffset;
844 1.1 jtc register long theirdstoffset;
845 1.1 jtc register long theiroffset;
846 1.1 jtc register int isdst;
847 1.1 jtc register int i;
848 1.1 jtc register int j;
849 1.1 jtc
850 1.1 jtc if (*name != '\0')
851 1.1 jtc return -1;
852 1.1 jtc if (load_result != 0)
853 1.1 jtc return -1;
854 1.1 jtc /*
855 1.1 jtc ** Initial values of theirstdoffset and theirdstoffset.
856 1.1 jtc */
857 1.1 jtc theirstdoffset = 0;
858 1.1 jtc for (i = 0; i < sp->timecnt; ++i) {
859 1.1 jtc j = sp->types[i];
860 1.1 jtc if (!sp->ttis[j].tt_isdst) {
861 1.5 jtc theirstdoffset =
862 1.5 jtc -sp->ttis[j].tt_gmtoff;
863 1.1 jtc break;
864 1.1 jtc }
865 1.1 jtc }
866 1.1 jtc theirdstoffset = 0;
867 1.1 jtc for (i = 0; i < sp->timecnt; ++i) {
868 1.1 jtc j = sp->types[i];
869 1.1 jtc if (sp->ttis[j].tt_isdst) {
870 1.5 jtc theirdstoffset =
871 1.5 jtc -sp->ttis[j].tt_gmtoff;
872 1.1 jtc break;
873 1.1 jtc }
874 1.1 jtc }
875 1.1 jtc /*
876 1.1 jtc ** Initially we're assumed to be in standard time.
877 1.1 jtc */
878 1.1 jtc isdst = FALSE;
879 1.1 jtc theiroffset = theirstdoffset;
880 1.1 jtc /*
881 1.1 jtc ** Now juggle transition times and types
882 1.1 jtc ** tracking offsets as you do.
883 1.1 jtc */
884 1.1 jtc for (i = 0; i < sp->timecnt; ++i) {
885 1.1 jtc j = sp->types[i];
886 1.1 jtc sp->types[i] = sp->ttis[j].tt_isdst;
887 1.1 jtc if (sp->ttis[j].tt_ttisgmt) {
888 1.1 jtc /* No adjustment to transition time */
889 1.1 jtc } else {
890 1.1 jtc /*
891 1.1 jtc ** If summer time is in effect, and the
892 1.1 jtc ** transition time was not specified as
893 1.1 jtc ** standard time, add the summer time
894 1.1 jtc ** offset to the transition time;
895 1.1 jtc ** otherwise, add the standard time
896 1.1 jtc ** offset to the transition time.
897 1.1 jtc */
898 1.1 jtc /*
899 1.1 jtc ** Transitions from DST to DDST
900 1.1 jtc ** will effectively disappear since
901 1.1 jtc ** POSIX provides for only one DST
902 1.1 jtc ** offset.
903 1.1 jtc */
904 1.1 jtc if (isdst && !sp->ttis[j].tt_ttisstd) {
905 1.1 jtc sp->ats[i] += dstoffset -
906 1.1 jtc theirdstoffset;
907 1.1 jtc } else {
908 1.1 jtc sp->ats[i] += stdoffset -
909 1.1 jtc theirstdoffset;
910 1.1 jtc }
911 1.1 jtc }
912 1.1 jtc theiroffset = -sp->ttis[j].tt_gmtoff;
913 1.1 jtc if (sp->ttis[j].tt_isdst)
914 1.1 jtc theirdstoffset = theiroffset;
915 1.1 jtc else theirstdoffset = theiroffset;
916 1.1 jtc }
917 1.1 jtc /*
918 1.1 jtc ** Finally, fill in ttis.
919 1.1 jtc ** ttisstd and ttisgmt need not be handled.
920 1.1 jtc */
921 1.1 jtc sp->ttis[0].tt_gmtoff = -stdoffset;
922 1.1 jtc sp->ttis[0].tt_isdst = FALSE;
923 1.1 jtc sp->ttis[0].tt_abbrind = 0;
924 1.1 jtc sp->ttis[1].tt_gmtoff = -dstoffset;
925 1.1 jtc sp->ttis[1].tt_isdst = TRUE;
926 1.1 jtc sp->ttis[1].tt_abbrind = stdlen + 1;
927 1.7 jtc sp->typecnt = 2;
928 1.1 jtc }
929 1.1 jtc } else {
930 1.1 jtc dstlen = 0;
931 1.1 jtc sp->typecnt = 1; /* only standard time */
932 1.1 jtc sp->timecnt = 0;
933 1.1 jtc sp->ttis[0].tt_gmtoff = -stdoffset;
934 1.1 jtc sp->ttis[0].tt_isdst = 0;
935 1.1 jtc sp->ttis[0].tt_abbrind = 0;
936 1.1 jtc }
937 1.1 jtc sp->charcnt = stdlen + 1;
938 1.1 jtc if (dstlen != 0)
939 1.1 jtc sp->charcnt += dstlen + 1;
940 1.10 jtc if ((size_t) sp->charcnt > sizeof sp->chars)
941 1.1 jtc return -1;
942 1.1 jtc cp = sp->chars;
943 1.1 jtc (void) strncpy(cp, stdname, stdlen);
944 1.1 jtc cp += stdlen;
945 1.1 jtc *cp++ = '\0';
946 1.1 jtc if (dstlen != 0) {
947 1.1 jtc (void) strncpy(cp, dstname, dstlen);
948 1.1 jtc *(cp + dstlen) = '\0';
949 1.1 jtc }
950 1.1 jtc return 0;
951 1.1 jtc }
952 1.1 jtc
953 1.1 jtc static void
954 1.1 jtc gmtload(sp)
955 1.1 jtc struct state * const sp;
956 1.1 jtc {
957 1.1 jtc if (tzload(gmt, sp) != 0)
958 1.1 jtc (void) tzparse(gmt, sp, TRUE);
959 1.1 jtc }
960 1.1 jtc
961 1.19 kleink static void
962 1.19 kleink tzsetwall_unlocked P((void))
963 1.1 jtc {
964 1.1 jtc if (lcl_is_set < 0)
965 1.1 jtc return;
966 1.1 jtc lcl_is_set = -1;
967 1.1 jtc
968 1.1 jtc #ifdef ALL_STATE
969 1.1 jtc if (lclptr == NULL) {
970 1.1 jtc lclptr = (struct state *) malloc(sizeof *lclptr);
971 1.1 jtc if (lclptr == NULL) {
972 1.1 jtc settzname(); /* all we can do */
973 1.1 jtc return;
974 1.1 jtc }
975 1.1 jtc }
976 1.1 jtc #endif /* defined ALL_STATE */
977 1.1 jtc if (tzload((char *) NULL, lclptr) != 0)
978 1.1 jtc gmtload(lclptr);
979 1.1 jtc settzname();
980 1.1 jtc }
981 1.1 jtc
982 1.19 kleink #ifndef STD_INSPIRED
983 1.19 kleink /*
984 1.19 kleink ** A non-static declaration of tzsetwall in a system header file
985 1.19 kleink ** may cause a warning about this upcoming static declaration...
986 1.19 kleink */
987 1.19 kleink static
988 1.19 kleink #endif /* !defined STD_INSPIRED */
989 1.1 jtc void
990 1.19 kleink tzsetwall P((void))
991 1.19 kleink {
992 1.19 kleink rwlock_wrlock(&lcl_lock);
993 1.19 kleink tzsetwall_unlocked();
994 1.19 kleink rwlock_unlock(&lcl_lock);
995 1.19 kleink }
996 1.19 kleink
997 1.19 kleink static void
998 1.19 kleink tzset_unlocked P((void))
999 1.1 jtc {
1000 1.1 jtc register const char * name;
1001 1.1 jtc
1002 1.1 jtc name = getenv("TZ");
1003 1.1 jtc if (name == NULL) {
1004 1.19 kleink tzsetwall_unlocked();
1005 1.1 jtc return;
1006 1.1 jtc }
1007 1.1 jtc
1008 1.1 jtc if (lcl_is_set > 0 && strcmp(lcl_TZname, name) == 0)
1009 1.1 jtc return;
1010 1.1 jtc lcl_is_set = (strlen(name) < sizeof(lcl_TZname));
1011 1.1 jtc if (lcl_is_set)
1012 1.8 mrg (void)strncpy(lcl_TZname, name, sizeof(lcl_TZname) - 1);
1013 1.1 jtc
1014 1.1 jtc #ifdef ALL_STATE
1015 1.1 jtc if (lclptr == NULL) {
1016 1.1 jtc lclptr = (struct state *) malloc(sizeof *lclptr);
1017 1.1 jtc if (lclptr == NULL) {
1018 1.1 jtc settzname(); /* all we can do */
1019 1.1 jtc return;
1020 1.1 jtc }
1021 1.1 jtc }
1022 1.1 jtc #endif /* defined ALL_STATE */
1023 1.1 jtc if (*name == '\0') {
1024 1.1 jtc /*
1025 1.1 jtc ** User wants it fast rather than right.
1026 1.1 jtc */
1027 1.1 jtc lclptr->leapcnt = 0; /* so, we're off a little */
1028 1.1 jtc lclptr->timecnt = 0;
1029 1.1 jtc lclptr->ttis[0].tt_gmtoff = 0;
1030 1.1 jtc lclptr->ttis[0].tt_abbrind = 0;
1031 1.8 mrg (void)strncpy(lclptr->chars, gmt, sizeof(lclptr->chars) - 1);
1032 1.1 jtc } else if (tzload(name, lclptr) != 0)
1033 1.1 jtc if (name[0] == ':' || tzparse(name, lclptr, FALSE) != 0)
1034 1.1 jtc (void) gmtload(lclptr);
1035 1.1 jtc settzname();
1036 1.1 jtc }
1037 1.1 jtc
1038 1.19 kleink void
1039 1.19 kleink tzset P((void))
1040 1.19 kleink {
1041 1.19 kleink rwlock_wrlock(&lcl_lock);
1042 1.19 kleink tzset_unlocked();
1043 1.19 kleink rwlock_unlock(&lcl_lock);
1044 1.19 kleink }
1045 1.19 kleink
1046 1.1 jtc /*
1047 1.1 jtc ** The easy way to behave "as if no library function calls" localtime
1048 1.1 jtc ** is to not call it--so we drop its guts into "localsub", which can be
1049 1.1 jtc ** freely called. (And no, the PANS doesn't require the above behavior--
1050 1.1 jtc ** but it *is* desirable.)
1051 1.1 jtc **
1052 1.1 jtc ** The unused offset argument is for the benefit of mktime variants.
1053 1.1 jtc */
1054 1.1 jtc
1055 1.1 jtc /*ARGSUSED*/
1056 1.1 jtc static void
1057 1.1 jtc localsub(timep, offset, tmp)
1058 1.1 jtc const time_t * const timep;
1059 1.1 jtc const long offset;
1060 1.1 jtc struct tm * const tmp;
1061 1.1 jtc {
1062 1.1 jtc register struct state * sp;
1063 1.1 jtc register const struct ttinfo * ttisp;
1064 1.1 jtc register int i;
1065 1.1 jtc const time_t t = *timep;
1066 1.1 jtc
1067 1.1 jtc sp = lclptr;
1068 1.1 jtc #ifdef ALL_STATE
1069 1.1 jtc if (sp == NULL) {
1070 1.1 jtc gmtsub(timep, offset, tmp);
1071 1.1 jtc return;
1072 1.1 jtc }
1073 1.1 jtc #endif /* defined ALL_STATE */
1074 1.1 jtc if (sp->timecnt == 0 || t < sp->ats[0]) {
1075 1.1 jtc i = 0;
1076 1.1 jtc while (sp->ttis[i].tt_isdst)
1077 1.1 jtc if (++i >= sp->typecnt) {
1078 1.1 jtc i = 0;
1079 1.1 jtc break;
1080 1.1 jtc }
1081 1.1 jtc } else {
1082 1.1 jtc for (i = 1; i < sp->timecnt; ++i)
1083 1.1 jtc if (t < sp->ats[i])
1084 1.1 jtc break;
1085 1.1 jtc i = sp->types[i - 1];
1086 1.1 jtc }
1087 1.1 jtc ttisp = &sp->ttis[i];
1088 1.1 jtc /*
1089 1.1 jtc ** To get (wrong) behavior that's compatible with System V Release 2.0
1090 1.1 jtc ** you'd replace the statement below with
1091 1.1 jtc ** t += ttisp->tt_gmtoff;
1092 1.1 jtc ** timesub(&t, 0L, sp, tmp);
1093 1.1 jtc */
1094 1.1 jtc timesub(&t, ttisp->tt_gmtoff, sp, tmp);
1095 1.1 jtc tmp->tm_isdst = ttisp->tt_isdst;
1096 1.1 jtc tzname[tmp->tm_isdst] = &sp->chars[ttisp->tt_abbrind];
1097 1.1 jtc #ifdef TM_ZONE
1098 1.1 jtc tmp->TM_ZONE = &sp->chars[ttisp->tt_abbrind];
1099 1.1 jtc #endif /* defined TM_ZONE */
1100 1.1 jtc }
1101 1.1 jtc
1102 1.1 jtc struct tm *
1103 1.1 jtc localtime(timep)
1104 1.1 jtc const time_t * const timep;
1105 1.1 jtc {
1106 1.19 kleink rwlock_wrlock(&lcl_lock);
1107 1.19 kleink tzset_unlocked();
1108 1.1 jtc localsub(timep, 0L, &tm);
1109 1.19 kleink rwlock_unlock(&lcl_lock);
1110 1.1 jtc return &tm;
1111 1.1 jtc }
1112 1.1 jtc
1113 1.1 jtc /*
1114 1.18 kleink * Re-entrant version of localtime
1115 1.18 kleink */
1116 1.18 kleink struct tm *
1117 1.18 kleink localtime_r(timep, tm)
1118 1.18 kleink const time_t * const timep;
1119 1.18 kleink struct tm * tm;
1120 1.18 kleink {
1121 1.19 kleink rwlock_rdlock(&lcl_lock);
1122 1.18 kleink localsub(timep, 0L, tm);
1123 1.19 kleink rwlock_unlock(&lcl_lock);
1124 1.18 kleink return tm;
1125 1.18 kleink }
1126 1.18 kleink
1127 1.18 kleink /*
1128 1.1 jtc ** gmtsub is to gmtime as localsub is to localtime.
1129 1.1 jtc */
1130 1.1 jtc
1131 1.1 jtc static void
1132 1.1 jtc gmtsub(timep, offset, tmp)
1133 1.1 jtc const time_t * const timep;
1134 1.1 jtc const long offset;
1135 1.1 jtc struct tm * const tmp;
1136 1.1 jtc {
1137 1.19 kleink #ifdef _REENT
1138 1.19 kleink static mutex_t gmt_mutex = MUTEX_INITIALIZER;
1139 1.19 kleink #endif
1140 1.19 kleink
1141 1.19 kleink mutex_lock(&gmt_mutex);
1142 1.1 jtc if (!gmt_is_set) {
1143 1.1 jtc gmt_is_set = TRUE;
1144 1.1 jtc #ifdef ALL_STATE
1145 1.1 jtc gmtptr = (struct state *) malloc(sizeof *gmtptr);
1146 1.1 jtc if (gmtptr != NULL)
1147 1.1 jtc #endif /* defined ALL_STATE */
1148 1.1 jtc gmtload(gmtptr);
1149 1.1 jtc }
1150 1.19 kleink mutex_unlock(&gmt_mutex);
1151 1.1 jtc timesub(timep, offset, gmtptr, tmp);
1152 1.1 jtc #ifdef TM_ZONE
1153 1.1 jtc /*
1154 1.1 jtc ** Could get fancy here and deliver something such as
1155 1.14 jtc ** "UTC+xxxx" or "UTC-xxxx" if offset is non-zero,
1156 1.1 jtc ** but this is no time for a treasure hunt.
1157 1.1 jtc */
1158 1.1 jtc if (offset != 0)
1159 1.16 mycroft tmp->TM_ZONE = (__aconst char *)wildabbr;
1160 1.1 jtc else {
1161 1.1 jtc #ifdef ALL_STATE
1162 1.1 jtc if (gmtptr == NULL)
1163 1.17 mycroft tmp->TM_ZONE = (__aconst char *)gmt;
1164 1.1 jtc else tmp->TM_ZONE = gmtptr->chars;
1165 1.1 jtc #endif /* defined ALL_STATE */
1166 1.1 jtc #ifndef ALL_STATE
1167 1.1 jtc tmp->TM_ZONE = gmtptr->chars;
1168 1.1 jtc #endif /* State Farm */
1169 1.1 jtc }
1170 1.1 jtc #endif /* defined TM_ZONE */
1171 1.1 jtc }
1172 1.1 jtc
1173 1.1 jtc struct tm *
1174 1.1 jtc gmtime(timep)
1175 1.1 jtc const time_t * const timep;
1176 1.1 jtc {
1177 1.1 jtc gmtsub(timep, 0L, &tm);
1178 1.1 jtc return &tm;
1179 1.1 jtc }
1180 1.1 jtc
1181 1.18 kleink /*
1182 1.18 kleink * Re-entrant version of gmtime
1183 1.18 kleink */
1184 1.18 kleink struct tm *
1185 1.18 kleink gmtime_r(timep, tm)
1186 1.18 kleink const time_t * const timep;
1187 1.18 kleink struct tm * tm;
1188 1.18 kleink {
1189 1.18 kleink gmtsub(timep, 0L, tm);
1190 1.18 kleink return tm;
1191 1.18 kleink }
1192 1.18 kleink
1193 1.1 jtc #ifdef STD_INSPIRED
1194 1.1 jtc
1195 1.1 jtc struct tm *
1196 1.1 jtc offtime(timep, offset)
1197 1.1 jtc const time_t * const timep;
1198 1.1 jtc const long offset;
1199 1.1 jtc {
1200 1.1 jtc gmtsub(timep, offset, &tm);
1201 1.1 jtc return &tm;
1202 1.1 jtc }
1203 1.1 jtc
1204 1.1 jtc #endif /* defined STD_INSPIRED */
1205 1.1 jtc
1206 1.1 jtc static void
1207 1.1 jtc timesub(timep, offset, sp, tmp)
1208 1.1 jtc const time_t * const timep;
1209 1.1 jtc const long offset;
1210 1.1 jtc register const struct state * const sp;
1211 1.1 jtc register struct tm * const tmp;
1212 1.1 jtc {
1213 1.1 jtc register const struct lsinfo * lp;
1214 1.1 jtc register long days;
1215 1.1 jtc register long rem;
1216 1.1 jtc register int y;
1217 1.1 jtc register int yleap;
1218 1.1 jtc register const int * ip;
1219 1.1 jtc register long corr;
1220 1.1 jtc register int hit;
1221 1.1 jtc register int i;
1222 1.1 jtc
1223 1.1 jtc corr = 0;
1224 1.1 jtc hit = 0;
1225 1.1 jtc #ifdef ALL_STATE
1226 1.1 jtc i = (sp == NULL) ? 0 : sp->leapcnt;
1227 1.1 jtc #endif /* defined ALL_STATE */
1228 1.1 jtc #ifndef ALL_STATE
1229 1.1 jtc i = sp->leapcnt;
1230 1.1 jtc #endif /* State Farm */
1231 1.1 jtc while (--i >= 0) {
1232 1.1 jtc lp = &sp->lsis[i];
1233 1.1 jtc if (*timep >= lp->ls_trans) {
1234 1.1 jtc if (*timep == lp->ls_trans) {
1235 1.1 jtc hit = ((i == 0 && lp->ls_corr > 0) ||
1236 1.1 jtc lp->ls_corr > sp->lsis[i - 1].ls_corr);
1237 1.1 jtc if (hit)
1238 1.1 jtc while (i > 0 &&
1239 1.1 jtc sp->lsis[i].ls_trans ==
1240 1.1 jtc sp->lsis[i - 1].ls_trans + 1 &&
1241 1.1 jtc sp->lsis[i].ls_corr ==
1242 1.1 jtc sp->lsis[i - 1].ls_corr + 1) {
1243 1.1 jtc ++hit;
1244 1.1 jtc --i;
1245 1.1 jtc }
1246 1.1 jtc }
1247 1.1 jtc corr = lp->ls_corr;
1248 1.1 jtc break;
1249 1.1 jtc }
1250 1.1 jtc }
1251 1.1 jtc days = *timep / SECSPERDAY;
1252 1.1 jtc rem = *timep % SECSPERDAY;
1253 1.1 jtc #ifdef mc68k
1254 1.1 jtc if (*timep == 0x80000000) {
1255 1.1 jtc /*
1256 1.1 jtc ** A 3B1 muffs the division on the most negative number.
1257 1.1 jtc */
1258 1.1 jtc days = -24855;
1259 1.1 jtc rem = -11648;
1260 1.1 jtc }
1261 1.1 jtc #endif /* defined mc68k */
1262 1.1 jtc rem += (offset - corr);
1263 1.1 jtc while (rem < 0) {
1264 1.1 jtc rem += SECSPERDAY;
1265 1.1 jtc --days;
1266 1.1 jtc }
1267 1.1 jtc while (rem >= SECSPERDAY) {
1268 1.1 jtc rem -= SECSPERDAY;
1269 1.1 jtc ++days;
1270 1.1 jtc }
1271 1.1 jtc tmp->tm_hour = (int) (rem / SECSPERHOUR);
1272 1.1 jtc rem = rem % SECSPERHOUR;
1273 1.1 jtc tmp->tm_min = (int) (rem / SECSPERMIN);
1274 1.6 jtc /*
1275 1.6 jtc ** A positive leap second requires a special
1276 1.6 jtc ** representation. This uses "... ??:59:60" et seq.
1277 1.6 jtc */
1278 1.6 jtc tmp->tm_sec = (int) (rem % SECSPERMIN) + hit;
1279 1.1 jtc tmp->tm_wday = (int) ((EPOCH_WDAY + days) % DAYSPERWEEK);
1280 1.1 jtc if (tmp->tm_wday < 0)
1281 1.1 jtc tmp->tm_wday += DAYSPERWEEK;
1282 1.1 jtc y = EPOCH_YEAR;
1283 1.5 jtc #define LEAPS_THRU_END_OF(y) ((y) / 4 - (y) / 100 + (y) / 400)
1284 1.5 jtc while (days < 0 || days >= (long) year_lengths[yleap = isleap(y)]) {
1285 1.5 jtc register int newy;
1286 1.5 jtc
1287 1.5 jtc newy = y + days / DAYSPERNYEAR;
1288 1.5 jtc if (days < 0)
1289 1.5 jtc --newy;
1290 1.5 jtc days -= (newy - y) * DAYSPERNYEAR +
1291 1.5 jtc LEAPS_THRU_END_OF(newy - 1) -
1292 1.5 jtc LEAPS_THRU_END_OF(y - 1);
1293 1.5 jtc y = newy;
1294 1.5 jtc }
1295 1.1 jtc tmp->tm_year = y - TM_YEAR_BASE;
1296 1.1 jtc tmp->tm_yday = (int) days;
1297 1.1 jtc ip = mon_lengths[yleap];
1298 1.1 jtc for (tmp->tm_mon = 0; days >= (long) ip[tmp->tm_mon]; ++(tmp->tm_mon))
1299 1.1 jtc days = days - (long) ip[tmp->tm_mon];
1300 1.1 jtc tmp->tm_mday = (int) (days + 1);
1301 1.1 jtc tmp->tm_isdst = 0;
1302 1.1 jtc #ifdef TM_GMTOFF
1303 1.1 jtc tmp->TM_GMTOFF = offset;
1304 1.1 jtc #endif /* defined TM_GMTOFF */
1305 1.1 jtc }
1306 1.1 jtc
1307 1.1 jtc char *
1308 1.1 jtc ctime(timep)
1309 1.1 jtc const time_t * const timep;
1310 1.1 jtc {
1311 1.1 jtc /*
1312 1.1 jtc ** Section 4.12.3.2 of X3.159-1989 requires that
1313 1.18 kleink ** The ctime function converts the calendar time pointed to by timer
1314 1.1 jtc ** to local time in the form of a string. It is equivalent to
1315 1.1 jtc ** asctime(localtime(timer))
1316 1.1 jtc */
1317 1.1 jtc return asctime(localtime(timep));
1318 1.18 kleink }
1319 1.18 kleink
1320 1.18 kleink char *
1321 1.18 kleink ctime_r(timep, buf)
1322 1.18 kleink const time_t * const timep;
1323 1.18 kleink char * buf;
1324 1.18 kleink {
1325 1.18 kleink struct tm tm;
1326 1.18 kleink
1327 1.18 kleink return asctime_r(localtime_r(timep, &tm), buf);
1328 1.1 jtc }
1329 1.1 jtc
1330 1.1 jtc /*
1331 1.1 jtc ** Adapted from code provided by Robert Elz, who writes:
1332 1.1 jtc ** The "best" way to do mktime I think is based on an idea of Bob
1333 1.7 jtc ** Kridle's (so its said...) from a long time ago.
1334 1.7 jtc ** [kridle (at) xinet.com as of 1996-01-16.]
1335 1.1 jtc ** It does a binary search of the time_t space. Since time_t's are
1336 1.1 jtc ** just 32 bits, its a max of 32 iterations (even at 64 bits it
1337 1.1 jtc ** would still be very reasonable).
1338 1.1 jtc */
1339 1.1 jtc
1340 1.1 jtc #ifndef WRONG
1341 1.1 jtc #define WRONG (-1)
1342 1.1 jtc #endif /* !defined WRONG */
1343 1.1 jtc
1344 1.1 jtc /*
1345 1.1 jtc ** Simplified normalize logic courtesy Paul Eggert (eggert (at) twinsun.com).
1346 1.1 jtc */
1347 1.1 jtc
1348 1.1 jtc static int
1349 1.1 jtc increment_overflow(number, delta)
1350 1.1 jtc int * number;
1351 1.1 jtc int delta;
1352 1.1 jtc {
1353 1.1 jtc int number0;
1354 1.1 jtc
1355 1.1 jtc number0 = *number;
1356 1.1 jtc *number += delta;
1357 1.1 jtc return (*number < number0) != (delta < 0);
1358 1.1 jtc }
1359 1.1 jtc
1360 1.1 jtc static int
1361 1.1 jtc normalize_overflow(tensptr, unitsptr, base)
1362 1.1 jtc int * const tensptr;
1363 1.1 jtc int * const unitsptr;
1364 1.1 jtc const int base;
1365 1.1 jtc {
1366 1.1 jtc register int tensdelta;
1367 1.1 jtc
1368 1.1 jtc tensdelta = (*unitsptr >= 0) ?
1369 1.1 jtc (*unitsptr / base) :
1370 1.1 jtc (-1 - (-1 - *unitsptr) / base);
1371 1.1 jtc *unitsptr -= tensdelta * base;
1372 1.1 jtc return increment_overflow(tensptr, tensdelta);
1373 1.1 jtc }
1374 1.1 jtc
1375 1.1 jtc static int
1376 1.1 jtc tmcomp(atmp, btmp)
1377 1.1 jtc register const struct tm * const atmp;
1378 1.1 jtc register const struct tm * const btmp;
1379 1.1 jtc {
1380 1.1 jtc register int result;
1381 1.1 jtc
1382 1.1 jtc if ((result = (atmp->tm_year - btmp->tm_year)) == 0 &&
1383 1.1 jtc (result = (atmp->tm_mon - btmp->tm_mon)) == 0 &&
1384 1.1 jtc (result = (atmp->tm_mday - btmp->tm_mday)) == 0 &&
1385 1.1 jtc (result = (atmp->tm_hour - btmp->tm_hour)) == 0 &&
1386 1.1 jtc (result = (atmp->tm_min - btmp->tm_min)) == 0)
1387 1.1 jtc result = atmp->tm_sec - btmp->tm_sec;
1388 1.1 jtc return result;
1389 1.1 jtc }
1390 1.1 jtc
1391 1.1 jtc static time_t
1392 1.13 jtc time2sub(tmp, funcp, offset, okayp, do_norm_secs)
1393 1.1 jtc struct tm * const tmp;
1394 1.1 jtc void (* const funcp) P((const time_t*, long, struct tm*));
1395 1.1 jtc const long offset;
1396 1.1 jtc int * const okayp;
1397 1.13 jtc const int do_norm_secs;
1398 1.1 jtc {
1399 1.1 jtc register const struct state * sp;
1400 1.1 jtc register int dir;
1401 1.1 jtc register int bits;
1402 1.1 jtc register int i, j ;
1403 1.1 jtc register int saved_seconds;
1404 1.1 jtc time_t newt;
1405 1.1 jtc time_t t;
1406 1.1 jtc struct tm yourtm, mytm;
1407 1.1 jtc
1408 1.1 jtc *okayp = FALSE;
1409 1.1 jtc yourtm = *tmp;
1410 1.13 jtc if (do_norm_secs) {
1411 1.13 jtc if (normalize_overflow(&yourtm.tm_min, &yourtm.tm_sec,
1412 1.13 jtc SECSPERMIN))
1413 1.13 jtc return WRONG;
1414 1.13 jtc }
1415 1.1 jtc if (normalize_overflow(&yourtm.tm_hour, &yourtm.tm_min, MINSPERHOUR))
1416 1.1 jtc return WRONG;
1417 1.1 jtc if (normalize_overflow(&yourtm.tm_mday, &yourtm.tm_hour, HOURSPERDAY))
1418 1.1 jtc return WRONG;
1419 1.1 jtc if (normalize_overflow(&yourtm.tm_year, &yourtm.tm_mon, MONSPERYEAR))
1420 1.1 jtc return WRONG;
1421 1.1 jtc /*
1422 1.1 jtc ** Turn yourtm.tm_year into an actual year number for now.
1423 1.1 jtc ** It is converted back to an offset from TM_YEAR_BASE later.
1424 1.1 jtc */
1425 1.1 jtc if (increment_overflow(&yourtm.tm_year, TM_YEAR_BASE))
1426 1.1 jtc return WRONG;
1427 1.1 jtc while (yourtm.tm_mday <= 0) {
1428 1.1 jtc if (increment_overflow(&yourtm.tm_year, -1))
1429 1.1 jtc return WRONG;
1430 1.7 jtc i = yourtm.tm_year + (1 < yourtm.tm_mon);
1431 1.7 jtc yourtm.tm_mday += year_lengths[isleap(i)];
1432 1.1 jtc }
1433 1.1 jtc while (yourtm.tm_mday > DAYSPERLYEAR) {
1434 1.7 jtc i = yourtm.tm_year + (1 < yourtm.tm_mon);
1435 1.7 jtc yourtm.tm_mday -= year_lengths[isleap(i)];
1436 1.1 jtc if (increment_overflow(&yourtm.tm_year, 1))
1437 1.1 jtc return WRONG;
1438 1.1 jtc }
1439 1.1 jtc for ( ; ; ) {
1440 1.1 jtc i = mon_lengths[isleap(yourtm.tm_year)][yourtm.tm_mon];
1441 1.1 jtc if (yourtm.tm_mday <= i)
1442 1.1 jtc break;
1443 1.1 jtc yourtm.tm_mday -= i;
1444 1.1 jtc if (++yourtm.tm_mon >= MONSPERYEAR) {
1445 1.1 jtc yourtm.tm_mon = 0;
1446 1.1 jtc if (increment_overflow(&yourtm.tm_year, 1))
1447 1.1 jtc return WRONG;
1448 1.1 jtc }
1449 1.1 jtc }
1450 1.1 jtc if (increment_overflow(&yourtm.tm_year, -TM_YEAR_BASE))
1451 1.1 jtc return WRONG;
1452 1.1 jtc if (yourtm.tm_year + TM_YEAR_BASE < EPOCH_YEAR) {
1453 1.1 jtc /*
1454 1.1 jtc ** We can't set tm_sec to 0, because that might push the
1455 1.1 jtc ** time below the minimum representable time.
1456 1.1 jtc ** Set tm_sec to 59 instead.
1457 1.1 jtc ** This assumes that the minimum representable time is
1458 1.1 jtc ** not in the same minute that a leap second was deleted from,
1459 1.1 jtc ** which is a safer assumption than using 58 would be.
1460 1.1 jtc */
1461 1.1 jtc if (increment_overflow(&yourtm.tm_sec, 1 - SECSPERMIN))
1462 1.1 jtc return WRONG;
1463 1.1 jtc saved_seconds = yourtm.tm_sec;
1464 1.1 jtc yourtm.tm_sec = SECSPERMIN - 1;
1465 1.1 jtc } else {
1466 1.1 jtc saved_seconds = yourtm.tm_sec;
1467 1.1 jtc yourtm.tm_sec = 0;
1468 1.1 jtc }
1469 1.1 jtc /*
1470 1.6 jtc ** Divide the search space in half
1471 1.6 jtc ** (this works whether time_t is signed or unsigned).
1472 1.1 jtc */
1473 1.6 jtc bits = TYPE_BIT(time_t) - 1;
1474 1.1 jtc /*
1475 1.6 jtc ** If time_t is signed, then 0 is just above the median,
1476 1.6 jtc ** assuming two's complement arithmetic.
1477 1.6 jtc ** If time_t is unsigned, then (1 << bits) is just above the median.
1478 1.1 jtc */
1479 1.6 jtc t = TYPE_SIGNED(time_t) ? 0 : (((time_t) 1) << bits);
1480 1.1 jtc for ( ; ; ) {
1481 1.1 jtc (*funcp)(&t, offset, &mytm);
1482 1.1 jtc dir = tmcomp(&mytm, &yourtm);
1483 1.1 jtc if (dir != 0) {
1484 1.1 jtc if (bits-- < 0)
1485 1.1 jtc return WRONG;
1486 1.1 jtc if (bits < 0)
1487 1.6 jtc --t; /* may be needed if new t is minimal */
1488 1.1 jtc else if (dir > 0)
1489 1.6 jtc t -= ((time_t) 1) << bits;
1490 1.6 jtc else t += ((time_t) 1) << bits;
1491 1.1 jtc continue;
1492 1.1 jtc }
1493 1.1 jtc if (yourtm.tm_isdst < 0 || mytm.tm_isdst == yourtm.tm_isdst)
1494 1.1 jtc break;
1495 1.1 jtc /*
1496 1.1 jtc ** Right time, wrong type.
1497 1.1 jtc ** Hunt for right time, right type.
1498 1.1 jtc ** It's okay to guess wrong since the guess
1499 1.1 jtc ** gets checked.
1500 1.1 jtc */
1501 1.1 jtc /*
1502 1.1 jtc ** The (void *) casts are the benefit of SunOS 3.3 on Sun 2's.
1503 1.1 jtc */
1504 1.1 jtc sp = (const struct state *)
1505 1.1 jtc (((void *) funcp == (void *) localsub) ?
1506 1.1 jtc lclptr : gmtptr);
1507 1.1 jtc #ifdef ALL_STATE
1508 1.1 jtc if (sp == NULL)
1509 1.1 jtc return WRONG;
1510 1.1 jtc #endif /* defined ALL_STATE */
1511 1.5 jtc for (i = sp->typecnt - 1; i >= 0; --i) {
1512 1.1 jtc if (sp->ttis[i].tt_isdst != yourtm.tm_isdst)
1513 1.1 jtc continue;
1514 1.5 jtc for (j = sp->typecnt - 1; j >= 0; --j) {
1515 1.1 jtc if (sp->ttis[j].tt_isdst == yourtm.tm_isdst)
1516 1.1 jtc continue;
1517 1.1 jtc newt = t + sp->ttis[j].tt_gmtoff -
1518 1.1 jtc sp->ttis[i].tt_gmtoff;
1519 1.1 jtc (*funcp)(&newt, offset, &mytm);
1520 1.1 jtc if (tmcomp(&mytm, &yourtm) != 0)
1521 1.1 jtc continue;
1522 1.1 jtc if (mytm.tm_isdst != yourtm.tm_isdst)
1523 1.1 jtc continue;
1524 1.1 jtc /*
1525 1.1 jtc ** We have a match.
1526 1.1 jtc */
1527 1.1 jtc t = newt;
1528 1.1 jtc goto label;
1529 1.1 jtc }
1530 1.1 jtc }
1531 1.1 jtc return WRONG;
1532 1.1 jtc }
1533 1.1 jtc label:
1534 1.1 jtc newt = t + saved_seconds;
1535 1.1 jtc if ((newt < t) != (saved_seconds < 0))
1536 1.1 jtc return WRONG;
1537 1.1 jtc t = newt;
1538 1.1 jtc (*funcp)(&t, offset, tmp);
1539 1.1 jtc *okayp = TRUE;
1540 1.1 jtc return t;
1541 1.13 jtc }
1542 1.13 jtc
1543 1.13 jtc static time_t
1544 1.13 jtc time2(tmp, funcp, offset, okayp)
1545 1.13 jtc struct tm * const tmp;
1546 1.13 jtc void (* const funcp) P((const time_t*, long, struct tm*));
1547 1.13 jtc const long offset;
1548 1.13 jtc int * const okayp;
1549 1.13 jtc {
1550 1.13 jtc time_t t;
1551 1.13 jtc
1552 1.13 jtc /*
1553 1.13 jtc ** First try without normalization of seconds
1554 1.13 jtc ** (in case tm_sec contains a value associated with a leap second).
1555 1.13 jtc ** If that fails, try with normalization of seconds.
1556 1.13 jtc */
1557 1.13 jtc t = time2sub(tmp, funcp, offset, okayp, FALSE);
1558 1.13 jtc return *okayp ? t : time2sub(tmp, funcp, offset, okayp, TRUE);
1559 1.1 jtc }
1560 1.1 jtc
1561 1.1 jtc static time_t
1562 1.1 jtc time1(tmp, funcp, offset)
1563 1.1 jtc struct tm * const tmp;
1564 1.5 jtc void (* const funcp) P((const time_t *, long, struct tm *));
1565 1.1 jtc const long offset;
1566 1.1 jtc {
1567 1.1 jtc register time_t t;
1568 1.1 jtc register const struct state * sp;
1569 1.1 jtc register int samei, otheri;
1570 1.1 jtc int okay;
1571 1.1 jtc
1572 1.1 jtc if (tmp->tm_isdst > 1)
1573 1.1 jtc tmp->tm_isdst = 1;
1574 1.1 jtc t = time2(tmp, funcp, offset, &okay);
1575 1.1 jtc #ifdef PCTS
1576 1.1 jtc /*
1577 1.1 jtc ** PCTS code courtesy Grant Sullivan (grant (at) osf.org).
1578 1.1 jtc */
1579 1.1 jtc if (okay)
1580 1.1 jtc return t;
1581 1.1 jtc if (tmp->tm_isdst < 0)
1582 1.1 jtc tmp->tm_isdst = 0; /* reset to std and try again */
1583 1.1 jtc #endif /* defined PCTS */
1584 1.1 jtc #ifndef PCTS
1585 1.1 jtc if (okay || tmp->tm_isdst < 0)
1586 1.1 jtc return t;
1587 1.1 jtc #endif /* !defined PCTS */
1588 1.1 jtc /*
1589 1.1 jtc ** We're supposed to assume that somebody took a time of one type
1590 1.1 jtc ** and did some math on it that yielded a "struct tm" that's bad.
1591 1.1 jtc ** We try to divine the type they started from and adjust to the
1592 1.1 jtc ** type they need.
1593 1.1 jtc */
1594 1.1 jtc /*
1595 1.1 jtc ** The (void *) casts are the benefit of SunOS 3.3 on Sun 2's.
1596 1.1 jtc */
1597 1.1 jtc sp = (const struct state *) (((void *) funcp == (void *) localsub) ?
1598 1.1 jtc lclptr : gmtptr);
1599 1.1 jtc #ifdef ALL_STATE
1600 1.1 jtc if (sp == NULL)
1601 1.1 jtc return WRONG;
1602 1.1 jtc #endif /* defined ALL_STATE */
1603 1.5 jtc for (samei = sp->typecnt - 1; samei >= 0; --samei) {
1604 1.1 jtc if (sp->ttis[samei].tt_isdst != tmp->tm_isdst)
1605 1.1 jtc continue;
1606 1.5 jtc for (otheri = sp->typecnt - 1; otheri >= 0; --otheri) {
1607 1.1 jtc if (sp->ttis[otheri].tt_isdst == tmp->tm_isdst)
1608 1.1 jtc continue;
1609 1.1 jtc tmp->tm_sec += sp->ttis[otheri].tt_gmtoff -
1610 1.1 jtc sp->ttis[samei].tt_gmtoff;
1611 1.1 jtc tmp->tm_isdst = !tmp->tm_isdst;
1612 1.1 jtc t = time2(tmp, funcp, offset, &okay);
1613 1.1 jtc if (okay)
1614 1.1 jtc return t;
1615 1.1 jtc tmp->tm_sec -= sp->ttis[otheri].tt_gmtoff -
1616 1.1 jtc sp->ttis[samei].tt_gmtoff;
1617 1.1 jtc tmp->tm_isdst = !tmp->tm_isdst;
1618 1.1 jtc }
1619 1.1 jtc }
1620 1.1 jtc return WRONG;
1621 1.1 jtc }
1622 1.1 jtc
1623 1.1 jtc time_t
1624 1.1 jtc mktime(tmp)
1625 1.1 jtc struct tm * const tmp;
1626 1.1 jtc {
1627 1.19 kleink time_t result;
1628 1.19 kleink
1629 1.19 kleink rwlock_wrlock(&lcl_lock);
1630 1.19 kleink tzset_unlocked();
1631 1.19 kleink result = time1(tmp, localsub, 0L);
1632 1.19 kleink rwlock_unlock(&lcl_lock);
1633 1.19 kleink return (result);
1634 1.1 jtc }
1635 1.1 jtc
1636 1.1 jtc #ifdef STD_INSPIRED
1637 1.1 jtc
1638 1.1 jtc time_t
1639 1.1 jtc timelocal(tmp)
1640 1.1 jtc struct tm * const tmp;
1641 1.1 jtc {
1642 1.1 jtc tmp->tm_isdst = -1; /* in case it wasn't initialized */
1643 1.1 jtc return mktime(tmp);
1644 1.1 jtc }
1645 1.1 jtc
1646 1.1 jtc time_t
1647 1.1 jtc timegm(tmp)
1648 1.1 jtc struct tm * const tmp;
1649 1.1 jtc {
1650 1.1 jtc tmp->tm_isdst = 0;
1651 1.1 jtc return time1(tmp, gmtsub, 0L);
1652 1.1 jtc }
1653 1.1 jtc
1654 1.1 jtc time_t
1655 1.1 jtc timeoff(tmp, offset)
1656 1.1 jtc struct tm * const tmp;
1657 1.1 jtc const long offset;
1658 1.1 jtc {
1659 1.1 jtc tmp->tm_isdst = 0;
1660 1.1 jtc return time1(tmp, gmtsub, offset);
1661 1.1 jtc }
1662 1.1 jtc
1663 1.1 jtc #endif /* defined STD_INSPIRED */
1664 1.1 jtc
1665 1.1 jtc #ifdef CMUCS
1666 1.1 jtc
1667 1.1 jtc /*
1668 1.1 jtc ** The following is supplied for compatibility with
1669 1.1 jtc ** previous versions of the CMUCS runtime library.
1670 1.1 jtc */
1671 1.1 jtc
1672 1.1 jtc long
1673 1.1 jtc gtime(tmp)
1674 1.1 jtc struct tm * const tmp;
1675 1.1 jtc {
1676 1.1 jtc const time_t t = mktime(tmp);
1677 1.1 jtc
1678 1.1 jtc if (t == WRONG)
1679 1.1 jtc return -1;
1680 1.1 jtc return t;
1681 1.1 jtc }
1682 1.1 jtc
1683 1.1 jtc #endif /* defined CMUCS */
1684 1.1 jtc
1685 1.1 jtc /*
1686 1.1 jtc ** XXX--is the below the right way to conditionalize??
1687 1.1 jtc */
1688 1.1 jtc
1689 1.1 jtc #ifdef STD_INSPIRED
1690 1.1 jtc
1691 1.1 jtc /*
1692 1.1 jtc ** IEEE Std 1003.1-1988 (POSIX) legislates that 536457599
1693 1.14 jtc ** shall correspond to "Wed Dec 31 23:59:59 UTC 1986", which
1694 1.1 jtc ** is not the case if we are accounting for leap seconds.
1695 1.1 jtc ** So, we provide the following conversion routines for use
1696 1.1 jtc ** when exchanging timestamps with POSIX conforming systems.
1697 1.1 jtc */
1698 1.1 jtc
1699 1.1 jtc static long
1700 1.1 jtc leapcorr(timep)
1701 1.1 jtc time_t * timep;
1702 1.1 jtc {
1703 1.1 jtc register struct state * sp;
1704 1.1 jtc register struct lsinfo * lp;
1705 1.1 jtc register int i;
1706 1.1 jtc
1707 1.1 jtc sp = lclptr;
1708 1.1 jtc i = sp->leapcnt;
1709 1.1 jtc while (--i >= 0) {
1710 1.1 jtc lp = &sp->lsis[i];
1711 1.1 jtc if (*timep >= lp->ls_trans)
1712 1.1 jtc return lp->ls_corr;
1713 1.1 jtc }
1714 1.1 jtc return 0;
1715 1.1 jtc }
1716 1.1 jtc
1717 1.1 jtc time_t
1718 1.1 jtc time2posix(t)
1719 1.1 jtc time_t t;
1720 1.1 jtc {
1721 1.19 kleink time_t result;
1722 1.19 kleink
1723 1.19 kleink rwlock_wrlock(&lcl_lock);
1724 1.19 kleink tzset_unlocked();
1725 1.19 kleink result = t - leapcorr(&t);
1726 1.19 kleink rwlock_unlock(&lcl_lock);
1727 1.19 kleink return (result);
1728 1.1 jtc }
1729 1.1 jtc
1730 1.1 jtc time_t
1731 1.1 jtc posix2time(t)
1732 1.1 jtc time_t t;
1733 1.1 jtc {
1734 1.1 jtc time_t x;
1735 1.1 jtc time_t y;
1736 1.1 jtc
1737 1.19 kleink rwlock_wrlock(&lcl_lock);
1738 1.19 kleink tzset_unlocked();
1739 1.1 jtc /*
1740 1.1 jtc ** For a positive leap second hit, the result
1741 1.1 jtc ** is not unique. For a negative leap second
1742 1.1 jtc ** hit, the corresponding time doesn't exist,
1743 1.1 jtc ** so we return an adjacent second.
1744 1.1 jtc */
1745 1.1 jtc x = t + leapcorr(&t);
1746 1.1 jtc y = x - leapcorr(&x);
1747 1.1 jtc if (y < t) {
1748 1.1 jtc do {
1749 1.1 jtc x++;
1750 1.1 jtc y = x - leapcorr(&x);
1751 1.1 jtc } while (y < t);
1752 1.19 kleink if (t != y) {
1753 1.19 kleink rwlock_unlock(&lcl_lock);
1754 1.1 jtc return x - 1;
1755 1.19 kleink }
1756 1.1 jtc } else if (y > t) {
1757 1.1 jtc do {
1758 1.1 jtc --x;
1759 1.1 jtc y = x - leapcorr(&x);
1760 1.1 jtc } while (y > t);
1761 1.19 kleink if (t != y) {
1762 1.19 kleink rwlock_unlock(&lcl_lock);
1763 1.1 jtc return x + 1;
1764 1.19 kleink }
1765 1.1 jtc }
1766 1.19 kleink rwlock_unlock(&lcl_lock);
1767 1.1 jtc return x;
1768 1.1 jtc }
1769 1.1 jtc
1770 1.1 jtc #endif /* defined STD_INSPIRED */
1771