localtime.c revision 1.37 1 1.37 christos /* $NetBSD: localtime.c,v 1.37 2005/07/16 19:48:09 christos Exp $ */
2 1.7 jtc
3 1.7 jtc /*
4 1.7 jtc ** This file is in the public domain, so clarified as of
5 1.10 jtc ** 1996-06-05 by Arthur David Olson (arthur_david_olson (at) nih.gov).
6 1.7 jtc */
7 1.2 jtc
8 1.11 christos #include <sys/cdefs.h>
9 1.24 msaitoh #if defined(LIBC_SCCS) && !defined(lint)
10 1.11 christos #if 0
11 1.35 kleink static char elsieid[] = "@(#)localtime.c 7.78";
12 1.11 christos #else
13 1.37 christos __RCSID("$NetBSD: localtime.c,v 1.37 2005/07/16 19:48:09 christos Exp $");
14 1.11 christos #endif
15 1.24 msaitoh #endif /* LIBC_SCCS and not lint */
16 1.1 jtc
17 1.1 jtc /*
18 1.1 jtc ** Leap second handling from Bradley White (bww (at) k.gp.cs.cmu.edu).
19 1.1 jtc ** POSIX-style TZ environment variable handling from Guy Harris
20 1.1 jtc ** (guy (at) auspex.com).
21 1.1 jtc */
22 1.1 jtc
23 1.1 jtc /*LINTLIBRARY*/
24 1.1 jtc
25 1.12 jtc #include "namespace.h"
26 1.1 jtc #include "private.h"
27 1.1 jtc #include "tzfile.h"
28 1.1 jtc #include "fcntl.h"
29 1.19 kleink #include "reentrant.h"
30 1.12 jtc
31 1.12 jtc #ifdef __weak_alias
32 1.23 mycroft __weak_alias(ctime_r,_ctime_r)
33 1.25 kleink __weak_alias(daylight,_daylight)
34 1.23 mycroft __weak_alias(gmtime_r,_gmtime_r)
35 1.23 mycroft __weak_alias(localtime_r,_localtime_r)
36 1.23 mycroft __weak_alias(offtime,_offtime)
37 1.23 mycroft __weak_alias(posix2time,_posix2time)
38 1.23 mycroft __weak_alias(time2posix,_time2posix)
39 1.23 mycroft __weak_alias(timegm,_timegm)
40 1.23 mycroft __weak_alias(timelocal,_timelocal)
41 1.23 mycroft __weak_alias(timeoff,_timeoff)
42 1.23 mycroft __weak_alias(tzname,_tzname)
43 1.23 mycroft __weak_alias(tzset,_tzset)
44 1.23 mycroft __weak_alias(tzsetwall,_tzsetwall)
45 1.12 jtc #endif
46 1.1 jtc
47 1.1 jtc /*
48 1.1 jtc ** SunOS 4.1.1 headers lack O_BINARY.
49 1.1 jtc */
50 1.1 jtc
51 1.1 jtc #ifdef O_BINARY
52 1.1 jtc #define OPEN_MODE (O_RDONLY | O_BINARY)
53 1.1 jtc #endif /* defined O_BINARY */
54 1.1 jtc #ifndef O_BINARY
55 1.1 jtc #define OPEN_MODE O_RDONLY
56 1.1 jtc #endif /* !defined O_BINARY */
57 1.1 jtc
58 1.1 jtc #ifndef WILDABBR
59 1.1 jtc /*
60 1.1 jtc ** Someone might make incorrect use of a time zone abbreviation:
61 1.1 jtc ** 1. They might reference tzname[0] before calling tzset (explicitly
62 1.1 jtc ** or implicitly).
63 1.1 jtc ** 2. They might reference tzname[1] before calling tzset (explicitly
64 1.1 jtc ** or implicitly).
65 1.1 jtc ** 3. They might reference tzname[1] after setting to a time zone
66 1.1 jtc ** in which Daylight Saving Time is never observed.
67 1.1 jtc ** 4. They might reference tzname[0] after setting to a time zone
68 1.1 jtc ** in which Standard Time is never observed.
69 1.1 jtc ** 5. They might reference tm.TM_ZONE after calling offtime.
70 1.1 jtc ** What's best to do in the above cases is open to debate;
71 1.1 jtc ** for now, we just set things up so that in any of the five cases
72 1.1 jtc ** WILDABBR is used. Another possibility: initialize tzname[0] to the
73 1.1 jtc ** string "tzname[0] used before set", and similarly for the other cases.
74 1.1 jtc ** And another: initialize tzname[0] to "ERA", with an explanation in the
75 1.1 jtc ** manual page of what this "time zone abbreviation" means (doing this so
76 1.1 jtc ** that tzname[0] has the "normal" length of three characters).
77 1.1 jtc */
78 1.1 jtc #define WILDABBR " "
79 1.1 jtc #endif /* !defined WILDABBR */
80 1.1 jtc
81 1.15 mycroft static const char wildabbr[] = "WILDABBR";
82 1.1 jtc
83 1.1 jtc static const char gmt[] = "GMT";
84 1.1 jtc
85 1.22 kleink /*
86 1.22 kleink ** The DST rules to use if TZ has no rules and we can't load TZDEFRULES.
87 1.22 kleink ** We default to US rules as of 1999-08-17.
88 1.22 kleink ** POSIX 1003.1 section 8.1.1 says that the default DST rules are
89 1.22 kleink ** implementation dependent; for historical reasons, US rules are a
90 1.22 kleink ** common default.
91 1.22 kleink */
92 1.22 kleink #ifndef TZDEFRULESTRING
93 1.22 kleink #define TZDEFRULESTRING ",M4.1.0,M10.5.0"
94 1.22 kleink #endif /* !defined TZDEFDST */
95 1.22 kleink
96 1.1 jtc struct ttinfo { /* time type information */
97 1.14 jtc long tt_gmtoff; /* UTC offset in seconds */
98 1.1 jtc int tt_isdst; /* used to set tm_isdst */
99 1.1 jtc int tt_abbrind; /* abbreviation list index */
100 1.1 jtc int tt_ttisstd; /* TRUE if transition is std time */
101 1.14 jtc int tt_ttisgmt; /* TRUE if transition is UTC */
102 1.1 jtc };
103 1.1 jtc
104 1.1 jtc struct lsinfo { /* leap second information */
105 1.1 jtc time_t ls_trans; /* transition time */
106 1.1 jtc long ls_corr; /* correction to apply */
107 1.1 jtc };
108 1.1 jtc
109 1.1 jtc #define BIGGEST(a, b) (((a) > (b)) ? (a) : (b))
110 1.1 jtc
111 1.1 jtc #ifdef TZNAME_MAX
112 1.1 jtc #define MY_TZNAME_MAX TZNAME_MAX
113 1.1 jtc #endif /* defined TZNAME_MAX */
114 1.1 jtc #ifndef TZNAME_MAX
115 1.1 jtc #define MY_TZNAME_MAX 255
116 1.1 jtc #endif /* !defined TZNAME_MAX */
117 1.1 jtc
118 1.1 jtc struct state {
119 1.1 jtc int leapcnt;
120 1.1 jtc int timecnt;
121 1.1 jtc int typecnt;
122 1.1 jtc int charcnt;
123 1.1 jtc time_t ats[TZ_MAX_TIMES];
124 1.1 jtc unsigned char types[TZ_MAX_TIMES];
125 1.1 jtc struct ttinfo ttis[TZ_MAX_TYPES];
126 1.37 christos char chars[/*CONSTCOND*/BIGGEST(BIGGEST(TZ_MAX_CHARS + 1, sizeof gmt),
127 1.1 jtc (2 * (MY_TZNAME_MAX + 1)))];
128 1.1 jtc struct lsinfo lsis[TZ_MAX_LEAPS];
129 1.1 jtc };
130 1.1 jtc
131 1.1 jtc struct rule {
132 1.1 jtc int r_type; /* type of rule--see below */
133 1.1 jtc int r_day; /* day number of rule */
134 1.1 jtc int r_week; /* week number of rule */
135 1.1 jtc int r_mon; /* month number of rule */
136 1.1 jtc long r_time; /* transition time of rule */
137 1.1 jtc };
138 1.1 jtc
139 1.1 jtc #define JULIAN_DAY 0 /* Jn - Julian day */
140 1.1 jtc #define DAY_OF_YEAR 1 /* n - day of year */
141 1.1 jtc #define MONTH_NTH_DAY_OF_WEEK 2 /* Mm.n.d - month, week, day of week */
142 1.1 jtc
143 1.1 jtc /*
144 1.1 jtc ** Prototypes for static functions.
145 1.1 jtc */
146 1.1 jtc
147 1.1 jtc static long detzcode P((const char * codep));
148 1.1 jtc static const char * getzname P((const char * strp));
149 1.1 jtc static const char * getnum P((const char * strp, int * nump, int min,
150 1.1 jtc int max));
151 1.1 jtc static const char * getsecs P((const char * strp, long * secsp));
152 1.1 jtc static const char * getoffset P((const char * strp, long * offsetp));
153 1.1 jtc static const char * getrule P((const char * strp, struct rule * rulep));
154 1.1 jtc static void gmtload P((struct state * sp));
155 1.1 jtc static void gmtsub P((const time_t * timep, long offset,
156 1.1 jtc struct tm * tmp));
157 1.1 jtc static void localsub P((const time_t * timep, long offset,
158 1.1 jtc struct tm * tmp));
159 1.1 jtc static int increment_overflow P((int * number, int delta));
160 1.1 jtc static int normalize_overflow P((int * tensptr, int * unitsptr,
161 1.1 jtc int base));
162 1.1 jtc static void settzname P((void));
163 1.1 jtc static time_t time1 P((struct tm * tmp,
164 1.1 jtc void(*funcp) P((const time_t *,
165 1.1 jtc long, struct tm *)),
166 1.1 jtc long offset));
167 1.1 jtc static time_t time2 P((struct tm *tmp,
168 1.1 jtc void(*funcp) P((const time_t *,
169 1.1 jtc long, struct tm*)),
170 1.1 jtc long offset, int * okayp));
171 1.13 jtc static time_t time2sub P((struct tm *tmp,
172 1.13 jtc void(*funcp) P((const time_t *,
173 1.13 jtc long, struct tm*)),
174 1.13 jtc long offset, int * okayp, int do_norm_secs));
175 1.1 jtc static void timesub P((const time_t * timep, long offset,
176 1.1 jtc const struct state * sp, struct tm * tmp));
177 1.1 jtc static int tmcomp P((const struct tm * atmp,
178 1.1 jtc const struct tm * btmp));
179 1.1 jtc static time_t transtime P((time_t janfirst, int year,
180 1.1 jtc const struct rule * rulep, long offset));
181 1.1 jtc static int tzload P((const char * name, struct state * sp));
182 1.1 jtc static int tzparse P((const char * name, struct state * sp,
183 1.1 jtc int lastditch));
184 1.19 kleink static void tzset_unlocked P((void));
185 1.19 kleink static void tzsetwall_unlocked P((void));
186 1.11 christos #ifdef STD_INSPIRED
187 1.11 christos static long leapcorr P((time_t * timep));
188 1.11 christos #endif
189 1.1 jtc
190 1.1 jtc #ifdef ALL_STATE
191 1.1 jtc static struct state * lclptr;
192 1.1 jtc static struct state * gmtptr;
193 1.1 jtc #endif /* defined ALL_STATE */
194 1.1 jtc
195 1.1 jtc #ifndef ALL_STATE
196 1.1 jtc static struct state lclmem;
197 1.1 jtc static struct state gmtmem;
198 1.1 jtc #define lclptr (&lclmem)
199 1.1 jtc #define gmtptr (&gmtmem)
200 1.1 jtc #endif /* State Farm */
201 1.1 jtc
202 1.1 jtc #ifndef TZ_STRLEN_MAX
203 1.1 jtc #define TZ_STRLEN_MAX 255
204 1.1 jtc #endif /* !defined TZ_STRLEN_MAX */
205 1.1 jtc
206 1.1 jtc static char lcl_TZname[TZ_STRLEN_MAX + 1];
207 1.1 jtc static int lcl_is_set;
208 1.1 jtc static int gmt_is_set;
209 1.1 jtc
210 1.16 mycroft __aconst char * tzname[2] = {
211 1.37 christos (__aconst char *)__UNCONST(wildabbr),
212 1.37 christos (__aconst char *)__UNCONST(wildabbr)
213 1.1 jtc };
214 1.1 jtc
215 1.33 christos #ifdef _REENTRANT
216 1.19 kleink static rwlock_t lcl_lock = RWLOCK_INITIALIZER;
217 1.19 kleink #endif
218 1.19 kleink
219 1.1 jtc /*
220 1.1 jtc ** Section 4.12.3 of X3.159-1989 requires that
221 1.1 jtc ** Except for the strftime function, these functions [asctime,
222 1.1 jtc ** ctime, gmtime, localtime] return values in one of two static
223 1.1 jtc ** objects: a broken-down time structure and an array of char.
224 1.1 jtc ** Thanks to Paul Eggert (eggert (at) twinsun.com) for noting this.
225 1.1 jtc */
226 1.1 jtc
227 1.1 jtc static struct tm tm;
228 1.1 jtc
229 1.1 jtc #ifdef USG_COMPAT
230 1.26 kleink long int timezone = 0;
231 1.1 jtc int daylight = 0;
232 1.1 jtc #endif /* defined USG_COMPAT */
233 1.1 jtc
234 1.1 jtc #ifdef ALTZONE
235 1.1 jtc time_t altzone = 0;
236 1.1 jtc #endif /* defined ALTZONE */
237 1.1 jtc
238 1.1 jtc static long
239 1.1 jtc detzcode(codep)
240 1.1 jtc const char * const codep;
241 1.1 jtc {
242 1.1 jtc register long result;
243 1.1 jtc
244 1.4 jtc /*
245 1.4 jtc ** The first character must be sign extended on systems with >32bit
246 1.4 jtc ** longs. This was solved differently in the master tzcode sources
247 1.4 jtc ** (the fix first appeared in tzcode95c.tar.gz). But I believe
248 1.4 jtc ** that this implementation is superior.
249 1.4 jtc */
250 1.4 jtc
251 1.4 jtc #define SIGN_EXTEND_CHAR(x) ((signed char) x)
252 1.4 jtc
253 1.4 jtc result = (SIGN_EXTEND_CHAR(codep[0]) << 24) \
254 1.3 jtc | (codep[1] & 0xff) << 16 \
255 1.3 jtc | (codep[2] & 0xff) << 8
256 1.3 jtc | (codep[3] & 0xff);
257 1.1 jtc return result;
258 1.1 jtc }
259 1.1 jtc
260 1.1 jtc static void
261 1.1 jtc settzname P((void))
262 1.1 jtc {
263 1.5 jtc register struct state * const sp = lclptr;
264 1.5 jtc register int i;
265 1.1 jtc
266 1.37 christos tzname[0] = (__aconst char *)__UNCONST(wildabbr);
267 1.37 christos tzname[1] = (__aconst char *)__UNCONST(wildabbr);
268 1.1 jtc #ifdef USG_COMPAT
269 1.1 jtc daylight = 0;
270 1.1 jtc timezone = 0;
271 1.1 jtc #endif /* defined USG_COMPAT */
272 1.1 jtc #ifdef ALTZONE
273 1.1 jtc altzone = 0;
274 1.1 jtc #endif /* defined ALTZONE */
275 1.1 jtc #ifdef ALL_STATE
276 1.1 jtc if (sp == NULL) {
277 1.37 christos tzname[0] = tzname[1] = (__aconst char *)__UNCONST(gmt);
278 1.1 jtc return;
279 1.1 jtc }
280 1.1 jtc #endif /* defined ALL_STATE */
281 1.1 jtc for (i = 0; i < sp->typecnt; ++i) {
282 1.1 jtc register const struct ttinfo * const ttisp = &sp->ttis[i];
283 1.1 jtc
284 1.1 jtc tzname[ttisp->tt_isdst] =
285 1.1 jtc &sp->chars[ttisp->tt_abbrind];
286 1.1 jtc #ifdef USG_COMPAT
287 1.1 jtc if (ttisp->tt_isdst)
288 1.1 jtc daylight = 1;
289 1.1 jtc if (i == 0 || !ttisp->tt_isdst)
290 1.1 jtc timezone = -(ttisp->tt_gmtoff);
291 1.1 jtc #endif /* defined USG_COMPAT */
292 1.1 jtc #ifdef ALTZONE
293 1.1 jtc if (i == 0 || ttisp->tt_isdst)
294 1.1 jtc altzone = -(ttisp->tt_gmtoff);
295 1.1 jtc #endif /* defined ALTZONE */
296 1.1 jtc }
297 1.1 jtc /*
298 1.1 jtc ** And to get the latest zone names into tzname. . .
299 1.1 jtc */
300 1.1 jtc for (i = 0; i < sp->timecnt; ++i) {
301 1.1 jtc register const struct ttinfo * const ttisp =
302 1.1 jtc &sp->ttis[
303 1.1 jtc sp->types[i]];
304 1.1 jtc
305 1.1 jtc tzname[ttisp->tt_isdst] =
306 1.1 jtc &sp->chars[ttisp->tt_abbrind];
307 1.1 jtc }
308 1.1 jtc }
309 1.1 jtc
310 1.1 jtc static int
311 1.1 jtc tzload(name, sp)
312 1.1 jtc register const char * name;
313 1.1 jtc register struct state * const sp;
314 1.1 jtc {
315 1.1 jtc register const char * p;
316 1.1 jtc register int i;
317 1.1 jtc register int fid;
318 1.1 jtc
319 1.1 jtc if (name == NULL && (name = TZDEFAULT) == NULL)
320 1.1 jtc return -1;
321 1.9 mrg
322 1.1 jtc {
323 1.1 jtc register int doaccess;
324 1.1 jtc /*
325 1.1 jtc ** Section 4.9.1 of the C standard says that
326 1.1 jtc ** "FILENAME_MAX expands to an integral constant expression
327 1.10 jtc ** that is the size needed for an array of char large enough
328 1.1 jtc ** to hold the longest file name string that the implementation
329 1.1 jtc ** guarantees can be opened."
330 1.1 jtc */
331 1.1 jtc char fullname[FILENAME_MAX + 1];
332 1.1 jtc
333 1.1 jtc if (name[0] == ':')
334 1.1 jtc ++name;
335 1.1 jtc doaccess = name[0] == '/';
336 1.1 jtc if (!doaccess) {
337 1.1 jtc if ((p = TZDIR) == NULL)
338 1.1 jtc return -1;
339 1.1 jtc if ((strlen(p) + strlen(name) + 1) >= sizeof fullname)
340 1.1 jtc return -1;
341 1.8 mrg (void) strcpy(fullname, p); /* XXX strcpy is safe */
342 1.8 mrg (void) strcat(fullname, "/"); /* XXX strcat is safe */
343 1.8 mrg (void) strcat(fullname, name); /* XXX strcat is safe */
344 1.1 jtc /*
345 1.1 jtc ** Set doaccess if '.' (as in "../") shows up in name.
346 1.1 jtc */
347 1.1 jtc if (strchr(name, '.') != NULL)
348 1.1 jtc doaccess = TRUE;
349 1.1 jtc name = fullname;
350 1.1 jtc }
351 1.1 jtc if (doaccess && access(name, R_OK) != 0)
352 1.1 jtc return -1;
353 1.9 mrg /*
354 1.9 mrg * XXX potential security problem here if user of a set-id
355 1.9 mrg * program has set TZ (which is passed in as name) here,
356 1.9 mrg * and uses a race condition trick to defeat the access(2)
357 1.9 mrg * above.
358 1.9 mrg */
359 1.1 jtc if ((fid = open(name, OPEN_MODE)) == -1)
360 1.1 jtc return -1;
361 1.1 jtc }
362 1.1 jtc {
363 1.1 jtc struct tzhead * tzhp;
364 1.14 jtc union {
365 1.29 kleink struct tzhead tzhead;
366 1.29 kleink char buf[sizeof *sp + sizeof *tzhp];
367 1.14 jtc } u;
368 1.1 jtc int ttisstdcnt;
369 1.1 jtc int ttisgmtcnt;
370 1.1 jtc
371 1.14 jtc i = read(fid, u.buf, sizeof u.buf);
372 1.1 jtc if (close(fid) != 0)
373 1.1 jtc return -1;
374 1.34 kleink ttisstdcnt = (int) detzcode(u.tzhead.tzh_ttisstdcnt);
375 1.34 kleink ttisgmtcnt = (int) detzcode(u.tzhead.tzh_ttisgmtcnt);
376 1.14 jtc sp->leapcnt = (int) detzcode(u.tzhead.tzh_leapcnt);
377 1.14 jtc sp->timecnt = (int) detzcode(u.tzhead.tzh_timecnt);
378 1.14 jtc sp->typecnt = (int) detzcode(u.tzhead.tzh_typecnt);
379 1.14 jtc sp->charcnt = (int) detzcode(u.tzhead.tzh_charcnt);
380 1.14 jtc p = u.tzhead.tzh_charcnt + sizeof u.tzhead.tzh_charcnt;
381 1.1 jtc if (sp->leapcnt < 0 || sp->leapcnt > TZ_MAX_LEAPS ||
382 1.1 jtc sp->typecnt <= 0 || sp->typecnt > TZ_MAX_TYPES ||
383 1.1 jtc sp->timecnt < 0 || sp->timecnt > TZ_MAX_TIMES ||
384 1.1 jtc sp->charcnt < 0 || sp->charcnt > TZ_MAX_CHARS ||
385 1.1 jtc (ttisstdcnt != sp->typecnt && ttisstdcnt != 0) ||
386 1.1 jtc (ttisgmtcnt != sp->typecnt && ttisgmtcnt != 0))
387 1.1 jtc return -1;
388 1.14 jtc if (i - (p - u.buf) < sp->timecnt * 4 + /* ats */
389 1.1 jtc sp->timecnt + /* types */
390 1.1 jtc sp->typecnt * (4 + 2) + /* ttinfos */
391 1.1 jtc sp->charcnt + /* chars */
392 1.1 jtc sp->leapcnt * (4 + 4) + /* lsinfos */
393 1.1 jtc ttisstdcnt + /* ttisstds */
394 1.1 jtc ttisgmtcnt) /* ttisgmts */
395 1.1 jtc return -1;
396 1.1 jtc for (i = 0; i < sp->timecnt; ++i) {
397 1.1 jtc sp->ats[i] = detzcode(p);
398 1.1 jtc p += 4;
399 1.1 jtc }
400 1.1 jtc for (i = 0; i < sp->timecnt; ++i) {
401 1.1 jtc sp->types[i] = (unsigned char) *p++;
402 1.1 jtc if (sp->types[i] >= sp->typecnt)
403 1.1 jtc return -1;
404 1.1 jtc }
405 1.1 jtc for (i = 0; i < sp->typecnt; ++i) {
406 1.1 jtc register struct ttinfo * ttisp;
407 1.1 jtc
408 1.1 jtc ttisp = &sp->ttis[i];
409 1.1 jtc ttisp->tt_gmtoff = detzcode(p);
410 1.1 jtc p += 4;
411 1.1 jtc ttisp->tt_isdst = (unsigned char) *p++;
412 1.1 jtc if (ttisp->tt_isdst != 0 && ttisp->tt_isdst != 1)
413 1.1 jtc return -1;
414 1.1 jtc ttisp->tt_abbrind = (unsigned char) *p++;
415 1.1 jtc if (ttisp->tt_abbrind < 0 ||
416 1.1 jtc ttisp->tt_abbrind > sp->charcnt)
417 1.1 jtc return -1;
418 1.1 jtc }
419 1.1 jtc for (i = 0; i < sp->charcnt; ++i)
420 1.1 jtc sp->chars[i] = *p++;
421 1.1 jtc sp->chars[i] = '\0'; /* ensure '\0' at end */
422 1.1 jtc for (i = 0; i < sp->leapcnt; ++i) {
423 1.1 jtc register struct lsinfo * lsisp;
424 1.1 jtc
425 1.1 jtc lsisp = &sp->lsis[i];
426 1.1 jtc lsisp->ls_trans = detzcode(p);
427 1.1 jtc p += 4;
428 1.1 jtc lsisp->ls_corr = detzcode(p);
429 1.1 jtc p += 4;
430 1.1 jtc }
431 1.1 jtc for (i = 0; i < sp->typecnt; ++i) {
432 1.1 jtc register struct ttinfo * ttisp;
433 1.1 jtc
434 1.1 jtc ttisp = &sp->ttis[i];
435 1.1 jtc if (ttisstdcnt == 0)
436 1.1 jtc ttisp->tt_ttisstd = FALSE;
437 1.1 jtc else {
438 1.1 jtc ttisp->tt_ttisstd = *p++;
439 1.1 jtc if (ttisp->tt_ttisstd != TRUE &&
440 1.1 jtc ttisp->tt_ttisstd != FALSE)
441 1.1 jtc return -1;
442 1.1 jtc }
443 1.1 jtc }
444 1.1 jtc for (i = 0; i < sp->typecnt; ++i) {
445 1.1 jtc register struct ttinfo * ttisp;
446 1.1 jtc
447 1.1 jtc ttisp = &sp->ttis[i];
448 1.1 jtc if (ttisgmtcnt == 0)
449 1.1 jtc ttisp->tt_ttisgmt = FALSE;
450 1.1 jtc else {
451 1.1 jtc ttisp->tt_ttisgmt = *p++;
452 1.1 jtc if (ttisp->tt_ttisgmt != TRUE &&
453 1.1 jtc ttisp->tt_ttisgmt != FALSE)
454 1.1 jtc return -1;
455 1.1 jtc }
456 1.1 jtc }
457 1.1 jtc }
458 1.1 jtc return 0;
459 1.1 jtc }
460 1.1 jtc
461 1.1 jtc static const int mon_lengths[2][MONSPERYEAR] = {
462 1.1 jtc { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 },
463 1.1 jtc { 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }
464 1.1 jtc };
465 1.1 jtc
466 1.1 jtc static const int year_lengths[2] = {
467 1.1 jtc DAYSPERNYEAR, DAYSPERLYEAR
468 1.1 jtc };
469 1.1 jtc
470 1.1 jtc /*
471 1.1 jtc ** Given a pointer into a time zone string, scan until a character that is not
472 1.1 jtc ** a valid character in a zone name is found. Return a pointer to that
473 1.1 jtc ** character.
474 1.1 jtc */
475 1.1 jtc
476 1.1 jtc static const char *
477 1.1 jtc getzname(strp)
478 1.1 jtc register const char * strp;
479 1.1 jtc {
480 1.1 jtc register char c;
481 1.1 jtc
482 1.5 jtc while ((c = *strp) != '\0' && !is_digit(c) && c != ',' && c != '-' &&
483 1.1 jtc c != '+')
484 1.1 jtc ++strp;
485 1.1 jtc return strp;
486 1.1 jtc }
487 1.1 jtc
488 1.1 jtc /*
489 1.1 jtc ** Given a pointer into a time zone string, extract a number from that string.
490 1.1 jtc ** Check that the number is within a specified range; if it is not, return
491 1.1 jtc ** NULL.
492 1.1 jtc ** Otherwise, return a pointer to the first character not part of the number.
493 1.1 jtc */
494 1.1 jtc
495 1.1 jtc static const char *
496 1.1 jtc getnum(strp, nump, min, max)
497 1.1 jtc register const char * strp;
498 1.1 jtc int * const nump;
499 1.1 jtc const int min;
500 1.1 jtc const int max;
501 1.1 jtc {
502 1.1 jtc register char c;
503 1.1 jtc register int num;
504 1.1 jtc
505 1.5 jtc if (strp == NULL || !is_digit(c = *strp))
506 1.1 jtc return NULL;
507 1.1 jtc num = 0;
508 1.5 jtc do {
509 1.1 jtc num = num * 10 + (c - '0');
510 1.1 jtc if (num > max)
511 1.1 jtc return NULL; /* illegal value */
512 1.5 jtc c = *++strp;
513 1.5 jtc } while (is_digit(c));
514 1.1 jtc if (num < min)
515 1.1 jtc return NULL; /* illegal value */
516 1.1 jtc *nump = num;
517 1.1 jtc return strp;
518 1.1 jtc }
519 1.1 jtc
520 1.1 jtc /*
521 1.1 jtc ** Given a pointer into a time zone string, extract a number of seconds,
522 1.1 jtc ** in hh[:mm[:ss]] form, from the string.
523 1.1 jtc ** If any error occurs, return NULL.
524 1.1 jtc ** Otherwise, return a pointer to the first character not part of the number
525 1.1 jtc ** of seconds.
526 1.1 jtc */
527 1.1 jtc
528 1.1 jtc static const char *
529 1.1 jtc getsecs(strp, secsp)
530 1.1 jtc register const char * strp;
531 1.1 jtc long * const secsp;
532 1.1 jtc {
533 1.1 jtc int num;
534 1.1 jtc
535 1.1 jtc /*
536 1.1 jtc ** `HOURSPERDAY * DAYSPERWEEK - 1' allows quasi-Posix rules like
537 1.1 jtc ** "M10.4.6/26", which does not conform to Posix,
538 1.1 jtc ** but which specifies the equivalent of
539 1.1 jtc ** ``02:00 on the first Sunday on or after 23 Oct''.
540 1.1 jtc */
541 1.1 jtc strp = getnum(strp, &num, 0, HOURSPERDAY * DAYSPERWEEK - 1);
542 1.1 jtc if (strp == NULL)
543 1.1 jtc return NULL;
544 1.1 jtc *secsp = num * (long) SECSPERHOUR;
545 1.1 jtc if (*strp == ':') {
546 1.1 jtc ++strp;
547 1.1 jtc strp = getnum(strp, &num, 0, MINSPERHOUR - 1);
548 1.1 jtc if (strp == NULL)
549 1.1 jtc return NULL;
550 1.1 jtc *secsp += num * SECSPERMIN;
551 1.1 jtc if (*strp == ':') {
552 1.1 jtc ++strp;
553 1.1 jtc /* `SECSPERMIN' allows for leap seconds. */
554 1.1 jtc strp = getnum(strp, &num, 0, SECSPERMIN);
555 1.1 jtc if (strp == NULL)
556 1.1 jtc return NULL;
557 1.1 jtc *secsp += num;
558 1.1 jtc }
559 1.1 jtc }
560 1.1 jtc return strp;
561 1.1 jtc }
562 1.1 jtc
563 1.1 jtc /*
564 1.1 jtc ** Given a pointer into a time zone string, extract an offset, in
565 1.1 jtc ** [+-]hh[:mm[:ss]] form, from the string.
566 1.1 jtc ** If any error occurs, return NULL.
567 1.1 jtc ** Otherwise, return a pointer to the first character not part of the time.
568 1.1 jtc */
569 1.1 jtc
570 1.1 jtc static const char *
571 1.1 jtc getoffset(strp, offsetp)
572 1.1 jtc register const char * strp;
573 1.1 jtc long * const offsetp;
574 1.1 jtc {
575 1.5 jtc register int neg = 0;
576 1.1 jtc
577 1.1 jtc if (*strp == '-') {
578 1.1 jtc neg = 1;
579 1.1 jtc ++strp;
580 1.5 jtc } else if (*strp == '+')
581 1.5 jtc ++strp;
582 1.1 jtc strp = getsecs(strp, offsetp);
583 1.1 jtc if (strp == NULL)
584 1.1 jtc return NULL; /* illegal time */
585 1.1 jtc if (neg)
586 1.1 jtc *offsetp = -*offsetp;
587 1.1 jtc return strp;
588 1.1 jtc }
589 1.1 jtc
590 1.1 jtc /*
591 1.1 jtc ** Given a pointer into a time zone string, extract a rule in the form
592 1.1 jtc ** date[/time]. See POSIX section 8 for the format of "date" and "time".
593 1.1 jtc ** If a valid rule is not found, return NULL.
594 1.1 jtc ** Otherwise, return a pointer to the first character not part of the rule.
595 1.1 jtc */
596 1.1 jtc
597 1.1 jtc static const char *
598 1.1 jtc getrule(strp, rulep)
599 1.1 jtc const char * strp;
600 1.1 jtc register struct rule * const rulep;
601 1.1 jtc {
602 1.1 jtc if (*strp == 'J') {
603 1.1 jtc /*
604 1.1 jtc ** Julian day.
605 1.1 jtc */
606 1.1 jtc rulep->r_type = JULIAN_DAY;
607 1.1 jtc ++strp;
608 1.1 jtc strp = getnum(strp, &rulep->r_day, 1, DAYSPERNYEAR);
609 1.1 jtc } else if (*strp == 'M') {
610 1.1 jtc /*
611 1.1 jtc ** Month, week, day.
612 1.1 jtc */
613 1.1 jtc rulep->r_type = MONTH_NTH_DAY_OF_WEEK;
614 1.1 jtc ++strp;
615 1.1 jtc strp = getnum(strp, &rulep->r_mon, 1, MONSPERYEAR);
616 1.1 jtc if (strp == NULL)
617 1.1 jtc return NULL;
618 1.1 jtc if (*strp++ != '.')
619 1.1 jtc return NULL;
620 1.1 jtc strp = getnum(strp, &rulep->r_week, 1, 5);
621 1.1 jtc if (strp == NULL)
622 1.1 jtc return NULL;
623 1.1 jtc if (*strp++ != '.')
624 1.1 jtc return NULL;
625 1.1 jtc strp = getnum(strp, &rulep->r_day, 0, DAYSPERWEEK - 1);
626 1.5 jtc } else if (is_digit(*strp)) {
627 1.1 jtc /*
628 1.1 jtc ** Day of year.
629 1.1 jtc */
630 1.1 jtc rulep->r_type = DAY_OF_YEAR;
631 1.1 jtc strp = getnum(strp, &rulep->r_day, 0, DAYSPERLYEAR - 1);
632 1.1 jtc } else return NULL; /* invalid format */
633 1.1 jtc if (strp == NULL)
634 1.1 jtc return NULL;
635 1.1 jtc if (*strp == '/') {
636 1.1 jtc /*
637 1.1 jtc ** Time specified.
638 1.1 jtc */
639 1.1 jtc ++strp;
640 1.1 jtc strp = getsecs(strp, &rulep->r_time);
641 1.1 jtc } else rulep->r_time = 2 * SECSPERHOUR; /* default = 2:00:00 */
642 1.1 jtc return strp;
643 1.1 jtc }
644 1.1 jtc
645 1.1 jtc /*
646 1.14 jtc ** Given the Epoch-relative time of January 1, 00:00:00 UTC, in a year, the
647 1.14 jtc ** year, a rule, and the offset from UTC at the time that rule takes effect,
648 1.1 jtc ** calculate the Epoch-relative time that rule takes effect.
649 1.1 jtc */
650 1.1 jtc
651 1.1 jtc static time_t
652 1.1 jtc transtime(janfirst, year, rulep, offset)
653 1.1 jtc const time_t janfirst;
654 1.1 jtc const int year;
655 1.1 jtc register const struct rule * const rulep;
656 1.1 jtc const long offset;
657 1.1 jtc {
658 1.1 jtc register int leapyear;
659 1.1 jtc register time_t value;
660 1.1 jtc register int i;
661 1.1 jtc int d, m1, yy0, yy1, yy2, dow;
662 1.1 jtc
663 1.1 jtc INITIALIZE(value);
664 1.1 jtc leapyear = isleap(year);
665 1.1 jtc switch (rulep->r_type) {
666 1.1 jtc
667 1.1 jtc case JULIAN_DAY:
668 1.1 jtc /*
669 1.1 jtc ** Jn - Julian day, 1 == January 1, 60 == March 1 even in leap
670 1.1 jtc ** years.
671 1.1 jtc ** In non-leap years, or if the day number is 59 or less, just
672 1.1 jtc ** add SECSPERDAY times the day number-1 to the time of
673 1.1 jtc ** January 1, midnight, to get the day.
674 1.1 jtc */
675 1.1 jtc value = janfirst + (rulep->r_day - 1) * SECSPERDAY;
676 1.1 jtc if (leapyear && rulep->r_day >= 60)
677 1.1 jtc value += SECSPERDAY;
678 1.1 jtc break;
679 1.1 jtc
680 1.1 jtc case DAY_OF_YEAR:
681 1.1 jtc /*
682 1.1 jtc ** n - day of year.
683 1.1 jtc ** Just add SECSPERDAY times the day number to the time of
684 1.1 jtc ** January 1, midnight, to get the day.
685 1.1 jtc */
686 1.1 jtc value = janfirst + rulep->r_day * SECSPERDAY;
687 1.1 jtc break;
688 1.1 jtc
689 1.1 jtc case MONTH_NTH_DAY_OF_WEEK:
690 1.1 jtc /*
691 1.1 jtc ** Mm.n.d - nth "dth day" of month m.
692 1.1 jtc */
693 1.1 jtc value = janfirst;
694 1.1 jtc for (i = 0; i < rulep->r_mon - 1; ++i)
695 1.1 jtc value += mon_lengths[leapyear][i] * SECSPERDAY;
696 1.1 jtc
697 1.1 jtc /*
698 1.1 jtc ** Use Zeller's Congruence to get day-of-week of first day of
699 1.1 jtc ** month.
700 1.1 jtc */
701 1.1 jtc m1 = (rulep->r_mon + 9) % 12 + 1;
702 1.1 jtc yy0 = (rulep->r_mon <= 2) ? (year - 1) : year;
703 1.1 jtc yy1 = yy0 / 100;
704 1.1 jtc yy2 = yy0 % 100;
705 1.1 jtc dow = ((26 * m1 - 2) / 10 +
706 1.1 jtc 1 + yy2 + yy2 / 4 + yy1 / 4 - 2 * yy1) % 7;
707 1.1 jtc if (dow < 0)
708 1.1 jtc dow += DAYSPERWEEK;
709 1.1 jtc
710 1.1 jtc /*
711 1.1 jtc ** "dow" is the day-of-week of the first day of the month. Get
712 1.1 jtc ** the day-of-month (zero-origin) of the first "dow" day of the
713 1.1 jtc ** month.
714 1.1 jtc */
715 1.1 jtc d = rulep->r_day - dow;
716 1.1 jtc if (d < 0)
717 1.1 jtc d += DAYSPERWEEK;
718 1.1 jtc for (i = 1; i < rulep->r_week; ++i) {
719 1.1 jtc if (d + DAYSPERWEEK >=
720 1.1 jtc mon_lengths[leapyear][rulep->r_mon - 1])
721 1.1 jtc break;
722 1.1 jtc d += DAYSPERWEEK;
723 1.1 jtc }
724 1.1 jtc
725 1.1 jtc /*
726 1.1 jtc ** "d" is the day-of-month (zero-origin) of the day we want.
727 1.1 jtc */
728 1.1 jtc value += d * SECSPERDAY;
729 1.1 jtc break;
730 1.1 jtc }
731 1.1 jtc
732 1.1 jtc /*
733 1.14 jtc ** "value" is the Epoch-relative time of 00:00:00 UTC on the day in
734 1.1 jtc ** question. To get the Epoch-relative time of the specified local
735 1.1 jtc ** time on that day, add the transition time and the current offset
736 1.14 jtc ** from UTC.
737 1.1 jtc */
738 1.1 jtc return value + rulep->r_time + offset;
739 1.1 jtc }
740 1.1 jtc
741 1.1 jtc /*
742 1.1 jtc ** Given a POSIX section 8-style TZ string, fill in the rule tables as
743 1.1 jtc ** appropriate.
744 1.1 jtc */
745 1.1 jtc
746 1.1 jtc static int
747 1.1 jtc tzparse(name, sp, lastditch)
748 1.1 jtc const char * name;
749 1.1 jtc register struct state * const sp;
750 1.1 jtc const int lastditch;
751 1.1 jtc {
752 1.1 jtc const char * stdname;
753 1.1 jtc const char * dstname;
754 1.1 jtc size_t stdlen;
755 1.1 jtc size_t dstlen;
756 1.1 jtc long stdoffset;
757 1.1 jtc long dstoffset;
758 1.1 jtc register time_t * atp;
759 1.1 jtc register unsigned char * typep;
760 1.1 jtc register char * cp;
761 1.1 jtc register int load_result;
762 1.1 jtc
763 1.1 jtc INITIALIZE(dstname);
764 1.1 jtc stdname = name;
765 1.1 jtc if (lastditch) {
766 1.1 jtc stdlen = strlen(name); /* length of standard zone name */
767 1.1 jtc name += stdlen;
768 1.1 jtc if (stdlen >= sizeof sp->chars)
769 1.1 jtc stdlen = (sizeof sp->chars) - 1;
770 1.10 jtc stdoffset = 0;
771 1.1 jtc } else {
772 1.1 jtc name = getzname(name);
773 1.1 jtc stdlen = name - stdname;
774 1.1 jtc if (stdlen < 3)
775 1.1 jtc return -1;
776 1.10 jtc if (*name == '\0')
777 1.10 jtc return -1;
778 1.1 jtc name = getoffset(name, &stdoffset);
779 1.1 jtc if (name == NULL)
780 1.1 jtc return -1;
781 1.1 jtc }
782 1.1 jtc load_result = tzload(TZDEFRULES, sp);
783 1.1 jtc if (load_result != 0)
784 1.1 jtc sp->leapcnt = 0; /* so, we're off a little */
785 1.1 jtc if (*name != '\0') {
786 1.1 jtc dstname = name;
787 1.1 jtc name = getzname(name);
788 1.1 jtc dstlen = name - dstname; /* length of DST zone name */
789 1.1 jtc if (dstlen < 3)
790 1.1 jtc return -1;
791 1.1 jtc if (*name != '\0' && *name != ',' && *name != ';') {
792 1.1 jtc name = getoffset(name, &dstoffset);
793 1.1 jtc if (name == NULL)
794 1.1 jtc return -1;
795 1.1 jtc } else dstoffset = stdoffset - SECSPERHOUR;
796 1.22 kleink if (*name == '\0' && load_result != 0)
797 1.22 kleink name = TZDEFRULESTRING;
798 1.1 jtc if (*name == ',' || *name == ';') {
799 1.1 jtc struct rule start;
800 1.1 jtc struct rule end;
801 1.1 jtc register int year;
802 1.1 jtc register time_t janfirst;
803 1.1 jtc time_t starttime;
804 1.1 jtc time_t endtime;
805 1.1 jtc
806 1.1 jtc ++name;
807 1.1 jtc if ((name = getrule(name, &start)) == NULL)
808 1.1 jtc return -1;
809 1.1 jtc if (*name++ != ',')
810 1.1 jtc return -1;
811 1.1 jtc if ((name = getrule(name, &end)) == NULL)
812 1.1 jtc return -1;
813 1.1 jtc if (*name != '\0')
814 1.1 jtc return -1;
815 1.1 jtc sp->typecnt = 2; /* standard time and DST */
816 1.1 jtc /*
817 1.1 jtc ** Two transitions per year, from EPOCH_YEAR to 2037.
818 1.1 jtc */
819 1.1 jtc sp->timecnt = 2 * (2037 - EPOCH_YEAR + 1);
820 1.1 jtc if (sp->timecnt > TZ_MAX_TIMES)
821 1.1 jtc return -1;
822 1.1 jtc sp->ttis[0].tt_gmtoff = -dstoffset;
823 1.1 jtc sp->ttis[0].tt_isdst = 1;
824 1.1 jtc sp->ttis[0].tt_abbrind = stdlen + 1;
825 1.1 jtc sp->ttis[1].tt_gmtoff = -stdoffset;
826 1.1 jtc sp->ttis[1].tt_isdst = 0;
827 1.1 jtc sp->ttis[1].tt_abbrind = 0;
828 1.1 jtc atp = sp->ats;
829 1.1 jtc typep = sp->types;
830 1.1 jtc janfirst = 0;
831 1.1 jtc for (year = EPOCH_YEAR; year <= 2037; ++year) {
832 1.1 jtc starttime = transtime(janfirst, year, &start,
833 1.1 jtc stdoffset);
834 1.1 jtc endtime = transtime(janfirst, year, &end,
835 1.1 jtc dstoffset);
836 1.1 jtc if (starttime > endtime) {
837 1.1 jtc *atp++ = endtime;
838 1.1 jtc *typep++ = 1; /* DST ends */
839 1.1 jtc *atp++ = starttime;
840 1.1 jtc *typep++ = 0; /* DST begins */
841 1.1 jtc } else {
842 1.1 jtc *atp++ = starttime;
843 1.1 jtc *typep++ = 0; /* DST begins */
844 1.1 jtc *atp++ = endtime;
845 1.1 jtc *typep++ = 1; /* DST ends */
846 1.1 jtc }
847 1.1 jtc janfirst += year_lengths[isleap(year)] *
848 1.1 jtc SECSPERDAY;
849 1.1 jtc }
850 1.1 jtc } else {
851 1.1 jtc register long theirstdoffset;
852 1.1 jtc register long theirdstoffset;
853 1.1 jtc register long theiroffset;
854 1.1 jtc register int isdst;
855 1.1 jtc register int i;
856 1.1 jtc register int j;
857 1.1 jtc
858 1.1 jtc if (*name != '\0')
859 1.1 jtc return -1;
860 1.1 jtc /*
861 1.1 jtc ** Initial values of theirstdoffset and theirdstoffset.
862 1.1 jtc */
863 1.1 jtc theirstdoffset = 0;
864 1.1 jtc for (i = 0; i < sp->timecnt; ++i) {
865 1.1 jtc j = sp->types[i];
866 1.1 jtc if (!sp->ttis[j].tt_isdst) {
867 1.5 jtc theirstdoffset =
868 1.5 jtc -sp->ttis[j].tt_gmtoff;
869 1.1 jtc break;
870 1.1 jtc }
871 1.1 jtc }
872 1.1 jtc theirdstoffset = 0;
873 1.1 jtc for (i = 0; i < sp->timecnt; ++i) {
874 1.1 jtc j = sp->types[i];
875 1.1 jtc if (sp->ttis[j].tt_isdst) {
876 1.5 jtc theirdstoffset =
877 1.5 jtc -sp->ttis[j].tt_gmtoff;
878 1.1 jtc break;
879 1.1 jtc }
880 1.1 jtc }
881 1.1 jtc /*
882 1.1 jtc ** Initially we're assumed to be in standard time.
883 1.1 jtc */
884 1.1 jtc isdst = FALSE;
885 1.1 jtc theiroffset = theirstdoffset;
886 1.1 jtc /*
887 1.1 jtc ** Now juggle transition times and types
888 1.1 jtc ** tracking offsets as you do.
889 1.1 jtc */
890 1.1 jtc for (i = 0; i < sp->timecnt; ++i) {
891 1.1 jtc j = sp->types[i];
892 1.1 jtc sp->types[i] = sp->ttis[j].tt_isdst;
893 1.1 jtc if (sp->ttis[j].tt_ttisgmt) {
894 1.1 jtc /* No adjustment to transition time */
895 1.1 jtc } else {
896 1.1 jtc /*
897 1.1 jtc ** If summer time is in effect, and the
898 1.1 jtc ** transition time was not specified as
899 1.1 jtc ** standard time, add the summer time
900 1.1 jtc ** offset to the transition time;
901 1.1 jtc ** otherwise, add the standard time
902 1.1 jtc ** offset to the transition time.
903 1.1 jtc */
904 1.1 jtc /*
905 1.1 jtc ** Transitions from DST to DDST
906 1.1 jtc ** will effectively disappear since
907 1.1 jtc ** POSIX provides for only one DST
908 1.1 jtc ** offset.
909 1.1 jtc */
910 1.1 jtc if (isdst && !sp->ttis[j].tt_ttisstd) {
911 1.1 jtc sp->ats[i] += dstoffset -
912 1.1 jtc theirdstoffset;
913 1.1 jtc } else {
914 1.1 jtc sp->ats[i] += stdoffset -
915 1.1 jtc theirstdoffset;
916 1.1 jtc }
917 1.1 jtc }
918 1.1 jtc theiroffset = -sp->ttis[j].tt_gmtoff;
919 1.1 jtc if (sp->ttis[j].tt_isdst)
920 1.1 jtc theirdstoffset = theiroffset;
921 1.1 jtc else theirstdoffset = theiroffset;
922 1.1 jtc }
923 1.1 jtc /*
924 1.1 jtc ** Finally, fill in ttis.
925 1.1 jtc ** ttisstd and ttisgmt need not be handled.
926 1.1 jtc */
927 1.1 jtc sp->ttis[0].tt_gmtoff = -stdoffset;
928 1.1 jtc sp->ttis[0].tt_isdst = FALSE;
929 1.1 jtc sp->ttis[0].tt_abbrind = 0;
930 1.1 jtc sp->ttis[1].tt_gmtoff = -dstoffset;
931 1.1 jtc sp->ttis[1].tt_isdst = TRUE;
932 1.1 jtc sp->ttis[1].tt_abbrind = stdlen + 1;
933 1.7 jtc sp->typecnt = 2;
934 1.1 jtc }
935 1.1 jtc } else {
936 1.1 jtc dstlen = 0;
937 1.1 jtc sp->typecnt = 1; /* only standard time */
938 1.1 jtc sp->timecnt = 0;
939 1.1 jtc sp->ttis[0].tt_gmtoff = -stdoffset;
940 1.1 jtc sp->ttis[0].tt_isdst = 0;
941 1.1 jtc sp->ttis[0].tt_abbrind = 0;
942 1.1 jtc }
943 1.1 jtc sp->charcnt = stdlen + 1;
944 1.1 jtc if (dstlen != 0)
945 1.1 jtc sp->charcnt += dstlen + 1;
946 1.10 jtc if ((size_t) sp->charcnt > sizeof sp->chars)
947 1.1 jtc return -1;
948 1.1 jtc cp = sp->chars;
949 1.1 jtc (void) strncpy(cp, stdname, stdlen);
950 1.1 jtc cp += stdlen;
951 1.1 jtc *cp++ = '\0';
952 1.1 jtc if (dstlen != 0) {
953 1.1 jtc (void) strncpy(cp, dstname, dstlen);
954 1.1 jtc *(cp + dstlen) = '\0';
955 1.1 jtc }
956 1.1 jtc return 0;
957 1.1 jtc }
958 1.1 jtc
959 1.1 jtc static void
960 1.1 jtc gmtload(sp)
961 1.1 jtc struct state * const sp;
962 1.1 jtc {
963 1.1 jtc if (tzload(gmt, sp) != 0)
964 1.1 jtc (void) tzparse(gmt, sp, TRUE);
965 1.1 jtc }
966 1.1 jtc
967 1.19 kleink static void
968 1.19 kleink tzsetwall_unlocked P((void))
969 1.1 jtc {
970 1.1 jtc if (lcl_is_set < 0)
971 1.1 jtc return;
972 1.1 jtc lcl_is_set = -1;
973 1.1 jtc
974 1.1 jtc #ifdef ALL_STATE
975 1.1 jtc if (lclptr == NULL) {
976 1.1 jtc lclptr = (struct state *) malloc(sizeof *lclptr);
977 1.1 jtc if (lclptr == NULL) {
978 1.1 jtc settzname(); /* all we can do */
979 1.1 jtc return;
980 1.1 jtc }
981 1.1 jtc }
982 1.1 jtc #endif /* defined ALL_STATE */
983 1.1 jtc if (tzload((char *) NULL, lclptr) != 0)
984 1.1 jtc gmtload(lclptr);
985 1.1 jtc settzname();
986 1.1 jtc }
987 1.1 jtc
988 1.19 kleink #ifndef STD_INSPIRED
989 1.19 kleink /*
990 1.19 kleink ** A non-static declaration of tzsetwall in a system header file
991 1.19 kleink ** may cause a warning about this upcoming static declaration...
992 1.19 kleink */
993 1.19 kleink static
994 1.19 kleink #endif /* !defined STD_INSPIRED */
995 1.1 jtc void
996 1.19 kleink tzsetwall P((void))
997 1.19 kleink {
998 1.19 kleink rwlock_wrlock(&lcl_lock);
999 1.19 kleink tzsetwall_unlocked();
1000 1.19 kleink rwlock_unlock(&lcl_lock);
1001 1.19 kleink }
1002 1.19 kleink
1003 1.19 kleink static void
1004 1.19 kleink tzset_unlocked P((void))
1005 1.1 jtc {
1006 1.1 jtc register const char * name;
1007 1.1 jtc
1008 1.1 jtc name = getenv("TZ");
1009 1.1 jtc if (name == NULL) {
1010 1.19 kleink tzsetwall_unlocked();
1011 1.1 jtc return;
1012 1.1 jtc }
1013 1.1 jtc
1014 1.29 kleink if (lcl_is_set > 0 && strcmp(lcl_TZname, name) == 0)
1015 1.1 jtc return;
1016 1.29 kleink lcl_is_set = strlen(name) < sizeof lcl_TZname;
1017 1.1 jtc if (lcl_is_set)
1018 1.30 groo (void)strlcpy(lcl_TZname, name, sizeof(lcl_TZname));
1019 1.1 jtc
1020 1.1 jtc #ifdef ALL_STATE
1021 1.1 jtc if (lclptr == NULL) {
1022 1.1 jtc lclptr = (struct state *) malloc(sizeof *lclptr);
1023 1.1 jtc if (lclptr == NULL) {
1024 1.1 jtc settzname(); /* all we can do */
1025 1.1 jtc return;
1026 1.1 jtc }
1027 1.1 jtc }
1028 1.1 jtc #endif /* defined ALL_STATE */
1029 1.1 jtc if (*name == '\0') {
1030 1.1 jtc /*
1031 1.1 jtc ** User wants it fast rather than right.
1032 1.1 jtc */
1033 1.1 jtc lclptr->leapcnt = 0; /* so, we're off a little */
1034 1.1 jtc lclptr->timecnt = 0;
1035 1.27 atatat lclptr->typecnt = 0;
1036 1.27 atatat lclptr->ttis[0].tt_isdst = 0;
1037 1.1 jtc lclptr->ttis[0].tt_gmtoff = 0;
1038 1.1 jtc lclptr->ttis[0].tt_abbrind = 0;
1039 1.32 itojun (void)strlcpy(lclptr->chars, gmt, sizeof(lclptr->chars));
1040 1.1 jtc } else if (tzload(name, lclptr) != 0)
1041 1.1 jtc if (name[0] == ':' || tzparse(name, lclptr, FALSE) != 0)
1042 1.1 jtc (void) gmtload(lclptr);
1043 1.1 jtc settzname();
1044 1.1 jtc }
1045 1.1 jtc
1046 1.19 kleink void
1047 1.19 kleink tzset P((void))
1048 1.19 kleink {
1049 1.19 kleink rwlock_wrlock(&lcl_lock);
1050 1.19 kleink tzset_unlocked();
1051 1.19 kleink rwlock_unlock(&lcl_lock);
1052 1.19 kleink }
1053 1.19 kleink
1054 1.1 jtc /*
1055 1.1 jtc ** The easy way to behave "as if no library function calls" localtime
1056 1.1 jtc ** is to not call it--so we drop its guts into "localsub", which can be
1057 1.1 jtc ** freely called. (And no, the PANS doesn't require the above behavior--
1058 1.1 jtc ** but it *is* desirable.)
1059 1.1 jtc **
1060 1.1 jtc ** The unused offset argument is for the benefit of mktime variants.
1061 1.1 jtc */
1062 1.1 jtc
1063 1.1 jtc /*ARGSUSED*/
1064 1.1 jtc static void
1065 1.1 jtc localsub(timep, offset, tmp)
1066 1.1 jtc const time_t * const timep;
1067 1.1 jtc const long offset;
1068 1.1 jtc struct tm * const tmp;
1069 1.1 jtc {
1070 1.1 jtc register struct state * sp;
1071 1.1 jtc register const struct ttinfo * ttisp;
1072 1.1 jtc register int i;
1073 1.1 jtc const time_t t = *timep;
1074 1.1 jtc
1075 1.1 jtc sp = lclptr;
1076 1.1 jtc #ifdef ALL_STATE
1077 1.1 jtc if (sp == NULL) {
1078 1.1 jtc gmtsub(timep, offset, tmp);
1079 1.1 jtc return;
1080 1.1 jtc }
1081 1.1 jtc #endif /* defined ALL_STATE */
1082 1.1 jtc if (sp->timecnt == 0 || t < sp->ats[0]) {
1083 1.1 jtc i = 0;
1084 1.1 jtc while (sp->ttis[i].tt_isdst)
1085 1.1 jtc if (++i >= sp->typecnt) {
1086 1.1 jtc i = 0;
1087 1.1 jtc break;
1088 1.1 jtc }
1089 1.1 jtc } else {
1090 1.1 jtc for (i = 1; i < sp->timecnt; ++i)
1091 1.1 jtc if (t < sp->ats[i])
1092 1.1 jtc break;
1093 1.1 jtc i = sp->types[i - 1];
1094 1.1 jtc }
1095 1.1 jtc ttisp = &sp->ttis[i];
1096 1.1 jtc /*
1097 1.1 jtc ** To get (wrong) behavior that's compatible with System V Release 2.0
1098 1.1 jtc ** you'd replace the statement below with
1099 1.1 jtc ** t += ttisp->tt_gmtoff;
1100 1.1 jtc ** timesub(&t, 0L, sp, tmp);
1101 1.1 jtc */
1102 1.1 jtc timesub(&t, ttisp->tt_gmtoff, sp, tmp);
1103 1.1 jtc tmp->tm_isdst = ttisp->tt_isdst;
1104 1.1 jtc tzname[tmp->tm_isdst] = &sp->chars[ttisp->tt_abbrind];
1105 1.1 jtc #ifdef TM_ZONE
1106 1.1 jtc tmp->TM_ZONE = &sp->chars[ttisp->tt_abbrind];
1107 1.1 jtc #endif /* defined TM_ZONE */
1108 1.1 jtc }
1109 1.1 jtc
1110 1.1 jtc struct tm *
1111 1.1 jtc localtime(timep)
1112 1.1 jtc const time_t * const timep;
1113 1.1 jtc {
1114 1.19 kleink rwlock_wrlock(&lcl_lock);
1115 1.19 kleink tzset_unlocked();
1116 1.1 jtc localsub(timep, 0L, &tm);
1117 1.19 kleink rwlock_unlock(&lcl_lock);
1118 1.1 jtc return &tm;
1119 1.1 jtc }
1120 1.1 jtc
1121 1.1 jtc /*
1122 1.35 kleink ** Re-entrant version of localtime.
1123 1.35 kleink */
1124 1.35 kleink
1125 1.18 kleink struct tm *
1126 1.28 lukem localtime_r(timep, tmp)
1127 1.18 kleink const time_t * const timep;
1128 1.28 lukem struct tm * tmp;
1129 1.18 kleink {
1130 1.19 kleink rwlock_rdlock(&lcl_lock);
1131 1.36 christos tzset_unlocked();
1132 1.28 lukem localsub(timep, 0L, tmp);
1133 1.19 kleink rwlock_unlock(&lcl_lock);
1134 1.28 lukem return tmp;
1135 1.18 kleink }
1136 1.18 kleink
1137 1.18 kleink /*
1138 1.1 jtc ** gmtsub is to gmtime as localsub is to localtime.
1139 1.1 jtc */
1140 1.1 jtc
1141 1.1 jtc static void
1142 1.1 jtc gmtsub(timep, offset, tmp)
1143 1.1 jtc const time_t * const timep;
1144 1.1 jtc const long offset;
1145 1.1 jtc struct tm * const tmp;
1146 1.1 jtc {
1147 1.33 christos #ifdef _REENTRANT
1148 1.19 kleink static mutex_t gmt_mutex = MUTEX_INITIALIZER;
1149 1.19 kleink #endif
1150 1.19 kleink
1151 1.19 kleink mutex_lock(&gmt_mutex);
1152 1.1 jtc if (!gmt_is_set) {
1153 1.1 jtc gmt_is_set = TRUE;
1154 1.1 jtc #ifdef ALL_STATE
1155 1.1 jtc gmtptr = (struct state *) malloc(sizeof *gmtptr);
1156 1.1 jtc if (gmtptr != NULL)
1157 1.1 jtc #endif /* defined ALL_STATE */
1158 1.1 jtc gmtload(gmtptr);
1159 1.1 jtc }
1160 1.19 kleink mutex_unlock(&gmt_mutex);
1161 1.1 jtc timesub(timep, offset, gmtptr, tmp);
1162 1.1 jtc #ifdef TM_ZONE
1163 1.1 jtc /*
1164 1.1 jtc ** Could get fancy here and deliver something such as
1165 1.14 jtc ** "UTC+xxxx" or "UTC-xxxx" if offset is non-zero,
1166 1.1 jtc ** but this is no time for a treasure hunt.
1167 1.1 jtc */
1168 1.1 jtc if (offset != 0)
1169 1.37 christos tmp->TM_ZONE = (__aconst char *)__UNCONST(wildabbr);
1170 1.1 jtc else {
1171 1.1 jtc #ifdef ALL_STATE
1172 1.1 jtc if (gmtptr == NULL)
1173 1.37 christos tmp->TM_ZONE = (__aconst char *)__UNCONST(gmt);
1174 1.1 jtc else tmp->TM_ZONE = gmtptr->chars;
1175 1.1 jtc #endif /* defined ALL_STATE */
1176 1.1 jtc #ifndef ALL_STATE
1177 1.1 jtc tmp->TM_ZONE = gmtptr->chars;
1178 1.1 jtc #endif /* State Farm */
1179 1.1 jtc }
1180 1.1 jtc #endif /* defined TM_ZONE */
1181 1.1 jtc }
1182 1.1 jtc
1183 1.1 jtc struct tm *
1184 1.1 jtc gmtime(timep)
1185 1.1 jtc const time_t * const timep;
1186 1.1 jtc {
1187 1.1 jtc gmtsub(timep, 0L, &tm);
1188 1.1 jtc return &tm;
1189 1.1 jtc }
1190 1.1 jtc
1191 1.18 kleink /*
1192 1.35 kleink ** Re-entrant version of gmtime.
1193 1.35 kleink */
1194 1.35 kleink
1195 1.18 kleink struct tm *
1196 1.28 lukem gmtime_r(timep, tmp)
1197 1.18 kleink const time_t * const timep;
1198 1.28 lukem struct tm * tmp;
1199 1.18 kleink {
1200 1.28 lukem gmtsub(timep, 0L, tmp);
1201 1.28 lukem return tmp;
1202 1.18 kleink }
1203 1.18 kleink
1204 1.1 jtc #ifdef STD_INSPIRED
1205 1.1 jtc
1206 1.1 jtc struct tm *
1207 1.1 jtc offtime(timep, offset)
1208 1.1 jtc const time_t * const timep;
1209 1.1 jtc const long offset;
1210 1.1 jtc {
1211 1.1 jtc gmtsub(timep, offset, &tm);
1212 1.1 jtc return &tm;
1213 1.1 jtc }
1214 1.1 jtc
1215 1.1 jtc #endif /* defined STD_INSPIRED */
1216 1.1 jtc
1217 1.1 jtc static void
1218 1.1 jtc timesub(timep, offset, sp, tmp)
1219 1.1 jtc const time_t * const timep;
1220 1.1 jtc const long offset;
1221 1.1 jtc register const struct state * const sp;
1222 1.1 jtc register struct tm * const tmp;
1223 1.1 jtc {
1224 1.1 jtc register const struct lsinfo * lp;
1225 1.1 jtc register long days;
1226 1.1 jtc register long rem;
1227 1.1 jtc register int y;
1228 1.1 jtc register int yleap;
1229 1.1 jtc register const int * ip;
1230 1.1 jtc register long corr;
1231 1.1 jtc register int hit;
1232 1.1 jtc register int i;
1233 1.1 jtc
1234 1.1 jtc corr = 0;
1235 1.1 jtc hit = 0;
1236 1.1 jtc #ifdef ALL_STATE
1237 1.1 jtc i = (sp == NULL) ? 0 : sp->leapcnt;
1238 1.1 jtc #endif /* defined ALL_STATE */
1239 1.1 jtc #ifndef ALL_STATE
1240 1.1 jtc i = sp->leapcnt;
1241 1.1 jtc #endif /* State Farm */
1242 1.1 jtc while (--i >= 0) {
1243 1.1 jtc lp = &sp->lsis[i];
1244 1.1 jtc if (*timep >= lp->ls_trans) {
1245 1.1 jtc if (*timep == lp->ls_trans) {
1246 1.1 jtc hit = ((i == 0 && lp->ls_corr > 0) ||
1247 1.1 jtc lp->ls_corr > sp->lsis[i - 1].ls_corr);
1248 1.1 jtc if (hit)
1249 1.1 jtc while (i > 0 &&
1250 1.1 jtc sp->lsis[i].ls_trans ==
1251 1.1 jtc sp->lsis[i - 1].ls_trans + 1 &&
1252 1.1 jtc sp->lsis[i].ls_corr ==
1253 1.1 jtc sp->lsis[i - 1].ls_corr + 1) {
1254 1.1 jtc ++hit;
1255 1.1 jtc --i;
1256 1.1 jtc }
1257 1.1 jtc }
1258 1.1 jtc corr = lp->ls_corr;
1259 1.1 jtc break;
1260 1.1 jtc }
1261 1.1 jtc }
1262 1.1 jtc days = *timep / SECSPERDAY;
1263 1.1 jtc rem = *timep % SECSPERDAY;
1264 1.1 jtc #ifdef mc68k
1265 1.1 jtc if (*timep == 0x80000000) {
1266 1.1 jtc /*
1267 1.1 jtc ** A 3B1 muffs the division on the most negative number.
1268 1.1 jtc */
1269 1.1 jtc days = -24855;
1270 1.1 jtc rem = -11648;
1271 1.1 jtc }
1272 1.1 jtc #endif /* defined mc68k */
1273 1.1 jtc rem += (offset - corr);
1274 1.1 jtc while (rem < 0) {
1275 1.1 jtc rem += SECSPERDAY;
1276 1.1 jtc --days;
1277 1.1 jtc }
1278 1.1 jtc while (rem >= SECSPERDAY) {
1279 1.1 jtc rem -= SECSPERDAY;
1280 1.1 jtc ++days;
1281 1.1 jtc }
1282 1.1 jtc tmp->tm_hour = (int) (rem / SECSPERHOUR);
1283 1.1 jtc rem = rem % SECSPERHOUR;
1284 1.1 jtc tmp->tm_min = (int) (rem / SECSPERMIN);
1285 1.6 jtc /*
1286 1.6 jtc ** A positive leap second requires a special
1287 1.6 jtc ** representation. This uses "... ??:59:60" et seq.
1288 1.6 jtc */
1289 1.6 jtc tmp->tm_sec = (int) (rem % SECSPERMIN) + hit;
1290 1.1 jtc tmp->tm_wday = (int) ((EPOCH_WDAY + days) % DAYSPERWEEK);
1291 1.1 jtc if (tmp->tm_wday < 0)
1292 1.1 jtc tmp->tm_wday += DAYSPERWEEK;
1293 1.1 jtc y = EPOCH_YEAR;
1294 1.5 jtc #define LEAPS_THRU_END_OF(y) ((y) / 4 - (y) / 100 + (y) / 400)
1295 1.5 jtc while (days < 0 || days >= (long) year_lengths[yleap = isleap(y)]) {
1296 1.5 jtc register int newy;
1297 1.5 jtc
1298 1.21 christos newy = (int)(y + days / DAYSPERNYEAR);
1299 1.5 jtc if (days < 0)
1300 1.5 jtc --newy;
1301 1.5 jtc days -= (newy - y) * DAYSPERNYEAR +
1302 1.5 jtc LEAPS_THRU_END_OF(newy - 1) -
1303 1.5 jtc LEAPS_THRU_END_OF(y - 1);
1304 1.5 jtc y = newy;
1305 1.5 jtc }
1306 1.1 jtc tmp->tm_year = y - TM_YEAR_BASE;
1307 1.1 jtc tmp->tm_yday = (int) days;
1308 1.1 jtc ip = mon_lengths[yleap];
1309 1.1 jtc for (tmp->tm_mon = 0; days >= (long) ip[tmp->tm_mon]; ++(tmp->tm_mon))
1310 1.1 jtc days = days - (long) ip[tmp->tm_mon];
1311 1.1 jtc tmp->tm_mday = (int) (days + 1);
1312 1.1 jtc tmp->tm_isdst = 0;
1313 1.1 jtc #ifdef TM_GMTOFF
1314 1.1 jtc tmp->TM_GMTOFF = offset;
1315 1.1 jtc #endif /* defined TM_GMTOFF */
1316 1.1 jtc }
1317 1.1 jtc
1318 1.1 jtc char *
1319 1.1 jtc ctime(timep)
1320 1.1 jtc const time_t * const timep;
1321 1.1 jtc {
1322 1.1 jtc /*
1323 1.1 jtc ** Section 4.12.3.2 of X3.159-1989 requires that
1324 1.18 kleink ** The ctime function converts the calendar time pointed to by timer
1325 1.1 jtc ** to local time in the form of a string. It is equivalent to
1326 1.1 jtc ** asctime(localtime(timer))
1327 1.1 jtc */
1328 1.1 jtc return asctime(localtime(timep));
1329 1.18 kleink }
1330 1.18 kleink
1331 1.18 kleink char *
1332 1.18 kleink ctime_r(timep, buf)
1333 1.18 kleink const time_t * const timep;
1334 1.18 kleink char * buf;
1335 1.18 kleink {
1336 1.21 christos struct tm tmp;
1337 1.18 kleink
1338 1.21 christos return asctime_r(localtime_r(timep, &tmp), buf);
1339 1.1 jtc }
1340 1.1 jtc
1341 1.1 jtc /*
1342 1.1 jtc ** Adapted from code provided by Robert Elz, who writes:
1343 1.1 jtc ** The "best" way to do mktime I think is based on an idea of Bob
1344 1.7 jtc ** Kridle's (so its said...) from a long time ago.
1345 1.7 jtc ** [kridle (at) xinet.com as of 1996-01-16.]
1346 1.1 jtc ** It does a binary search of the time_t space. Since time_t's are
1347 1.1 jtc ** just 32 bits, its a max of 32 iterations (even at 64 bits it
1348 1.1 jtc ** would still be very reasonable).
1349 1.1 jtc */
1350 1.1 jtc
1351 1.1 jtc #ifndef WRONG
1352 1.1 jtc #define WRONG (-1)
1353 1.1 jtc #endif /* !defined WRONG */
1354 1.1 jtc
1355 1.1 jtc /*
1356 1.1 jtc ** Simplified normalize logic courtesy Paul Eggert (eggert (at) twinsun.com).
1357 1.1 jtc */
1358 1.1 jtc
1359 1.1 jtc static int
1360 1.1 jtc increment_overflow(number, delta)
1361 1.1 jtc int * number;
1362 1.1 jtc int delta;
1363 1.1 jtc {
1364 1.1 jtc int number0;
1365 1.1 jtc
1366 1.1 jtc number0 = *number;
1367 1.1 jtc *number += delta;
1368 1.1 jtc return (*number < number0) != (delta < 0);
1369 1.1 jtc }
1370 1.1 jtc
1371 1.1 jtc static int
1372 1.1 jtc normalize_overflow(tensptr, unitsptr, base)
1373 1.1 jtc int * const tensptr;
1374 1.1 jtc int * const unitsptr;
1375 1.1 jtc const int base;
1376 1.1 jtc {
1377 1.1 jtc register int tensdelta;
1378 1.1 jtc
1379 1.1 jtc tensdelta = (*unitsptr >= 0) ?
1380 1.1 jtc (*unitsptr / base) :
1381 1.1 jtc (-1 - (-1 - *unitsptr) / base);
1382 1.1 jtc *unitsptr -= tensdelta * base;
1383 1.1 jtc return increment_overflow(tensptr, tensdelta);
1384 1.1 jtc }
1385 1.1 jtc
1386 1.1 jtc static int
1387 1.1 jtc tmcomp(atmp, btmp)
1388 1.1 jtc register const struct tm * const atmp;
1389 1.1 jtc register const struct tm * const btmp;
1390 1.1 jtc {
1391 1.1 jtc register int result;
1392 1.1 jtc
1393 1.1 jtc if ((result = (atmp->tm_year - btmp->tm_year)) == 0 &&
1394 1.1 jtc (result = (atmp->tm_mon - btmp->tm_mon)) == 0 &&
1395 1.1 jtc (result = (atmp->tm_mday - btmp->tm_mday)) == 0 &&
1396 1.1 jtc (result = (atmp->tm_hour - btmp->tm_hour)) == 0 &&
1397 1.1 jtc (result = (atmp->tm_min - btmp->tm_min)) == 0)
1398 1.1 jtc result = atmp->tm_sec - btmp->tm_sec;
1399 1.1 jtc return result;
1400 1.1 jtc }
1401 1.1 jtc
1402 1.1 jtc static time_t
1403 1.13 jtc time2sub(tmp, funcp, offset, okayp, do_norm_secs)
1404 1.1 jtc struct tm * const tmp;
1405 1.1 jtc void (* const funcp) P((const time_t*, long, struct tm*));
1406 1.1 jtc const long offset;
1407 1.1 jtc int * const okayp;
1408 1.13 jtc const int do_norm_secs;
1409 1.1 jtc {
1410 1.1 jtc register const struct state * sp;
1411 1.1 jtc register int dir;
1412 1.1 jtc register int bits;
1413 1.1 jtc register int i, j ;
1414 1.1 jtc register int saved_seconds;
1415 1.1 jtc time_t newt;
1416 1.1 jtc time_t t;
1417 1.1 jtc struct tm yourtm, mytm;
1418 1.1 jtc
1419 1.1 jtc *okayp = FALSE;
1420 1.1 jtc yourtm = *tmp;
1421 1.13 jtc if (do_norm_secs) {
1422 1.13 jtc if (normalize_overflow(&yourtm.tm_min, &yourtm.tm_sec,
1423 1.13 jtc SECSPERMIN))
1424 1.13 jtc return WRONG;
1425 1.13 jtc }
1426 1.1 jtc if (normalize_overflow(&yourtm.tm_hour, &yourtm.tm_min, MINSPERHOUR))
1427 1.1 jtc return WRONG;
1428 1.1 jtc if (normalize_overflow(&yourtm.tm_mday, &yourtm.tm_hour, HOURSPERDAY))
1429 1.1 jtc return WRONG;
1430 1.1 jtc if (normalize_overflow(&yourtm.tm_year, &yourtm.tm_mon, MONSPERYEAR))
1431 1.1 jtc return WRONG;
1432 1.1 jtc /*
1433 1.1 jtc ** Turn yourtm.tm_year into an actual year number for now.
1434 1.1 jtc ** It is converted back to an offset from TM_YEAR_BASE later.
1435 1.1 jtc */
1436 1.1 jtc if (increment_overflow(&yourtm.tm_year, TM_YEAR_BASE))
1437 1.1 jtc return WRONG;
1438 1.1 jtc while (yourtm.tm_mday <= 0) {
1439 1.1 jtc if (increment_overflow(&yourtm.tm_year, -1))
1440 1.1 jtc return WRONG;
1441 1.7 jtc i = yourtm.tm_year + (1 < yourtm.tm_mon);
1442 1.7 jtc yourtm.tm_mday += year_lengths[isleap(i)];
1443 1.1 jtc }
1444 1.1 jtc while (yourtm.tm_mday > DAYSPERLYEAR) {
1445 1.7 jtc i = yourtm.tm_year + (1 < yourtm.tm_mon);
1446 1.7 jtc yourtm.tm_mday -= year_lengths[isleap(i)];
1447 1.1 jtc if (increment_overflow(&yourtm.tm_year, 1))
1448 1.1 jtc return WRONG;
1449 1.1 jtc }
1450 1.1 jtc for ( ; ; ) {
1451 1.1 jtc i = mon_lengths[isleap(yourtm.tm_year)][yourtm.tm_mon];
1452 1.1 jtc if (yourtm.tm_mday <= i)
1453 1.1 jtc break;
1454 1.1 jtc yourtm.tm_mday -= i;
1455 1.1 jtc if (++yourtm.tm_mon >= MONSPERYEAR) {
1456 1.1 jtc yourtm.tm_mon = 0;
1457 1.1 jtc if (increment_overflow(&yourtm.tm_year, 1))
1458 1.1 jtc return WRONG;
1459 1.1 jtc }
1460 1.1 jtc }
1461 1.1 jtc if (increment_overflow(&yourtm.tm_year, -TM_YEAR_BASE))
1462 1.1 jtc return WRONG;
1463 1.29 kleink if (yourtm.tm_sec >= 0 && yourtm.tm_sec < SECSPERMIN)
1464 1.29 kleink saved_seconds = 0;
1465 1.29 kleink else if (yourtm.tm_year + TM_YEAR_BASE < EPOCH_YEAR) {
1466 1.1 jtc /*
1467 1.1 jtc ** We can't set tm_sec to 0, because that might push the
1468 1.1 jtc ** time below the minimum representable time.
1469 1.1 jtc ** Set tm_sec to 59 instead.
1470 1.1 jtc ** This assumes that the minimum representable time is
1471 1.1 jtc ** not in the same minute that a leap second was deleted from,
1472 1.1 jtc ** which is a safer assumption than using 58 would be.
1473 1.1 jtc */
1474 1.1 jtc if (increment_overflow(&yourtm.tm_sec, 1 - SECSPERMIN))
1475 1.1 jtc return WRONG;
1476 1.1 jtc saved_seconds = yourtm.tm_sec;
1477 1.1 jtc yourtm.tm_sec = SECSPERMIN - 1;
1478 1.1 jtc } else {
1479 1.1 jtc saved_seconds = yourtm.tm_sec;
1480 1.1 jtc yourtm.tm_sec = 0;
1481 1.1 jtc }
1482 1.1 jtc /*
1483 1.6 jtc ** Divide the search space in half
1484 1.6 jtc ** (this works whether time_t is signed or unsigned).
1485 1.1 jtc */
1486 1.6 jtc bits = TYPE_BIT(time_t) - 1;
1487 1.1 jtc /*
1488 1.6 jtc ** If time_t is signed, then 0 is just above the median,
1489 1.6 jtc ** assuming two's complement arithmetic.
1490 1.6 jtc ** If time_t is unsigned, then (1 << bits) is just above the median.
1491 1.1 jtc */
1492 1.37 christos /*CONSTCOND*/
1493 1.6 jtc t = TYPE_SIGNED(time_t) ? 0 : (((time_t) 1) << bits);
1494 1.1 jtc for ( ; ; ) {
1495 1.1 jtc (*funcp)(&t, offset, &mytm);
1496 1.1 jtc dir = tmcomp(&mytm, &yourtm);
1497 1.1 jtc if (dir != 0) {
1498 1.1 jtc if (bits-- < 0)
1499 1.1 jtc return WRONG;
1500 1.1 jtc if (bits < 0)
1501 1.6 jtc --t; /* may be needed if new t is minimal */
1502 1.1 jtc else if (dir > 0)
1503 1.6 jtc t -= ((time_t) 1) << bits;
1504 1.6 jtc else t += ((time_t) 1) << bits;
1505 1.1 jtc continue;
1506 1.1 jtc }
1507 1.1 jtc if (yourtm.tm_isdst < 0 || mytm.tm_isdst == yourtm.tm_isdst)
1508 1.1 jtc break;
1509 1.1 jtc /*
1510 1.1 jtc ** Right time, wrong type.
1511 1.1 jtc ** Hunt for right time, right type.
1512 1.1 jtc ** It's okay to guess wrong since the guess
1513 1.1 jtc ** gets checked.
1514 1.1 jtc */
1515 1.1 jtc /*
1516 1.1 jtc ** The (void *) casts are the benefit of SunOS 3.3 on Sun 2's.
1517 1.1 jtc */
1518 1.1 jtc sp = (const struct state *)
1519 1.1 jtc (((void *) funcp == (void *) localsub) ?
1520 1.1 jtc lclptr : gmtptr);
1521 1.1 jtc #ifdef ALL_STATE
1522 1.1 jtc if (sp == NULL)
1523 1.1 jtc return WRONG;
1524 1.1 jtc #endif /* defined ALL_STATE */
1525 1.5 jtc for (i = sp->typecnt - 1; i >= 0; --i) {
1526 1.1 jtc if (sp->ttis[i].tt_isdst != yourtm.tm_isdst)
1527 1.1 jtc continue;
1528 1.5 jtc for (j = sp->typecnt - 1; j >= 0; --j) {
1529 1.1 jtc if (sp->ttis[j].tt_isdst == yourtm.tm_isdst)
1530 1.1 jtc continue;
1531 1.1 jtc newt = t + sp->ttis[j].tt_gmtoff -
1532 1.1 jtc sp->ttis[i].tt_gmtoff;
1533 1.1 jtc (*funcp)(&newt, offset, &mytm);
1534 1.1 jtc if (tmcomp(&mytm, &yourtm) != 0)
1535 1.1 jtc continue;
1536 1.1 jtc if (mytm.tm_isdst != yourtm.tm_isdst)
1537 1.1 jtc continue;
1538 1.1 jtc /*
1539 1.1 jtc ** We have a match.
1540 1.1 jtc */
1541 1.1 jtc t = newt;
1542 1.1 jtc goto label;
1543 1.1 jtc }
1544 1.1 jtc }
1545 1.1 jtc return WRONG;
1546 1.1 jtc }
1547 1.1 jtc label:
1548 1.1 jtc newt = t + saved_seconds;
1549 1.1 jtc if ((newt < t) != (saved_seconds < 0))
1550 1.1 jtc return WRONG;
1551 1.1 jtc t = newt;
1552 1.1 jtc (*funcp)(&t, offset, tmp);
1553 1.1 jtc *okayp = TRUE;
1554 1.1 jtc return t;
1555 1.13 jtc }
1556 1.13 jtc
1557 1.13 jtc static time_t
1558 1.13 jtc time2(tmp, funcp, offset, okayp)
1559 1.13 jtc struct tm * const tmp;
1560 1.13 jtc void (* const funcp) P((const time_t*, long, struct tm*));
1561 1.13 jtc const long offset;
1562 1.13 jtc int * const okayp;
1563 1.13 jtc {
1564 1.13 jtc time_t t;
1565 1.13 jtc
1566 1.13 jtc /*
1567 1.13 jtc ** First try without normalization of seconds
1568 1.13 jtc ** (in case tm_sec contains a value associated with a leap second).
1569 1.13 jtc ** If that fails, try with normalization of seconds.
1570 1.13 jtc */
1571 1.13 jtc t = time2sub(tmp, funcp, offset, okayp, FALSE);
1572 1.13 jtc return *okayp ? t : time2sub(tmp, funcp, offset, okayp, TRUE);
1573 1.1 jtc }
1574 1.1 jtc
1575 1.1 jtc static time_t
1576 1.1 jtc time1(tmp, funcp, offset)
1577 1.1 jtc struct tm * const tmp;
1578 1.5 jtc void (* const funcp) P((const time_t *, long, struct tm *));
1579 1.1 jtc const long offset;
1580 1.1 jtc {
1581 1.1 jtc register time_t t;
1582 1.1 jtc register const struct state * sp;
1583 1.1 jtc register int samei, otheri;
1584 1.35 kleink register int sameind, otherind;
1585 1.35 kleink register int i;
1586 1.35 kleink register int nseen;
1587 1.35 kleink int seen[TZ_MAX_TYPES];
1588 1.35 kleink int types[TZ_MAX_TYPES];
1589 1.1 jtc int okay;
1590 1.1 jtc
1591 1.1 jtc if (tmp->tm_isdst > 1)
1592 1.1 jtc tmp->tm_isdst = 1;
1593 1.1 jtc t = time2(tmp, funcp, offset, &okay);
1594 1.1 jtc #ifdef PCTS
1595 1.1 jtc /*
1596 1.1 jtc ** PCTS code courtesy Grant Sullivan (grant (at) osf.org).
1597 1.1 jtc */
1598 1.1 jtc if (okay)
1599 1.1 jtc return t;
1600 1.1 jtc if (tmp->tm_isdst < 0)
1601 1.1 jtc tmp->tm_isdst = 0; /* reset to std and try again */
1602 1.1 jtc #endif /* defined PCTS */
1603 1.1 jtc #ifndef PCTS
1604 1.1 jtc if (okay || tmp->tm_isdst < 0)
1605 1.1 jtc return t;
1606 1.1 jtc #endif /* !defined PCTS */
1607 1.1 jtc /*
1608 1.1 jtc ** We're supposed to assume that somebody took a time of one type
1609 1.1 jtc ** and did some math on it that yielded a "struct tm" that's bad.
1610 1.1 jtc ** We try to divine the type they started from and adjust to the
1611 1.1 jtc ** type they need.
1612 1.1 jtc */
1613 1.1 jtc /*
1614 1.1 jtc ** The (void *) casts are the benefit of SunOS 3.3 on Sun 2's.
1615 1.1 jtc */
1616 1.1 jtc sp = (const struct state *) (((void *) funcp == (void *) localsub) ?
1617 1.1 jtc lclptr : gmtptr);
1618 1.1 jtc #ifdef ALL_STATE
1619 1.1 jtc if (sp == NULL)
1620 1.1 jtc return WRONG;
1621 1.1 jtc #endif /* defined ALL_STATE */
1622 1.35 kleink for (i = 0; i < sp->typecnt; ++i)
1623 1.35 kleink seen[i] = FALSE;
1624 1.35 kleink nseen = 0;
1625 1.35 kleink for (i = sp->timecnt - 1; i >= 0; --i)
1626 1.35 kleink if (!seen[sp->types[i]]) {
1627 1.35 kleink seen[sp->types[i]] = TRUE;
1628 1.35 kleink types[nseen++] = sp->types[i];
1629 1.35 kleink }
1630 1.35 kleink for (sameind = 0; sameind < nseen; ++sameind) {
1631 1.35 kleink samei = types[sameind];
1632 1.1 jtc if (sp->ttis[samei].tt_isdst != tmp->tm_isdst)
1633 1.1 jtc continue;
1634 1.35 kleink for (otherind = 0; otherind < nseen; ++otherind) {
1635 1.35 kleink otheri = types[otherind];
1636 1.1 jtc if (sp->ttis[otheri].tt_isdst == tmp->tm_isdst)
1637 1.1 jtc continue;
1638 1.21 christos tmp->tm_sec += (int)(sp->ttis[otheri].tt_gmtoff -
1639 1.21 christos sp->ttis[samei].tt_gmtoff);
1640 1.1 jtc tmp->tm_isdst = !tmp->tm_isdst;
1641 1.1 jtc t = time2(tmp, funcp, offset, &okay);
1642 1.1 jtc if (okay)
1643 1.1 jtc return t;
1644 1.21 christos tmp->tm_sec -= (int)(sp->ttis[otheri].tt_gmtoff -
1645 1.21 christos sp->ttis[samei].tt_gmtoff);
1646 1.1 jtc tmp->tm_isdst = !tmp->tm_isdst;
1647 1.1 jtc }
1648 1.1 jtc }
1649 1.1 jtc return WRONG;
1650 1.1 jtc }
1651 1.1 jtc
1652 1.1 jtc time_t
1653 1.1 jtc mktime(tmp)
1654 1.1 jtc struct tm * const tmp;
1655 1.1 jtc {
1656 1.19 kleink time_t result;
1657 1.19 kleink
1658 1.19 kleink rwlock_wrlock(&lcl_lock);
1659 1.19 kleink tzset_unlocked();
1660 1.19 kleink result = time1(tmp, localsub, 0L);
1661 1.19 kleink rwlock_unlock(&lcl_lock);
1662 1.19 kleink return (result);
1663 1.1 jtc }
1664 1.1 jtc
1665 1.1 jtc #ifdef STD_INSPIRED
1666 1.1 jtc
1667 1.1 jtc time_t
1668 1.1 jtc timelocal(tmp)
1669 1.1 jtc struct tm * const tmp;
1670 1.1 jtc {
1671 1.1 jtc tmp->tm_isdst = -1; /* in case it wasn't initialized */
1672 1.1 jtc return mktime(tmp);
1673 1.1 jtc }
1674 1.1 jtc
1675 1.1 jtc time_t
1676 1.1 jtc timegm(tmp)
1677 1.1 jtc struct tm * const tmp;
1678 1.1 jtc {
1679 1.1 jtc tmp->tm_isdst = 0;
1680 1.1 jtc return time1(tmp, gmtsub, 0L);
1681 1.1 jtc }
1682 1.1 jtc
1683 1.1 jtc time_t
1684 1.1 jtc timeoff(tmp, offset)
1685 1.1 jtc struct tm * const tmp;
1686 1.1 jtc const long offset;
1687 1.1 jtc {
1688 1.1 jtc tmp->tm_isdst = 0;
1689 1.1 jtc return time1(tmp, gmtsub, offset);
1690 1.1 jtc }
1691 1.1 jtc
1692 1.1 jtc #endif /* defined STD_INSPIRED */
1693 1.1 jtc
1694 1.1 jtc #ifdef CMUCS
1695 1.1 jtc
1696 1.1 jtc /*
1697 1.1 jtc ** The following is supplied for compatibility with
1698 1.1 jtc ** previous versions of the CMUCS runtime library.
1699 1.1 jtc */
1700 1.1 jtc
1701 1.1 jtc long
1702 1.1 jtc gtime(tmp)
1703 1.1 jtc struct tm * const tmp;
1704 1.1 jtc {
1705 1.1 jtc const time_t t = mktime(tmp);
1706 1.1 jtc
1707 1.1 jtc if (t == WRONG)
1708 1.1 jtc return -1;
1709 1.1 jtc return t;
1710 1.1 jtc }
1711 1.1 jtc
1712 1.1 jtc #endif /* defined CMUCS */
1713 1.1 jtc
1714 1.1 jtc /*
1715 1.1 jtc ** XXX--is the below the right way to conditionalize??
1716 1.1 jtc */
1717 1.1 jtc
1718 1.1 jtc #ifdef STD_INSPIRED
1719 1.1 jtc
1720 1.1 jtc /*
1721 1.1 jtc ** IEEE Std 1003.1-1988 (POSIX) legislates that 536457599
1722 1.14 jtc ** shall correspond to "Wed Dec 31 23:59:59 UTC 1986", which
1723 1.1 jtc ** is not the case if we are accounting for leap seconds.
1724 1.1 jtc ** So, we provide the following conversion routines for use
1725 1.1 jtc ** when exchanging timestamps with POSIX conforming systems.
1726 1.1 jtc */
1727 1.1 jtc
1728 1.1 jtc static long
1729 1.1 jtc leapcorr(timep)
1730 1.1 jtc time_t * timep;
1731 1.1 jtc {
1732 1.1 jtc register struct state * sp;
1733 1.1 jtc register struct lsinfo * lp;
1734 1.1 jtc register int i;
1735 1.1 jtc
1736 1.1 jtc sp = lclptr;
1737 1.1 jtc i = sp->leapcnt;
1738 1.1 jtc while (--i >= 0) {
1739 1.1 jtc lp = &sp->lsis[i];
1740 1.1 jtc if (*timep >= lp->ls_trans)
1741 1.1 jtc return lp->ls_corr;
1742 1.1 jtc }
1743 1.1 jtc return 0;
1744 1.1 jtc }
1745 1.1 jtc
1746 1.1 jtc time_t
1747 1.1 jtc time2posix(t)
1748 1.1 jtc time_t t;
1749 1.1 jtc {
1750 1.19 kleink time_t result;
1751 1.19 kleink
1752 1.19 kleink rwlock_wrlock(&lcl_lock);
1753 1.19 kleink tzset_unlocked();
1754 1.19 kleink result = t - leapcorr(&t);
1755 1.19 kleink rwlock_unlock(&lcl_lock);
1756 1.19 kleink return (result);
1757 1.1 jtc }
1758 1.1 jtc
1759 1.1 jtc time_t
1760 1.1 jtc posix2time(t)
1761 1.1 jtc time_t t;
1762 1.1 jtc {
1763 1.1 jtc time_t x;
1764 1.1 jtc time_t y;
1765 1.1 jtc
1766 1.19 kleink rwlock_wrlock(&lcl_lock);
1767 1.19 kleink tzset_unlocked();
1768 1.1 jtc /*
1769 1.1 jtc ** For a positive leap second hit, the result
1770 1.1 jtc ** is not unique. For a negative leap second
1771 1.1 jtc ** hit, the corresponding time doesn't exist,
1772 1.1 jtc ** so we return an adjacent second.
1773 1.1 jtc */
1774 1.1 jtc x = t + leapcorr(&t);
1775 1.1 jtc y = x - leapcorr(&x);
1776 1.1 jtc if (y < t) {
1777 1.1 jtc do {
1778 1.1 jtc x++;
1779 1.1 jtc y = x - leapcorr(&x);
1780 1.1 jtc } while (y < t);
1781 1.19 kleink if (t != y) {
1782 1.19 kleink rwlock_unlock(&lcl_lock);
1783 1.1 jtc return x - 1;
1784 1.19 kleink }
1785 1.1 jtc } else if (y > t) {
1786 1.1 jtc do {
1787 1.1 jtc --x;
1788 1.1 jtc y = x - leapcorr(&x);
1789 1.1 jtc } while (y > t);
1790 1.19 kleink if (t != y) {
1791 1.19 kleink rwlock_unlock(&lcl_lock);
1792 1.1 jtc return x + 1;
1793 1.19 kleink }
1794 1.1 jtc }
1795 1.19 kleink rwlock_unlock(&lcl_lock);
1796 1.1 jtc return x;
1797 1.1 jtc }
1798 1.1 jtc
1799 1.1 jtc #endif /* defined STD_INSPIRED */
1800