Home | History | Annotate | Line # | Download | only in time
localtime.c revision 1.46
      1  1.46  christos /*	$NetBSD: localtime.c,v 1.46 2010/02/02 19:04:37 christos Exp $	*/
      2   1.7       jtc 
      3   1.7       jtc /*
      4   1.7       jtc ** This file is in the public domain, so clarified as of
      5  1.45   mlelstv ** 1996-06-05 by Arthur David Olson.
      6   1.7       jtc */
      7   1.2       jtc 
      8  1.11  christos #include <sys/cdefs.h>
      9  1.24   msaitoh #if defined(LIBC_SCCS) && !defined(lint)
     10  1.11  christos #if 0
     11  1.45   mlelstv static char	elsieid[] = "@(#)localtime.c	8.9";
     12  1.11  christos #else
     13  1.46  christos __RCSID("$NetBSD: localtime.c,v 1.46 2010/02/02 19:04:37 christos Exp $");
     14  1.11  christos #endif
     15  1.24   msaitoh #endif /* LIBC_SCCS and not lint */
     16   1.1       jtc 
     17   1.1       jtc /*
     18  1.45   mlelstv ** Leap second handling from Bradley White.
     19  1.45   mlelstv ** POSIX-style TZ environment variable handling from Guy Harris.
     20   1.1       jtc */
     21   1.1       jtc 
     22   1.1       jtc /*LINTLIBRARY*/
     23   1.1       jtc 
     24  1.12       jtc #include "namespace.h"
     25   1.1       jtc #include "private.h"
     26   1.1       jtc #include "tzfile.h"
     27   1.1       jtc #include "fcntl.h"
     28  1.19    kleink #include "reentrant.h"
     29  1.12       jtc 
     30  1.42  christos #if defined(__weak_alias)
     31  1.25    kleink __weak_alias(daylight,_daylight)
     32  1.23   mycroft __weak_alias(tzname,_tzname)
     33  1.23   mycroft __weak_alias(tzset,_tzset)
     34  1.23   mycroft __weak_alias(tzsetwall,_tzsetwall)
     35  1.12       jtc #endif
     36   1.1       jtc 
     37  1.45   mlelstv #include "float.h"	/* for FLT_MAX and DBL_MAX */
     38  1.45   mlelstv 
     39  1.45   mlelstv #ifndef TZ_ABBR_MAX_LEN
     40  1.45   mlelstv #define TZ_ABBR_MAX_LEN	16
     41  1.45   mlelstv #endif /* !defined TZ_ABBR_MAX_LEN */
     42  1.45   mlelstv 
     43  1.45   mlelstv #ifndef TZ_ABBR_CHAR_SET
     44  1.45   mlelstv #define TZ_ABBR_CHAR_SET \
     45  1.45   mlelstv 	"abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789 :+-._"
     46  1.45   mlelstv #endif /* !defined TZ_ABBR_CHAR_SET */
     47  1.45   mlelstv 
     48  1.45   mlelstv #ifndef TZ_ABBR_ERR_CHAR
     49  1.45   mlelstv #define TZ_ABBR_ERR_CHAR	'_'
     50  1.45   mlelstv #endif /* !defined TZ_ABBR_ERR_CHAR */
     51  1.45   mlelstv 
     52   1.1       jtc /*
     53   1.1       jtc ** SunOS 4.1.1 headers lack O_BINARY.
     54   1.1       jtc */
     55   1.1       jtc 
     56   1.1       jtc #ifdef O_BINARY
     57   1.1       jtc #define OPEN_MODE	(O_RDONLY | O_BINARY)
     58   1.1       jtc #endif /* defined O_BINARY */
     59   1.1       jtc #ifndef O_BINARY
     60   1.1       jtc #define OPEN_MODE	O_RDONLY
     61   1.1       jtc #endif /* !defined O_BINARY */
     62   1.1       jtc 
     63   1.1       jtc #ifndef WILDABBR
     64   1.1       jtc /*
     65   1.1       jtc ** Someone might make incorrect use of a time zone abbreviation:
     66   1.1       jtc **	1.	They might reference tzname[0] before calling tzset (explicitly
     67   1.1       jtc **		or implicitly).
     68   1.1       jtc **	2.	They might reference tzname[1] before calling tzset (explicitly
     69   1.1       jtc **		or implicitly).
     70   1.1       jtc **	3.	They might reference tzname[1] after setting to a time zone
     71   1.1       jtc **		in which Daylight Saving Time is never observed.
     72   1.1       jtc **	4.	They might reference tzname[0] after setting to a time zone
     73   1.1       jtc **		in which Standard Time is never observed.
     74   1.1       jtc **	5.	They might reference tm.TM_ZONE after calling offtime.
     75   1.1       jtc ** What's best to do in the above cases is open to debate;
     76   1.1       jtc ** for now, we just set things up so that in any of the five cases
     77  1.45   mlelstv ** WILDABBR is used. Another possibility: initialize tzname[0] to the
     78   1.1       jtc ** string "tzname[0] used before set", and similarly for the other cases.
     79  1.45   mlelstv ** And another: initialize tzname[0] to "ERA", with an explanation in the
     80   1.1       jtc ** manual page of what this "time zone abbreviation" means (doing this so
     81   1.1       jtc ** that tzname[0] has the "normal" length of three characters).
     82   1.1       jtc */
     83   1.1       jtc #define WILDABBR	"   "
     84   1.1       jtc #endif /* !defined WILDABBR */
     85   1.1       jtc 
     86  1.45   mlelstv static const char	wildabbr[] = WILDABBR;
     87   1.1       jtc 
     88   1.1       jtc static const char	gmt[] = "GMT";
     89   1.1       jtc 
     90  1.22    kleink /*
     91  1.22    kleink ** The DST rules to use if TZ has no rules and we can't load TZDEFRULES.
     92  1.22    kleink ** We default to US rules as of 1999-08-17.
     93  1.22    kleink ** POSIX 1003.1 section 8.1.1 says that the default DST rules are
     94  1.22    kleink ** implementation dependent; for historical reasons, US rules are a
     95  1.22    kleink ** common default.
     96  1.22    kleink */
     97  1.22    kleink #ifndef TZDEFRULESTRING
     98  1.22    kleink #define TZDEFRULESTRING ",M4.1.0,M10.5.0"
     99  1.22    kleink #endif /* !defined TZDEFDST */
    100  1.22    kleink 
    101   1.1       jtc struct ttinfo {				/* time type information */
    102  1.14       jtc 	long		tt_gmtoff;	/* UTC offset in seconds */
    103   1.1       jtc 	int		tt_isdst;	/* used to set tm_isdst */
    104   1.1       jtc 	int		tt_abbrind;	/* abbreviation list index */
    105   1.1       jtc 	int		tt_ttisstd;	/* TRUE if transition is std time */
    106  1.14       jtc 	int		tt_ttisgmt;	/* TRUE if transition is UTC */
    107   1.1       jtc };
    108   1.1       jtc 
    109   1.1       jtc struct lsinfo {				/* leap second information */
    110   1.1       jtc 	time_t		ls_trans;	/* transition time */
    111   1.1       jtc 	long		ls_corr;	/* correction to apply */
    112   1.1       jtc };
    113   1.1       jtc 
    114   1.1       jtc #define BIGGEST(a, b)	(((a) > (b)) ? (a) : (b))
    115   1.1       jtc 
    116   1.1       jtc #ifdef TZNAME_MAX
    117   1.1       jtc #define MY_TZNAME_MAX	TZNAME_MAX
    118   1.1       jtc #endif /* defined TZNAME_MAX */
    119   1.1       jtc #ifndef TZNAME_MAX
    120   1.1       jtc #define MY_TZNAME_MAX	255
    121   1.1       jtc #endif /* !defined TZNAME_MAX */
    122   1.1       jtc 
    123   1.1       jtc struct state {
    124   1.1       jtc 	int		leapcnt;
    125   1.1       jtc 	int		timecnt;
    126   1.1       jtc 	int		typecnt;
    127   1.1       jtc 	int		charcnt;
    128  1.45   mlelstv 	int		goback;
    129  1.45   mlelstv 	int		goahead;
    130  1.45   mlelstv 	time_t		ats[TZ_MAX_TIMES];
    131   1.1       jtc 	unsigned char	types[TZ_MAX_TIMES];
    132   1.1       jtc 	struct ttinfo	ttis[TZ_MAX_TYPES];
    133  1.37  christos 	char		chars[/*CONSTCOND*/BIGGEST(BIGGEST(TZ_MAX_CHARS + 1, sizeof gmt),
    134   1.1       jtc 				(2 * (MY_TZNAME_MAX + 1)))];
    135   1.1       jtc 	struct lsinfo	lsis[TZ_MAX_LEAPS];
    136   1.1       jtc };
    137   1.1       jtc 
    138   1.1       jtc struct rule {
    139   1.1       jtc 	int		r_type;		/* type of rule--see below */
    140   1.1       jtc 	int		r_day;		/* day number of rule */
    141   1.1       jtc 	int		r_week;		/* week number of rule */
    142   1.1       jtc 	int		r_mon;		/* month number of rule */
    143   1.1       jtc 	long		r_time;		/* transition time of rule */
    144   1.1       jtc };
    145   1.1       jtc 
    146   1.1       jtc #define JULIAN_DAY		0	/* Jn - Julian day */
    147   1.1       jtc #define DAY_OF_YEAR		1	/* n - day of year */
    148   1.1       jtc #define MONTH_NTH_DAY_OF_WEEK	2	/* Mm.n.d - month, week, day of week */
    149   1.1       jtc 
    150   1.1       jtc /*
    151   1.1       jtc ** Prototypes for static functions.
    152   1.1       jtc */
    153   1.1       jtc 
    154  1.45   mlelstv static long		detzcode(const char * codep);
    155  1.45   mlelstv static time_t		detzcode64(const char * codep);
    156  1.45   mlelstv static int		differ_by_repeat(time_t t1, time_t t0);
    157  1.45   mlelstv static const char *	getzname(const char * strp);
    158  1.45   mlelstv static const char *	getqzname(const char * strp, const int delim);
    159  1.45   mlelstv static const char *	getnum(const char * strp, int * nump, int min,
    160  1.45   mlelstv 				int max);
    161  1.45   mlelstv static const char *	getsecs(const char * strp, long * secsp);
    162  1.45   mlelstv static const char *	getoffset(const char * strp, long * offsetp);
    163  1.45   mlelstv static const char *	getrule(const char * strp, struct rule * rulep);
    164  1.45   mlelstv static void		gmtload(struct state * sp);
    165  1.45   mlelstv static struct tm *	gmtsub(const time_t * timep, long offset,
    166  1.45   mlelstv 				struct tm * tmp);
    167  1.45   mlelstv static struct tm *	localsub(const time_t * timep, long offset,
    168  1.45   mlelstv 				struct tm * tmp);
    169  1.45   mlelstv static int		increment_overflow(int * number, int delta);
    170  1.45   mlelstv static int		leaps_thru_end_of(int y);
    171  1.45   mlelstv static int		long_increment_overflow(long * number, int delta);
    172  1.45   mlelstv static int		long_normalize_overflow(long * tensptr,
    173  1.45   mlelstv 				int * unitsptr, int base);
    174  1.45   mlelstv static int		normalize_overflow(int * tensptr, int * unitsptr,
    175  1.45   mlelstv 				int base);
    176  1.45   mlelstv static void		settzname(void);
    177  1.45   mlelstv static time_t		time1(struct tm * tmp,
    178  1.45   mlelstv 				struct tm * (*funcp)(const time_t *,
    179  1.45   mlelstv 				long, struct tm *),
    180  1.45   mlelstv 				long offset);
    181  1.45   mlelstv static time_t		time2(struct tm *tmp,
    182  1.45   mlelstv 				struct tm * (*funcp)(const time_t *,
    183  1.45   mlelstv 				long, struct tm*),
    184  1.45   mlelstv 				long offset, int * okayp);
    185  1.45   mlelstv static time_t		time2sub(struct tm *tmp,
    186  1.45   mlelstv 				struct tm * (*funcp)(const time_t *,
    187  1.45   mlelstv 				long, struct tm*),
    188  1.45   mlelstv 				long offset, int * okayp, int do_norm_secs);
    189  1.45   mlelstv static struct tm *	timesub(const time_t * timep, long offset,
    190  1.45   mlelstv 				const struct state * sp, struct tm * tmp);
    191  1.45   mlelstv static int		tmcomp(const struct tm * atmp,
    192  1.45   mlelstv 				const struct tm * btmp);
    193  1.45   mlelstv static time_t		transtime(time_t janfirst, int year,
    194  1.45   mlelstv 				const struct rule * rulep, long offset);
    195  1.45   mlelstv static int		typesequiv(const struct state * sp, int a, int b);
    196  1.45   mlelstv static int		tzload(const char * name, struct state * sp,
    197  1.45   mlelstv 				int doextend);
    198  1.45   mlelstv static int		tzparse(const char * name, struct state * sp,
    199  1.45   mlelstv 				int lastditch);
    200  1.45   mlelstv static void		tzset_unlocked(void);
    201  1.45   mlelstv static void		tzsetwall_unlocked(void);
    202  1.45   mlelstv static long		leapcorr(time_t * timep);
    203   1.1       jtc 
    204   1.1       jtc #ifdef ALL_STATE
    205   1.1       jtc static struct state *	lclptr;
    206   1.1       jtc static struct state *	gmtptr;
    207   1.1       jtc #endif /* defined ALL_STATE */
    208   1.1       jtc 
    209   1.1       jtc #ifndef ALL_STATE
    210   1.1       jtc static struct state	lclmem;
    211   1.1       jtc static struct state	gmtmem;
    212   1.1       jtc #define lclptr		(&lclmem)
    213   1.1       jtc #define gmtptr		(&gmtmem)
    214   1.1       jtc #endif /* State Farm */
    215   1.1       jtc 
    216   1.1       jtc #ifndef TZ_STRLEN_MAX
    217   1.1       jtc #define TZ_STRLEN_MAX 255
    218   1.1       jtc #endif /* !defined TZ_STRLEN_MAX */
    219   1.1       jtc 
    220  1.45   mlelstv static char		lcl_TZname[TZ_STRLEN_MAX + 1];
    221  1.45   mlelstv static int		lcl_is_set;
    222  1.45   mlelstv static int		gmt_is_set;
    223  1.42  christos 
    224  1.42  christos #if !defined(__LIBC12_SOURCE__)
    225   1.1       jtc 
    226  1.16   mycroft __aconst char *		tzname[2] = {
    227  1.37  christos 	(__aconst char *)__UNCONST(wildabbr),
    228  1.37  christos 	(__aconst char *)__UNCONST(wildabbr)
    229   1.1       jtc };
    230   1.1       jtc 
    231  1.42  christos #else
    232  1.42  christos 
    233  1.42  christos extern __aconst char *	tzname[2];
    234  1.42  christos 
    235  1.42  christos #endif
    236  1.42  christos 
    237  1.33  christos #ifdef _REENTRANT
    238  1.45   mlelstv static rwlock_t lcl_lock = RWLOCK_INITIALIZER;
    239  1.19    kleink #endif
    240  1.19    kleink 
    241   1.1       jtc /*
    242   1.1       jtc ** Section 4.12.3 of X3.159-1989 requires that
    243   1.1       jtc **	Except for the strftime function, these functions [asctime,
    244   1.1       jtc **	ctime, gmtime, localtime] return values in one of two static
    245   1.1       jtc **	objects: a broken-down time structure and an array of char.
    246  1.45   mlelstv ** Thanks to Paul Eggert for noting this.
    247   1.1       jtc */
    248   1.1       jtc 
    249   1.1       jtc static struct tm	tm;
    250   1.1       jtc 
    251   1.1       jtc #ifdef USG_COMPAT
    252  1.42  christos #if !defined(__LIBC12_SOURCE__)
    253  1.42  christos long 			timezone = 0;
    254   1.1       jtc int			daylight = 0;
    255  1.42  christos #else
    256  1.42  christos extern int		daylight;
    257  1.42  christos extern long		timezone __RENAME(__timezone13);
    258  1.42  christos #endif
    259   1.1       jtc #endif /* defined USG_COMPAT */
    260   1.1       jtc 
    261   1.1       jtc #ifdef ALTZONE
    262   1.1       jtc time_t			altzone = 0;
    263   1.1       jtc #endif /* defined ALTZONE */
    264   1.1       jtc 
    265   1.1       jtc static long
    266   1.1       jtc detzcode(codep)
    267   1.1       jtc const char * const	codep;
    268   1.1       jtc {
    269   1.1       jtc 	register long	result;
    270  1.45   mlelstv 	register int	i;
    271  1.45   mlelstv 
    272  1.45   mlelstv 	result = (codep[0] & 0x80) ? ~0L : 0;
    273  1.45   mlelstv 	for (i = 0; i < 4; ++i)
    274  1.45   mlelstv 		result = (result << 8) | (codep[i] & 0xff);
    275  1.45   mlelstv 	return result;
    276  1.45   mlelstv }
    277  1.45   mlelstv 
    278  1.45   mlelstv static time_t
    279  1.45   mlelstv detzcode64(codep)
    280  1.45   mlelstv const char * const	codep;
    281  1.45   mlelstv {
    282  1.45   mlelstv 	register time_t	result;
    283  1.45   mlelstv 	register int	i;
    284   1.1       jtc 
    285  1.45   mlelstv 	result = (codep[0] & 0x80) ? -1 : 0;
    286  1.45   mlelstv 	for (i = 0; i < 8; ++i)
    287  1.45   mlelstv 		result = result * 256 + (codep[i] & 0xff);
    288   1.1       jtc 	return result;
    289   1.1       jtc }
    290   1.1       jtc 
    291  1.45   mlelstv static void
    292  1.45   mlelstv settzname(void)
    293   1.1       jtc {
    294   1.5       jtc 	register struct state * const	sp = lclptr;
    295   1.5       jtc 	register int			i;
    296   1.1       jtc 
    297  1.37  christos 	tzname[0] = (__aconst char *)__UNCONST(wildabbr);
    298  1.37  christos 	tzname[1] = (__aconst char *)__UNCONST(wildabbr);
    299   1.1       jtc #ifdef USG_COMPAT
    300   1.1       jtc 	daylight = 0;
    301   1.1       jtc 	timezone = 0;
    302   1.1       jtc #endif /* defined USG_COMPAT */
    303   1.1       jtc #ifdef ALTZONE
    304   1.1       jtc 	altzone = 0;
    305   1.1       jtc #endif /* defined ALTZONE */
    306   1.1       jtc #ifdef ALL_STATE
    307   1.1       jtc 	if (sp == NULL) {
    308  1.37  christos 		tzname[0] = tzname[1] = (__aconst char *)__UNCONST(gmt);
    309   1.1       jtc 		return;
    310   1.1       jtc 	}
    311   1.1       jtc #endif /* defined ALL_STATE */
    312   1.1       jtc 	for (i = 0; i < sp->typecnt; ++i) {
    313   1.1       jtc 		register const struct ttinfo * const	ttisp = &sp->ttis[i];
    314   1.1       jtc 
    315   1.1       jtc 		tzname[ttisp->tt_isdst] =
    316   1.1       jtc 			&sp->chars[ttisp->tt_abbrind];
    317  1.45   mlelstv #ifdef USG_COMPAT
    318  1.45   mlelstv 		if (ttisp->tt_isdst)
    319  1.45   mlelstv 			daylight = 1;
    320  1.45   mlelstv 		if (i == 0 || !ttisp->tt_isdst)
    321  1.45   mlelstv 			timezone = -(ttisp->tt_gmtoff);
    322  1.45   mlelstv #endif /* defined USG_COMPAT */
    323  1.45   mlelstv #ifdef ALTZONE
    324  1.45   mlelstv 		if (i == 0 || ttisp->tt_isdst)
    325  1.45   mlelstv 			altzone = -(ttisp->tt_gmtoff);
    326  1.45   mlelstv #endif /* defined ALTZONE */
    327   1.1       jtc 	}
    328   1.1       jtc 	/*
    329   1.1       jtc 	** And to get the latest zone names into tzname. . .
    330   1.1       jtc 	*/
    331   1.1       jtc 	for (i = 0; i < sp->timecnt; ++i) {
    332   1.1       jtc 		register const struct ttinfo * const	ttisp =
    333   1.1       jtc 							&sp->ttis[
    334   1.1       jtc 								sp->types[i]];
    335   1.1       jtc 
    336   1.1       jtc 		tzname[ttisp->tt_isdst] =
    337   1.1       jtc 			&sp->chars[ttisp->tt_abbrind];
    338  1.45   mlelstv 	}
    339  1.45   mlelstv 	/*
    340  1.45   mlelstv 	** Finally, scrub the abbreviations.
    341  1.45   mlelstv 	** First, replace bogus characters.
    342  1.45   mlelstv 	*/
    343  1.45   mlelstv 	for (i = 0; i < sp->charcnt; ++i)
    344  1.45   mlelstv 		if (strchr(TZ_ABBR_CHAR_SET, sp->chars[i]) == NULL)
    345  1.45   mlelstv 			sp->chars[i] = TZ_ABBR_ERR_CHAR;
    346  1.45   mlelstv 	/*
    347  1.45   mlelstv 	** Second, truncate long abbreviations.
    348  1.45   mlelstv 	*/
    349  1.45   mlelstv 	for (i = 0; i < sp->typecnt; ++i) {
    350  1.45   mlelstv 		register const struct ttinfo * const	ttisp = &sp->ttis[i];
    351  1.45   mlelstv 		register char *				cp = &sp->chars[ttisp->tt_abbrind];
    352  1.45   mlelstv 
    353  1.45   mlelstv 		if (strlen(cp) > TZ_ABBR_MAX_LEN &&
    354  1.45   mlelstv 			strcmp(cp, GRANDPARENTED) != 0)
    355  1.45   mlelstv 				*(cp + TZ_ABBR_MAX_LEN) = '\0';
    356   1.1       jtc 	}
    357   1.1       jtc }
    358   1.1       jtc 
    359  1.45   mlelstv static int
    360  1.45   mlelstv differ_by_repeat(t1, t0)
    361  1.45   mlelstv const time_t	t1;
    362  1.45   mlelstv const time_t	t0;
    363  1.45   mlelstv {
    364  1.45   mlelstv /* CONSTCOND */
    365  1.45   mlelstv 	if (TYPE_INTEGRAL(time_t) &&
    366  1.45   mlelstv 		TYPE_BIT(time_t) - TYPE_SIGNED(time_t) < SECSPERREPEAT_BITS)
    367  1.45   mlelstv 			return 0;
    368  1.45   mlelstv 	return (int_fast64_t)t1 - (int_fast64_t)t0 == SECSPERREPEAT;
    369  1.45   mlelstv }
    370  1.45   mlelstv 
    371  1.45   mlelstv static int
    372  1.45   mlelstv tzload(name, sp, doextend)
    373   1.1       jtc register const char *		name;
    374   1.1       jtc register struct state * const	sp;
    375  1.45   mlelstv register const int		doextend;
    376   1.1       jtc {
    377  1.45   mlelstv 	register const char *		p;
    378  1.45   mlelstv 	register int			i;
    379  1.45   mlelstv 	register int			fid;
    380  1.45   mlelstv 	register int			stored;
    381  1.45   mlelstv 	register int			nread;
    382  1.45   mlelstv 	union {
    383  1.45   mlelstv 		struct tzhead	tzhead;
    384  1.45   mlelstv 		char		buf[2 * sizeof(struct tzhead) +
    385  1.45   mlelstv 					2 * sizeof *sp +
    386  1.45   mlelstv 					4 * TZ_MAX_TIMES];
    387  1.45   mlelstv 	} u;
    388   1.1       jtc 
    389   1.1       jtc 	if (name == NULL && (name = TZDEFAULT) == NULL)
    390   1.1       jtc 		return -1;
    391   1.1       jtc 	{
    392   1.1       jtc 		register int	doaccess;
    393   1.1       jtc 		/*
    394   1.1       jtc 		** Section 4.9.1 of the C standard says that
    395   1.1       jtc 		** "FILENAME_MAX expands to an integral constant expression
    396  1.10       jtc 		** that is the size needed for an array of char large enough
    397   1.1       jtc 		** to hold the longest file name string that the implementation
    398   1.1       jtc 		** guarantees can be opened."
    399   1.1       jtc 		*/
    400   1.1       jtc 		char		fullname[FILENAME_MAX + 1];
    401   1.1       jtc 
    402   1.1       jtc 		if (name[0] == ':')
    403   1.1       jtc 			++name;
    404   1.1       jtc 		doaccess = name[0] == '/';
    405   1.1       jtc 		if (!doaccess) {
    406   1.1       jtc 			if ((p = TZDIR) == NULL)
    407   1.1       jtc 				return -1;
    408   1.1       jtc 			if ((strlen(p) + strlen(name) + 1) >= sizeof fullname)
    409   1.1       jtc 				return -1;
    410   1.8       mrg 			(void) strcpy(fullname, p);	/* XXX strcpy is safe */
    411   1.8       mrg 			(void) strcat(fullname, "/");	/* XXX strcat is safe */
    412   1.8       mrg 			(void) strcat(fullname, name);	/* XXX strcat is safe */
    413   1.1       jtc 			/*
    414   1.1       jtc 			** Set doaccess if '.' (as in "../") shows up in name.
    415   1.1       jtc 			*/
    416   1.1       jtc 			if (strchr(name, '.') != NULL)
    417   1.1       jtc 				doaccess = TRUE;
    418   1.1       jtc 			name = fullname;
    419   1.1       jtc 		}
    420   1.1       jtc 		if (doaccess && access(name, R_OK) != 0)
    421   1.1       jtc 			return -1;
    422   1.9       mrg 		/*
    423   1.9       mrg 		 * XXX potential security problem here if user of a set-id
    424   1.9       mrg 		 * program has set TZ (which is passed in as name) here,
    425   1.9       mrg 		 * and uses a race condition trick to defeat the access(2)
    426   1.9       mrg 		 * above.
    427   1.9       mrg 		 */
    428   1.1       jtc 		if ((fid = open(name, OPEN_MODE)) == -1)
    429   1.1       jtc 			return -1;
    430   1.1       jtc 	}
    431  1.45   mlelstv 	nread = read(fid, u.buf, sizeof u.buf);
    432  1.45   mlelstv 	if (close(fid) < 0 || nread <= 0)
    433  1.45   mlelstv 		return -1;
    434  1.45   mlelstv 	for (stored = 4; stored <= 8; stored *= 2) {
    435   1.1       jtc 		int		ttisstdcnt;
    436   1.1       jtc 		int		ttisgmtcnt;
    437   1.1       jtc 
    438  1.34    kleink 		ttisstdcnt = (int) detzcode(u.tzhead.tzh_ttisstdcnt);
    439  1.34    kleink 		ttisgmtcnt = (int) detzcode(u.tzhead.tzh_ttisgmtcnt);
    440  1.14       jtc 		sp->leapcnt = (int) detzcode(u.tzhead.tzh_leapcnt);
    441  1.14       jtc 		sp->timecnt = (int) detzcode(u.tzhead.tzh_timecnt);
    442  1.14       jtc 		sp->typecnt = (int) detzcode(u.tzhead.tzh_typecnt);
    443  1.14       jtc 		sp->charcnt = (int) detzcode(u.tzhead.tzh_charcnt);
    444  1.14       jtc 		p = u.tzhead.tzh_charcnt + sizeof u.tzhead.tzh_charcnt;
    445   1.1       jtc 		if (sp->leapcnt < 0 || sp->leapcnt > TZ_MAX_LEAPS ||
    446   1.1       jtc 			sp->typecnt <= 0 || sp->typecnt > TZ_MAX_TYPES ||
    447   1.1       jtc 			sp->timecnt < 0 || sp->timecnt > TZ_MAX_TIMES ||
    448   1.1       jtc 			sp->charcnt < 0 || sp->charcnt > TZ_MAX_CHARS ||
    449   1.1       jtc 			(ttisstdcnt != sp->typecnt && ttisstdcnt != 0) ||
    450   1.1       jtc 			(ttisgmtcnt != sp->typecnt && ttisgmtcnt != 0))
    451   1.1       jtc 				return -1;
    452  1.45   mlelstv 		if (nread - (p - u.buf) <
    453  1.45   mlelstv 			sp->timecnt * stored +		/* ats */
    454   1.1       jtc 			sp->timecnt +			/* types */
    455  1.45   mlelstv 			sp->typecnt * 6 +		/* ttinfos */
    456   1.1       jtc 			sp->charcnt +			/* chars */
    457  1.45   mlelstv 			sp->leapcnt * (stored + 4) +	/* lsinfos */
    458   1.1       jtc 			ttisstdcnt +			/* ttisstds */
    459   1.1       jtc 			ttisgmtcnt)			/* ttisgmts */
    460   1.1       jtc 				return -1;
    461   1.1       jtc 		for (i = 0; i < sp->timecnt; ++i) {
    462  1.45   mlelstv 			sp->ats[i] = (stored == 4) ?
    463  1.45   mlelstv 				detzcode(p) : detzcode64(p);
    464  1.45   mlelstv 			p += stored;
    465   1.1       jtc 		}
    466   1.1       jtc 		for (i = 0; i < sp->timecnt; ++i) {
    467   1.1       jtc 			sp->types[i] = (unsigned char) *p++;
    468   1.1       jtc 			if (sp->types[i] >= sp->typecnt)
    469   1.1       jtc 				return -1;
    470   1.1       jtc 		}
    471   1.1       jtc 		for (i = 0; i < sp->typecnt; ++i) {
    472   1.1       jtc 			register struct ttinfo *	ttisp;
    473   1.1       jtc 
    474   1.1       jtc 			ttisp = &sp->ttis[i];
    475   1.1       jtc 			ttisp->tt_gmtoff = detzcode(p);
    476   1.1       jtc 			p += 4;
    477   1.1       jtc 			ttisp->tt_isdst = (unsigned char) *p++;
    478   1.1       jtc 			if (ttisp->tt_isdst != 0 && ttisp->tt_isdst != 1)
    479   1.1       jtc 				return -1;
    480   1.1       jtc 			ttisp->tt_abbrind = (unsigned char) *p++;
    481   1.1       jtc 			if (ttisp->tt_abbrind < 0 ||
    482   1.1       jtc 				ttisp->tt_abbrind > sp->charcnt)
    483   1.1       jtc 					return -1;
    484   1.1       jtc 		}
    485   1.1       jtc 		for (i = 0; i < sp->charcnt; ++i)
    486   1.1       jtc 			sp->chars[i] = *p++;
    487   1.1       jtc 		sp->chars[i] = '\0';	/* ensure '\0' at end */
    488   1.1       jtc 		for (i = 0; i < sp->leapcnt; ++i) {
    489   1.1       jtc 			register struct lsinfo *	lsisp;
    490   1.1       jtc 
    491   1.1       jtc 			lsisp = &sp->lsis[i];
    492  1.45   mlelstv 			lsisp->ls_trans = (stored == 4) ?
    493  1.45   mlelstv 				detzcode(p) : detzcode64(p);
    494  1.45   mlelstv 			p += stored;
    495   1.1       jtc 			lsisp->ls_corr = detzcode(p);
    496   1.1       jtc 			p += 4;
    497   1.1       jtc 		}
    498   1.1       jtc 		for (i = 0; i < sp->typecnt; ++i) {
    499   1.1       jtc 			register struct ttinfo *	ttisp;
    500   1.1       jtc 
    501   1.1       jtc 			ttisp = &sp->ttis[i];
    502   1.1       jtc 			if (ttisstdcnt == 0)
    503   1.1       jtc 				ttisp->tt_ttisstd = FALSE;
    504   1.1       jtc 			else {
    505   1.1       jtc 				ttisp->tt_ttisstd = *p++;
    506   1.1       jtc 				if (ttisp->tt_ttisstd != TRUE &&
    507   1.1       jtc 					ttisp->tt_ttisstd != FALSE)
    508   1.1       jtc 						return -1;
    509   1.1       jtc 			}
    510   1.1       jtc 		}
    511   1.1       jtc 		for (i = 0; i < sp->typecnt; ++i) {
    512   1.1       jtc 			register struct ttinfo *	ttisp;
    513   1.1       jtc 
    514   1.1       jtc 			ttisp = &sp->ttis[i];
    515   1.1       jtc 			if (ttisgmtcnt == 0)
    516   1.1       jtc 				ttisp->tt_ttisgmt = FALSE;
    517   1.1       jtc 			else {
    518   1.1       jtc 				ttisp->tt_ttisgmt = *p++;
    519   1.1       jtc 				if (ttisp->tt_ttisgmt != TRUE &&
    520   1.1       jtc 					ttisp->tt_ttisgmt != FALSE)
    521   1.1       jtc 						return -1;
    522   1.1       jtc 			}
    523   1.1       jtc 		}
    524  1.45   mlelstv 		/*
    525  1.45   mlelstv 		** Out-of-sort ats should mean we're running on a
    526  1.45   mlelstv 		** signed time_t system but using a data file with
    527  1.45   mlelstv 		** unsigned values (or vice versa).
    528  1.45   mlelstv 		*/
    529  1.45   mlelstv 		for (i = 0; i < sp->timecnt - 2; ++i)
    530  1.45   mlelstv 			if (sp->ats[i] > sp->ats[i + 1]) {
    531  1.45   mlelstv 				++i;
    532  1.45   mlelstv /* CONSTCOND */
    533  1.45   mlelstv 				if (TYPE_SIGNED(time_t)) {
    534  1.45   mlelstv 					/*
    535  1.45   mlelstv 					** Ignore the end (easy).
    536  1.45   mlelstv 					*/
    537  1.45   mlelstv 					sp->timecnt = i;
    538  1.45   mlelstv 				} else {
    539  1.45   mlelstv 					/*
    540  1.45   mlelstv 					** Ignore the beginning (harder).
    541  1.45   mlelstv 					*/
    542  1.45   mlelstv 					register int	j;
    543  1.45   mlelstv 
    544  1.45   mlelstv 					for (j = 0; j + i < sp->timecnt; ++j) {
    545  1.45   mlelstv 						sp->ats[j] = sp->ats[j + i];
    546  1.45   mlelstv 						sp->types[j] = sp->types[j + i];
    547  1.45   mlelstv 					}
    548  1.45   mlelstv 					sp->timecnt = j;
    549  1.45   mlelstv 				}
    550  1.45   mlelstv 				break;
    551  1.45   mlelstv 			}
    552  1.45   mlelstv 		/*
    553  1.45   mlelstv 		** If this is an old file, we're done.
    554  1.45   mlelstv 		*/
    555  1.45   mlelstv 		if (u.tzhead.tzh_version[0] == '\0')
    556  1.45   mlelstv 			break;
    557  1.45   mlelstv 		nread -= p - u.buf;
    558  1.45   mlelstv 		for (i = 0; i < nread; ++i)
    559  1.45   mlelstv 			u.buf[i] = p[i];
    560  1.45   mlelstv 		/*
    561  1.45   mlelstv 		** If this is a narrow integer time_t system, we're done.
    562  1.45   mlelstv 		*/
    563  1.45   mlelstv 		if (stored >= (int) sizeof(time_t)
    564  1.45   mlelstv /* CONSTCOND */
    565  1.45   mlelstv 				&& TYPE_INTEGRAL(time_t))
    566  1.45   mlelstv 			break;
    567  1.45   mlelstv 	}
    568  1.45   mlelstv 	if (doextend && nread > 2 &&
    569  1.45   mlelstv 		u.buf[0] == '\n' && u.buf[nread - 1] == '\n' &&
    570  1.45   mlelstv 		sp->typecnt + 2 <= TZ_MAX_TYPES) {
    571  1.45   mlelstv 			struct state	ts;
    572  1.45   mlelstv 			register int	result;
    573  1.45   mlelstv 
    574  1.45   mlelstv 			u.buf[nread - 1] = '\0';
    575  1.45   mlelstv 			result = tzparse(&u.buf[1], &ts, FALSE);
    576  1.45   mlelstv 			if (result == 0 && ts.typecnt == 2 &&
    577  1.45   mlelstv 				sp->charcnt + ts.charcnt <= TZ_MAX_CHARS) {
    578  1.45   mlelstv 					for (i = 0; i < 2; ++i)
    579  1.45   mlelstv 						ts.ttis[i].tt_abbrind +=
    580  1.45   mlelstv 							sp->charcnt;
    581  1.45   mlelstv 					for (i = 0; i < ts.charcnt; ++i)
    582  1.45   mlelstv 						sp->chars[sp->charcnt++] =
    583  1.45   mlelstv 							ts.chars[i];
    584  1.45   mlelstv 					i = 0;
    585  1.45   mlelstv 					while (i < ts.timecnt &&
    586  1.45   mlelstv 						ts.ats[i] <=
    587  1.45   mlelstv 						sp->ats[sp->timecnt - 1])
    588  1.45   mlelstv 							++i;
    589  1.45   mlelstv 					while (i < ts.timecnt &&
    590  1.45   mlelstv 					    sp->timecnt < TZ_MAX_TIMES) {
    591  1.45   mlelstv 						sp->ats[sp->timecnt] =
    592  1.45   mlelstv 							ts.ats[i];
    593  1.45   mlelstv 						sp->types[sp->timecnt] =
    594  1.45   mlelstv 							sp->typecnt +
    595  1.45   mlelstv 							ts.types[i];
    596  1.45   mlelstv 						++sp->timecnt;
    597  1.45   mlelstv 						++i;
    598  1.45   mlelstv 					}
    599  1.45   mlelstv 					sp->ttis[sp->typecnt++] = ts.ttis[0];
    600  1.45   mlelstv 					sp->ttis[sp->typecnt++] = ts.ttis[1];
    601  1.45   mlelstv 			}
    602  1.45   mlelstv 	}
    603  1.45   mlelstv 	sp->goback = sp->goahead = FALSE;
    604  1.45   mlelstv 	if (sp->timecnt > 1) {
    605  1.45   mlelstv 		for (i = 1; i < sp->timecnt; ++i)
    606  1.45   mlelstv 			if (typesequiv(sp, sp->types[i], sp->types[0]) &&
    607  1.45   mlelstv 				differ_by_repeat(sp->ats[i], sp->ats[0])) {
    608  1.45   mlelstv 					sp->goback = TRUE;
    609  1.45   mlelstv 					break;
    610  1.45   mlelstv 				}
    611  1.45   mlelstv 		for (i = sp->timecnt - 2; i >= 0; --i)
    612  1.45   mlelstv 			if (typesequiv(sp, sp->types[sp->timecnt - 1],
    613  1.45   mlelstv 				sp->types[i]) &&
    614  1.45   mlelstv 				differ_by_repeat(sp->ats[sp->timecnt - 1],
    615  1.45   mlelstv 				sp->ats[i])) {
    616  1.45   mlelstv 					sp->goahead = TRUE;
    617  1.45   mlelstv 					break;
    618  1.45   mlelstv 		}
    619   1.1       jtc 	}
    620   1.1       jtc 	return 0;
    621   1.1       jtc }
    622   1.1       jtc 
    623  1.45   mlelstv static int
    624  1.45   mlelstv typesequiv(sp, a, b)
    625  1.45   mlelstv const struct state * const	sp;
    626  1.45   mlelstv const int			a;
    627  1.45   mlelstv const int			b;
    628  1.45   mlelstv {
    629  1.45   mlelstv 	register int	result;
    630  1.45   mlelstv 
    631  1.45   mlelstv 	if (sp == NULL ||
    632  1.45   mlelstv 		a < 0 || a >= sp->typecnt ||
    633  1.45   mlelstv 		b < 0 || b >= sp->typecnt)
    634  1.45   mlelstv 			result = FALSE;
    635  1.45   mlelstv 	else {
    636  1.45   mlelstv 		register const struct ttinfo *	ap = &sp->ttis[a];
    637  1.45   mlelstv 		register const struct ttinfo *	bp = &sp->ttis[b];
    638  1.45   mlelstv 		result = ap->tt_gmtoff == bp->tt_gmtoff &&
    639  1.45   mlelstv 			ap->tt_isdst == bp->tt_isdst &&
    640  1.45   mlelstv 			ap->tt_ttisstd == bp->tt_ttisstd &&
    641  1.45   mlelstv 			ap->tt_ttisgmt == bp->tt_ttisgmt &&
    642  1.45   mlelstv 			strcmp(&sp->chars[ap->tt_abbrind],
    643  1.45   mlelstv 			&sp->chars[bp->tt_abbrind]) == 0;
    644  1.45   mlelstv 	}
    645  1.45   mlelstv 	return result;
    646  1.45   mlelstv }
    647  1.45   mlelstv 
    648   1.1       jtc static const int	mon_lengths[2][MONSPERYEAR] = {
    649   1.1       jtc 	{ 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 },
    650   1.1       jtc 	{ 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }
    651   1.1       jtc };
    652   1.1       jtc 
    653   1.1       jtc static const int	year_lengths[2] = {
    654   1.1       jtc 	DAYSPERNYEAR, DAYSPERLYEAR
    655   1.1       jtc };
    656   1.1       jtc 
    657   1.1       jtc /*
    658   1.1       jtc ** Given a pointer into a time zone string, scan until a character that is not
    659  1.45   mlelstv ** a valid character in a zone name is found. Return a pointer to that
    660   1.1       jtc ** character.
    661   1.1       jtc */
    662   1.1       jtc 
    663   1.1       jtc static const char *
    664  1.45   mlelstv getzname(strp)
    665   1.1       jtc register const char *	strp;
    666   1.1       jtc {
    667   1.1       jtc 	register char	c;
    668   1.1       jtc 
    669   1.5       jtc 	while ((c = *strp) != '\0' && !is_digit(c) && c != ',' && c != '-' &&
    670   1.1       jtc 		c != '+')
    671   1.1       jtc 			++strp;
    672   1.1       jtc 	return strp;
    673   1.1       jtc }
    674   1.1       jtc 
    675   1.1       jtc /*
    676  1.45   mlelstv ** Given a pointer into an extended time zone string, scan until the ending
    677  1.45   mlelstv ** delimiter of the zone name is located. Return a pointer to the delimiter.
    678  1.45   mlelstv **
    679  1.45   mlelstv ** As with getzname above, the legal character set is actually quite
    680  1.45   mlelstv ** restricted, with other characters producing undefined results.
    681  1.45   mlelstv ** We don't do any checking here; checking is done later in common-case code.
    682  1.45   mlelstv */
    683  1.45   mlelstv 
    684  1.45   mlelstv static const char *
    685  1.45   mlelstv getqzname(register const char *strp, const int delim)
    686  1.45   mlelstv {
    687  1.45   mlelstv 	register int	c;
    688  1.45   mlelstv 
    689  1.45   mlelstv 	while ((c = *strp) != '\0' && c != delim)
    690  1.45   mlelstv 		++strp;
    691  1.45   mlelstv 	return strp;
    692  1.45   mlelstv }
    693  1.45   mlelstv 
    694  1.45   mlelstv /*
    695   1.1       jtc ** Given a pointer into a time zone string, extract a number from that string.
    696   1.1       jtc ** Check that the number is within a specified range; if it is not, return
    697   1.1       jtc ** NULL.
    698   1.1       jtc ** Otherwise, return a pointer to the first character not part of the number.
    699   1.1       jtc */
    700   1.1       jtc 
    701   1.1       jtc static const char *
    702   1.1       jtc getnum(strp, nump, min, max)
    703   1.1       jtc register const char *	strp;
    704   1.1       jtc int * const		nump;
    705   1.1       jtc const int		min;
    706   1.1       jtc const int		max;
    707   1.1       jtc {
    708   1.1       jtc 	register char	c;
    709   1.1       jtc 	register int	num;
    710   1.1       jtc 
    711  1.46  christos 	if (strp == NULL || !is_digit(c = *strp)) {
    712  1.46  christos 		errno = EINVAL;
    713   1.1       jtc 		return NULL;
    714  1.46  christos 	}
    715   1.1       jtc 	num = 0;
    716   1.5       jtc 	do {
    717   1.1       jtc 		num = num * 10 + (c - '0');
    718  1.46  christos 		if (num > max) {
    719  1.46  christos 			errno = EOVERFLOW;
    720   1.1       jtc 			return NULL;	/* illegal value */
    721  1.46  christos 		}
    722   1.5       jtc 		c = *++strp;
    723   1.5       jtc 	} while (is_digit(c));
    724  1.46  christos 	if (num < min) {
    725  1.46  christos 		errno = EINVAL;
    726   1.1       jtc 		return NULL;		/* illegal value */
    727  1.46  christos 	}
    728   1.1       jtc 	*nump = num;
    729   1.1       jtc 	return strp;
    730   1.1       jtc }
    731   1.1       jtc 
    732   1.1       jtc /*
    733   1.1       jtc ** Given a pointer into a time zone string, extract a number of seconds,
    734   1.1       jtc ** in hh[:mm[:ss]] form, from the string.
    735   1.1       jtc ** If any error occurs, return NULL.
    736   1.1       jtc ** Otherwise, return a pointer to the first character not part of the number
    737   1.1       jtc ** of seconds.
    738   1.1       jtc */
    739   1.1       jtc 
    740   1.1       jtc static const char *
    741   1.1       jtc getsecs(strp, secsp)
    742   1.1       jtc register const char *	strp;
    743   1.1       jtc long * const		secsp;
    744   1.1       jtc {
    745   1.1       jtc 	int	num;
    746   1.1       jtc 
    747   1.1       jtc 	/*
    748   1.1       jtc 	** `HOURSPERDAY * DAYSPERWEEK - 1' allows quasi-Posix rules like
    749   1.1       jtc 	** "M10.4.6/26", which does not conform to Posix,
    750   1.1       jtc 	** but which specifies the equivalent of
    751   1.1       jtc 	** ``02:00 on the first Sunday on or after 23 Oct''.
    752   1.1       jtc 	*/
    753   1.1       jtc 	strp = getnum(strp, &num, 0, HOURSPERDAY * DAYSPERWEEK - 1);
    754   1.1       jtc 	if (strp == NULL)
    755   1.1       jtc 		return NULL;
    756   1.1       jtc 	*secsp = num * (long) SECSPERHOUR;
    757   1.1       jtc 	if (*strp == ':') {
    758   1.1       jtc 		++strp;
    759   1.1       jtc 		strp = getnum(strp, &num, 0, MINSPERHOUR - 1);
    760   1.1       jtc 		if (strp == NULL)
    761   1.1       jtc 			return NULL;
    762   1.1       jtc 		*secsp += num * SECSPERMIN;
    763   1.1       jtc 		if (*strp == ':') {
    764   1.1       jtc 			++strp;
    765  1.45   mlelstv 			/* `SECSPERMIN' allows for leap seconds. */
    766   1.1       jtc 			strp = getnum(strp, &num, 0, SECSPERMIN);
    767   1.1       jtc 			if (strp == NULL)
    768   1.1       jtc 				return NULL;
    769   1.1       jtc 			*secsp += num;
    770   1.1       jtc 		}
    771   1.1       jtc 	}
    772   1.1       jtc 	return strp;
    773   1.1       jtc }
    774   1.1       jtc 
    775   1.1       jtc /*
    776   1.1       jtc ** Given a pointer into a time zone string, extract an offset, in
    777   1.1       jtc ** [+-]hh[:mm[:ss]] form, from the string.
    778   1.1       jtc ** If any error occurs, return NULL.
    779   1.1       jtc ** Otherwise, return a pointer to the first character not part of the time.
    780   1.1       jtc */
    781   1.1       jtc 
    782   1.1       jtc static const char *
    783  1.45   mlelstv getoffset(strp, offsetp)
    784   1.1       jtc register const char *	strp;
    785   1.1       jtc long * const		offsetp;
    786   1.1       jtc {
    787   1.5       jtc 	register int	neg = 0;
    788   1.1       jtc 
    789   1.1       jtc 	if (*strp == '-') {
    790   1.1       jtc 		neg = 1;
    791   1.1       jtc 		++strp;
    792   1.5       jtc 	} else if (*strp == '+')
    793   1.5       jtc 		++strp;
    794   1.1       jtc 	strp = getsecs(strp, offsetp);
    795   1.1       jtc 	if (strp == NULL)
    796   1.1       jtc 		return NULL;		/* illegal time */
    797   1.1       jtc 	if (neg)
    798   1.1       jtc 		*offsetp = -*offsetp;
    799   1.1       jtc 	return strp;
    800   1.1       jtc }
    801   1.1       jtc 
    802   1.1       jtc /*
    803   1.1       jtc ** Given a pointer into a time zone string, extract a rule in the form
    804  1.45   mlelstv ** date[/time]. See POSIX section 8 for the format of "date" and "time".
    805   1.1       jtc ** If a valid rule is not found, return NULL.
    806   1.1       jtc ** Otherwise, return a pointer to the first character not part of the rule.
    807   1.1       jtc */
    808   1.1       jtc 
    809   1.1       jtc static const char *
    810  1.45   mlelstv getrule(strp, rulep)
    811   1.1       jtc const char *			strp;
    812   1.1       jtc register struct rule * const	rulep;
    813   1.1       jtc {
    814   1.1       jtc 	if (*strp == 'J') {
    815   1.1       jtc 		/*
    816   1.1       jtc 		** Julian day.
    817   1.1       jtc 		*/
    818   1.1       jtc 		rulep->r_type = JULIAN_DAY;
    819   1.1       jtc 		++strp;
    820   1.1       jtc 		strp = getnum(strp, &rulep->r_day, 1, DAYSPERNYEAR);
    821   1.1       jtc 	} else if (*strp == 'M') {
    822   1.1       jtc 		/*
    823   1.1       jtc 		** Month, week, day.
    824   1.1       jtc 		*/
    825   1.1       jtc 		rulep->r_type = MONTH_NTH_DAY_OF_WEEK;
    826   1.1       jtc 		++strp;
    827   1.1       jtc 		strp = getnum(strp, &rulep->r_mon, 1, MONSPERYEAR);
    828   1.1       jtc 		if (strp == NULL)
    829   1.1       jtc 			return NULL;
    830   1.1       jtc 		if (*strp++ != '.')
    831   1.1       jtc 			return NULL;
    832   1.1       jtc 		strp = getnum(strp, &rulep->r_week, 1, 5);
    833   1.1       jtc 		if (strp == NULL)
    834   1.1       jtc 			return NULL;
    835   1.1       jtc 		if (*strp++ != '.')
    836   1.1       jtc 			return NULL;
    837   1.1       jtc 		strp = getnum(strp, &rulep->r_day, 0, DAYSPERWEEK - 1);
    838   1.5       jtc 	} else if (is_digit(*strp)) {
    839   1.1       jtc 		/*
    840   1.1       jtc 		** Day of year.
    841   1.1       jtc 		*/
    842   1.1       jtc 		rulep->r_type = DAY_OF_YEAR;
    843   1.1       jtc 		strp = getnum(strp, &rulep->r_day, 0, DAYSPERLYEAR - 1);
    844   1.1       jtc 	} else	return NULL;		/* invalid format */
    845   1.1       jtc 	if (strp == NULL)
    846   1.1       jtc 		return NULL;
    847   1.1       jtc 	if (*strp == '/') {
    848   1.1       jtc 		/*
    849   1.1       jtc 		** Time specified.
    850   1.1       jtc 		*/
    851   1.1       jtc 		++strp;
    852   1.1       jtc 		strp = getsecs(strp, &rulep->r_time);
    853   1.1       jtc 	} else	rulep->r_time = 2 * SECSPERHOUR;	/* default = 2:00:00 */
    854   1.1       jtc 	return strp;
    855   1.1       jtc }
    856   1.1       jtc 
    857   1.1       jtc /*
    858  1.14       jtc ** Given the Epoch-relative time of January 1, 00:00:00 UTC, in a year, the
    859  1.14       jtc ** year, a rule, and the offset from UTC at the time that rule takes effect,
    860   1.1       jtc ** calculate the Epoch-relative time that rule takes effect.
    861   1.1       jtc */
    862   1.1       jtc 
    863   1.1       jtc static time_t
    864  1.45   mlelstv transtime(janfirst, year, rulep, offset)
    865   1.1       jtc const time_t				janfirst;
    866   1.1       jtc const int				year;
    867   1.1       jtc register const struct rule * const	rulep;
    868   1.1       jtc const long				offset;
    869   1.1       jtc {
    870   1.1       jtc 	register int	leapyear;
    871   1.1       jtc 	register time_t	value;
    872   1.1       jtc 	register int	i;
    873   1.1       jtc 	int		d, m1, yy0, yy1, yy2, dow;
    874   1.1       jtc 
    875   1.1       jtc 	INITIALIZE(value);
    876   1.1       jtc 	leapyear = isleap(year);
    877   1.1       jtc 	switch (rulep->r_type) {
    878   1.1       jtc 
    879   1.1       jtc 	case JULIAN_DAY:
    880   1.1       jtc 		/*
    881   1.1       jtc 		** Jn - Julian day, 1 == January 1, 60 == March 1 even in leap
    882   1.1       jtc 		** years.
    883   1.1       jtc 		** In non-leap years, or if the day number is 59 or less, just
    884   1.1       jtc 		** add SECSPERDAY times the day number-1 to the time of
    885   1.1       jtc 		** January 1, midnight, to get the day.
    886   1.1       jtc 		*/
    887   1.1       jtc 		value = janfirst + (rulep->r_day - 1) * SECSPERDAY;
    888   1.1       jtc 		if (leapyear && rulep->r_day >= 60)
    889   1.1       jtc 			value += SECSPERDAY;
    890   1.1       jtc 		break;
    891   1.1       jtc 
    892   1.1       jtc 	case DAY_OF_YEAR:
    893   1.1       jtc 		/*
    894   1.1       jtc 		** n - day of year.
    895   1.1       jtc 		** Just add SECSPERDAY times the day number to the time of
    896   1.1       jtc 		** January 1, midnight, to get the day.
    897   1.1       jtc 		*/
    898   1.1       jtc 		value = janfirst + rulep->r_day * SECSPERDAY;
    899   1.1       jtc 		break;
    900   1.1       jtc 
    901   1.1       jtc 	case MONTH_NTH_DAY_OF_WEEK:
    902   1.1       jtc 		/*
    903   1.1       jtc 		** Mm.n.d - nth "dth day" of month m.
    904   1.1       jtc 		*/
    905   1.1       jtc 		value = janfirst;
    906   1.1       jtc 		for (i = 0; i < rulep->r_mon - 1; ++i)
    907   1.1       jtc 			value += mon_lengths[leapyear][i] * SECSPERDAY;
    908   1.1       jtc 
    909   1.1       jtc 		/*
    910   1.1       jtc 		** Use Zeller's Congruence to get day-of-week of first day of
    911   1.1       jtc 		** month.
    912   1.1       jtc 		*/
    913   1.1       jtc 		m1 = (rulep->r_mon + 9) % 12 + 1;
    914   1.1       jtc 		yy0 = (rulep->r_mon <= 2) ? (year - 1) : year;
    915   1.1       jtc 		yy1 = yy0 / 100;
    916   1.1       jtc 		yy2 = yy0 % 100;
    917   1.1       jtc 		dow = ((26 * m1 - 2) / 10 +
    918   1.1       jtc 			1 + yy2 + yy2 / 4 + yy1 / 4 - 2 * yy1) % 7;
    919   1.1       jtc 		if (dow < 0)
    920   1.1       jtc 			dow += DAYSPERWEEK;
    921   1.1       jtc 
    922   1.1       jtc 		/*
    923  1.45   mlelstv 		** "dow" is the day-of-week of the first day of the month. Get
    924   1.1       jtc 		** the day-of-month (zero-origin) of the first "dow" day of the
    925   1.1       jtc 		** month.
    926   1.1       jtc 		*/
    927   1.1       jtc 		d = rulep->r_day - dow;
    928   1.1       jtc 		if (d < 0)
    929   1.1       jtc 			d += DAYSPERWEEK;
    930   1.1       jtc 		for (i = 1; i < rulep->r_week; ++i) {
    931   1.1       jtc 			if (d + DAYSPERWEEK >=
    932   1.1       jtc 				mon_lengths[leapyear][rulep->r_mon - 1])
    933   1.1       jtc 					break;
    934   1.1       jtc 			d += DAYSPERWEEK;
    935   1.1       jtc 		}
    936   1.1       jtc 
    937   1.1       jtc 		/*
    938   1.1       jtc 		** "d" is the day-of-month (zero-origin) of the day we want.
    939   1.1       jtc 		*/
    940   1.1       jtc 		value += d * SECSPERDAY;
    941   1.1       jtc 		break;
    942   1.1       jtc 	}
    943   1.1       jtc 
    944   1.1       jtc 	/*
    945  1.14       jtc 	** "value" is the Epoch-relative time of 00:00:00 UTC on the day in
    946  1.45   mlelstv 	** question. To get the Epoch-relative time of the specified local
    947   1.1       jtc 	** time on that day, add the transition time and the current offset
    948  1.14       jtc 	** from UTC.
    949   1.1       jtc 	*/
    950   1.1       jtc 	return value + rulep->r_time + offset;
    951   1.1       jtc }
    952   1.1       jtc 
    953   1.1       jtc /*
    954   1.1       jtc ** Given a POSIX section 8-style TZ string, fill in the rule tables as
    955   1.1       jtc ** appropriate.
    956   1.1       jtc */
    957   1.1       jtc 
    958   1.1       jtc static int
    959  1.45   mlelstv tzparse(name, sp, lastditch)
    960   1.1       jtc const char *			name;
    961   1.1       jtc register struct state * const	sp;
    962   1.1       jtc const int			lastditch;
    963   1.1       jtc {
    964   1.1       jtc 	const char *			stdname;
    965   1.1       jtc 	const char *			dstname;
    966   1.1       jtc 	size_t				stdlen;
    967   1.1       jtc 	size_t				dstlen;
    968   1.1       jtc 	long				stdoffset;
    969   1.1       jtc 	long				dstoffset;
    970   1.1       jtc 	register time_t *		atp;
    971   1.1       jtc 	register unsigned char *	typep;
    972   1.1       jtc 	register char *			cp;
    973   1.1       jtc 	register int			load_result;
    974   1.1       jtc 
    975   1.1       jtc 	INITIALIZE(dstname);
    976   1.1       jtc 	stdname = name;
    977   1.1       jtc 	if (lastditch) {
    978   1.1       jtc 		stdlen = strlen(name);	/* length of standard zone name */
    979   1.1       jtc 		name += stdlen;
    980   1.1       jtc 		if (stdlen >= sizeof sp->chars)
    981   1.1       jtc 			stdlen = (sizeof sp->chars) - 1;
    982  1.10       jtc 		stdoffset = 0;
    983   1.1       jtc 	} else {
    984  1.45   mlelstv 		if (*name == '<') {
    985  1.45   mlelstv 			name++;
    986  1.45   mlelstv 			stdname = name;
    987  1.45   mlelstv 			name = getqzname(name, '>');
    988  1.45   mlelstv 			if (*name != '>')
    989  1.45   mlelstv 				return (-1);
    990  1.45   mlelstv 			stdlen = name - stdname;
    991  1.45   mlelstv 			name++;
    992  1.45   mlelstv 		} else {
    993  1.45   mlelstv 			name = getzname(name);
    994  1.45   mlelstv 			stdlen = name - stdname;
    995  1.45   mlelstv 		}
    996  1.10       jtc 		if (*name == '\0')
    997  1.10       jtc 			return -1;
    998  1.45   mlelstv 		name = getoffset(name, &stdoffset);
    999   1.1       jtc 		if (name == NULL)
   1000   1.1       jtc 			return -1;
   1001   1.1       jtc 	}
   1002  1.45   mlelstv 	load_result = tzload(TZDEFRULES, sp, FALSE);
   1003   1.1       jtc 	if (load_result != 0)
   1004   1.1       jtc 		sp->leapcnt = 0;		/* so, we're off a little */
   1005   1.1       jtc 	if (*name != '\0') {
   1006  1.45   mlelstv 		if (*name == '<') {
   1007  1.45   mlelstv 			dstname = ++name;
   1008  1.45   mlelstv 			name = getqzname(name, '>');
   1009  1.45   mlelstv 			if (*name != '>')
   1010  1.45   mlelstv 				return -1;
   1011  1.45   mlelstv 			dstlen = name - dstname;
   1012  1.45   mlelstv 			name++;
   1013  1.45   mlelstv 		} else {
   1014  1.45   mlelstv 			dstname = name;
   1015  1.45   mlelstv 			name = getzname(name);
   1016  1.45   mlelstv 			dstlen = name - dstname; /* length of DST zone name */
   1017  1.45   mlelstv 		}
   1018   1.1       jtc 		if (*name != '\0' && *name != ',' && *name != ';') {
   1019  1.45   mlelstv 			name = getoffset(name, &dstoffset);
   1020   1.1       jtc 			if (name == NULL)
   1021   1.1       jtc 				return -1;
   1022   1.1       jtc 		} else	dstoffset = stdoffset - SECSPERHOUR;
   1023  1.22    kleink 		if (*name == '\0' && load_result != 0)
   1024  1.22    kleink 			name = TZDEFRULESTRING;
   1025   1.1       jtc 		if (*name == ',' || *name == ';') {
   1026   1.1       jtc 			struct rule	start;
   1027   1.1       jtc 			struct rule	end;
   1028   1.1       jtc 			register int	year;
   1029   1.1       jtc 			register time_t	janfirst;
   1030   1.1       jtc 			time_t		starttime;
   1031   1.1       jtc 			time_t		endtime;
   1032   1.1       jtc 
   1033   1.1       jtc 			++name;
   1034  1.45   mlelstv 			if ((name = getrule(name, &start)) == NULL)
   1035   1.1       jtc 				return -1;
   1036   1.1       jtc 			if (*name++ != ',')
   1037   1.1       jtc 				return -1;
   1038  1.45   mlelstv 			if ((name = getrule(name, &end)) == NULL)
   1039   1.1       jtc 				return -1;
   1040   1.1       jtc 			if (*name != '\0')
   1041   1.1       jtc 				return -1;
   1042   1.1       jtc 			sp->typecnt = 2;	/* standard time and DST */
   1043   1.1       jtc 			/*
   1044  1.45   mlelstv 			** Two transitions per year, from EPOCH_YEAR forward.
   1045   1.1       jtc 			*/
   1046   1.1       jtc 			sp->ttis[0].tt_gmtoff = -dstoffset;
   1047   1.1       jtc 			sp->ttis[0].tt_isdst = 1;
   1048   1.1       jtc 			sp->ttis[0].tt_abbrind = stdlen + 1;
   1049   1.1       jtc 			sp->ttis[1].tt_gmtoff = -stdoffset;
   1050   1.1       jtc 			sp->ttis[1].tt_isdst = 0;
   1051   1.1       jtc 			sp->ttis[1].tt_abbrind = 0;
   1052   1.1       jtc 			atp = sp->ats;
   1053   1.1       jtc 			typep = sp->types;
   1054   1.1       jtc 			janfirst = 0;
   1055  1.45   mlelstv 			sp->timecnt = 0;
   1056  1.45   mlelstv 			for (year = EPOCH_YEAR;
   1057  1.45   mlelstv 			    sp->timecnt + 2 <= TZ_MAX_TIMES;
   1058  1.45   mlelstv 			    ++year) {
   1059  1.45   mlelstv 			    	time_t	newfirst;
   1060  1.45   mlelstv 
   1061  1.45   mlelstv 				starttime = transtime(janfirst, year, &start,
   1062   1.1       jtc 					stdoffset);
   1063  1.45   mlelstv 				endtime = transtime(janfirst, year, &end,
   1064   1.1       jtc 					dstoffset);
   1065   1.1       jtc 				if (starttime > endtime) {
   1066   1.1       jtc 					*atp++ = endtime;
   1067   1.1       jtc 					*typep++ = 1;	/* DST ends */
   1068   1.1       jtc 					*atp++ = starttime;
   1069   1.1       jtc 					*typep++ = 0;	/* DST begins */
   1070   1.1       jtc 				} else {
   1071   1.1       jtc 					*atp++ = starttime;
   1072   1.1       jtc 					*typep++ = 0;	/* DST begins */
   1073   1.1       jtc 					*atp++ = endtime;
   1074   1.1       jtc 					*typep++ = 1;	/* DST ends */
   1075   1.1       jtc 				}
   1076  1.45   mlelstv 				sp->timecnt += 2;
   1077  1.45   mlelstv 				newfirst = janfirst;
   1078  1.45   mlelstv 				newfirst += year_lengths[isleap(year)] *
   1079   1.1       jtc 					SECSPERDAY;
   1080  1.45   mlelstv 				if (newfirst <= janfirst)
   1081  1.45   mlelstv 					break;
   1082  1.45   mlelstv 				janfirst = newfirst;
   1083   1.1       jtc 			}
   1084   1.1       jtc 		} else {
   1085   1.1       jtc 			register long	theirstdoffset;
   1086  1.45   mlelstv 			register long	theirdstoffset;
   1087   1.1       jtc 			register long	theiroffset;
   1088  1.45   mlelstv 			register int	isdst;
   1089   1.1       jtc 			register int	i;
   1090   1.1       jtc 			register int	j;
   1091   1.1       jtc 
   1092   1.1       jtc 			if (*name != '\0')
   1093   1.1       jtc 				return -1;
   1094   1.1       jtc 			/*
   1095  1.39  christos 			** Initial values of theirstdoffset
   1096   1.1       jtc 			*/
   1097   1.1       jtc 			theirstdoffset = 0;
   1098   1.1       jtc 			for (i = 0; i < sp->timecnt; ++i) {
   1099   1.1       jtc 				j = sp->types[i];
   1100   1.1       jtc 				if (!sp->ttis[j].tt_isdst) {
   1101   1.5       jtc 					theirstdoffset =
   1102   1.5       jtc 						-sp->ttis[j].tt_gmtoff;
   1103   1.1       jtc 					break;
   1104   1.1       jtc 				}
   1105   1.1       jtc 			}
   1106  1.45   mlelstv 			theirdstoffset = 0;
   1107  1.45   mlelstv 			for (i = 0; i < sp->timecnt; ++i) {
   1108  1.45   mlelstv 				j = sp->types[i];
   1109  1.45   mlelstv 				if (sp->ttis[j].tt_isdst) {
   1110  1.45   mlelstv 					theirdstoffset =
   1111  1.45   mlelstv 						-sp->ttis[j].tt_gmtoff;
   1112  1.45   mlelstv 					break;
   1113  1.45   mlelstv 				}
   1114  1.45   mlelstv 			}
   1115   1.1       jtc 			/*
   1116   1.1       jtc 			** Initially we're assumed to be in standard time.
   1117   1.1       jtc 			*/
   1118  1.45   mlelstv 			isdst = FALSE;
   1119   1.1       jtc 			theiroffset = theirstdoffset;
   1120   1.1       jtc 			/*
   1121   1.1       jtc 			** Now juggle transition times and types
   1122   1.1       jtc 			** tracking offsets as you do.
   1123   1.1       jtc 			*/
   1124   1.1       jtc 			for (i = 0; i < sp->timecnt; ++i) {
   1125   1.1       jtc 				j = sp->types[i];
   1126   1.1       jtc 				sp->types[i] = sp->ttis[j].tt_isdst;
   1127   1.1       jtc 				if (sp->ttis[j].tt_ttisgmt) {
   1128   1.1       jtc 					/* No adjustment to transition time */
   1129   1.1       jtc 				} else {
   1130   1.1       jtc 					/*
   1131   1.1       jtc 					** If summer time is in effect, and the
   1132   1.1       jtc 					** transition time was not specified as
   1133   1.1       jtc 					** standard time, add the summer time
   1134   1.1       jtc 					** offset to the transition time;
   1135   1.1       jtc 					** otherwise, add the standard time
   1136   1.1       jtc 					** offset to the transition time.
   1137   1.1       jtc 					*/
   1138   1.1       jtc 					/*
   1139   1.1       jtc 					** Transitions from DST to DDST
   1140   1.1       jtc 					** will effectively disappear since
   1141   1.1       jtc 					** POSIX provides for only one DST
   1142   1.1       jtc 					** offset.
   1143   1.1       jtc 					*/
   1144  1.45   mlelstv 					if (isdst && !sp->ttis[j].tt_ttisstd) {
   1145  1.45   mlelstv 						sp->ats[i] += dstoffset -
   1146  1.45   mlelstv 							theirdstoffset;
   1147  1.45   mlelstv 					} else {
   1148  1.45   mlelstv 						sp->ats[i] += stdoffset -
   1149  1.45   mlelstv 							theirstdoffset;
   1150  1.45   mlelstv 					}
   1151   1.1       jtc 				}
   1152   1.1       jtc 				theiroffset = -sp->ttis[j].tt_gmtoff;
   1153  1.39  christos 				if (!sp->ttis[j].tt_isdst)
   1154  1.39  christos 					theirstdoffset = theiroffset;
   1155  1.45   mlelstv 				else	theirdstoffset = theiroffset;
   1156   1.1       jtc 			}
   1157   1.1       jtc 			/*
   1158   1.1       jtc 			** Finally, fill in ttis.
   1159   1.1       jtc 			** ttisstd and ttisgmt need not be handled.
   1160   1.1       jtc 			*/
   1161   1.1       jtc 			sp->ttis[0].tt_gmtoff = -stdoffset;
   1162   1.1       jtc 			sp->ttis[0].tt_isdst = FALSE;
   1163   1.1       jtc 			sp->ttis[0].tt_abbrind = 0;
   1164   1.1       jtc 			sp->ttis[1].tt_gmtoff = -dstoffset;
   1165   1.1       jtc 			sp->ttis[1].tt_isdst = TRUE;
   1166   1.1       jtc 			sp->ttis[1].tt_abbrind = stdlen + 1;
   1167   1.7       jtc 			sp->typecnt = 2;
   1168   1.1       jtc 		}
   1169   1.1       jtc 	} else {
   1170   1.1       jtc 		dstlen = 0;
   1171   1.1       jtc 		sp->typecnt = 1;		/* only standard time */
   1172   1.1       jtc 		sp->timecnt = 0;
   1173   1.1       jtc 		sp->ttis[0].tt_gmtoff = -stdoffset;
   1174   1.1       jtc 		sp->ttis[0].tt_isdst = 0;
   1175   1.1       jtc 		sp->ttis[0].tt_abbrind = 0;
   1176   1.1       jtc 	}
   1177   1.1       jtc 	sp->charcnt = stdlen + 1;
   1178   1.1       jtc 	if (dstlen != 0)
   1179   1.1       jtc 		sp->charcnt += dstlen + 1;
   1180  1.10       jtc 	if ((size_t) sp->charcnt > sizeof sp->chars)
   1181   1.1       jtc 		return -1;
   1182   1.1       jtc 	cp = sp->chars;
   1183   1.1       jtc 	(void) strncpy(cp, stdname, stdlen);
   1184   1.1       jtc 	cp += stdlen;
   1185   1.1       jtc 	*cp++ = '\0';
   1186   1.1       jtc 	if (dstlen != 0) {
   1187   1.1       jtc 		(void) strncpy(cp, dstname, dstlen);
   1188   1.1       jtc 		*(cp + dstlen) = '\0';
   1189   1.1       jtc 	}
   1190   1.1       jtc 	return 0;
   1191   1.1       jtc }
   1192   1.1       jtc 
   1193   1.1       jtc static void
   1194  1.45   mlelstv gmtload(sp)
   1195   1.1       jtc struct state * const	sp;
   1196   1.1       jtc {
   1197  1.45   mlelstv 	if (tzload(gmt, sp, TRUE) != 0)
   1198  1.45   mlelstv 		(void) tzparse(gmt, sp, TRUE);
   1199   1.1       jtc }
   1200   1.1       jtc 
   1201  1.19    kleink static void
   1202  1.45   mlelstv tzsetwall_unlocked(void)
   1203   1.1       jtc {
   1204  1.45   mlelstv 	if (lcl_is_set < 0)
   1205   1.1       jtc 		return;
   1206  1.45   mlelstv 	lcl_is_set = -1;
   1207   1.1       jtc 
   1208   1.1       jtc #ifdef ALL_STATE
   1209   1.1       jtc 	if (lclptr == NULL) {
   1210  1.41  christos 		int saveerrno = errno;
   1211   1.1       jtc 		lclptr = (struct state *) malloc(sizeof *lclptr);
   1212  1.41  christos 		errno = saveerrno;
   1213   1.1       jtc 		if (lclptr == NULL) {
   1214  1.45   mlelstv 			settzname();	/* all we can do */
   1215   1.1       jtc 			return;
   1216   1.1       jtc 		}
   1217   1.1       jtc 	}
   1218   1.1       jtc #endif /* defined ALL_STATE */
   1219  1.45   mlelstv 	if (tzload((char *) NULL, lclptr, TRUE) != 0)
   1220  1.45   mlelstv 		gmtload(lclptr);
   1221  1.45   mlelstv 	settzname();
   1222   1.1       jtc }
   1223   1.1       jtc 
   1224  1.19    kleink #ifndef STD_INSPIRED
   1225  1.19    kleink /*
   1226  1.19    kleink ** A non-static declaration of tzsetwall in a system header file
   1227  1.19    kleink ** may cause a warning about this upcoming static declaration...
   1228  1.19    kleink */
   1229  1.19    kleink static
   1230  1.19    kleink #endif /* !defined STD_INSPIRED */
   1231   1.1       jtc void
   1232  1.45   mlelstv tzsetwall(void)
   1233  1.19    kleink {
   1234  1.45   mlelstv 	rwlock_wrlock(&lcl_lock);
   1235  1.45   mlelstv 	tzsetwall_unlocked();
   1236  1.45   mlelstv 	rwlock_unlock(&lcl_lock);
   1237  1.19    kleink }
   1238  1.19    kleink 
   1239  1.45   mlelstv #ifndef STD_INSPIRED
   1240  1.45   mlelstv /*
   1241  1.45   mlelstv ** A non-static declaration of tzsetwall in a system header file
   1242  1.45   mlelstv ** may cause a warning about this upcoming static declaration...
   1243  1.45   mlelstv */
   1244  1.45   mlelstv static
   1245  1.45   mlelstv #endif /* !defined STD_INSPIRED */
   1246  1.45   mlelstv void
   1247  1.45   mlelstv tzset_unlocked(void)
   1248   1.1       jtc {
   1249   1.1       jtc 	register const char *	name;
   1250  1.41  christos 	int saveerrno;
   1251   1.1       jtc 
   1252  1.41  christos 	saveerrno = errno;
   1253   1.1       jtc 	name = getenv("TZ");
   1254  1.41  christos 	errno = saveerrno;
   1255   1.1       jtc 	if (name == NULL) {
   1256  1.45   mlelstv 		tzsetwall_unlocked();
   1257   1.1       jtc 		return;
   1258   1.1       jtc 	}
   1259   1.1       jtc 
   1260  1.45   mlelstv 	if (lcl_is_set > 0 && strcmp(lcl_TZname, name) == 0)
   1261   1.1       jtc 		return;
   1262  1.45   mlelstv 	lcl_is_set = strlen(name) < sizeof lcl_TZname;
   1263  1.45   mlelstv 	if (lcl_is_set)
   1264  1.45   mlelstv 		(void)strlcpy(lcl_TZname, name, sizeof(lcl_TZname));
   1265   1.1       jtc 
   1266   1.1       jtc #ifdef ALL_STATE
   1267   1.1       jtc 	if (lclptr == NULL) {
   1268  1.41  christos 		saveerrno = errno;
   1269   1.1       jtc 		lclptr = (struct state *) malloc(sizeof *lclptr);
   1270  1.41  christos 		errno = saveerrno;
   1271   1.1       jtc 		if (lclptr == NULL) {
   1272  1.45   mlelstv 			settzname();	/* all we can do */
   1273   1.1       jtc 			return;
   1274   1.1       jtc 		}
   1275   1.1       jtc 	}
   1276   1.1       jtc #endif /* defined ALL_STATE */
   1277   1.1       jtc 	if (*name == '\0') {
   1278   1.1       jtc 		/*
   1279   1.1       jtc 		** User wants it fast rather than right.
   1280   1.1       jtc 		*/
   1281   1.1       jtc 		lclptr->leapcnt = 0;		/* so, we're off a little */
   1282   1.1       jtc 		lclptr->timecnt = 0;
   1283  1.27    atatat 		lclptr->typecnt = 0;
   1284  1.27    atatat 		lclptr->ttis[0].tt_isdst = 0;
   1285   1.1       jtc 		lclptr->ttis[0].tt_gmtoff = 0;
   1286   1.1       jtc 		lclptr->ttis[0].tt_abbrind = 0;
   1287  1.45   mlelstv 		(void) strlcpy(lclptr->chars, gmt, sizeof(lclptr->chars));
   1288  1.45   mlelstv 	} else if (tzload(name, lclptr, TRUE) != 0)
   1289  1.45   mlelstv 		if (name[0] == ':' || tzparse(name, lclptr, FALSE) != 0)
   1290  1.45   mlelstv 			(void) gmtload(lclptr);
   1291  1.45   mlelstv 	settzname();
   1292   1.1       jtc }
   1293   1.1       jtc 
   1294  1.19    kleink void
   1295  1.45   mlelstv tzset(void)
   1296  1.19    kleink {
   1297  1.45   mlelstv 	rwlock_wrlock(&lcl_lock);
   1298  1.45   mlelstv 	tzset_unlocked();
   1299  1.45   mlelstv 	rwlock_unlock(&lcl_lock);
   1300  1.19    kleink }
   1301  1.19    kleink 
   1302   1.1       jtc /*
   1303   1.1       jtc ** The easy way to behave "as if no library function calls" localtime
   1304   1.1       jtc ** is to not call it--so we drop its guts into "localsub", which can be
   1305  1.45   mlelstv ** freely called. (And no, the PANS doesn't require the above behavior--
   1306   1.1       jtc ** but it *is* desirable.)
   1307   1.1       jtc **
   1308   1.1       jtc ** The unused offset argument is for the benefit of mktime variants.
   1309   1.1       jtc */
   1310   1.1       jtc 
   1311   1.1       jtc /*ARGSUSED*/
   1312  1.45   mlelstv static struct tm *
   1313   1.1       jtc localsub(timep, offset, tmp)
   1314   1.1       jtc const time_t * const	timep;
   1315   1.1       jtc const long		offset;
   1316   1.1       jtc struct tm * const	tmp;
   1317   1.1       jtc {
   1318   1.1       jtc 	register struct state *		sp;
   1319   1.1       jtc 	register const struct ttinfo *	ttisp;
   1320   1.1       jtc 	register int			i;
   1321  1.45   mlelstv 	register struct tm *		result;
   1322   1.1       jtc 	const time_t			t = *timep;
   1323   1.1       jtc 
   1324   1.1       jtc 	sp = lclptr;
   1325   1.1       jtc #ifdef ALL_STATE
   1326  1.45   mlelstv 	if (sp == NULL)
   1327  1.45   mlelstv 		return gmtsub(timep, offset, tmp);
   1328  1.45   mlelstv #endif /* defined ALL_STATE */
   1329  1.45   mlelstv 	if ((sp->goback && t < sp->ats[0]) ||
   1330  1.45   mlelstv 		(sp->goahead && t > sp->ats[sp->timecnt - 1])) {
   1331  1.45   mlelstv 			time_t			newt = t;
   1332  1.45   mlelstv 			register time_t		seconds;
   1333  1.45   mlelstv 			register time_t		tcycles;
   1334  1.45   mlelstv 			register int_fast64_t	icycles;
   1335  1.45   mlelstv 
   1336  1.45   mlelstv 			if (t < sp->ats[0])
   1337  1.45   mlelstv 				seconds = sp->ats[0] - t;
   1338  1.45   mlelstv 			else	seconds = t - sp->ats[sp->timecnt - 1];
   1339  1.45   mlelstv 			--seconds;
   1340  1.45   mlelstv 			tcycles = seconds / YEARSPERREPEAT / AVGSECSPERYEAR;
   1341  1.45   mlelstv 			++tcycles;
   1342  1.45   mlelstv 			icycles = tcycles;
   1343  1.45   mlelstv 			if (tcycles - icycles >= 1 || icycles - tcycles >= 1)
   1344  1.45   mlelstv 				return NULL;
   1345  1.45   mlelstv 			seconds = (time_t) icycles;
   1346  1.45   mlelstv 			seconds *= YEARSPERREPEAT;
   1347  1.45   mlelstv 			seconds *= AVGSECSPERYEAR;
   1348  1.45   mlelstv 			if (t < sp->ats[0])
   1349  1.45   mlelstv 				newt += seconds;
   1350  1.45   mlelstv 			else	newt -= seconds;
   1351  1.45   mlelstv 			if (newt < sp->ats[0] ||
   1352  1.46  christos 				newt > sp->ats[sp->timecnt - 1]) {
   1353  1.46  christos 					errno = EOVERFLOW;
   1354  1.45   mlelstv 					return NULL;	/* "cannot happen" */
   1355  1.46  christos 			}
   1356  1.45   mlelstv 			result = localsub(&newt, offset, tmp);
   1357  1.45   mlelstv 			if (result == tmp) {
   1358  1.45   mlelstv 				register time_t	newy;
   1359  1.45   mlelstv 
   1360  1.45   mlelstv 				newy = tmp->tm_year;
   1361  1.45   mlelstv 				if (t < sp->ats[0])
   1362  1.45   mlelstv 					newy -= (time_t)icycles * YEARSPERREPEAT;
   1363  1.45   mlelstv 				else	newy += (time_t)icycles * YEARSPERREPEAT;
   1364  1.45   mlelstv 				tmp->tm_year = (int)newy;
   1365  1.46  christos 				if (tmp->tm_year != newy) {
   1366  1.46  christos 					errno = EOVERFLOW;
   1367  1.45   mlelstv 					return NULL;
   1368  1.46  christos 				}
   1369  1.45   mlelstv 			}
   1370  1.45   mlelstv 			return result;
   1371   1.1       jtc 	}
   1372   1.1       jtc 	if (sp->timecnt == 0 || t < sp->ats[0]) {
   1373   1.1       jtc 		i = 0;
   1374   1.1       jtc 		while (sp->ttis[i].tt_isdst)
   1375   1.1       jtc 			if (++i >= sp->typecnt) {
   1376   1.1       jtc 				i = 0;
   1377   1.1       jtc 				break;
   1378   1.1       jtc 			}
   1379   1.1       jtc 	} else {
   1380  1.45   mlelstv 		register int	lo = 1;
   1381  1.45   mlelstv 		register int	hi = sp->timecnt;
   1382  1.45   mlelstv 
   1383  1.45   mlelstv 		while (lo < hi) {
   1384  1.45   mlelstv 			register int	mid = (lo + hi) / 2;
   1385  1.45   mlelstv 
   1386  1.45   mlelstv 			if (t < sp->ats[mid])
   1387  1.45   mlelstv 				hi = mid;
   1388  1.45   mlelstv 			else	lo = mid + 1;
   1389  1.45   mlelstv 		}
   1390  1.45   mlelstv 		i = (int) sp->types[lo - 1];
   1391   1.1       jtc 	}
   1392   1.1       jtc 	ttisp = &sp->ttis[i];
   1393   1.1       jtc 	/*
   1394   1.1       jtc 	** To get (wrong) behavior that's compatible with System V Release 2.0
   1395   1.1       jtc 	** you'd replace the statement below with
   1396   1.1       jtc 	**	t += ttisp->tt_gmtoff;
   1397   1.1       jtc 	**	timesub(&t, 0L, sp, tmp);
   1398   1.1       jtc 	*/
   1399  1.45   mlelstv 	result = timesub(&t, ttisp->tt_gmtoff, sp, tmp);
   1400   1.1       jtc 	tmp->tm_isdst = ttisp->tt_isdst;
   1401   1.1       jtc 	tzname[tmp->tm_isdst] = &sp->chars[ttisp->tt_abbrind];
   1402   1.1       jtc #ifdef TM_ZONE
   1403   1.1       jtc 	tmp->TM_ZONE = &sp->chars[ttisp->tt_abbrind];
   1404   1.1       jtc #endif /* defined TM_ZONE */
   1405  1.45   mlelstv 	return result;
   1406   1.1       jtc }
   1407   1.1       jtc 
   1408   1.1       jtc struct tm *
   1409   1.1       jtc localtime(timep)
   1410   1.1       jtc const time_t * const	timep;
   1411   1.1       jtc {
   1412  1.45   mlelstv 	struct tm *result;
   1413  1.45   mlelstv 
   1414  1.45   mlelstv 	rwlock_wrlock(&lcl_lock);
   1415  1.45   mlelstv 	tzset_unlocked();
   1416  1.45   mlelstv 	result = localsub(timep, 0L, &tm);
   1417  1.45   mlelstv 	rwlock_unlock(&lcl_lock);
   1418  1.45   mlelstv 	return result;
   1419   1.1       jtc }
   1420   1.1       jtc 
   1421   1.1       jtc /*
   1422  1.35    kleink ** Re-entrant version of localtime.
   1423  1.35    kleink */
   1424  1.35    kleink 
   1425  1.18    kleink struct tm *
   1426  1.28     lukem localtime_r(timep, tmp)
   1427  1.18    kleink const time_t * const	timep;
   1428  1.28     lukem struct tm *		tmp;
   1429  1.18    kleink {
   1430  1.45   mlelstv 	struct tm *result;
   1431  1.45   mlelstv 
   1432  1.45   mlelstv 	rwlock_rdlock(&lcl_lock);
   1433  1.45   mlelstv 	tzset_unlocked();
   1434  1.45   mlelstv 	result = localsub(timep, 0L, tmp);
   1435  1.45   mlelstv 	rwlock_unlock(&lcl_lock);
   1436  1.45   mlelstv 	return result;
   1437  1.18    kleink }
   1438  1.18    kleink 
   1439  1.18    kleink /*
   1440   1.1       jtc ** gmtsub is to gmtime as localsub is to localtime.
   1441   1.1       jtc */
   1442   1.1       jtc 
   1443  1.45   mlelstv static struct tm *
   1444   1.1       jtc gmtsub(timep, offset, tmp)
   1445   1.1       jtc const time_t * const	timep;
   1446   1.1       jtc const long		offset;
   1447   1.1       jtc struct tm * const	tmp;
   1448   1.1       jtc {
   1449  1.45   mlelstv 	register struct tm *	result;
   1450  1.33  christos #ifdef _REENTRANT
   1451  1.19    kleink 	static mutex_t gmt_mutex = MUTEX_INITIALIZER;
   1452  1.19    kleink #endif
   1453  1.19    kleink 
   1454  1.19    kleink 	mutex_lock(&gmt_mutex);
   1455  1.45   mlelstv 	if (!gmt_is_set) {
   1456  1.41  christos #ifdef ALL_STATE
   1457  1.41  christos 		int saveerrno;
   1458  1.41  christos #endif
   1459  1.45   mlelstv 		gmt_is_set = TRUE;
   1460   1.1       jtc #ifdef ALL_STATE
   1461  1.41  christos 		saveerrno = errno;
   1462   1.1       jtc 		gmtptr = (struct state *) malloc(sizeof *gmtptr);
   1463  1.41  christos 		errno = saveerrno;
   1464   1.1       jtc 		if (gmtptr != NULL)
   1465   1.1       jtc #endif /* defined ALL_STATE */
   1466  1.45   mlelstv 			gmtload(gmtptr);
   1467   1.1       jtc 	}
   1468  1.19    kleink 	mutex_unlock(&gmt_mutex);
   1469  1.45   mlelstv 	result = timesub(timep, offset, gmtptr, tmp);
   1470   1.1       jtc #ifdef TM_ZONE
   1471   1.1       jtc 	/*
   1472   1.1       jtc 	** Could get fancy here and deliver something such as
   1473  1.14       jtc 	** "UTC+xxxx" or "UTC-xxxx" if offset is non-zero,
   1474   1.1       jtc 	** but this is no time for a treasure hunt.
   1475   1.1       jtc 	*/
   1476   1.1       jtc 	if (offset != 0)
   1477  1.37  christos 		tmp->TM_ZONE = (__aconst char *)__UNCONST(wildabbr);
   1478   1.1       jtc 	else {
   1479   1.1       jtc #ifdef ALL_STATE
   1480   1.1       jtc 		if (gmtptr == NULL)
   1481  1.37  christos 			tmp->TM_ZONE = (__aconst char *)__UNCONST(gmt);
   1482   1.1       jtc 		else	tmp->TM_ZONE = gmtptr->chars;
   1483   1.1       jtc #endif /* defined ALL_STATE */
   1484   1.1       jtc #ifndef ALL_STATE
   1485   1.1       jtc 		tmp->TM_ZONE = gmtptr->chars;
   1486   1.1       jtc #endif /* State Farm */
   1487   1.1       jtc 	}
   1488   1.1       jtc #endif /* defined TM_ZONE */
   1489  1.45   mlelstv 	return result;
   1490   1.1       jtc }
   1491   1.1       jtc 
   1492   1.1       jtc struct tm *
   1493   1.1       jtc gmtime(timep)
   1494   1.1       jtc const time_t * const	timep;
   1495   1.1       jtc {
   1496  1.45   mlelstv 	return gmtsub(timep, 0L, &tm);
   1497   1.1       jtc }
   1498   1.1       jtc 
   1499  1.18    kleink /*
   1500  1.35    kleink ** Re-entrant version of gmtime.
   1501  1.35    kleink */
   1502  1.35    kleink 
   1503  1.18    kleink struct tm *
   1504  1.28     lukem gmtime_r(timep, tmp)
   1505  1.18    kleink const time_t * const	timep;
   1506  1.28     lukem struct tm *		tmp;
   1507  1.18    kleink {
   1508  1.45   mlelstv 	return gmtsub(timep, 0L, tmp);
   1509  1.18    kleink }
   1510  1.18    kleink 
   1511   1.1       jtc #ifdef STD_INSPIRED
   1512   1.1       jtc 
   1513   1.1       jtc struct tm *
   1514   1.1       jtc offtime(timep, offset)
   1515   1.1       jtc const time_t * const	timep;
   1516   1.1       jtc const long		offset;
   1517   1.1       jtc {
   1518  1.45   mlelstv 	return gmtsub(timep, offset, &tm);
   1519   1.1       jtc }
   1520   1.1       jtc 
   1521   1.1       jtc #endif /* defined STD_INSPIRED */
   1522   1.1       jtc 
   1523  1.45   mlelstv /*
   1524  1.45   mlelstv ** Return the number of leap years through the end of the given year
   1525  1.45   mlelstv ** where, to make the math easy, the answer for year zero is defined as zero.
   1526  1.45   mlelstv */
   1527  1.45   mlelstv 
   1528  1.45   mlelstv static int
   1529  1.45   mlelstv leaps_thru_end_of(y)
   1530  1.45   mlelstv register const int	y;
   1531  1.45   mlelstv {
   1532  1.45   mlelstv 	return (y >= 0) ? (y / 4 - y / 100 + y / 400) :
   1533  1.45   mlelstv 		-(leaps_thru_end_of(-(y + 1)) + 1);
   1534  1.45   mlelstv }
   1535  1.45   mlelstv 
   1536  1.45   mlelstv static struct tm *
   1537   1.1       jtc timesub(timep, offset, sp, tmp)
   1538   1.1       jtc const time_t * const			timep;
   1539   1.1       jtc const long				offset;
   1540   1.1       jtc register const struct state * const	sp;
   1541   1.1       jtc register struct tm * const		tmp;
   1542   1.1       jtc {
   1543   1.1       jtc 	register const struct lsinfo *	lp;
   1544  1.45   mlelstv 	register time_t			tdays;
   1545  1.45   mlelstv 	register int			idays;	/* unsigned would be so 2003 */
   1546  1.45   mlelstv 	register long			rem;
   1547  1.45   mlelstv 	int				y;
   1548   1.1       jtc 	register const int *		ip;
   1549   1.1       jtc 	register long			corr;
   1550   1.1       jtc 	register int			hit;
   1551   1.1       jtc 	register int			i;
   1552   1.1       jtc 
   1553   1.1       jtc 	corr = 0;
   1554   1.1       jtc 	hit = 0;
   1555   1.1       jtc #ifdef ALL_STATE
   1556   1.1       jtc 	i = (sp == NULL) ? 0 : sp->leapcnt;
   1557   1.1       jtc #endif /* defined ALL_STATE */
   1558   1.1       jtc #ifndef ALL_STATE
   1559   1.1       jtc 	i = sp->leapcnt;
   1560   1.1       jtc #endif /* State Farm */
   1561   1.1       jtc 	while (--i >= 0) {
   1562   1.1       jtc 		lp = &sp->lsis[i];
   1563   1.1       jtc 		if (*timep >= lp->ls_trans) {
   1564   1.1       jtc 			if (*timep == lp->ls_trans) {
   1565   1.1       jtc 				hit = ((i == 0 && lp->ls_corr > 0) ||
   1566   1.1       jtc 					lp->ls_corr > sp->lsis[i - 1].ls_corr);
   1567   1.1       jtc 				if (hit)
   1568   1.1       jtc 					while (i > 0 &&
   1569   1.1       jtc 						sp->lsis[i].ls_trans ==
   1570   1.1       jtc 						sp->lsis[i - 1].ls_trans + 1 &&
   1571   1.1       jtc 						sp->lsis[i].ls_corr ==
   1572   1.1       jtc 						sp->lsis[i - 1].ls_corr + 1) {
   1573   1.1       jtc 							++hit;
   1574   1.1       jtc 							--i;
   1575   1.1       jtc 					}
   1576   1.1       jtc 			}
   1577   1.1       jtc 			corr = lp->ls_corr;
   1578   1.1       jtc 			break;
   1579   1.1       jtc 		}
   1580   1.1       jtc 	}
   1581  1.45   mlelstv 	y = EPOCH_YEAR;
   1582  1.45   mlelstv 	tdays = *timep / SECSPERDAY;
   1583  1.45   mlelstv 	rem = (long) (*timep - tdays * SECSPERDAY);
   1584  1.45   mlelstv 	while (tdays < 0 || tdays >= year_lengths[isleap(y)]) {
   1585  1.45   mlelstv 		int		newy;
   1586  1.45   mlelstv 		register time_t	tdelta;
   1587  1.45   mlelstv 		register int	idelta;
   1588  1.45   mlelstv 		register int	leapdays;
   1589  1.45   mlelstv 
   1590  1.45   mlelstv 		tdelta = tdays / DAYSPERLYEAR;
   1591  1.45   mlelstv 		idelta = (int) tdelta;
   1592  1.46  christos 		if (tdelta - idelta >= 1 || idelta - tdelta >= 1) {
   1593  1.46  christos 			errno = EOVERFLOW;
   1594  1.45   mlelstv 			return NULL;
   1595  1.46  christos 		}
   1596  1.45   mlelstv 		if (idelta == 0)
   1597  1.45   mlelstv 			idelta = (tdays < 0) ? -1 : 1;
   1598  1.45   mlelstv 		newy = y;
   1599  1.46  christos 		if (increment_overflow(&newy, idelta)) {
   1600  1.46  christos 			errno = EOVERFLOW;
   1601  1.45   mlelstv 			return NULL;
   1602  1.46  christos 		}
   1603  1.45   mlelstv 		leapdays = leaps_thru_end_of(newy - 1) -
   1604  1.45   mlelstv 			leaps_thru_end_of(y - 1);
   1605  1.45   mlelstv 		tdays -= ((time_t) newy - y) * DAYSPERNYEAR;
   1606  1.45   mlelstv 		tdays -= leapdays;
   1607  1.45   mlelstv 		y = newy;
   1608  1.45   mlelstv 	}
   1609  1.45   mlelstv 	{
   1610  1.45   mlelstv 		register long	seconds;
   1611  1.45   mlelstv 
   1612  1.45   mlelstv 		seconds = tdays * SECSPERDAY + 0.5;
   1613  1.45   mlelstv 		tdays = seconds / SECSPERDAY;
   1614  1.45   mlelstv 		rem += (long) (seconds - tdays * SECSPERDAY);
   1615   1.1       jtc 	}
   1616  1.45   mlelstv 	/*
   1617  1.45   mlelstv 	** Given the range, we can now fearlessly cast...
   1618  1.45   mlelstv 	*/
   1619  1.45   mlelstv 	idays = (int) tdays;
   1620  1.45   mlelstv 	rem += offset - corr;
   1621   1.1       jtc 	while (rem < 0) {
   1622   1.1       jtc 		rem += SECSPERDAY;
   1623  1.45   mlelstv 		--idays;
   1624   1.1       jtc 	}
   1625   1.1       jtc 	while (rem >= SECSPERDAY) {
   1626   1.1       jtc 		rem -= SECSPERDAY;
   1627  1.45   mlelstv 		++idays;
   1628  1.45   mlelstv 	}
   1629  1.45   mlelstv 	while (idays < 0) {
   1630  1.46  christos 		if (increment_overflow(&y, -1)) {
   1631  1.46  christos 			errno = EOVERFLOW;
   1632  1.45   mlelstv 			return NULL;
   1633  1.46  christos 		}
   1634  1.45   mlelstv 		idays += year_lengths[isleap(y)];
   1635   1.1       jtc 	}
   1636  1.45   mlelstv 	while (idays >= year_lengths[isleap(y)]) {
   1637  1.45   mlelstv 		idays -= year_lengths[isleap(y)];
   1638  1.46  christos 		if (increment_overflow(&y, 1)) {
   1639  1.46  christos 			errno = EOVERFLOW;
   1640  1.45   mlelstv 			return NULL;
   1641  1.46  christos 		}
   1642  1.45   mlelstv 	}
   1643  1.45   mlelstv 	tmp->tm_year = y;
   1644  1.46  christos 	if (increment_overflow(&tmp->tm_year, -TM_YEAR_BASE)) {
   1645  1.46  christos 		errno = EOVERFLOW;
   1646  1.45   mlelstv 		return NULL;
   1647  1.46  christos 	}
   1648  1.45   mlelstv 	tmp->tm_yday = idays;
   1649  1.45   mlelstv 	/*
   1650  1.45   mlelstv 	** The "extra" mods below avoid overflow problems.
   1651  1.45   mlelstv 	*/
   1652  1.45   mlelstv 	tmp->tm_wday = EPOCH_WDAY +
   1653  1.45   mlelstv 		((y - EPOCH_YEAR) % DAYSPERWEEK) *
   1654  1.45   mlelstv 		(DAYSPERNYEAR % DAYSPERWEEK) +
   1655  1.45   mlelstv 		leaps_thru_end_of(y - 1) -
   1656  1.45   mlelstv 		leaps_thru_end_of(EPOCH_YEAR - 1) +
   1657  1.45   mlelstv 		idays;
   1658  1.45   mlelstv 	tmp->tm_wday %= DAYSPERWEEK;
   1659  1.45   mlelstv 	if (tmp->tm_wday < 0)
   1660  1.45   mlelstv 		tmp->tm_wday += DAYSPERWEEK;
   1661   1.1       jtc 	tmp->tm_hour = (int) (rem / SECSPERHOUR);
   1662  1.45   mlelstv 	rem %= SECSPERHOUR;
   1663   1.1       jtc 	tmp->tm_min = (int) (rem / SECSPERMIN);
   1664   1.6       jtc 	/*
   1665   1.6       jtc 	** A positive leap second requires a special
   1666  1.45   mlelstv 	** representation. This uses "... ??:59:60" et seq.
   1667   1.6       jtc 	*/
   1668   1.6       jtc 	tmp->tm_sec = (int) (rem % SECSPERMIN) + hit;
   1669  1.45   mlelstv 	ip = mon_lengths[isleap(y)];
   1670  1.45   mlelstv 	for (tmp->tm_mon = 0; idays >= ip[tmp->tm_mon]; ++(tmp->tm_mon))
   1671  1.45   mlelstv 		idays -= ip[tmp->tm_mon];
   1672  1.45   mlelstv 	tmp->tm_mday = (int) (idays + 1);
   1673   1.1       jtc 	tmp->tm_isdst = 0;
   1674   1.1       jtc #ifdef TM_GMTOFF
   1675   1.1       jtc 	tmp->TM_GMTOFF = offset;
   1676   1.1       jtc #endif /* defined TM_GMTOFF */
   1677  1.45   mlelstv 	return tmp;
   1678   1.1       jtc }
   1679   1.1       jtc 
   1680   1.1       jtc char *
   1681   1.1       jtc ctime(timep)
   1682   1.1       jtc const time_t * const	timep;
   1683   1.1       jtc {
   1684   1.1       jtc /*
   1685   1.1       jtc ** Section 4.12.3.2 of X3.159-1989 requires that
   1686  1.18    kleink **	The ctime function converts the calendar time pointed to by timer
   1687  1.45   mlelstv **	to local time in the form of a string. It is equivalent to
   1688   1.1       jtc **		asctime(localtime(timer))
   1689   1.1       jtc */
   1690  1.46  christos 	struct tm *rtm = localtime(timep);
   1691  1.46  christos 	if (rtm == NULL)
   1692  1.46  christos 		return NULL;
   1693  1.46  christos 	return asctime(rtm);
   1694  1.18    kleink }
   1695  1.18    kleink 
   1696  1.18    kleink char *
   1697  1.18    kleink ctime_r(timep, buf)
   1698  1.18    kleink const time_t * const	timep;
   1699  1.18    kleink char *			buf;
   1700  1.18    kleink {
   1701  1.46  christos 	struct tm	mytm, *rtm;
   1702  1.18    kleink 
   1703  1.46  christos 	rtm = localtime_r(timep, &mytm);
   1704  1.46  christos 	if (rtm == NULL)
   1705  1.46  christos 		return NULL;
   1706  1.46  christos 	return asctime_r(rtm, buf);
   1707   1.1       jtc }
   1708   1.1       jtc 
   1709   1.1       jtc /*
   1710   1.1       jtc ** Adapted from code provided by Robert Elz, who writes:
   1711   1.1       jtc **	The "best" way to do mktime I think is based on an idea of Bob
   1712   1.7       jtc **	Kridle's (so its said...) from a long time ago.
   1713  1.45   mlelstv **	It does a binary search of the time_t space. Since time_t's are
   1714   1.1       jtc **	just 32 bits, its a max of 32 iterations (even at 64 bits it
   1715   1.1       jtc **	would still be very reasonable).
   1716   1.1       jtc */
   1717   1.1       jtc 
   1718   1.1       jtc #ifndef WRONG
   1719   1.1       jtc #define WRONG	(-1)
   1720   1.1       jtc #endif /* !defined WRONG */
   1721   1.1       jtc 
   1722   1.1       jtc /*
   1723  1.45   mlelstv ** Simplified normalize logic courtesy Paul Eggert.
   1724   1.1       jtc */
   1725   1.1       jtc 
   1726   1.1       jtc static int
   1727   1.1       jtc increment_overflow(number, delta)
   1728   1.1       jtc int *	number;
   1729   1.1       jtc int	delta;
   1730   1.1       jtc {
   1731   1.1       jtc 	int	number0;
   1732   1.1       jtc 
   1733   1.1       jtc 	number0 = *number;
   1734   1.1       jtc 	*number += delta;
   1735   1.1       jtc 	return (*number < number0) != (delta < 0);
   1736   1.1       jtc }
   1737   1.1       jtc 
   1738   1.1       jtc static int
   1739  1.45   mlelstv long_increment_overflow(number, delta)
   1740  1.45   mlelstv long *	number;
   1741  1.45   mlelstv int	delta;
   1742  1.45   mlelstv {
   1743  1.45   mlelstv 	long	number0;
   1744  1.45   mlelstv 
   1745  1.45   mlelstv 	number0 = *number;
   1746  1.45   mlelstv 	*number += delta;
   1747  1.45   mlelstv 	return (*number < number0) != (delta < 0);
   1748  1.45   mlelstv }
   1749  1.45   mlelstv 
   1750  1.45   mlelstv static int
   1751   1.1       jtc normalize_overflow(tensptr, unitsptr, base)
   1752   1.1       jtc int * const	tensptr;
   1753   1.1       jtc int * const	unitsptr;
   1754   1.1       jtc const int	base;
   1755   1.1       jtc {
   1756   1.1       jtc 	register int	tensdelta;
   1757   1.1       jtc 
   1758   1.1       jtc 	tensdelta = (*unitsptr >= 0) ?
   1759   1.1       jtc 		(*unitsptr / base) :
   1760   1.1       jtc 		(-1 - (-1 - *unitsptr) / base);
   1761   1.1       jtc 	*unitsptr -= tensdelta * base;
   1762   1.1       jtc 	return increment_overflow(tensptr, tensdelta);
   1763   1.1       jtc }
   1764   1.1       jtc 
   1765   1.1       jtc static int
   1766  1.45   mlelstv long_normalize_overflow(tensptr, unitsptr, base)
   1767  1.45   mlelstv long * const	tensptr;
   1768  1.45   mlelstv int * const	unitsptr;
   1769  1.45   mlelstv const int	base;
   1770  1.45   mlelstv {
   1771  1.45   mlelstv 	register int	tensdelta;
   1772  1.45   mlelstv 
   1773  1.45   mlelstv 	tensdelta = (*unitsptr >= 0) ?
   1774  1.45   mlelstv 		(*unitsptr / base) :
   1775  1.45   mlelstv 		(-1 - (-1 - *unitsptr) / base);
   1776  1.45   mlelstv 	*unitsptr -= tensdelta * base;
   1777  1.45   mlelstv 	return long_increment_overflow(tensptr, tensdelta);
   1778  1.45   mlelstv }
   1779  1.45   mlelstv 
   1780  1.45   mlelstv static int
   1781   1.1       jtc tmcomp(atmp, btmp)
   1782   1.1       jtc register const struct tm * const atmp;
   1783   1.1       jtc register const struct tm * const btmp;
   1784   1.1       jtc {
   1785   1.1       jtc 	register int	result;
   1786   1.1       jtc 
   1787   1.1       jtc 	if ((result = (atmp->tm_year - btmp->tm_year)) == 0 &&
   1788   1.1       jtc 		(result = (atmp->tm_mon - btmp->tm_mon)) == 0 &&
   1789   1.1       jtc 		(result = (atmp->tm_mday - btmp->tm_mday)) == 0 &&
   1790   1.1       jtc 		(result = (atmp->tm_hour - btmp->tm_hour)) == 0 &&
   1791   1.1       jtc 		(result = (atmp->tm_min - btmp->tm_min)) == 0)
   1792   1.1       jtc 			result = atmp->tm_sec - btmp->tm_sec;
   1793   1.1       jtc 	return result;
   1794   1.1       jtc }
   1795   1.1       jtc 
   1796   1.1       jtc static time_t
   1797  1.13       jtc time2sub(tmp, funcp, offset, okayp, do_norm_secs)
   1798   1.1       jtc struct tm * const	tmp;
   1799  1.45   mlelstv struct tm * (* const	funcp)(const time_t*, long, struct tm*);
   1800   1.1       jtc const long		offset;
   1801   1.1       jtc int * const		okayp;
   1802  1.13       jtc const int		do_norm_secs;
   1803   1.1       jtc {
   1804   1.1       jtc 	register const struct state *	sp;
   1805   1.1       jtc 	register int			dir;
   1806  1.45   mlelstv 	register int			i, j;
   1807   1.1       jtc 	register int			saved_seconds;
   1808  1.45   mlelstv 	register long			li;
   1809  1.45   mlelstv 	register time_t			lo;
   1810  1.45   mlelstv 	register time_t			hi;
   1811  1.45   mlelstv 	long				y;
   1812   1.1       jtc 	time_t				newt;
   1813   1.1       jtc 	time_t				t;
   1814   1.1       jtc 	struct tm			yourtm, mytm;
   1815   1.1       jtc 
   1816   1.1       jtc 	*okayp = FALSE;
   1817   1.1       jtc 	yourtm = *tmp;
   1818  1.13       jtc 	if (do_norm_secs) {
   1819  1.13       jtc 		if (normalize_overflow(&yourtm.tm_min, &yourtm.tm_sec,
   1820  1.13       jtc 			SECSPERMIN))
   1821  1.13       jtc 				return WRONG;
   1822  1.13       jtc 	}
   1823   1.1       jtc 	if (normalize_overflow(&yourtm.tm_hour, &yourtm.tm_min, MINSPERHOUR))
   1824   1.1       jtc 		return WRONG;
   1825   1.1       jtc 	if (normalize_overflow(&yourtm.tm_mday, &yourtm.tm_hour, HOURSPERDAY))
   1826   1.1       jtc 		return WRONG;
   1827  1.45   mlelstv 	y = yourtm.tm_year;
   1828  1.45   mlelstv 	if (long_normalize_overflow(&y, &yourtm.tm_mon, MONSPERYEAR))
   1829   1.1       jtc 		return WRONG;
   1830   1.1       jtc 	/*
   1831  1.45   mlelstv 	** Turn y into an actual year number for now.
   1832   1.1       jtc 	** It is converted back to an offset from TM_YEAR_BASE later.
   1833   1.1       jtc 	*/
   1834  1.45   mlelstv 	if (long_increment_overflow(&y, TM_YEAR_BASE))
   1835   1.1       jtc 		return WRONG;
   1836   1.1       jtc 	while (yourtm.tm_mday <= 0) {
   1837  1.45   mlelstv 		if (long_increment_overflow(&y, -1))
   1838   1.1       jtc 			return WRONG;
   1839  1.45   mlelstv 		li = y + (1 < yourtm.tm_mon);
   1840  1.45   mlelstv 		yourtm.tm_mday += year_lengths[isleap(li)];
   1841   1.1       jtc 	}
   1842   1.1       jtc 	while (yourtm.tm_mday > DAYSPERLYEAR) {
   1843  1.45   mlelstv 		li = y + (1 < yourtm.tm_mon);
   1844  1.45   mlelstv 		yourtm.tm_mday -= year_lengths[isleap(li)];
   1845  1.45   mlelstv 		if (long_increment_overflow(&y, 1))
   1846   1.1       jtc 			return WRONG;
   1847   1.1       jtc 	}
   1848   1.1       jtc 	for ( ; ; ) {
   1849  1.45   mlelstv 		i = mon_lengths[isleap(y)][yourtm.tm_mon];
   1850   1.1       jtc 		if (yourtm.tm_mday <= i)
   1851   1.1       jtc 			break;
   1852   1.1       jtc 		yourtm.tm_mday -= i;
   1853   1.1       jtc 		if (++yourtm.tm_mon >= MONSPERYEAR) {
   1854   1.1       jtc 			yourtm.tm_mon = 0;
   1855  1.45   mlelstv 			if (long_increment_overflow(&y, 1))
   1856   1.1       jtc 				return WRONG;
   1857   1.1       jtc 		}
   1858   1.1       jtc 	}
   1859  1.45   mlelstv 	if (long_increment_overflow(&y, -TM_YEAR_BASE))
   1860  1.45   mlelstv 		return WRONG;
   1861  1.45   mlelstv 	yourtm.tm_year = y;
   1862  1.45   mlelstv 	if (yourtm.tm_year != y)
   1863   1.1       jtc 		return WRONG;
   1864  1.29    kleink 	if (yourtm.tm_sec >= 0 && yourtm.tm_sec < SECSPERMIN)
   1865  1.29    kleink 		saved_seconds = 0;
   1866  1.45   mlelstv 	else if (y + TM_YEAR_BASE < EPOCH_YEAR) {
   1867   1.1       jtc 		/*
   1868   1.1       jtc 		** We can't set tm_sec to 0, because that might push the
   1869   1.1       jtc 		** time below the minimum representable time.
   1870   1.1       jtc 		** Set tm_sec to 59 instead.
   1871   1.1       jtc 		** This assumes that the minimum representable time is
   1872   1.1       jtc 		** not in the same minute that a leap second was deleted from,
   1873   1.1       jtc 		** which is a safer assumption than using 58 would be.
   1874   1.1       jtc 		*/
   1875   1.1       jtc 		if (increment_overflow(&yourtm.tm_sec, 1 - SECSPERMIN))
   1876   1.1       jtc 			return WRONG;
   1877   1.1       jtc 		saved_seconds = yourtm.tm_sec;
   1878   1.1       jtc 		yourtm.tm_sec = SECSPERMIN - 1;
   1879   1.1       jtc 	} else {
   1880   1.1       jtc 		saved_seconds = yourtm.tm_sec;
   1881   1.1       jtc 		yourtm.tm_sec = 0;
   1882   1.1       jtc 	}
   1883   1.1       jtc 	/*
   1884  1.45   mlelstv 	** Do a binary search (this works whatever time_t's type is).
   1885   1.1       jtc 	*/
   1886  1.45   mlelstv /* LINTED constant */
   1887  1.45   mlelstv 	if (!TYPE_SIGNED(time_t)) {
   1888  1.45   mlelstv 		lo = 0;
   1889  1.45   mlelstv 		hi = lo - 1;
   1890  1.45   mlelstv /* LINTED constant */
   1891  1.45   mlelstv 	} else if (!TYPE_INTEGRAL(time_t)) {
   1892  1.45   mlelstv /* CONSTCOND */
   1893  1.45   mlelstv 		if (sizeof(time_t) > sizeof(float))
   1894  1.45   mlelstv /* LINTED assumed double */
   1895  1.45   mlelstv 			hi = (time_t) DBL_MAX;
   1896  1.45   mlelstv /* LINTED assumed float */
   1897  1.45   mlelstv 		else	hi = (time_t) FLT_MAX;
   1898  1.45   mlelstv 		lo = -hi;
   1899  1.45   mlelstv 	} else {
   1900  1.45   mlelstv 		lo = 1;
   1901  1.45   mlelstv 		for (i = 0; i < (int) TYPE_BIT(time_t) - 1; ++i)
   1902  1.45   mlelstv 			lo *= 2;
   1903  1.45   mlelstv 		hi = -(lo + 1);
   1904  1.45   mlelstv 	}
   1905   1.1       jtc 	for ( ; ; ) {
   1906  1.45   mlelstv 		t = lo / 2 + hi / 2;
   1907  1.45   mlelstv 		if (t < lo)
   1908  1.45   mlelstv 			t = lo;
   1909  1.45   mlelstv 		else if (t > hi)
   1910  1.45   mlelstv 			t = hi;
   1911  1.45   mlelstv 		if ((*funcp)(&t, offset, &mytm) == NULL) {
   1912  1.45   mlelstv 			/*
   1913  1.45   mlelstv 			** Assume that t is too extreme to be represented in
   1914  1.45   mlelstv 			** a struct tm; arrange things so that it is less
   1915  1.45   mlelstv 			** extreme on the next pass.
   1916  1.45   mlelstv 			*/
   1917  1.45   mlelstv 			dir = (t > 0) ? 1 : -1;
   1918  1.45   mlelstv 		} else	dir = tmcomp(&mytm, &yourtm);
   1919   1.1       jtc 		if (dir != 0) {
   1920  1.45   mlelstv 			if (t == lo) {
   1921  1.45   mlelstv 				++t;
   1922  1.45   mlelstv 				if (t <= lo)
   1923  1.45   mlelstv 					return WRONG;
   1924  1.45   mlelstv 				++lo;
   1925  1.45   mlelstv 			} else if (t == hi) {
   1926  1.45   mlelstv 				--t;
   1927  1.45   mlelstv 				if (t >= hi)
   1928  1.45   mlelstv 					return WRONG;
   1929  1.45   mlelstv 				--hi;
   1930  1.45   mlelstv 			}
   1931  1.45   mlelstv 			if (lo > hi)
   1932   1.1       jtc 				return WRONG;
   1933  1.45   mlelstv 			if (dir > 0)
   1934  1.45   mlelstv 				hi = t;
   1935  1.45   mlelstv 			else	lo = t;
   1936   1.1       jtc 			continue;
   1937   1.1       jtc 		}
   1938   1.1       jtc 		if (yourtm.tm_isdst < 0 || mytm.tm_isdst == yourtm.tm_isdst)
   1939   1.1       jtc 			break;
   1940   1.1       jtc 		/*
   1941   1.1       jtc 		** Right time, wrong type.
   1942   1.1       jtc 		** Hunt for right time, right type.
   1943   1.1       jtc 		** It's okay to guess wrong since the guess
   1944   1.1       jtc 		** gets checked.
   1945   1.1       jtc 		*/
   1946   1.1       jtc 		sp = (const struct state *)
   1947  1.45   mlelstv 			((funcp == localsub) ? lclptr : gmtptr);
   1948   1.1       jtc #ifdef ALL_STATE
   1949   1.1       jtc 		if (sp == NULL)
   1950   1.1       jtc 			return WRONG;
   1951   1.1       jtc #endif /* defined ALL_STATE */
   1952   1.5       jtc 		for (i = sp->typecnt - 1; i >= 0; --i) {
   1953   1.1       jtc 			if (sp->ttis[i].tt_isdst != yourtm.tm_isdst)
   1954   1.1       jtc 				continue;
   1955   1.5       jtc 			for (j = sp->typecnt - 1; j >= 0; --j) {
   1956   1.1       jtc 				if (sp->ttis[j].tt_isdst == yourtm.tm_isdst)
   1957   1.1       jtc 					continue;
   1958   1.1       jtc 				newt = t + sp->ttis[j].tt_gmtoff -
   1959   1.1       jtc 					sp->ttis[i].tt_gmtoff;
   1960  1.45   mlelstv 				if ((*funcp)(&newt, offset, &mytm) == NULL)
   1961  1.45   mlelstv 					continue;
   1962   1.1       jtc 				if (tmcomp(&mytm, &yourtm) != 0)
   1963   1.1       jtc 					continue;
   1964   1.1       jtc 				if (mytm.tm_isdst != yourtm.tm_isdst)
   1965   1.1       jtc 					continue;
   1966   1.1       jtc 				/*
   1967   1.1       jtc 				** We have a match.
   1968   1.1       jtc 				*/
   1969   1.1       jtc 				t = newt;
   1970   1.1       jtc 				goto label;
   1971   1.1       jtc 			}
   1972   1.1       jtc 		}
   1973   1.1       jtc 		return WRONG;
   1974   1.1       jtc 	}
   1975   1.1       jtc label:
   1976   1.1       jtc 	newt = t + saved_seconds;
   1977   1.1       jtc 	if ((newt < t) != (saved_seconds < 0))
   1978   1.1       jtc 		return WRONG;
   1979   1.1       jtc 	t = newt;
   1980  1.45   mlelstv 	if ((*funcp)(&t, offset, tmp))
   1981  1.45   mlelstv 		*okayp = TRUE;
   1982   1.1       jtc 	return t;
   1983  1.13       jtc }
   1984  1.13       jtc 
   1985  1.13       jtc static time_t
   1986  1.13       jtc time2(tmp, funcp, offset, okayp)
   1987  1.13       jtc struct tm * const	tmp;
   1988  1.45   mlelstv struct tm * (* const	funcp)(const time_t*, long, struct tm*);
   1989  1.13       jtc const long		offset;
   1990  1.13       jtc int * const		okayp;
   1991  1.13       jtc {
   1992  1.13       jtc 	time_t	t;
   1993  1.13       jtc 
   1994  1.13       jtc 	/*
   1995  1.13       jtc 	** First try without normalization of seconds
   1996  1.13       jtc 	** (in case tm_sec contains a value associated with a leap second).
   1997  1.13       jtc 	** If that fails, try with normalization of seconds.
   1998  1.13       jtc 	*/
   1999  1.13       jtc 	t = time2sub(tmp, funcp, offset, okayp, FALSE);
   2000  1.13       jtc 	return *okayp ? t : time2sub(tmp, funcp, offset, okayp, TRUE);
   2001   1.1       jtc }
   2002   1.1       jtc 
   2003   1.1       jtc static time_t
   2004   1.1       jtc time1(tmp, funcp, offset)
   2005   1.1       jtc struct tm * const	tmp;
   2006  1.45   mlelstv struct tm * (* const	funcp)(const time_t *, long, struct tm *);
   2007   1.1       jtc const long		offset;
   2008   1.1       jtc {
   2009   1.1       jtc 	register time_t			t;
   2010   1.1       jtc 	register const struct state *	sp;
   2011   1.1       jtc 	register int			samei, otheri;
   2012  1.35    kleink 	register int			sameind, otherind;
   2013  1.35    kleink 	register int			i;
   2014  1.35    kleink 	register int			nseen;
   2015  1.35    kleink 	int				seen[TZ_MAX_TYPES];
   2016  1.35    kleink 	int				types[TZ_MAX_TYPES];
   2017   1.1       jtc 	int				okay;
   2018   1.1       jtc 
   2019   1.1       jtc 	if (tmp->tm_isdst > 1)
   2020   1.1       jtc 		tmp->tm_isdst = 1;
   2021   1.1       jtc 	t = time2(tmp, funcp, offset, &okay);
   2022   1.1       jtc #ifdef PCTS
   2023   1.1       jtc 	/*
   2024  1.45   mlelstv 	** PCTS code courtesy Grant Sullivan.
   2025   1.1       jtc 	*/
   2026   1.1       jtc 	if (okay)
   2027   1.1       jtc 		return t;
   2028   1.1       jtc 	if (tmp->tm_isdst < 0)
   2029   1.1       jtc 		tmp->tm_isdst = 0;	/* reset to std and try again */
   2030   1.1       jtc #endif /* defined PCTS */
   2031   1.1       jtc #ifndef PCTS
   2032   1.1       jtc 	if (okay || tmp->tm_isdst < 0)
   2033   1.1       jtc 		return t;
   2034   1.1       jtc #endif /* !defined PCTS */
   2035   1.1       jtc 	/*
   2036   1.1       jtc 	** We're supposed to assume that somebody took a time of one type
   2037   1.1       jtc 	** and did some math on it that yielded a "struct tm" that's bad.
   2038   1.1       jtc 	** We try to divine the type they started from and adjust to the
   2039   1.1       jtc 	** type they need.
   2040   1.1       jtc 	*/
   2041  1.45   mlelstv 	sp = (const struct state *) ((funcp == localsub) ?  lclptr : gmtptr);
   2042   1.1       jtc #ifdef ALL_STATE
   2043   1.1       jtc 	if (sp == NULL)
   2044   1.1       jtc 		return WRONG;
   2045   1.1       jtc #endif /* defined ALL_STATE */
   2046  1.35    kleink 	for (i = 0; i < sp->typecnt; ++i)
   2047  1.35    kleink 		seen[i] = FALSE;
   2048  1.35    kleink 	nseen = 0;
   2049  1.35    kleink 	for (i = sp->timecnt - 1; i >= 0; --i)
   2050  1.35    kleink 		if (!seen[sp->types[i]]) {
   2051  1.35    kleink 			seen[sp->types[i]] = TRUE;
   2052  1.35    kleink 			types[nseen++] = sp->types[i];
   2053  1.35    kleink 		}
   2054  1.35    kleink 	for (sameind = 0; sameind < nseen; ++sameind) {
   2055  1.35    kleink 		samei = types[sameind];
   2056   1.1       jtc 		if (sp->ttis[samei].tt_isdst != tmp->tm_isdst)
   2057   1.1       jtc 			continue;
   2058  1.35    kleink 		for (otherind = 0; otherind < nseen; ++otherind) {
   2059  1.35    kleink 			otheri = types[otherind];
   2060   1.1       jtc 			if (sp->ttis[otheri].tt_isdst == tmp->tm_isdst)
   2061   1.1       jtc 				continue;
   2062  1.21  christos 			tmp->tm_sec += (int)(sp->ttis[otheri].tt_gmtoff -
   2063  1.21  christos 					sp->ttis[samei].tt_gmtoff);
   2064   1.1       jtc 			tmp->tm_isdst = !tmp->tm_isdst;
   2065   1.1       jtc 			t = time2(tmp, funcp, offset, &okay);
   2066   1.1       jtc 			if (okay)
   2067   1.1       jtc 				return t;
   2068  1.21  christos 			tmp->tm_sec -= (int)(sp->ttis[otheri].tt_gmtoff -
   2069  1.21  christos 					sp->ttis[samei].tt_gmtoff);
   2070   1.1       jtc 			tmp->tm_isdst = !tmp->tm_isdst;
   2071   1.1       jtc 		}
   2072   1.1       jtc 	}
   2073   1.1       jtc 	return WRONG;
   2074   1.1       jtc }
   2075   1.1       jtc 
   2076   1.1       jtc time_t
   2077   1.1       jtc mktime(tmp)
   2078   1.1       jtc struct tm * const	tmp;
   2079   1.1       jtc {
   2080  1.19    kleink 	time_t result;
   2081  1.19    kleink 
   2082  1.45   mlelstv 	rwlock_wrlock(&lcl_lock);
   2083  1.45   mlelstv 	tzset_unlocked();
   2084  1.19    kleink 	result = time1(tmp, localsub, 0L);
   2085  1.45   mlelstv 	rwlock_unlock(&lcl_lock);
   2086  1.19    kleink 	return (result);
   2087   1.1       jtc }
   2088   1.1       jtc 
   2089   1.1       jtc #ifdef STD_INSPIRED
   2090   1.1       jtc 
   2091   1.1       jtc time_t
   2092   1.1       jtc timelocal(tmp)
   2093   1.1       jtc struct tm * const	tmp;
   2094   1.1       jtc {
   2095   1.1       jtc 	tmp->tm_isdst = -1;	/* in case it wasn't initialized */
   2096   1.1       jtc 	return mktime(tmp);
   2097   1.1       jtc }
   2098   1.1       jtc 
   2099   1.1       jtc time_t
   2100   1.1       jtc timegm(tmp)
   2101   1.1       jtc struct tm * const	tmp;
   2102   1.1       jtc {
   2103   1.1       jtc 	tmp->tm_isdst = 0;
   2104   1.1       jtc 	return time1(tmp, gmtsub, 0L);
   2105   1.1       jtc }
   2106   1.1       jtc 
   2107   1.1       jtc time_t
   2108   1.1       jtc timeoff(tmp, offset)
   2109   1.1       jtc struct tm * const	tmp;
   2110   1.1       jtc const long		offset;
   2111   1.1       jtc {
   2112   1.1       jtc 	tmp->tm_isdst = 0;
   2113   1.1       jtc 	return time1(tmp, gmtsub, offset);
   2114   1.1       jtc }
   2115   1.1       jtc 
   2116   1.1       jtc #endif /* defined STD_INSPIRED */
   2117   1.1       jtc 
   2118   1.1       jtc #ifdef CMUCS
   2119   1.1       jtc 
   2120   1.1       jtc /*
   2121   1.1       jtc ** The following is supplied for compatibility with
   2122   1.1       jtc ** previous versions of the CMUCS runtime library.
   2123   1.1       jtc */
   2124   1.1       jtc 
   2125   1.1       jtc long
   2126   1.1       jtc gtime(tmp)
   2127   1.1       jtc struct tm * const	tmp;
   2128   1.1       jtc {
   2129   1.1       jtc 	const time_t	t = mktime(tmp);
   2130   1.1       jtc 
   2131   1.1       jtc 	if (t == WRONG)
   2132   1.1       jtc 		return -1;
   2133   1.1       jtc 	return t;
   2134   1.1       jtc }
   2135   1.1       jtc 
   2136   1.1       jtc #endif /* defined CMUCS */
   2137   1.1       jtc 
   2138   1.1       jtc /*
   2139   1.1       jtc ** XXX--is the below the right way to conditionalize??
   2140   1.1       jtc */
   2141   1.1       jtc 
   2142   1.1       jtc #ifdef STD_INSPIRED
   2143   1.1       jtc 
   2144   1.1       jtc /*
   2145   1.1       jtc ** IEEE Std 1003.1-1988 (POSIX) legislates that 536457599
   2146  1.14       jtc ** shall correspond to "Wed Dec 31 23:59:59 UTC 1986", which
   2147   1.1       jtc ** is not the case if we are accounting for leap seconds.
   2148   1.1       jtc ** So, we provide the following conversion routines for use
   2149   1.1       jtc ** when exchanging timestamps with POSIX conforming systems.
   2150   1.1       jtc */
   2151   1.1       jtc 
   2152   1.1       jtc static long
   2153   1.1       jtc leapcorr(timep)
   2154   1.1       jtc time_t *	timep;
   2155   1.1       jtc {
   2156   1.1       jtc 	register struct state *		sp;
   2157   1.1       jtc 	register struct lsinfo *	lp;
   2158   1.1       jtc 	register int			i;
   2159   1.1       jtc 
   2160   1.1       jtc 	sp = lclptr;
   2161   1.1       jtc 	i = sp->leapcnt;
   2162   1.1       jtc 	while (--i >= 0) {
   2163   1.1       jtc 		lp = &sp->lsis[i];
   2164   1.1       jtc 		if (*timep >= lp->ls_trans)
   2165   1.1       jtc 			return lp->ls_corr;
   2166   1.1       jtc 	}
   2167   1.1       jtc 	return 0;
   2168   1.1       jtc }
   2169   1.1       jtc 
   2170   1.1       jtc time_t
   2171   1.1       jtc time2posix(t)
   2172   1.1       jtc time_t	t;
   2173   1.1       jtc {
   2174  1.19    kleink 	time_t result;
   2175  1.19    kleink 
   2176  1.45   mlelstv 	rwlock_wrlock(&lcl_lock);
   2177  1.45   mlelstv 	tzset_unlocked();
   2178  1.19    kleink 	result = t - leapcorr(&t);
   2179  1.45   mlelstv 	rwlock_unlock(&lcl_lock);
   2180  1.19    kleink 	return (result);
   2181   1.1       jtc }
   2182   1.1       jtc 
   2183   1.1       jtc time_t
   2184   1.1       jtc posix2time(t)
   2185   1.1       jtc time_t	t;
   2186   1.1       jtc {
   2187   1.1       jtc 	time_t	x;
   2188   1.1       jtc 	time_t	y;
   2189   1.1       jtc 
   2190  1.45   mlelstv 	rwlock_wrlock(&lcl_lock);
   2191  1.45   mlelstv 	tzset_unlocked();
   2192   1.1       jtc 	/*
   2193   1.1       jtc 	** For a positive leap second hit, the result
   2194  1.45   mlelstv 	** is not unique. For a negative leap second
   2195   1.1       jtc 	** hit, the corresponding time doesn't exist,
   2196   1.1       jtc 	** so we return an adjacent second.
   2197   1.1       jtc 	*/
   2198   1.1       jtc 	x = t + leapcorr(&t);
   2199   1.1       jtc 	y = x - leapcorr(&x);
   2200   1.1       jtc 	if (y < t) {
   2201   1.1       jtc 		do {
   2202   1.1       jtc 			x++;
   2203   1.1       jtc 			y = x - leapcorr(&x);
   2204   1.1       jtc 		} while (y < t);
   2205  1.19    kleink 		if (t != y) {
   2206  1.45   mlelstv 			rwlock_unlock(&lcl_lock);
   2207   1.1       jtc 			return x - 1;
   2208  1.19    kleink 		}
   2209   1.1       jtc 	} else if (y > t) {
   2210   1.1       jtc 		do {
   2211   1.1       jtc 			--x;
   2212   1.1       jtc 			y = x - leapcorr(&x);
   2213   1.1       jtc 		} while (y > t);
   2214  1.19    kleink 		if (t != y) {
   2215  1.45   mlelstv 			rwlock_unlock(&lcl_lock);
   2216   1.1       jtc 			return x + 1;
   2217  1.19    kleink 		}
   2218   1.1       jtc 	}
   2219  1.45   mlelstv 	rwlock_unlock(&lcl_lock);
   2220   1.1       jtc 	return x;
   2221   1.1       jtc }
   2222   1.1       jtc 
   2223   1.1       jtc #endif /* defined STD_INSPIRED */
   2224