localtime.c revision 1.42 1 1.42 christos /* $NetBSD: localtime.c,v 1.42 2009/01/11 02:46:30 christos Exp $ */
2 1.7 jtc
3 1.7 jtc /*
4 1.7 jtc ** This file is in the public domain, so clarified as of
5 1.10 jtc ** 1996-06-05 by Arthur David Olson (arthur_david_olson (at) nih.gov).
6 1.7 jtc */
7 1.2 jtc
8 1.11 christos #include <sys/cdefs.h>
9 1.24 msaitoh #if defined(LIBC_SCCS) && !defined(lint)
10 1.11 christos #if 0
11 1.35 kleink static char elsieid[] = "@(#)localtime.c 7.78";
12 1.11 christos #else
13 1.42 christos __RCSID("$NetBSD: localtime.c,v 1.42 2009/01/11 02:46:30 christos Exp $");
14 1.11 christos #endif
15 1.24 msaitoh #endif /* LIBC_SCCS and not lint */
16 1.1 jtc
17 1.1 jtc /*
18 1.1 jtc ** Leap second handling from Bradley White (bww (at) k.gp.cs.cmu.edu).
19 1.1 jtc ** POSIX-style TZ environment variable handling from Guy Harris
20 1.1 jtc ** (guy (at) auspex.com).
21 1.1 jtc */
22 1.1 jtc
23 1.1 jtc /*LINTLIBRARY*/
24 1.1 jtc
25 1.12 jtc #include "namespace.h"
26 1.1 jtc #include "private.h"
27 1.1 jtc #include "tzfile.h"
28 1.1 jtc #include "fcntl.h"
29 1.19 kleink #include "reentrant.h"
30 1.12 jtc
31 1.42 christos #if defined(__weak_alias)
32 1.25 kleink __weak_alias(daylight,_daylight)
33 1.23 mycroft __weak_alias(tzname,_tzname)
34 1.23 mycroft __weak_alias(tzset,_tzset)
35 1.23 mycroft __weak_alias(tzsetwall,_tzsetwall)
36 1.12 jtc #endif
37 1.1 jtc
38 1.1 jtc /*
39 1.1 jtc ** SunOS 4.1.1 headers lack O_BINARY.
40 1.1 jtc */
41 1.1 jtc
42 1.1 jtc #ifdef O_BINARY
43 1.1 jtc #define OPEN_MODE (O_RDONLY | O_BINARY)
44 1.1 jtc #endif /* defined O_BINARY */
45 1.1 jtc #ifndef O_BINARY
46 1.1 jtc #define OPEN_MODE O_RDONLY
47 1.1 jtc #endif /* !defined O_BINARY */
48 1.1 jtc
49 1.1 jtc #ifndef WILDABBR
50 1.1 jtc /*
51 1.1 jtc ** Someone might make incorrect use of a time zone abbreviation:
52 1.1 jtc ** 1. They might reference tzname[0] before calling tzset (explicitly
53 1.1 jtc ** or implicitly).
54 1.1 jtc ** 2. They might reference tzname[1] before calling tzset (explicitly
55 1.1 jtc ** or implicitly).
56 1.1 jtc ** 3. They might reference tzname[1] after setting to a time zone
57 1.1 jtc ** in which Daylight Saving Time is never observed.
58 1.1 jtc ** 4. They might reference tzname[0] after setting to a time zone
59 1.1 jtc ** in which Standard Time is never observed.
60 1.1 jtc ** 5. They might reference tm.TM_ZONE after calling offtime.
61 1.1 jtc ** What's best to do in the above cases is open to debate;
62 1.1 jtc ** for now, we just set things up so that in any of the five cases
63 1.1 jtc ** WILDABBR is used. Another possibility: initialize tzname[0] to the
64 1.1 jtc ** string "tzname[0] used before set", and similarly for the other cases.
65 1.1 jtc ** And another: initialize tzname[0] to "ERA", with an explanation in the
66 1.1 jtc ** manual page of what this "time zone abbreviation" means (doing this so
67 1.1 jtc ** that tzname[0] has the "normal" length of three characters).
68 1.1 jtc */
69 1.1 jtc #define WILDABBR " "
70 1.1 jtc #endif /* !defined WILDABBR */
71 1.1 jtc
72 1.15 mycroft static const char wildabbr[] = "WILDABBR";
73 1.1 jtc
74 1.1 jtc static const char gmt[] = "GMT";
75 1.1 jtc
76 1.22 kleink /*
77 1.22 kleink ** The DST rules to use if TZ has no rules and we can't load TZDEFRULES.
78 1.22 kleink ** We default to US rules as of 1999-08-17.
79 1.22 kleink ** POSIX 1003.1 section 8.1.1 says that the default DST rules are
80 1.22 kleink ** implementation dependent; for historical reasons, US rules are a
81 1.22 kleink ** common default.
82 1.22 kleink */
83 1.22 kleink #ifndef TZDEFRULESTRING
84 1.22 kleink #define TZDEFRULESTRING ",M4.1.0,M10.5.0"
85 1.22 kleink #endif /* !defined TZDEFDST */
86 1.22 kleink
87 1.1 jtc struct ttinfo { /* time type information */
88 1.14 jtc long tt_gmtoff; /* UTC offset in seconds */
89 1.1 jtc int tt_isdst; /* used to set tm_isdst */
90 1.1 jtc int tt_abbrind; /* abbreviation list index */
91 1.1 jtc int tt_ttisstd; /* TRUE if transition is std time */
92 1.14 jtc int tt_ttisgmt; /* TRUE if transition is UTC */
93 1.1 jtc };
94 1.1 jtc
95 1.1 jtc struct lsinfo { /* leap second information */
96 1.1 jtc time_t ls_trans; /* transition time */
97 1.1 jtc long ls_corr; /* correction to apply */
98 1.1 jtc };
99 1.1 jtc
100 1.1 jtc #define BIGGEST(a, b) (((a) > (b)) ? (a) : (b))
101 1.1 jtc
102 1.1 jtc #ifdef TZNAME_MAX
103 1.1 jtc #define MY_TZNAME_MAX TZNAME_MAX
104 1.1 jtc #endif /* defined TZNAME_MAX */
105 1.1 jtc #ifndef TZNAME_MAX
106 1.1 jtc #define MY_TZNAME_MAX 255
107 1.1 jtc #endif /* !defined TZNAME_MAX */
108 1.1 jtc
109 1.1 jtc struct state {
110 1.1 jtc int leapcnt;
111 1.1 jtc int timecnt;
112 1.1 jtc int typecnt;
113 1.1 jtc int charcnt;
114 1.42 christos time_t ats[TZ_MAX_TIMES]; /* time_t */
115 1.1 jtc unsigned char types[TZ_MAX_TIMES];
116 1.1 jtc struct ttinfo ttis[TZ_MAX_TYPES];
117 1.37 christos char chars[/*CONSTCOND*/BIGGEST(BIGGEST(TZ_MAX_CHARS + 1, sizeof gmt),
118 1.1 jtc (2 * (MY_TZNAME_MAX + 1)))];
119 1.1 jtc struct lsinfo lsis[TZ_MAX_LEAPS];
120 1.1 jtc };
121 1.1 jtc
122 1.1 jtc struct rule {
123 1.1 jtc int r_type; /* type of rule--see below */
124 1.1 jtc int r_day; /* day number of rule */
125 1.1 jtc int r_week; /* week number of rule */
126 1.1 jtc int r_mon; /* month number of rule */
127 1.1 jtc long r_time; /* transition time of rule */
128 1.1 jtc };
129 1.1 jtc
130 1.1 jtc #define JULIAN_DAY 0 /* Jn - Julian day */
131 1.1 jtc #define DAY_OF_YEAR 1 /* n - day of year */
132 1.1 jtc #define MONTH_NTH_DAY_OF_WEEK 2 /* Mm.n.d - month, week, day of week */
133 1.1 jtc
134 1.1 jtc /*
135 1.1 jtc ** Prototypes for static functions.
136 1.1 jtc */
137 1.1 jtc
138 1.1 jtc static long detzcode P((const char * codep));
139 1.42 christos static const char * __getzname P((const char * strp));
140 1.1 jtc static const char * getnum P((const char * strp, int * nump, int min,
141 1.1 jtc int max));
142 1.1 jtc static const char * getsecs P((const char * strp, long * secsp));
143 1.42 christos static const char * __getoffset P((const char * strp, long * offsetp));
144 1.42 christos static const char * __getrule P((const char * strp, struct rule * rulep));
145 1.42 christos static void __gmtload P((struct state * sp));
146 1.1 jtc static void gmtsub P((const time_t * timep, long offset,
147 1.1 jtc struct tm * tmp));
148 1.1 jtc static void localsub P((const time_t * timep, long offset,
149 1.1 jtc struct tm * tmp));
150 1.1 jtc static int increment_overflow P((int * number, int delta));
151 1.1 jtc static int normalize_overflow P((int * tensptr, int * unitsptr,
152 1.1 jtc int base));
153 1.42 christos static void __settzname P((void));
154 1.1 jtc static time_t time1 P((struct tm * tmp,
155 1.1 jtc void(*funcp) P((const time_t *,
156 1.1 jtc long, struct tm *)),
157 1.1 jtc long offset));
158 1.1 jtc static time_t time2 P((struct tm *tmp,
159 1.1 jtc void(*funcp) P((const time_t *,
160 1.1 jtc long, struct tm*)),
161 1.1 jtc long offset, int * okayp));
162 1.13 jtc static time_t time2sub P((struct tm *tmp,
163 1.13 jtc void(*funcp) P((const time_t *,
164 1.13 jtc long, struct tm*)),
165 1.13 jtc long offset, int * okayp, int do_norm_secs));
166 1.1 jtc static void timesub P((const time_t * timep, long offset,
167 1.1 jtc const struct state * sp, struct tm * tmp));
168 1.1 jtc static int tmcomp P((const struct tm * atmp,
169 1.1 jtc const struct tm * btmp));
170 1.42 christos static time_t __transtime P((time_t janfirst, int year,
171 1.1 jtc const struct rule * rulep, long offset));
172 1.42 christos static int __tzload P((const char * name, struct state * sp));
173 1.42 christos static int __tzparse P((const char * name, struct state * sp,
174 1.1 jtc int lastditch));
175 1.42 christos static void __tzset_unlocked P((void));
176 1.42 christos static void __tzsetwall_unlocked P((void));
177 1.11 christos #ifdef STD_INSPIRED
178 1.11 christos static long leapcorr P((time_t * timep));
179 1.11 christos #endif
180 1.1 jtc
181 1.1 jtc #ifdef ALL_STATE
182 1.1 jtc static struct state * lclptr;
183 1.1 jtc static struct state * gmtptr;
184 1.1 jtc #endif /* defined ALL_STATE */
185 1.1 jtc
186 1.1 jtc #ifndef ALL_STATE
187 1.1 jtc static struct state lclmem;
188 1.1 jtc static struct state gmtmem;
189 1.1 jtc #define lclptr (&lclmem)
190 1.1 jtc #define gmtptr (&gmtmem)
191 1.1 jtc #endif /* State Farm */
192 1.1 jtc
193 1.1 jtc #ifndef TZ_STRLEN_MAX
194 1.1 jtc #define TZ_STRLEN_MAX 255
195 1.1 jtc #endif /* !defined TZ_STRLEN_MAX */
196 1.1 jtc
197 1.42 christos
198 1.42 christos static char __lcl_TZname[TZ_STRLEN_MAX + 1];
199 1.42 christos static int __lcl_is_set;
200 1.42 christos static int __gmt_is_set;
201 1.42 christos
202 1.42 christos #if !defined(__LIBC12_SOURCE__)
203 1.1 jtc
204 1.16 mycroft __aconst char * tzname[2] = {
205 1.37 christos (__aconst char *)__UNCONST(wildabbr),
206 1.37 christos (__aconst char *)__UNCONST(wildabbr)
207 1.1 jtc };
208 1.1 jtc
209 1.42 christos #else
210 1.42 christos
211 1.42 christos extern __aconst char * tzname[2];
212 1.42 christos
213 1.42 christos #endif
214 1.42 christos
215 1.33 christos #ifdef _REENTRANT
216 1.42 christos static rwlock_t __lcl_lock = RWLOCK_INITIALIZER;
217 1.19 kleink #endif
218 1.19 kleink
219 1.1 jtc /*
220 1.1 jtc ** Section 4.12.3 of X3.159-1989 requires that
221 1.1 jtc ** Except for the strftime function, these functions [asctime,
222 1.1 jtc ** ctime, gmtime, localtime] return values in one of two static
223 1.1 jtc ** objects: a broken-down time structure and an array of char.
224 1.1 jtc ** Thanks to Paul Eggert (eggert (at) twinsun.com) for noting this.
225 1.1 jtc */
226 1.1 jtc
227 1.1 jtc static struct tm tm;
228 1.1 jtc
229 1.1 jtc #ifdef USG_COMPAT
230 1.42 christos #if !defined(__LIBC12_SOURCE__)
231 1.42 christos long timezone = 0;
232 1.1 jtc int daylight = 0;
233 1.42 christos #else
234 1.42 christos extern int daylight;
235 1.42 christos extern long timezone __RENAME(__timezone13);
236 1.42 christos #endif
237 1.1 jtc #endif /* defined USG_COMPAT */
238 1.1 jtc
239 1.1 jtc #ifdef ALTZONE
240 1.1 jtc time_t altzone = 0;
241 1.1 jtc #endif /* defined ALTZONE */
242 1.1 jtc
243 1.1 jtc static long
244 1.1 jtc detzcode(codep)
245 1.1 jtc const char * const codep;
246 1.1 jtc {
247 1.1 jtc register long result;
248 1.1 jtc
249 1.4 jtc /*
250 1.4 jtc ** The first character must be sign extended on systems with >32bit
251 1.4 jtc ** longs. This was solved differently in the master tzcode sources
252 1.4 jtc ** (the fix first appeared in tzcode95c.tar.gz). But I believe
253 1.4 jtc ** that this implementation is superior.
254 1.4 jtc */
255 1.4 jtc
256 1.4 jtc #define SIGN_EXTEND_CHAR(x) ((signed char) x)
257 1.4 jtc
258 1.4 jtc result = (SIGN_EXTEND_CHAR(codep[0]) << 24) \
259 1.3 jtc | (codep[1] & 0xff) << 16 \
260 1.3 jtc | (codep[2] & 0xff) << 8
261 1.3 jtc | (codep[3] & 0xff);
262 1.1 jtc return result;
263 1.1 jtc }
264 1.1 jtc
265 1.42 christos void
266 1.42 christos __settzname P((void))
267 1.1 jtc {
268 1.5 jtc register struct state * const sp = lclptr;
269 1.5 jtc register int i;
270 1.1 jtc
271 1.37 christos tzname[0] = (__aconst char *)__UNCONST(wildabbr);
272 1.37 christos tzname[1] = (__aconst char *)__UNCONST(wildabbr);
273 1.1 jtc #ifdef USG_COMPAT
274 1.1 jtc daylight = 0;
275 1.1 jtc timezone = 0;
276 1.1 jtc #endif /* defined USG_COMPAT */
277 1.1 jtc #ifdef ALTZONE
278 1.1 jtc altzone = 0;
279 1.1 jtc #endif /* defined ALTZONE */
280 1.1 jtc #ifdef ALL_STATE
281 1.1 jtc if (sp == NULL) {
282 1.37 christos tzname[0] = tzname[1] = (__aconst char *)__UNCONST(gmt);
283 1.1 jtc return;
284 1.1 jtc }
285 1.1 jtc #endif /* defined ALL_STATE */
286 1.1 jtc for (i = 0; i < sp->typecnt; ++i) {
287 1.1 jtc register const struct ttinfo * const ttisp = &sp->ttis[i];
288 1.1 jtc
289 1.1 jtc tzname[ttisp->tt_isdst] =
290 1.1 jtc &sp->chars[ttisp->tt_abbrind];
291 1.1 jtc }
292 1.1 jtc /*
293 1.1 jtc ** And to get the latest zone names into tzname. . .
294 1.1 jtc */
295 1.1 jtc for (i = 0; i < sp->timecnt; ++i) {
296 1.1 jtc register const struct ttinfo * const ttisp =
297 1.1 jtc &sp->ttis[
298 1.1 jtc sp->types[i]];
299 1.1 jtc
300 1.1 jtc tzname[ttisp->tt_isdst] =
301 1.1 jtc &sp->chars[ttisp->tt_abbrind];
302 1.40 dholland #ifdef USG_COMPAT
303 1.40 dholland if (ttisp->tt_isdst)
304 1.40 dholland daylight = 1;
305 1.40 dholland if (i == 0 || !ttisp->tt_isdst)
306 1.40 dholland timezone = -(ttisp->tt_gmtoff);
307 1.40 dholland #endif /* defined USG_COMPAT */
308 1.40 dholland #ifdef ALTZONE
309 1.40 dholland if (i == 0 || ttisp->tt_isdst)
310 1.40 dholland altzone = -(ttisp->tt_gmtoff);
311 1.40 dholland #endif /* defined ALTZONE */
312 1.1 jtc }
313 1.1 jtc }
314 1.1 jtc
315 1.42 christos int
316 1.42 christos __tzload(name, sp)
317 1.1 jtc register const char * name;
318 1.1 jtc register struct state * const sp;
319 1.1 jtc {
320 1.1 jtc register const char * p;
321 1.1 jtc register int i;
322 1.1 jtc register int fid;
323 1.1 jtc
324 1.1 jtc if (name == NULL && (name = TZDEFAULT) == NULL)
325 1.1 jtc return -1;
326 1.9 mrg
327 1.1 jtc {
328 1.1 jtc register int doaccess;
329 1.1 jtc /*
330 1.1 jtc ** Section 4.9.1 of the C standard says that
331 1.1 jtc ** "FILENAME_MAX expands to an integral constant expression
332 1.10 jtc ** that is the size needed for an array of char large enough
333 1.1 jtc ** to hold the longest file name string that the implementation
334 1.1 jtc ** guarantees can be opened."
335 1.1 jtc */
336 1.1 jtc char fullname[FILENAME_MAX + 1];
337 1.1 jtc
338 1.1 jtc if (name[0] == ':')
339 1.1 jtc ++name;
340 1.1 jtc doaccess = name[0] == '/';
341 1.1 jtc if (!doaccess) {
342 1.1 jtc if ((p = TZDIR) == NULL)
343 1.1 jtc return -1;
344 1.1 jtc if ((strlen(p) + strlen(name) + 1) >= sizeof fullname)
345 1.1 jtc return -1;
346 1.8 mrg (void) strcpy(fullname, p); /* XXX strcpy is safe */
347 1.8 mrg (void) strcat(fullname, "/"); /* XXX strcat is safe */
348 1.8 mrg (void) strcat(fullname, name); /* XXX strcat is safe */
349 1.1 jtc /*
350 1.1 jtc ** Set doaccess if '.' (as in "../") shows up in name.
351 1.1 jtc */
352 1.1 jtc if (strchr(name, '.') != NULL)
353 1.1 jtc doaccess = TRUE;
354 1.1 jtc name = fullname;
355 1.1 jtc }
356 1.1 jtc if (doaccess && access(name, R_OK) != 0)
357 1.1 jtc return -1;
358 1.9 mrg /*
359 1.9 mrg * XXX potential security problem here if user of a set-id
360 1.9 mrg * program has set TZ (which is passed in as name) here,
361 1.9 mrg * and uses a race condition trick to defeat the access(2)
362 1.9 mrg * above.
363 1.9 mrg */
364 1.1 jtc if ((fid = open(name, OPEN_MODE)) == -1)
365 1.1 jtc return -1;
366 1.1 jtc }
367 1.1 jtc {
368 1.1 jtc struct tzhead * tzhp;
369 1.14 jtc union {
370 1.29 kleink struct tzhead tzhead;
371 1.29 kleink char buf[sizeof *sp + sizeof *tzhp];
372 1.14 jtc } u;
373 1.1 jtc int ttisstdcnt;
374 1.1 jtc int ttisgmtcnt;
375 1.1 jtc
376 1.14 jtc i = read(fid, u.buf, sizeof u.buf);
377 1.1 jtc if (close(fid) != 0)
378 1.1 jtc return -1;
379 1.34 kleink ttisstdcnt = (int) detzcode(u.tzhead.tzh_ttisstdcnt);
380 1.34 kleink ttisgmtcnt = (int) detzcode(u.tzhead.tzh_ttisgmtcnt);
381 1.14 jtc sp->leapcnt = (int) detzcode(u.tzhead.tzh_leapcnt);
382 1.14 jtc sp->timecnt = (int) detzcode(u.tzhead.tzh_timecnt);
383 1.14 jtc sp->typecnt = (int) detzcode(u.tzhead.tzh_typecnt);
384 1.14 jtc sp->charcnt = (int) detzcode(u.tzhead.tzh_charcnt);
385 1.14 jtc p = u.tzhead.tzh_charcnt + sizeof u.tzhead.tzh_charcnt;
386 1.1 jtc if (sp->leapcnt < 0 || sp->leapcnt > TZ_MAX_LEAPS ||
387 1.1 jtc sp->typecnt <= 0 || sp->typecnt > TZ_MAX_TYPES ||
388 1.1 jtc sp->timecnt < 0 || sp->timecnt > TZ_MAX_TIMES ||
389 1.1 jtc sp->charcnt < 0 || sp->charcnt > TZ_MAX_CHARS ||
390 1.1 jtc (ttisstdcnt != sp->typecnt && ttisstdcnt != 0) ||
391 1.1 jtc (ttisgmtcnt != sp->typecnt && ttisgmtcnt != 0))
392 1.1 jtc return -1;
393 1.14 jtc if (i - (p - u.buf) < sp->timecnt * 4 + /* ats */
394 1.1 jtc sp->timecnt + /* types */
395 1.1 jtc sp->typecnt * (4 + 2) + /* ttinfos */
396 1.1 jtc sp->charcnt + /* chars */
397 1.1 jtc sp->leapcnt * (4 + 4) + /* lsinfos */
398 1.1 jtc ttisstdcnt + /* ttisstds */
399 1.1 jtc ttisgmtcnt) /* ttisgmts */
400 1.1 jtc return -1;
401 1.1 jtc for (i = 0; i < sp->timecnt; ++i) {
402 1.1 jtc sp->ats[i] = detzcode(p);
403 1.1 jtc p += 4;
404 1.1 jtc }
405 1.1 jtc for (i = 0; i < sp->timecnt; ++i) {
406 1.1 jtc sp->types[i] = (unsigned char) *p++;
407 1.1 jtc if (sp->types[i] >= sp->typecnt)
408 1.1 jtc return -1;
409 1.1 jtc }
410 1.1 jtc for (i = 0; i < sp->typecnt; ++i) {
411 1.1 jtc register struct ttinfo * ttisp;
412 1.1 jtc
413 1.1 jtc ttisp = &sp->ttis[i];
414 1.1 jtc ttisp->tt_gmtoff = detzcode(p);
415 1.1 jtc p += 4;
416 1.1 jtc ttisp->tt_isdst = (unsigned char) *p++;
417 1.1 jtc if (ttisp->tt_isdst != 0 && ttisp->tt_isdst != 1)
418 1.1 jtc return -1;
419 1.1 jtc ttisp->tt_abbrind = (unsigned char) *p++;
420 1.1 jtc if (ttisp->tt_abbrind < 0 ||
421 1.1 jtc ttisp->tt_abbrind > sp->charcnt)
422 1.1 jtc return -1;
423 1.1 jtc }
424 1.1 jtc for (i = 0; i < sp->charcnt; ++i)
425 1.1 jtc sp->chars[i] = *p++;
426 1.1 jtc sp->chars[i] = '\0'; /* ensure '\0' at end */
427 1.1 jtc for (i = 0; i < sp->leapcnt; ++i) {
428 1.1 jtc register struct lsinfo * lsisp;
429 1.1 jtc
430 1.1 jtc lsisp = &sp->lsis[i];
431 1.1 jtc lsisp->ls_trans = detzcode(p);
432 1.1 jtc p += 4;
433 1.1 jtc lsisp->ls_corr = detzcode(p);
434 1.1 jtc p += 4;
435 1.1 jtc }
436 1.1 jtc for (i = 0; i < sp->typecnt; ++i) {
437 1.1 jtc register struct ttinfo * ttisp;
438 1.1 jtc
439 1.1 jtc ttisp = &sp->ttis[i];
440 1.1 jtc if (ttisstdcnt == 0)
441 1.1 jtc ttisp->tt_ttisstd = FALSE;
442 1.1 jtc else {
443 1.1 jtc ttisp->tt_ttisstd = *p++;
444 1.1 jtc if (ttisp->tt_ttisstd != TRUE &&
445 1.1 jtc ttisp->tt_ttisstd != FALSE)
446 1.1 jtc return -1;
447 1.1 jtc }
448 1.1 jtc }
449 1.1 jtc for (i = 0; i < sp->typecnt; ++i) {
450 1.1 jtc register struct ttinfo * ttisp;
451 1.1 jtc
452 1.1 jtc ttisp = &sp->ttis[i];
453 1.1 jtc if (ttisgmtcnt == 0)
454 1.1 jtc ttisp->tt_ttisgmt = FALSE;
455 1.1 jtc else {
456 1.1 jtc ttisp->tt_ttisgmt = *p++;
457 1.1 jtc if (ttisp->tt_ttisgmt != TRUE &&
458 1.1 jtc ttisp->tt_ttisgmt != FALSE)
459 1.1 jtc return -1;
460 1.1 jtc }
461 1.1 jtc }
462 1.1 jtc }
463 1.1 jtc return 0;
464 1.1 jtc }
465 1.1 jtc
466 1.1 jtc static const int mon_lengths[2][MONSPERYEAR] = {
467 1.1 jtc { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 },
468 1.1 jtc { 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }
469 1.1 jtc };
470 1.1 jtc
471 1.1 jtc static const int year_lengths[2] = {
472 1.1 jtc DAYSPERNYEAR, DAYSPERLYEAR
473 1.1 jtc };
474 1.1 jtc
475 1.1 jtc /*
476 1.1 jtc ** Given a pointer into a time zone string, scan until a character that is not
477 1.1 jtc ** a valid character in a zone name is found. Return a pointer to that
478 1.1 jtc ** character.
479 1.1 jtc */
480 1.1 jtc
481 1.1 jtc static const char *
482 1.42 christos __getzname(strp)
483 1.1 jtc register const char * strp;
484 1.1 jtc {
485 1.1 jtc register char c;
486 1.1 jtc
487 1.5 jtc while ((c = *strp) != '\0' && !is_digit(c) && c != ',' && c != '-' &&
488 1.1 jtc c != '+')
489 1.1 jtc ++strp;
490 1.1 jtc return strp;
491 1.1 jtc }
492 1.1 jtc
493 1.1 jtc /*
494 1.1 jtc ** Given a pointer into a time zone string, extract a number from that string.
495 1.1 jtc ** Check that the number is within a specified range; if it is not, return
496 1.1 jtc ** NULL.
497 1.1 jtc ** Otherwise, return a pointer to the first character not part of the number.
498 1.1 jtc */
499 1.1 jtc
500 1.1 jtc static const char *
501 1.1 jtc getnum(strp, nump, min, max)
502 1.1 jtc register const char * strp;
503 1.1 jtc int * const nump;
504 1.1 jtc const int min;
505 1.1 jtc const int max;
506 1.1 jtc {
507 1.1 jtc register char c;
508 1.1 jtc register int num;
509 1.1 jtc
510 1.5 jtc if (strp == NULL || !is_digit(c = *strp))
511 1.1 jtc return NULL;
512 1.1 jtc num = 0;
513 1.5 jtc do {
514 1.1 jtc num = num * 10 + (c - '0');
515 1.1 jtc if (num > max)
516 1.1 jtc return NULL; /* illegal value */
517 1.5 jtc c = *++strp;
518 1.5 jtc } while (is_digit(c));
519 1.1 jtc if (num < min)
520 1.1 jtc return NULL; /* illegal value */
521 1.1 jtc *nump = num;
522 1.1 jtc return strp;
523 1.1 jtc }
524 1.1 jtc
525 1.1 jtc /*
526 1.1 jtc ** Given a pointer into a time zone string, extract a number of seconds,
527 1.1 jtc ** in hh[:mm[:ss]] form, from the string.
528 1.1 jtc ** If any error occurs, return NULL.
529 1.1 jtc ** Otherwise, return a pointer to the first character not part of the number
530 1.1 jtc ** of seconds.
531 1.1 jtc */
532 1.1 jtc
533 1.1 jtc static const char *
534 1.1 jtc getsecs(strp, secsp)
535 1.1 jtc register const char * strp;
536 1.1 jtc long * const secsp;
537 1.1 jtc {
538 1.1 jtc int num;
539 1.1 jtc
540 1.1 jtc /*
541 1.1 jtc ** `HOURSPERDAY * DAYSPERWEEK - 1' allows quasi-Posix rules like
542 1.1 jtc ** "M10.4.6/26", which does not conform to Posix,
543 1.1 jtc ** but which specifies the equivalent of
544 1.1 jtc ** ``02:00 on the first Sunday on or after 23 Oct''.
545 1.1 jtc */
546 1.1 jtc strp = getnum(strp, &num, 0, HOURSPERDAY * DAYSPERWEEK - 1);
547 1.1 jtc if (strp == NULL)
548 1.1 jtc return NULL;
549 1.1 jtc *secsp = num * (long) SECSPERHOUR;
550 1.1 jtc if (*strp == ':') {
551 1.1 jtc ++strp;
552 1.1 jtc strp = getnum(strp, &num, 0, MINSPERHOUR - 1);
553 1.1 jtc if (strp == NULL)
554 1.1 jtc return NULL;
555 1.1 jtc *secsp += num * SECSPERMIN;
556 1.1 jtc if (*strp == ':') {
557 1.1 jtc ++strp;
558 1.1 jtc /* `SECSPERMIN' allows for leap seconds. */
559 1.1 jtc strp = getnum(strp, &num, 0, SECSPERMIN);
560 1.1 jtc if (strp == NULL)
561 1.1 jtc return NULL;
562 1.1 jtc *secsp += num;
563 1.1 jtc }
564 1.1 jtc }
565 1.1 jtc return strp;
566 1.1 jtc }
567 1.1 jtc
568 1.1 jtc /*
569 1.1 jtc ** Given a pointer into a time zone string, extract an offset, in
570 1.1 jtc ** [+-]hh[:mm[:ss]] form, from the string.
571 1.1 jtc ** If any error occurs, return NULL.
572 1.1 jtc ** Otherwise, return a pointer to the first character not part of the time.
573 1.1 jtc */
574 1.1 jtc
575 1.1 jtc static const char *
576 1.42 christos __getoffset(strp, offsetp)
577 1.1 jtc register const char * strp;
578 1.1 jtc long * const offsetp;
579 1.1 jtc {
580 1.5 jtc register int neg = 0;
581 1.1 jtc
582 1.1 jtc if (*strp == '-') {
583 1.1 jtc neg = 1;
584 1.1 jtc ++strp;
585 1.5 jtc } else if (*strp == '+')
586 1.5 jtc ++strp;
587 1.1 jtc strp = getsecs(strp, offsetp);
588 1.1 jtc if (strp == NULL)
589 1.1 jtc return NULL; /* illegal time */
590 1.1 jtc if (neg)
591 1.1 jtc *offsetp = -*offsetp;
592 1.1 jtc return strp;
593 1.1 jtc }
594 1.1 jtc
595 1.1 jtc /*
596 1.1 jtc ** Given a pointer into a time zone string, extract a rule in the form
597 1.1 jtc ** date[/time]. See POSIX section 8 for the format of "date" and "time".
598 1.1 jtc ** If a valid rule is not found, return NULL.
599 1.1 jtc ** Otherwise, return a pointer to the first character not part of the rule.
600 1.1 jtc */
601 1.1 jtc
602 1.1 jtc static const char *
603 1.42 christos __getrule(strp, rulep)
604 1.1 jtc const char * strp;
605 1.1 jtc register struct rule * const rulep;
606 1.1 jtc {
607 1.1 jtc if (*strp == 'J') {
608 1.1 jtc /*
609 1.1 jtc ** Julian day.
610 1.1 jtc */
611 1.1 jtc rulep->r_type = JULIAN_DAY;
612 1.1 jtc ++strp;
613 1.1 jtc strp = getnum(strp, &rulep->r_day, 1, DAYSPERNYEAR);
614 1.1 jtc } else if (*strp == 'M') {
615 1.1 jtc /*
616 1.1 jtc ** Month, week, day.
617 1.1 jtc */
618 1.1 jtc rulep->r_type = MONTH_NTH_DAY_OF_WEEK;
619 1.1 jtc ++strp;
620 1.1 jtc strp = getnum(strp, &rulep->r_mon, 1, MONSPERYEAR);
621 1.1 jtc if (strp == NULL)
622 1.1 jtc return NULL;
623 1.1 jtc if (*strp++ != '.')
624 1.1 jtc return NULL;
625 1.1 jtc strp = getnum(strp, &rulep->r_week, 1, 5);
626 1.1 jtc if (strp == NULL)
627 1.1 jtc return NULL;
628 1.1 jtc if (*strp++ != '.')
629 1.1 jtc return NULL;
630 1.1 jtc strp = getnum(strp, &rulep->r_day, 0, DAYSPERWEEK - 1);
631 1.5 jtc } else if (is_digit(*strp)) {
632 1.1 jtc /*
633 1.1 jtc ** Day of year.
634 1.1 jtc */
635 1.1 jtc rulep->r_type = DAY_OF_YEAR;
636 1.1 jtc strp = getnum(strp, &rulep->r_day, 0, DAYSPERLYEAR - 1);
637 1.1 jtc } else return NULL; /* invalid format */
638 1.1 jtc if (strp == NULL)
639 1.1 jtc return NULL;
640 1.1 jtc if (*strp == '/') {
641 1.1 jtc /*
642 1.1 jtc ** Time specified.
643 1.1 jtc */
644 1.1 jtc ++strp;
645 1.1 jtc strp = getsecs(strp, &rulep->r_time);
646 1.1 jtc } else rulep->r_time = 2 * SECSPERHOUR; /* default = 2:00:00 */
647 1.1 jtc return strp;
648 1.1 jtc }
649 1.1 jtc
650 1.1 jtc /*
651 1.14 jtc ** Given the Epoch-relative time of January 1, 00:00:00 UTC, in a year, the
652 1.14 jtc ** year, a rule, and the offset from UTC at the time that rule takes effect,
653 1.1 jtc ** calculate the Epoch-relative time that rule takes effect.
654 1.1 jtc */
655 1.1 jtc
656 1.1 jtc static time_t
657 1.42 christos __transtime(janfirst, year, rulep, offset)
658 1.1 jtc const time_t janfirst;
659 1.1 jtc const int year;
660 1.1 jtc register const struct rule * const rulep;
661 1.1 jtc const long offset;
662 1.1 jtc {
663 1.1 jtc register int leapyear;
664 1.1 jtc register time_t value;
665 1.1 jtc register int i;
666 1.1 jtc int d, m1, yy0, yy1, yy2, dow;
667 1.1 jtc
668 1.1 jtc INITIALIZE(value);
669 1.1 jtc leapyear = isleap(year);
670 1.1 jtc switch (rulep->r_type) {
671 1.1 jtc
672 1.1 jtc case JULIAN_DAY:
673 1.1 jtc /*
674 1.1 jtc ** Jn - Julian day, 1 == January 1, 60 == March 1 even in leap
675 1.1 jtc ** years.
676 1.1 jtc ** In non-leap years, or if the day number is 59 or less, just
677 1.1 jtc ** add SECSPERDAY times the day number-1 to the time of
678 1.1 jtc ** January 1, midnight, to get the day.
679 1.1 jtc */
680 1.1 jtc value = janfirst + (rulep->r_day - 1) * SECSPERDAY;
681 1.1 jtc if (leapyear && rulep->r_day >= 60)
682 1.1 jtc value += SECSPERDAY;
683 1.1 jtc break;
684 1.1 jtc
685 1.1 jtc case DAY_OF_YEAR:
686 1.1 jtc /*
687 1.1 jtc ** n - day of year.
688 1.1 jtc ** Just add SECSPERDAY times the day number to the time of
689 1.1 jtc ** January 1, midnight, to get the day.
690 1.1 jtc */
691 1.1 jtc value = janfirst + rulep->r_day * SECSPERDAY;
692 1.1 jtc break;
693 1.1 jtc
694 1.1 jtc case MONTH_NTH_DAY_OF_WEEK:
695 1.1 jtc /*
696 1.1 jtc ** Mm.n.d - nth "dth day" of month m.
697 1.1 jtc */
698 1.1 jtc value = janfirst;
699 1.1 jtc for (i = 0; i < rulep->r_mon - 1; ++i)
700 1.1 jtc value += mon_lengths[leapyear][i] * SECSPERDAY;
701 1.1 jtc
702 1.1 jtc /*
703 1.1 jtc ** Use Zeller's Congruence to get day-of-week of first day of
704 1.1 jtc ** month.
705 1.1 jtc */
706 1.1 jtc m1 = (rulep->r_mon + 9) % 12 + 1;
707 1.1 jtc yy0 = (rulep->r_mon <= 2) ? (year - 1) : year;
708 1.1 jtc yy1 = yy0 / 100;
709 1.1 jtc yy2 = yy0 % 100;
710 1.1 jtc dow = ((26 * m1 - 2) / 10 +
711 1.1 jtc 1 + yy2 + yy2 / 4 + yy1 / 4 - 2 * yy1) % 7;
712 1.1 jtc if (dow < 0)
713 1.1 jtc dow += DAYSPERWEEK;
714 1.1 jtc
715 1.1 jtc /*
716 1.1 jtc ** "dow" is the day-of-week of the first day of the month. Get
717 1.1 jtc ** the day-of-month (zero-origin) of the first "dow" day of the
718 1.1 jtc ** month.
719 1.1 jtc */
720 1.1 jtc d = rulep->r_day - dow;
721 1.1 jtc if (d < 0)
722 1.1 jtc d += DAYSPERWEEK;
723 1.1 jtc for (i = 1; i < rulep->r_week; ++i) {
724 1.1 jtc if (d + DAYSPERWEEK >=
725 1.1 jtc mon_lengths[leapyear][rulep->r_mon - 1])
726 1.1 jtc break;
727 1.1 jtc d += DAYSPERWEEK;
728 1.1 jtc }
729 1.1 jtc
730 1.1 jtc /*
731 1.1 jtc ** "d" is the day-of-month (zero-origin) of the day we want.
732 1.1 jtc */
733 1.1 jtc value += d * SECSPERDAY;
734 1.1 jtc break;
735 1.1 jtc }
736 1.1 jtc
737 1.1 jtc /*
738 1.14 jtc ** "value" is the Epoch-relative time of 00:00:00 UTC on the day in
739 1.1 jtc ** question. To get the Epoch-relative time of the specified local
740 1.1 jtc ** time on that day, add the transition time and the current offset
741 1.14 jtc ** from UTC.
742 1.1 jtc */
743 1.1 jtc return value + rulep->r_time + offset;
744 1.1 jtc }
745 1.1 jtc
746 1.1 jtc /*
747 1.1 jtc ** Given a POSIX section 8-style TZ string, fill in the rule tables as
748 1.1 jtc ** appropriate.
749 1.1 jtc */
750 1.1 jtc
751 1.1 jtc static int
752 1.42 christos __tzparse(name, sp, lastditch)
753 1.1 jtc const char * name;
754 1.1 jtc register struct state * const sp;
755 1.1 jtc const int lastditch;
756 1.1 jtc {
757 1.1 jtc const char * stdname;
758 1.1 jtc const char * dstname;
759 1.1 jtc size_t stdlen;
760 1.1 jtc size_t dstlen;
761 1.1 jtc long stdoffset;
762 1.1 jtc long dstoffset;
763 1.1 jtc register time_t * atp;
764 1.1 jtc register unsigned char * typep;
765 1.1 jtc register char * cp;
766 1.1 jtc register int load_result;
767 1.1 jtc
768 1.1 jtc INITIALIZE(dstname);
769 1.1 jtc stdname = name;
770 1.1 jtc if (lastditch) {
771 1.1 jtc stdlen = strlen(name); /* length of standard zone name */
772 1.1 jtc name += stdlen;
773 1.1 jtc if (stdlen >= sizeof sp->chars)
774 1.1 jtc stdlen = (sizeof sp->chars) - 1;
775 1.10 jtc stdoffset = 0;
776 1.1 jtc } else {
777 1.42 christos name = __getzname(name);
778 1.1 jtc stdlen = name - stdname;
779 1.1 jtc if (stdlen < 3)
780 1.1 jtc return -1;
781 1.10 jtc if (*name == '\0')
782 1.10 jtc return -1;
783 1.42 christos name = __getoffset(name, &stdoffset);
784 1.1 jtc if (name == NULL)
785 1.1 jtc return -1;
786 1.1 jtc }
787 1.42 christos load_result = __tzload(TZDEFRULES, sp);
788 1.1 jtc if (load_result != 0)
789 1.1 jtc sp->leapcnt = 0; /* so, we're off a little */
790 1.1 jtc if (*name != '\0') {
791 1.1 jtc dstname = name;
792 1.42 christos name = __getzname(name);
793 1.1 jtc dstlen = name - dstname; /* length of DST zone name */
794 1.1 jtc if (dstlen < 3)
795 1.1 jtc return -1;
796 1.1 jtc if (*name != '\0' && *name != ',' && *name != ';') {
797 1.42 christos name = __getoffset(name, &dstoffset);
798 1.1 jtc if (name == NULL)
799 1.1 jtc return -1;
800 1.1 jtc } else dstoffset = stdoffset - SECSPERHOUR;
801 1.22 kleink if (*name == '\0' && load_result != 0)
802 1.22 kleink name = TZDEFRULESTRING;
803 1.1 jtc if (*name == ',' || *name == ';') {
804 1.1 jtc struct rule start;
805 1.1 jtc struct rule end;
806 1.1 jtc register int year;
807 1.1 jtc register time_t janfirst;
808 1.1 jtc time_t starttime;
809 1.1 jtc time_t endtime;
810 1.1 jtc
811 1.1 jtc ++name;
812 1.42 christos if ((name = __getrule(name, &start)) == NULL)
813 1.1 jtc return -1;
814 1.1 jtc if (*name++ != ',')
815 1.1 jtc return -1;
816 1.42 christos if ((name = __getrule(name, &end)) == NULL)
817 1.1 jtc return -1;
818 1.1 jtc if (*name != '\0')
819 1.1 jtc return -1;
820 1.1 jtc sp->typecnt = 2; /* standard time and DST */
821 1.1 jtc /*
822 1.1 jtc ** Two transitions per year, from EPOCH_YEAR to 2037.
823 1.1 jtc */
824 1.1 jtc sp->timecnt = 2 * (2037 - EPOCH_YEAR + 1);
825 1.1 jtc if (sp->timecnt > TZ_MAX_TIMES)
826 1.1 jtc return -1;
827 1.1 jtc sp->ttis[0].tt_gmtoff = -dstoffset;
828 1.1 jtc sp->ttis[0].tt_isdst = 1;
829 1.1 jtc sp->ttis[0].tt_abbrind = stdlen + 1;
830 1.1 jtc sp->ttis[1].tt_gmtoff = -stdoffset;
831 1.1 jtc sp->ttis[1].tt_isdst = 0;
832 1.1 jtc sp->ttis[1].tt_abbrind = 0;
833 1.1 jtc atp = sp->ats;
834 1.1 jtc typep = sp->types;
835 1.1 jtc janfirst = 0;
836 1.1 jtc for (year = EPOCH_YEAR; year <= 2037; ++year) {
837 1.42 christos starttime = __transtime(janfirst, year, &start,
838 1.1 jtc stdoffset);
839 1.42 christos endtime = __transtime(janfirst, year, &end,
840 1.1 jtc dstoffset);
841 1.1 jtc if (starttime > endtime) {
842 1.1 jtc *atp++ = endtime;
843 1.1 jtc *typep++ = 1; /* DST ends */
844 1.1 jtc *atp++ = starttime;
845 1.1 jtc *typep++ = 0; /* DST begins */
846 1.1 jtc } else {
847 1.1 jtc *atp++ = starttime;
848 1.1 jtc *typep++ = 0; /* DST begins */
849 1.1 jtc *atp++ = endtime;
850 1.1 jtc *typep++ = 1; /* DST ends */
851 1.1 jtc }
852 1.1 jtc janfirst += year_lengths[isleap(year)] *
853 1.1 jtc SECSPERDAY;
854 1.1 jtc }
855 1.1 jtc } else {
856 1.1 jtc register long theirstdoffset;
857 1.1 jtc register long theiroffset;
858 1.1 jtc register int i;
859 1.1 jtc register int j;
860 1.1 jtc
861 1.1 jtc if (*name != '\0')
862 1.1 jtc return -1;
863 1.1 jtc /*
864 1.39 christos ** Initial values of theirstdoffset
865 1.1 jtc */
866 1.1 jtc theirstdoffset = 0;
867 1.1 jtc for (i = 0; i < sp->timecnt; ++i) {
868 1.1 jtc j = sp->types[i];
869 1.1 jtc if (!sp->ttis[j].tt_isdst) {
870 1.5 jtc theirstdoffset =
871 1.5 jtc -sp->ttis[j].tt_gmtoff;
872 1.1 jtc break;
873 1.1 jtc }
874 1.1 jtc }
875 1.1 jtc /*
876 1.1 jtc ** Initially we're assumed to be in standard time.
877 1.1 jtc */
878 1.1 jtc theiroffset = theirstdoffset;
879 1.1 jtc /*
880 1.1 jtc ** Now juggle transition times and types
881 1.1 jtc ** tracking offsets as you do.
882 1.1 jtc */
883 1.1 jtc for (i = 0; i < sp->timecnt; ++i) {
884 1.1 jtc j = sp->types[i];
885 1.1 jtc sp->types[i] = sp->ttis[j].tt_isdst;
886 1.1 jtc if (sp->ttis[j].tt_ttisgmt) {
887 1.1 jtc /* No adjustment to transition time */
888 1.1 jtc } else {
889 1.1 jtc /*
890 1.1 jtc ** If summer time is in effect, and the
891 1.1 jtc ** transition time was not specified as
892 1.1 jtc ** standard time, add the summer time
893 1.1 jtc ** offset to the transition time;
894 1.1 jtc ** otherwise, add the standard time
895 1.1 jtc ** offset to the transition time.
896 1.1 jtc */
897 1.1 jtc /*
898 1.1 jtc ** Transitions from DST to DDST
899 1.1 jtc ** will effectively disappear since
900 1.1 jtc ** POSIX provides for only one DST
901 1.1 jtc ** offset.
902 1.1 jtc */
903 1.38 christos sp->ats[i] += stdoffset -
904 1.38 christos theirstdoffset;
905 1.1 jtc }
906 1.1 jtc theiroffset = -sp->ttis[j].tt_gmtoff;
907 1.39 christos if (!sp->ttis[j].tt_isdst)
908 1.39 christos theirstdoffset = theiroffset;
909 1.1 jtc }
910 1.1 jtc /*
911 1.1 jtc ** Finally, fill in ttis.
912 1.1 jtc ** ttisstd and ttisgmt need not be handled.
913 1.1 jtc */
914 1.1 jtc sp->ttis[0].tt_gmtoff = -stdoffset;
915 1.1 jtc sp->ttis[0].tt_isdst = FALSE;
916 1.1 jtc sp->ttis[0].tt_abbrind = 0;
917 1.1 jtc sp->ttis[1].tt_gmtoff = -dstoffset;
918 1.1 jtc sp->ttis[1].tt_isdst = TRUE;
919 1.1 jtc sp->ttis[1].tt_abbrind = stdlen + 1;
920 1.7 jtc sp->typecnt = 2;
921 1.1 jtc }
922 1.1 jtc } else {
923 1.1 jtc dstlen = 0;
924 1.1 jtc sp->typecnt = 1; /* only standard time */
925 1.1 jtc sp->timecnt = 0;
926 1.1 jtc sp->ttis[0].tt_gmtoff = -stdoffset;
927 1.1 jtc sp->ttis[0].tt_isdst = 0;
928 1.1 jtc sp->ttis[0].tt_abbrind = 0;
929 1.1 jtc }
930 1.1 jtc sp->charcnt = stdlen + 1;
931 1.1 jtc if (dstlen != 0)
932 1.1 jtc sp->charcnt += dstlen + 1;
933 1.10 jtc if ((size_t) sp->charcnt > sizeof sp->chars)
934 1.1 jtc return -1;
935 1.1 jtc cp = sp->chars;
936 1.1 jtc (void) strncpy(cp, stdname, stdlen);
937 1.1 jtc cp += stdlen;
938 1.1 jtc *cp++ = '\0';
939 1.1 jtc if (dstlen != 0) {
940 1.1 jtc (void) strncpy(cp, dstname, dstlen);
941 1.1 jtc *(cp + dstlen) = '\0';
942 1.1 jtc }
943 1.1 jtc return 0;
944 1.1 jtc }
945 1.1 jtc
946 1.1 jtc static void
947 1.42 christos __gmtload(sp)
948 1.1 jtc struct state * const sp;
949 1.1 jtc {
950 1.42 christos if (__tzload(gmt, sp) != 0)
951 1.42 christos (void) __tzparse(gmt, sp, TRUE);
952 1.1 jtc }
953 1.1 jtc
954 1.19 kleink static void
955 1.42 christos __tzsetwall_unlocked P((void))
956 1.1 jtc {
957 1.42 christos if (__lcl_is_set < 0)
958 1.1 jtc return;
959 1.42 christos __lcl_is_set = -1;
960 1.1 jtc
961 1.1 jtc #ifdef ALL_STATE
962 1.1 jtc if (lclptr == NULL) {
963 1.41 christos int saveerrno = errno;
964 1.1 jtc lclptr = (struct state *) malloc(sizeof *lclptr);
965 1.41 christos errno = saveerrno;
966 1.1 jtc if (lclptr == NULL) {
967 1.42 christos __settzname(); /* all we can do */
968 1.1 jtc return;
969 1.1 jtc }
970 1.1 jtc }
971 1.1 jtc #endif /* defined ALL_STATE */
972 1.42 christos if (__tzload((char *) NULL, lclptr) != 0)
973 1.42 christos __gmtload(lclptr);
974 1.42 christos __settzname();
975 1.1 jtc }
976 1.1 jtc
977 1.19 kleink #ifndef STD_INSPIRED
978 1.19 kleink /*
979 1.19 kleink ** A non-static declaration of tzsetwall in a system header file
980 1.19 kleink ** may cause a warning about this upcoming static declaration...
981 1.19 kleink */
982 1.19 kleink static
983 1.19 kleink #endif /* !defined STD_INSPIRED */
984 1.1 jtc void
985 1.19 kleink tzsetwall P((void))
986 1.19 kleink {
987 1.42 christos rwlock_wrlock(&__lcl_lock);
988 1.42 christos __tzsetwall_unlocked();
989 1.42 christos rwlock_unlock(&__lcl_lock);
990 1.19 kleink }
991 1.19 kleink
992 1.19 kleink static void
993 1.42 christos __tzset_unlocked P((void))
994 1.1 jtc {
995 1.1 jtc register const char * name;
996 1.41 christos int saveerrno;
997 1.1 jtc
998 1.41 christos saveerrno = errno;
999 1.1 jtc name = getenv("TZ");
1000 1.41 christos errno = saveerrno;
1001 1.1 jtc if (name == NULL) {
1002 1.42 christos __tzsetwall_unlocked();
1003 1.1 jtc return;
1004 1.1 jtc }
1005 1.1 jtc
1006 1.42 christos if (__lcl_is_set > 0 && strcmp(__lcl_TZname, name) == 0)
1007 1.1 jtc return;
1008 1.42 christos __lcl_is_set = strlen(name) < sizeof __lcl_TZname;
1009 1.42 christos if (__lcl_is_set)
1010 1.42 christos (void)strlcpy(__lcl_TZname, name, sizeof(__lcl_TZname));
1011 1.1 jtc
1012 1.1 jtc #ifdef ALL_STATE
1013 1.1 jtc if (lclptr == NULL) {
1014 1.41 christos saveerrno = errno;
1015 1.1 jtc lclptr = (struct state *) malloc(sizeof *lclptr);
1016 1.41 christos errno = saveerrno;
1017 1.1 jtc if (lclptr == NULL) {
1018 1.42 christos __settzname(); /* all we can do */
1019 1.1 jtc return;
1020 1.1 jtc }
1021 1.1 jtc }
1022 1.1 jtc #endif /* defined ALL_STATE */
1023 1.1 jtc if (*name == '\0') {
1024 1.1 jtc /*
1025 1.1 jtc ** User wants it fast rather than right.
1026 1.1 jtc */
1027 1.1 jtc lclptr->leapcnt = 0; /* so, we're off a little */
1028 1.1 jtc lclptr->timecnt = 0;
1029 1.27 atatat lclptr->typecnt = 0;
1030 1.27 atatat lclptr->ttis[0].tt_isdst = 0;
1031 1.1 jtc lclptr->ttis[0].tt_gmtoff = 0;
1032 1.1 jtc lclptr->ttis[0].tt_abbrind = 0;
1033 1.32 itojun (void)strlcpy(lclptr->chars, gmt, sizeof(lclptr->chars));
1034 1.42 christos } else if (__tzload(name, lclptr) != 0)
1035 1.42 christos if (name[0] == ':' || __tzparse(name, lclptr, FALSE) != 0)
1036 1.42 christos (void) __gmtload(lclptr);
1037 1.42 christos __settzname();
1038 1.1 jtc }
1039 1.1 jtc
1040 1.19 kleink void
1041 1.19 kleink tzset P((void))
1042 1.19 kleink {
1043 1.42 christos rwlock_wrlock(&__lcl_lock);
1044 1.42 christos __tzset_unlocked();
1045 1.42 christos rwlock_unlock(&__lcl_lock);
1046 1.19 kleink }
1047 1.19 kleink
1048 1.1 jtc /*
1049 1.1 jtc ** The easy way to behave "as if no library function calls" localtime
1050 1.1 jtc ** is to not call it--so we drop its guts into "localsub", which can be
1051 1.1 jtc ** freely called. (And no, the PANS doesn't require the above behavior--
1052 1.1 jtc ** but it *is* desirable.)
1053 1.1 jtc **
1054 1.1 jtc ** The unused offset argument is for the benefit of mktime variants.
1055 1.1 jtc */
1056 1.1 jtc
1057 1.1 jtc /*ARGSUSED*/
1058 1.1 jtc static void
1059 1.1 jtc localsub(timep, offset, tmp)
1060 1.1 jtc const time_t * const timep;
1061 1.1 jtc const long offset;
1062 1.1 jtc struct tm * const tmp;
1063 1.1 jtc {
1064 1.1 jtc register struct state * sp;
1065 1.1 jtc register const struct ttinfo * ttisp;
1066 1.1 jtc register int i;
1067 1.1 jtc const time_t t = *timep;
1068 1.1 jtc
1069 1.1 jtc sp = lclptr;
1070 1.1 jtc #ifdef ALL_STATE
1071 1.1 jtc if (sp == NULL) {
1072 1.1 jtc gmtsub(timep, offset, tmp);
1073 1.1 jtc return;
1074 1.1 jtc }
1075 1.1 jtc #endif /* defined ALL_STATE */
1076 1.1 jtc if (sp->timecnt == 0 || t < sp->ats[0]) {
1077 1.1 jtc i = 0;
1078 1.1 jtc while (sp->ttis[i].tt_isdst)
1079 1.1 jtc if (++i >= sp->typecnt) {
1080 1.1 jtc i = 0;
1081 1.1 jtc break;
1082 1.1 jtc }
1083 1.1 jtc } else {
1084 1.1 jtc for (i = 1; i < sp->timecnt; ++i)
1085 1.1 jtc if (t < sp->ats[i])
1086 1.1 jtc break;
1087 1.1 jtc i = sp->types[i - 1];
1088 1.1 jtc }
1089 1.1 jtc ttisp = &sp->ttis[i];
1090 1.1 jtc /*
1091 1.1 jtc ** To get (wrong) behavior that's compatible with System V Release 2.0
1092 1.1 jtc ** you'd replace the statement below with
1093 1.1 jtc ** t += ttisp->tt_gmtoff;
1094 1.1 jtc ** timesub(&t, 0L, sp, tmp);
1095 1.1 jtc */
1096 1.1 jtc timesub(&t, ttisp->tt_gmtoff, sp, tmp);
1097 1.1 jtc tmp->tm_isdst = ttisp->tt_isdst;
1098 1.1 jtc tzname[tmp->tm_isdst] = &sp->chars[ttisp->tt_abbrind];
1099 1.1 jtc #ifdef TM_ZONE
1100 1.1 jtc tmp->TM_ZONE = &sp->chars[ttisp->tt_abbrind];
1101 1.1 jtc #endif /* defined TM_ZONE */
1102 1.1 jtc }
1103 1.1 jtc
1104 1.1 jtc struct tm *
1105 1.1 jtc localtime(timep)
1106 1.1 jtc const time_t * const timep;
1107 1.1 jtc {
1108 1.42 christos rwlock_wrlock(&__lcl_lock);
1109 1.42 christos __tzset_unlocked();
1110 1.1 jtc localsub(timep, 0L, &tm);
1111 1.42 christos rwlock_unlock(&__lcl_lock);
1112 1.1 jtc return &tm;
1113 1.1 jtc }
1114 1.1 jtc
1115 1.1 jtc /*
1116 1.35 kleink ** Re-entrant version of localtime.
1117 1.35 kleink */
1118 1.35 kleink
1119 1.18 kleink struct tm *
1120 1.28 lukem localtime_r(timep, tmp)
1121 1.18 kleink const time_t * const timep;
1122 1.28 lukem struct tm * tmp;
1123 1.18 kleink {
1124 1.42 christos rwlock_rdlock(&__lcl_lock);
1125 1.42 christos __tzset_unlocked();
1126 1.28 lukem localsub(timep, 0L, tmp);
1127 1.42 christos rwlock_unlock(&__lcl_lock);
1128 1.28 lukem return tmp;
1129 1.18 kleink }
1130 1.18 kleink
1131 1.18 kleink /*
1132 1.1 jtc ** gmtsub is to gmtime as localsub is to localtime.
1133 1.1 jtc */
1134 1.1 jtc
1135 1.1 jtc static void
1136 1.1 jtc gmtsub(timep, offset, tmp)
1137 1.1 jtc const time_t * const timep;
1138 1.1 jtc const long offset;
1139 1.1 jtc struct tm * const tmp;
1140 1.1 jtc {
1141 1.33 christos #ifdef _REENTRANT
1142 1.19 kleink static mutex_t gmt_mutex = MUTEX_INITIALIZER;
1143 1.19 kleink #endif
1144 1.19 kleink
1145 1.19 kleink mutex_lock(&gmt_mutex);
1146 1.42 christos if (!__gmt_is_set) {
1147 1.41 christos #ifdef ALL_STATE
1148 1.41 christos int saveerrno;
1149 1.41 christos #endif
1150 1.42 christos __gmt_is_set = TRUE;
1151 1.1 jtc #ifdef ALL_STATE
1152 1.41 christos saveerrno = errno;
1153 1.1 jtc gmtptr = (struct state *) malloc(sizeof *gmtptr);
1154 1.41 christos errno = saveerrno;
1155 1.1 jtc if (gmtptr != NULL)
1156 1.1 jtc #endif /* defined ALL_STATE */
1157 1.42 christos __gmtload(gmtptr);
1158 1.1 jtc }
1159 1.19 kleink mutex_unlock(&gmt_mutex);
1160 1.1 jtc timesub(timep, offset, gmtptr, tmp);
1161 1.1 jtc #ifdef TM_ZONE
1162 1.1 jtc /*
1163 1.1 jtc ** Could get fancy here and deliver something such as
1164 1.14 jtc ** "UTC+xxxx" or "UTC-xxxx" if offset is non-zero,
1165 1.1 jtc ** but this is no time for a treasure hunt.
1166 1.1 jtc */
1167 1.1 jtc if (offset != 0)
1168 1.37 christos tmp->TM_ZONE = (__aconst char *)__UNCONST(wildabbr);
1169 1.1 jtc else {
1170 1.1 jtc #ifdef ALL_STATE
1171 1.1 jtc if (gmtptr == NULL)
1172 1.37 christos tmp->TM_ZONE = (__aconst char *)__UNCONST(gmt);
1173 1.1 jtc else tmp->TM_ZONE = gmtptr->chars;
1174 1.1 jtc #endif /* defined ALL_STATE */
1175 1.1 jtc #ifndef ALL_STATE
1176 1.1 jtc tmp->TM_ZONE = gmtptr->chars;
1177 1.1 jtc #endif /* State Farm */
1178 1.1 jtc }
1179 1.1 jtc #endif /* defined TM_ZONE */
1180 1.1 jtc }
1181 1.1 jtc
1182 1.1 jtc struct tm *
1183 1.1 jtc gmtime(timep)
1184 1.1 jtc const time_t * const timep;
1185 1.1 jtc {
1186 1.1 jtc gmtsub(timep, 0L, &tm);
1187 1.1 jtc return &tm;
1188 1.1 jtc }
1189 1.1 jtc
1190 1.18 kleink /*
1191 1.35 kleink ** Re-entrant version of gmtime.
1192 1.35 kleink */
1193 1.35 kleink
1194 1.18 kleink struct tm *
1195 1.28 lukem gmtime_r(timep, tmp)
1196 1.18 kleink const time_t * const timep;
1197 1.28 lukem struct tm * tmp;
1198 1.18 kleink {
1199 1.28 lukem gmtsub(timep, 0L, tmp);
1200 1.28 lukem return tmp;
1201 1.18 kleink }
1202 1.18 kleink
1203 1.1 jtc #ifdef STD_INSPIRED
1204 1.1 jtc
1205 1.1 jtc struct tm *
1206 1.1 jtc offtime(timep, offset)
1207 1.1 jtc const time_t * const timep;
1208 1.1 jtc const long offset;
1209 1.1 jtc {
1210 1.1 jtc gmtsub(timep, offset, &tm);
1211 1.1 jtc return &tm;
1212 1.1 jtc }
1213 1.1 jtc
1214 1.1 jtc #endif /* defined STD_INSPIRED */
1215 1.1 jtc
1216 1.1 jtc static void
1217 1.1 jtc timesub(timep, offset, sp, tmp)
1218 1.1 jtc const time_t * const timep;
1219 1.1 jtc const long offset;
1220 1.1 jtc register const struct state * const sp;
1221 1.1 jtc register struct tm * const tmp;
1222 1.1 jtc {
1223 1.1 jtc register const struct lsinfo * lp;
1224 1.42 christos register time_t days;
1225 1.42 christos register time_t rem;
1226 1.42 christos register time_t y;
1227 1.1 jtc register int yleap;
1228 1.1 jtc register const int * ip;
1229 1.1 jtc register long corr;
1230 1.1 jtc register int hit;
1231 1.1 jtc register int i;
1232 1.1 jtc
1233 1.1 jtc corr = 0;
1234 1.1 jtc hit = 0;
1235 1.1 jtc #ifdef ALL_STATE
1236 1.1 jtc i = (sp == NULL) ? 0 : sp->leapcnt;
1237 1.1 jtc #endif /* defined ALL_STATE */
1238 1.1 jtc #ifndef ALL_STATE
1239 1.1 jtc i = sp->leapcnt;
1240 1.1 jtc #endif /* State Farm */
1241 1.1 jtc while (--i >= 0) {
1242 1.1 jtc lp = &sp->lsis[i];
1243 1.1 jtc if (*timep >= lp->ls_trans) {
1244 1.1 jtc if (*timep == lp->ls_trans) {
1245 1.1 jtc hit = ((i == 0 && lp->ls_corr > 0) ||
1246 1.1 jtc lp->ls_corr > sp->lsis[i - 1].ls_corr);
1247 1.1 jtc if (hit)
1248 1.1 jtc while (i > 0 &&
1249 1.1 jtc sp->lsis[i].ls_trans ==
1250 1.1 jtc sp->lsis[i - 1].ls_trans + 1 &&
1251 1.1 jtc sp->lsis[i].ls_corr ==
1252 1.1 jtc sp->lsis[i - 1].ls_corr + 1) {
1253 1.1 jtc ++hit;
1254 1.1 jtc --i;
1255 1.1 jtc }
1256 1.1 jtc }
1257 1.1 jtc corr = lp->ls_corr;
1258 1.1 jtc break;
1259 1.1 jtc }
1260 1.1 jtc }
1261 1.1 jtc days = *timep / SECSPERDAY;
1262 1.1 jtc rem = *timep % SECSPERDAY;
1263 1.1 jtc #ifdef mc68k
1264 1.42 christos if (*timep == (((time_t)1) << (TYPE_BITS(time_t) - 1))) {
1265 1.1 jtc /*
1266 1.1 jtc ** A 3B1 muffs the division on the most negative number.
1267 1.1 jtc */
1268 1.1 jtc days = -24855;
1269 1.1 jtc rem = -11648;
1270 1.1 jtc }
1271 1.1 jtc #endif /* defined mc68k */
1272 1.1 jtc rem += (offset - corr);
1273 1.1 jtc while (rem < 0) {
1274 1.1 jtc rem += SECSPERDAY;
1275 1.1 jtc --days;
1276 1.1 jtc }
1277 1.1 jtc while (rem >= SECSPERDAY) {
1278 1.1 jtc rem -= SECSPERDAY;
1279 1.1 jtc ++days;
1280 1.1 jtc }
1281 1.1 jtc tmp->tm_hour = (int) (rem / SECSPERHOUR);
1282 1.1 jtc rem = rem % SECSPERHOUR;
1283 1.1 jtc tmp->tm_min = (int) (rem / SECSPERMIN);
1284 1.6 jtc /*
1285 1.6 jtc ** A positive leap second requires a special
1286 1.6 jtc ** representation. This uses "... ??:59:60" et seq.
1287 1.6 jtc */
1288 1.6 jtc tmp->tm_sec = (int) (rem % SECSPERMIN) + hit;
1289 1.1 jtc tmp->tm_wday = (int) ((EPOCH_WDAY + days) % DAYSPERWEEK);
1290 1.1 jtc if (tmp->tm_wday < 0)
1291 1.1 jtc tmp->tm_wday += DAYSPERWEEK;
1292 1.1 jtc y = EPOCH_YEAR;
1293 1.5 jtc #define LEAPS_THRU_END_OF(y) ((y) / 4 - (y) / 100 + (y) / 400)
1294 1.5 jtc while (days < 0 || days >= (long) year_lengths[yleap = isleap(y)]) {
1295 1.42 christos register time_t newy;
1296 1.42 christos newy = (y + days / DAYSPERNYEAR);
1297 1.5 jtc if (days < 0)
1298 1.5 jtc --newy;
1299 1.5 jtc days -= (newy - y) * DAYSPERNYEAR +
1300 1.5 jtc LEAPS_THRU_END_OF(newy - 1) -
1301 1.5 jtc LEAPS_THRU_END_OF(y - 1);
1302 1.5 jtc y = newy;
1303 1.5 jtc }
1304 1.42 christos tmp->tm_year = (int) y - TM_YEAR_BASE;
1305 1.1 jtc tmp->tm_yday = (int) days;
1306 1.1 jtc ip = mon_lengths[yleap];
1307 1.1 jtc for (tmp->tm_mon = 0; days >= (long) ip[tmp->tm_mon]; ++(tmp->tm_mon))
1308 1.1 jtc days = days - (long) ip[tmp->tm_mon];
1309 1.1 jtc tmp->tm_mday = (int) (days + 1);
1310 1.1 jtc tmp->tm_isdst = 0;
1311 1.1 jtc #ifdef TM_GMTOFF
1312 1.1 jtc tmp->TM_GMTOFF = offset;
1313 1.1 jtc #endif /* defined TM_GMTOFF */
1314 1.1 jtc }
1315 1.1 jtc
1316 1.1 jtc char *
1317 1.1 jtc ctime(timep)
1318 1.1 jtc const time_t * const timep;
1319 1.1 jtc {
1320 1.1 jtc /*
1321 1.1 jtc ** Section 4.12.3.2 of X3.159-1989 requires that
1322 1.18 kleink ** The ctime function converts the calendar time pointed to by timer
1323 1.1 jtc ** to local time in the form of a string. It is equivalent to
1324 1.1 jtc ** asctime(localtime(timer))
1325 1.1 jtc */
1326 1.1 jtc return asctime(localtime(timep));
1327 1.18 kleink }
1328 1.18 kleink
1329 1.18 kleink char *
1330 1.18 kleink ctime_r(timep, buf)
1331 1.18 kleink const time_t * const timep;
1332 1.18 kleink char * buf;
1333 1.18 kleink {
1334 1.21 christos struct tm tmp;
1335 1.18 kleink
1336 1.21 christos return asctime_r(localtime_r(timep, &tmp), buf);
1337 1.1 jtc }
1338 1.1 jtc
1339 1.1 jtc /*
1340 1.1 jtc ** Adapted from code provided by Robert Elz, who writes:
1341 1.1 jtc ** The "best" way to do mktime I think is based on an idea of Bob
1342 1.7 jtc ** Kridle's (so its said...) from a long time ago.
1343 1.7 jtc ** [kridle (at) xinet.com as of 1996-01-16.]
1344 1.1 jtc ** It does a binary search of the time_t space. Since time_t's are
1345 1.1 jtc ** just 32 bits, its a max of 32 iterations (even at 64 bits it
1346 1.1 jtc ** would still be very reasonable).
1347 1.1 jtc */
1348 1.1 jtc
1349 1.1 jtc #ifndef WRONG
1350 1.1 jtc #define WRONG (-1)
1351 1.1 jtc #endif /* !defined WRONG */
1352 1.1 jtc
1353 1.1 jtc /*
1354 1.1 jtc ** Simplified normalize logic courtesy Paul Eggert (eggert (at) twinsun.com).
1355 1.1 jtc */
1356 1.1 jtc
1357 1.1 jtc static int
1358 1.1 jtc increment_overflow(number, delta)
1359 1.1 jtc int * number;
1360 1.1 jtc int delta;
1361 1.1 jtc {
1362 1.1 jtc int number0;
1363 1.1 jtc
1364 1.1 jtc number0 = *number;
1365 1.1 jtc *number += delta;
1366 1.1 jtc return (*number < number0) != (delta < 0);
1367 1.1 jtc }
1368 1.1 jtc
1369 1.1 jtc static int
1370 1.1 jtc normalize_overflow(tensptr, unitsptr, base)
1371 1.1 jtc int * const tensptr;
1372 1.1 jtc int * const unitsptr;
1373 1.1 jtc const int base;
1374 1.1 jtc {
1375 1.1 jtc register int tensdelta;
1376 1.1 jtc
1377 1.1 jtc tensdelta = (*unitsptr >= 0) ?
1378 1.1 jtc (*unitsptr / base) :
1379 1.1 jtc (-1 - (-1 - *unitsptr) / base);
1380 1.1 jtc *unitsptr -= tensdelta * base;
1381 1.1 jtc return increment_overflow(tensptr, tensdelta);
1382 1.1 jtc }
1383 1.1 jtc
1384 1.1 jtc static int
1385 1.1 jtc tmcomp(atmp, btmp)
1386 1.1 jtc register const struct tm * const atmp;
1387 1.1 jtc register const struct tm * const btmp;
1388 1.1 jtc {
1389 1.1 jtc register int result;
1390 1.1 jtc
1391 1.1 jtc if ((result = (atmp->tm_year - btmp->tm_year)) == 0 &&
1392 1.1 jtc (result = (atmp->tm_mon - btmp->tm_mon)) == 0 &&
1393 1.1 jtc (result = (atmp->tm_mday - btmp->tm_mday)) == 0 &&
1394 1.1 jtc (result = (atmp->tm_hour - btmp->tm_hour)) == 0 &&
1395 1.1 jtc (result = (atmp->tm_min - btmp->tm_min)) == 0)
1396 1.1 jtc result = atmp->tm_sec - btmp->tm_sec;
1397 1.1 jtc return result;
1398 1.1 jtc }
1399 1.1 jtc
1400 1.1 jtc static time_t
1401 1.13 jtc time2sub(tmp, funcp, offset, okayp, do_norm_secs)
1402 1.1 jtc struct tm * const tmp;
1403 1.1 jtc void (* const funcp) P((const time_t*, long, struct tm*));
1404 1.1 jtc const long offset;
1405 1.1 jtc int * const okayp;
1406 1.13 jtc const int do_norm_secs;
1407 1.1 jtc {
1408 1.1 jtc register const struct state * sp;
1409 1.1 jtc register int dir;
1410 1.1 jtc register int bits;
1411 1.1 jtc register int i, j ;
1412 1.1 jtc register int saved_seconds;
1413 1.1 jtc time_t newt;
1414 1.1 jtc time_t t;
1415 1.1 jtc struct tm yourtm, mytm;
1416 1.1 jtc
1417 1.1 jtc *okayp = FALSE;
1418 1.1 jtc yourtm = *tmp;
1419 1.13 jtc if (do_norm_secs) {
1420 1.13 jtc if (normalize_overflow(&yourtm.tm_min, &yourtm.tm_sec,
1421 1.13 jtc SECSPERMIN))
1422 1.13 jtc return WRONG;
1423 1.13 jtc }
1424 1.1 jtc if (normalize_overflow(&yourtm.tm_hour, &yourtm.tm_min, MINSPERHOUR))
1425 1.1 jtc return WRONG;
1426 1.1 jtc if (normalize_overflow(&yourtm.tm_mday, &yourtm.tm_hour, HOURSPERDAY))
1427 1.1 jtc return WRONG;
1428 1.1 jtc if (normalize_overflow(&yourtm.tm_year, &yourtm.tm_mon, MONSPERYEAR))
1429 1.1 jtc return WRONG;
1430 1.1 jtc /*
1431 1.1 jtc ** Turn yourtm.tm_year into an actual year number for now.
1432 1.1 jtc ** It is converted back to an offset from TM_YEAR_BASE later.
1433 1.1 jtc */
1434 1.1 jtc if (increment_overflow(&yourtm.tm_year, TM_YEAR_BASE))
1435 1.1 jtc return WRONG;
1436 1.1 jtc while (yourtm.tm_mday <= 0) {
1437 1.1 jtc if (increment_overflow(&yourtm.tm_year, -1))
1438 1.1 jtc return WRONG;
1439 1.7 jtc i = yourtm.tm_year + (1 < yourtm.tm_mon);
1440 1.7 jtc yourtm.tm_mday += year_lengths[isleap(i)];
1441 1.1 jtc }
1442 1.1 jtc while (yourtm.tm_mday > DAYSPERLYEAR) {
1443 1.7 jtc i = yourtm.tm_year + (1 < yourtm.tm_mon);
1444 1.7 jtc yourtm.tm_mday -= year_lengths[isleap(i)];
1445 1.1 jtc if (increment_overflow(&yourtm.tm_year, 1))
1446 1.1 jtc return WRONG;
1447 1.1 jtc }
1448 1.1 jtc for ( ; ; ) {
1449 1.1 jtc i = mon_lengths[isleap(yourtm.tm_year)][yourtm.tm_mon];
1450 1.1 jtc if (yourtm.tm_mday <= i)
1451 1.1 jtc break;
1452 1.1 jtc yourtm.tm_mday -= i;
1453 1.1 jtc if (++yourtm.tm_mon >= MONSPERYEAR) {
1454 1.1 jtc yourtm.tm_mon = 0;
1455 1.1 jtc if (increment_overflow(&yourtm.tm_year, 1))
1456 1.1 jtc return WRONG;
1457 1.1 jtc }
1458 1.1 jtc }
1459 1.1 jtc if (increment_overflow(&yourtm.tm_year, -TM_YEAR_BASE))
1460 1.1 jtc return WRONG;
1461 1.29 kleink if (yourtm.tm_sec >= 0 && yourtm.tm_sec < SECSPERMIN)
1462 1.29 kleink saved_seconds = 0;
1463 1.29 kleink else if (yourtm.tm_year + TM_YEAR_BASE < EPOCH_YEAR) {
1464 1.1 jtc /*
1465 1.1 jtc ** We can't set tm_sec to 0, because that might push the
1466 1.1 jtc ** time below the minimum representable time.
1467 1.1 jtc ** Set tm_sec to 59 instead.
1468 1.1 jtc ** This assumes that the minimum representable time is
1469 1.1 jtc ** not in the same minute that a leap second was deleted from,
1470 1.1 jtc ** which is a safer assumption than using 58 would be.
1471 1.1 jtc */
1472 1.1 jtc if (increment_overflow(&yourtm.tm_sec, 1 - SECSPERMIN))
1473 1.1 jtc return WRONG;
1474 1.1 jtc saved_seconds = yourtm.tm_sec;
1475 1.1 jtc yourtm.tm_sec = SECSPERMIN - 1;
1476 1.1 jtc } else {
1477 1.1 jtc saved_seconds = yourtm.tm_sec;
1478 1.1 jtc yourtm.tm_sec = 0;
1479 1.1 jtc }
1480 1.1 jtc /*
1481 1.6 jtc ** Divide the search space in half
1482 1.6 jtc ** (this works whether time_t is signed or unsigned).
1483 1.1 jtc */
1484 1.6 jtc bits = TYPE_BIT(time_t) - 1;
1485 1.1 jtc /*
1486 1.6 jtc ** If time_t is signed, then 0 is just above the median,
1487 1.6 jtc ** assuming two's complement arithmetic.
1488 1.6 jtc ** If time_t is unsigned, then (1 << bits) is just above the median.
1489 1.1 jtc */
1490 1.37 christos /*CONSTCOND*/
1491 1.6 jtc t = TYPE_SIGNED(time_t) ? 0 : (((time_t) 1) << bits);
1492 1.1 jtc for ( ; ; ) {
1493 1.1 jtc (*funcp)(&t, offset, &mytm);
1494 1.1 jtc dir = tmcomp(&mytm, &yourtm);
1495 1.1 jtc if (dir != 0) {
1496 1.1 jtc if (bits-- < 0)
1497 1.1 jtc return WRONG;
1498 1.1 jtc if (bits < 0)
1499 1.6 jtc --t; /* may be needed if new t is minimal */
1500 1.1 jtc else if (dir > 0)
1501 1.6 jtc t -= ((time_t) 1) << bits;
1502 1.6 jtc else t += ((time_t) 1) << bits;
1503 1.1 jtc continue;
1504 1.1 jtc }
1505 1.1 jtc if (yourtm.tm_isdst < 0 || mytm.tm_isdst == yourtm.tm_isdst)
1506 1.1 jtc break;
1507 1.1 jtc /*
1508 1.1 jtc ** Right time, wrong type.
1509 1.1 jtc ** Hunt for right time, right type.
1510 1.1 jtc ** It's okay to guess wrong since the guess
1511 1.1 jtc ** gets checked.
1512 1.1 jtc */
1513 1.1 jtc /*
1514 1.1 jtc ** The (void *) casts are the benefit of SunOS 3.3 on Sun 2's.
1515 1.1 jtc */
1516 1.1 jtc sp = (const struct state *)
1517 1.1 jtc (((void *) funcp == (void *) localsub) ?
1518 1.1 jtc lclptr : gmtptr);
1519 1.1 jtc #ifdef ALL_STATE
1520 1.1 jtc if (sp == NULL)
1521 1.1 jtc return WRONG;
1522 1.1 jtc #endif /* defined ALL_STATE */
1523 1.5 jtc for (i = sp->typecnt - 1; i >= 0; --i) {
1524 1.1 jtc if (sp->ttis[i].tt_isdst != yourtm.tm_isdst)
1525 1.1 jtc continue;
1526 1.5 jtc for (j = sp->typecnt - 1; j >= 0; --j) {
1527 1.1 jtc if (sp->ttis[j].tt_isdst == yourtm.tm_isdst)
1528 1.1 jtc continue;
1529 1.1 jtc newt = t + sp->ttis[j].tt_gmtoff -
1530 1.1 jtc sp->ttis[i].tt_gmtoff;
1531 1.1 jtc (*funcp)(&newt, offset, &mytm);
1532 1.1 jtc if (tmcomp(&mytm, &yourtm) != 0)
1533 1.1 jtc continue;
1534 1.1 jtc if (mytm.tm_isdst != yourtm.tm_isdst)
1535 1.1 jtc continue;
1536 1.1 jtc /*
1537 1.1 jtc ** We have a match.
1538 1.1 jtc */
1539 1.1 jtc t = newt;
1540 1.1 jtc goto label;
1541 1.1 jtc }
1542 1.1 jtc }
1543 1.1 jtc return WRONG;
1544 1.1 jtc }
1545 1.1 jtc label:
1546 1.1 jtc newt = t + saved_seconds;
1547 1.1 jtc if ((newt < t) != (saved_seconds < 0))
1548 1.1 jtc return WRONG;
1549 1.1 jtc t = newt;
1550 1.1 jtc (*funcp)(&t, offset, tmp);
1551 1.1 jtc *okayp = TRUE;
1552 1.1 jtc return t;
1553 1.13 jtc }
1554 1.13 jtc
1555 1.13 jtc static time_t
1556 1.13 jtc time2(tmp, funcp, offset, okayp)
1557 1.13 jtc struct tm * const tmp;
1558 1.13 jtc void (* const funcp) P((const time_t*, long, struct tm*));
1559 1.13 jtc const long offset;
1560 1.13 jtc int * const okayp;
1561 1.13 jtc {
1562 1.13 jtc time_t t;
1563 1.13 jtc
1564 1.13 jtc /*
1565 1.13 jtc ** First try without normalization of seconds
1566 1.13 jtc ** (in case tm_sec contains a value associated with a leap second).
1567 1.13 jtc ** If that fails, try with normalization of seconds.
1568 1.13 jtc */
1569 1.13 jtc t = time2sub(tmp, funcp, offset, okayp, FALSE);
1570 1.13 jtc return *okayp ? t : time2sub(tmp, funcp, offset, okayp, TRUE);
1571 1.1 jtc }
1572 1.1 jtc
1573 1.1 jtc static time_t
1574 1.1 jtc time1(tmp, funcp, offset)
1575 1.1 jtc struct tm * const tmp;
1576 1.5 jtc void (* const funcp) P((const time_t *, long, struct tm *));
1577 1.1 jtc const long offset;
1578 1.1 jtc {
1579 1.1 jtc register time_t t;
1580 1.1 jtc register const struct state * sp;
1581 1.1 jtc register int samei, otheri;
1582 1.35 kleink register int sameind, otherind;
1583 1.35 kleink register int i;
1584 1.35 kleink register int nseen;
1585 1.35 kleink int seen[TZ_MAX_TYPES];
1586 1.35 kleink int types[TZ_MAX_TYPES];
1587 1.1 jtc int okay;
1588 1.1 jtc
1589 1.1 jtc if (tmp->tm_isdst > 1)
1590 1.1 jtc tmp->tm_isdst = 1;
1591 1.1 jtc t = time2(tmp, funcp, offset, &okay);
1592 1.1 jtc #ifdef PCTS
1593 1.1 jtc /*
1594 1.1 jtc ** PCTS code courtesy Grant Sullivan (grant (at) osf.org).
1595 1.1 jtc */
1596 1.1 jtc if (okay)
1597 1.1 jtc return t;
1598 1.1 jtc if (tmp->tm_isdst < 0)
1599 1.1 jtc tmp->tm_isdst = 0; /* reset to std and try again */
1600 1.1 jtc #endif /* defined PCTS */
1601 1.1 jtc #ifndef PCTS
1602 1.1 jtc if (okay || tmp->tm_isdst < 0)
1603 1.1 jtc return t;
1604 1.1 jtc #endif /* !defined PCTS */
1605 1.1 jtc /*
1606 1.1 jtc ** We're supposed to assume that somebody took a time of one type
1607 1.1 jtc ** and did some math on it that yielded a "struct tm" that's bad.
1608 1.1 jtc ** We try to divine the type they started from and adjust to the
1609 1.1 jtc ** type they need.
1610 1.1 jtc */
1611 1.1 jtc /*
1612 1.1 jtc ** The (void *) casts are the benefit of SunOS 3.3 on Sun 2's.
1613 1.1 jtc */
1614 1.1 jtc sp = (const struct state *) (((void *) funcp == (void *) localsub) ?
1615 1.1 jtc lclptr : gmtptr);
1616 1.1 jtc #ifdef ALL_STATE
1617 1.1 jtc if (sp == NULL)
1618 1.1 jtc return WRONG;
1619 1.1 jtc #endif /* defined ALL_STATE */
1620 1.35 kleink for (i = 0; i < sp->typecnt; ++i)
1621 1.35 kleink seen[i] = FALSE;
1622 1.35 kleink nseen = 0;
1623 1.35 kleink for (i = sp->timecnt - 1; i >= 0; --i)
1624 1.35 kleink if (!seen[sp->types[i]]) {
1625 1.35 kleink seen[sp->types[i]] = TRUE;
1626 1.35 kleink types[nseen++] = sp->types[i];
1627 1.35 kleink }
1628 1.35 kleink for (sameind = 0; sameind < nseen; ++sameind) {
1629 1.35 kleink samei = types[sameind];
1630 1.1 jtc if (sp->ttis[samei].tt_isdst != tmp->tm_isdst)
1631 1.1 jtc continue;
1632 1.35 kleink for (otherind = 0; otherind < nseen; ++otherind) {
1633 1.35 kleink otheri = types[otherind];
1634 1.1 jtc if (sp->ttis[otheri].tt_isdst == tmp->tm_isdst)
1635 1.1 jtc continue;
1636 1.21 christos tmp->tm_sec += (int)(sp->ttis[otheri].tt_gmtoff -
1637 1.21 christos sp->ttis[samei].tt_gmtoff);
1638 1.1 jtc tmp->tm_isdst = !tmp->tm_isdst;
1639 1.1 jtc t = time2(tmp, funcp, offset, &okay);
1640 1.1 jtc if (okay)
1641 1.1 jtc return t;
1642 1.21 christos tmp->tm_sec -= (int)(sp->ttis[otheri].tt_gmtoff -
1643 1.21 christos sp->ttis[samei].tt_gmtoff);
1644 1.1 jtc tmp->tm_isdst = !tmp->tm_isdst;
1645 1.1 jtc }
1646 1.1 jtc }
1647 1.1 jtc return WRONG;
1648 1.1 jtc }
1649 1.1 jtc
1650 1.1 jtc time_t
1651 1.1 jtc mktime(tmp)
1652 1.1 jtc struct tm * const tmp;
1653 1.1 jtc {
1654 1.19 kleink time_t result;
1655 1.19 kleink
1656 1.42 christos rwlock_wrlock(&__lcl_lock);
1657 1.42 christos __tzset_unlocked();
1658 1.19 kleink result = time1(tmp, localsub, 0L);
1659 1.42 christos rwlock_unlock(&__lcl_lock);
1660 1.19 kleink return (result);
1661 1.1 jtc }
1662 1.1 jtc
1663 1.1 jtc #ifdef STD_INSPIRED
1664 1.1 jtc
1665 1.1 jtc time_t
1666 1.1 jtc timelocal(tmp)
1667 1.1 jtc struct tm * const tmp;
1668 1.1 jtc {
1669 1.1 jtc tmp->tm_isdst = -1; /* in case it wasn't initialized */
1670 1.1 jtc return mktime(tmp);
1671 1.1 jtc }
1672 1.1 jtc
1673 1.1 jtc time_t
1674 1.1 jtc timegm(tmp)
1675 1.1 jtc struct tm * const tmp;
1676 1.1 jtc {
1677 1.1 jtc tmp->tm_isdst = 0;
1678 1.1 jtc return time1(tmp, gmtsub, 0L);
1679 1.1 jtc }
1680 1.1 jtc
1681 1.1 jtc time_t
1682 1.1 jtc timeoff(tmp, offset)
1683 1.1 jtc struct tm * const tmp;
1684 1.1 jtc const long offset;
1685 1.1 jtc {
1686 1.1 jtc tmp->tm_isdst = 0;
1687 1.1 jtc return time1(tmp, gmtsub, offset);
1688 1.1 jtc }
1689 1.1 jtc
1690 1.1 jtc #endif /* defined STD_INSPIRED */
1691 1.1 jtc
1692 1.1 jtc #ifdef CMUCS
1693 1.1 jtc
1694 1.1 jtc /*
1695 1.1 jtc ** The following is supplied for compatibility with
1696 1.1 jtc ** previous versions of the CMUCS runtime library.
1697 1.1 jtc */
1698 1.1 jtc
1699 1.1 jtc long
1700 1.1 jtc gtime(tmp)
1701 1.1 jtc struct tm * const tmp;
1702 1.1 jtc {
1703 1.1 jtc const time_t t = mktime(tmp);
1704 1.1 jtc
1705 1.1 jtc if (t == WRONG)
1706 1.1 jtc return -1;
1707 1.1 jtc return t;
1708 1.1 jtc }
1709 1.1 jtc
1710 1.1 jtc #endif /* defined CMUCS */
1711 1.1 jtc
1712 1.1 jtc /*
1713 1.1 jtc ** XXX--is the below the right way to conditionalize??
1714 1.1 jtc */
1715 1.1 jtc
1716 1.1 jtc #ifdef STD_INSPIRED
1717 1.1 jtc
1718 1.1 jtc /*
1719 1.1 jtc ** IEEE Std 1003.1-1988 (POSIX) legislates that 536457599
1720 1.14 jtc ** shall correspond to "Wed Dec 31 23:59:59 UTC 1986", which
1721 1.1 jtc ** is not the case if we are accounting for leap seconds.
1722 1.1 jtc ** So, we provide the following conversion routines for use
1723 1.1 jtc ** when exchanging timestamps with POSIX conforming systems.
1724 1.1 jtc */
1725 1.1 jtc
1726 1.1 jtc static long
1727 1.1 jtc leapcorr(timep)
1728 1.1 jtc time_t * timep;
1729 1.1 jtc {
1730 1.1 jtc register struct state * sp;
1731 1.1 jtc register struct lsinfo * lp;
1732 1.1 jtc register int i;
1733 1.1 jtc
1734 1.1 jtc sp = lclptr;
1735 1.1 jtc i = sp->leapcnt;
1736 1.1 jtc while (--i >= 0) {
1737 1.1 jtc lp = &sp->lsis[i];
1738 1.1 jtc if (*timep >= lp->ls_trans)
1739 1.1 jtc return lp->ls_corr;
1740 1.1 jtc }
1741 1.1 jtc return 0;
1742 1.1 jtc }
1743 1.1 jtc
1744 1.1 jtc time_t
1745 1.1 jtc time2posix(t)
1746 1.1 jtc time_t t;
1747 1.1 jtc {
1748 1.19 kleink time_t result;
1749 1.19 kleink
1750 1.42 christos rwlock_wrlock(&__lcl_lock);
1751 1.42 christos __tzset_unlocked();
1752 1.19 kleink result = t - leapcorr(&t);
1753 1.42 christos rwlock_unlock(&__lcl_lock);
1754 1.19 kleink return (result);
1755 1.1 jtc }
1756 1.1 jtc
1757 1.1 jtc time_t
1758 1.1 jtc posix2time(t)
1759 1.1 jtc time_t t;
1760 1.1 jtc {
1761 1.1 jtc time_t x;
1762 1.1 jtc time_t y;
1763 1.1 jtc
1764 1.42 christos rwlock_wrlock(&__lcl_lock);
1765 1.42 christos __tzset_unlocked();
1766 1.1 jtc /*
1767 1.1 jtc ** For a positive leap second hit, the result
1768 1.1 jtc ** is not unique. For a negative leap second
1769 1.1 jtc ** hit, the corresponding time doesn't exist,
1770 1.1 jtc ** so we return an adjacent second.
1771 1.1 jtc */
1772 1.1 jtc x = t + leapcorr(&t);
1773 1.1 jtc y = x - leapcorr(&x);
1774 1.1 jtc if (y < t) {
1775 1.1 jtc do {
1776 1.1 jtc x++;
1777 1.1 jtc y = x - leapcorr(&x);
1778 1.1 jtc } while (y < t);
1779 1.19 kleink if (t != y) {
1780 1.42 christos rwlock_unlock(&__lcl_lock);
1781 1.1 jtc return x - 1;
1782 1.19 kleink }
1783 1.1 jtc } else if (y > t) {
1784 1.1 jtc do {
1785 1.1 jtc --x;
1786 1.1 jtc y = x - leapcorr(&x);
1787 1.1 jtc } while (y > t);
1788 1.19 kleink if (t != y) {
1789 1.42 christos rwlock_unlock(&__lcl_lock);
1790 1.1 jtc return x + 1;
1791 1.19 kleink }
1792 1.1 jtc }
1793 1.42 christos rwlock_unlock(&__lcl_lock);
1794 1.1 jtc return x;
1795 1.1 jtc }
1796 1.1 jtc
1797 1.1 jtc #endif /* defined STD_INSPIRED */
1798