Home | History | Annotate | Line # | Download | only in time
localtime.c revision 1.54
      1  1.54  christos /*	$NetBSD: localtime.c,v 1.54 2011/01/15 15:42:10 christos Exp $	*/
      2   1.7       jtc 
      3   1.7       jtc /*
      4   1.7       jtc ** This file is in the public domain, so clarified as of
      5  1.45   mlelstv ** 1996-06-05 by Arthur David Olson.
      6   1.7       jtc */
      7   1.2       jtc 
      8  1.11  christos #include <sys/cdefs.h>
      9  1.24   msaitoh #if defined(LIBC_SCCS) && !defined(lint)
     10  1.11  christos #if 0
     11  1.45   mlelstv static char	elsieid[] = "@(#)localtime.c	8.9";
     12  1.11  christos #else
     13  1.54  christos __RCSID("$NetBSD: localtime.c,v 1.54 2011/01/15 15:42:10 christos Exp $");
     14  1.11  christos #endif
     15  1.24   msaitoh #endif /* LIBC_SCCS and not lint */
     16   1.1       jtc 
     17   1.1       jtc /*
     18  1.45   mlelstv ** Leap second handling from Bradley White.
     19  1.45   mlelstv ** POSIX-style TZ environment variable handling from Guy Harris.
     20   1.1       jtc */
     21   1.1       jtc 
     22   1.1       jtc /*LINTLIBRARY*/
     23   1.1       jtc 
     24  1.12       jtc #include "namespace.h"
     25   1.1       jtc #include "private.h"
     26   1.1       jtc #include "tzfile.h"
     27   1.1       jtc #include "fcntl.h"
     28  1.19    kleink #include "reentrant.h"
     29  1.12       jtc 
     30  1.42  christos #if defined(__weak_alias)
     31  1.49  christos __weak_alias(ctime_r,_ctime_r)
     32  1.49  christos __weak_alias(ctime_rz,_ctime_rz)
     33  1.25    kleink __weak_alias(daylight,_daylight)
     34  1.49  christos __weak_alias(mktime_z,_mktime_z)
     35  1.49  christos __weak_alias(localtime_r,_localtime_r)
     36  1.49  christos __weak_alias(localtime_rz,_localtime_rz)
     37  1.49  christos __weak_alias(posix2time,_posix2time)
     38  1.49  christos __weak_alias(posix2time_z,_posix2time_z)
     39  1.23   mycroft __weak_alias(tzname,_tzname)
     40  1.12       jtc #endif
     41   1.1       jtc 
     42  1.45   mlelstv #include "float.h"	/* for FLT_MAX and DBL_MAX */
     43  1.45   mlelstv 
     44  1.45   mlelstv #ifndef TZ_ABBR_MAX_LEN
     45  1.45   mlelstv #define TZ_ABBR_MAX_LEN	16
     46  1.45   mlelstv #endif /* !defined TZ_ABBR_MAX_LEN */
     47  1.45   mlelstv 
     48  1.45   mlelstv #ifndef TZ_ABBR_CHAR_SET
     49  1.45   mlelstv #define TZ_ABBR_CHAR_SET \
     50  1.45   mlelstv 	"abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789 :+-._"
     51  1.45   mlelstv #endif /* !defined TZ_ABBR_CHAR_SET */
     52  1.45   mlelstv 
     53  1.45   mlelstv #ifndef TZ_ABBR_ERR_CHAR
     54  1.45   mlelstv #define TZ_ABBR_ERR_CHAR	'_'
     55  1.45   mlelstv #endif /* !defined TZ_ABBR_ERR_CHAR */
     56  1.45   mlelstv 
     57   1.1       jtc /*
     58   1.1       jtc ** SunOS 4.1.1 headers lack O_BINARY.
     59   1.1       jtc */
     60   1.1       jtc 
     61   1.1       jtc #ifdef O_BINARY
     62   1.1       jtc #define OPEN_MODE	(O_RDONLY | O_BINARY)
     63   1.1       jtc #endif /* defined O_BINARY */
     64   1.1       jtc #ifndef O_BINARY
     65   1.1       jtc #define OPEN_MODE	O_RDONLY
     66   1.1       jtc #endif /* !defined O_BINARY */
     67   1.1       jtc 
     68   1.1       jtc #ifndef WILDABBR
     69   1.1       jtc /*
     70   1.1       jtc ** Someone might make incorrect use of a time zone abbreviation:
     71   1.1       jtc **	1.	They might reference tzname[0] before calling tzset (explicitly
     72   1.1       jtc **		or implicitly).
     73   1.1       jtc **	2.	They might reference tzname[1] before calling tzset (explicitly
     74   1.1       jtc **		or implicitly).
     75   1.1       jtc **	3.	They might reference tzname[1] after setting to a time zone
     76   1.1       jtc **		in which Daylight Saving Time is never observed.
     77   1.1       jtc **	4.	They might reference tzname[0] after setting to a time zone
     78   1.1       jtc **		in which Standard Time is never observed.
     79   1.1       jtc **	5.	They might reference tm.TM_ZONE after calling offtime.
     80   1.1       jtc ** What's best to do in the above cases is open to debate;
     81   1.1       jtc ** for now, we just set things up so that in any of the five cases
     82  1.45   mlelstv ** WILDABBR is used. Another possibility: initialize tzname[0] to the
     83   1.1       jtc ** string "tzname[0] used before set", and similarly for the other cases.
     84  1.45   mlelstv ** And another: initialize tzname[0] to "ERA", with an explanation in the
     85   1.1       jtc ** manual page of what this "time zone abbreviation" means (doing this so
     86   1.1       jtc ** that tzname[0] has the "normal" length of three characters).
     87   1.1       jtc */
     88   1.1       jtc #define WILDABBR	"   "
     89   1.1       jtc #endif /* !defined WILDABBR */
     90   1.1       jtc 
     91  1.45   mlelstv static const char	wildabbr[] = WILDABBR;
     92   1.1       jtc 
     93  1.49  christos static char		gmt[] = "GMT";
     94   1.1       jtc 
     95  1.22    kleink /*
     96  1.22    kleink ** The DST rules to use if TZ has no rules and we can't load TZDEFRULES.
     97  1.22    kleink ** We default to US rules as of 1999-08-17.
     98  1.22    kleink ** POSIX 1003.1 section 8.1.1 says that the default DST rules are
     99  1.22    kleink ** implementation dependent; for historical reasons, US rules are a
    100  1.22    kleink ** common default.
    101  1.22    kleink */
    102  1.22    kleink #ifndef TZDEFRULESTRING
    103  1.22    kleink #define TZDEFRULESTRING ",M4.1.0,M10.5.0"
    104  1.22    kleink #endif /* !defined TZDEFDST */
    105  1.22    kleink 
    106   1.1       jtc struct ttinfo {				/* time type information */
    107  1.14       jtc 	long		tt_gmtoff;	/* UTC offset in seconds */
    108   1.1       jtc 	int		tt_isdst;	/* used to set tm_isdst */
    109   1.1       jtc 	int		tt_abbrind;	/* abbreviation list index */
    110   1.1       jtc 	int		tt_ttisstd;	/* TRUE if transition is std time */
    111  1.14       jtc 	int		tt_ttisgmt;	/* TRUE if transition is UTC */
    112   1.1       jtc };
    113   1.1       jtc 
    114   1.1       jtc struct lsinfo {				/* leap second information */
    115   1.1       jtc 	time_t		ls_trans;	/* transition time */
    116   1.1       jtc 	long		ls_corr;	/* correction to apply */
    117   1.1       jtc };
    118   1.1       jtc 
    119   1.1       jtc #define BIGGEST(a, b)	(((a) > (b)) ? (a) : (b))
    120   1.1       jtc 
    121   1.1       jtc #ifdef TZNAME_MAX
    122   1.1       jtc #define MY_TZNAME_MAX	TZNAME_MAX
    123   1.1       jtc #endif /* defined TZNAME_MAX */
    124   1.1       jtc #ifndef TZNAME_MAX
    125   1.1       jtc #define MY_TZNAME_MAX	255
    126   1.1       jtc #endif /* !defined TZNAME_MAX */
    127   1.1       jtc 
    128  1.49  christos struct __state {
    129   1.1       jtc 	int		leapcnt;
    130   1.1       jtc 	int		timecnt;
    131   1.1       jtc 	int		typecnt;
    132   1.1       jtc 	int		charcnt;
    133  1.45   mlelstv 	int		goback;
    134  1.45   mlelstv 	int		goahead;
    135  1.45   mlelstv 	time_t		ats[TZ_MAX_TIMES];
    136   1.1       jtc 	unsigned char	types[TZ_MAX_TIMES];
    137   1.1       jtc 	struct ttinfo	ttis[TZ_MAX_TYPES];
    138  1.37  christos 	char		chars[/*CONSTCOND*/BIGGEST(BIGGEST(TZ_MAX_CHARS + 1, sizeof gmt),
    139   1.1       jtc 				(2 * (MY_TZNAME_MAX + 1)))];
    140   1.1       jtc 	struct lsinfo	lsis[TZ_MAX_LEAPS];
    141   1.1       jtc };
    142   1.1       jtc 
    143   1.1       jtc struct rule {
    144   1.1       jtc 	int		r_type;		/* type of rule--see below */
    145   1.1       jtc 	int		r_day;		/* day number of rule */
    146   1.1       jtc 	int		r_week;		/* week number of rule */
    147   1.1       jtc 	int		r_mon;		/* month number of rule */
    148   1.1       jtc 	long		r_time;		/* transition time of rule */
    149   1.1       jtc };
    150   1.1       jtc 
    151   1.1       jtc #define JULIAN_DAY		0	/* Jn - Julian day */
    152   1.1       jtc #define DAY_OF_YEAR		1	/* n - day of year */
    153   1.1       jtc #define MONTH_NTH_DAY_OF_WEEK	2	/* Mm.n.d - month, week, day of week */
    154   1.1       jtc 
    155  1.49  christos typedef struct tm *(*subfun_t)(const timezone_t sp, const time_t *timep,
    156  1.49  christos 			       long offset, struct tm *tmp);
    157  1.49  christos 
    158   1.1       jtc /*
    159   1.1       jtc ** Prototypes for static functions.
    160   1.1       jtc */
    161   1.1       jtc 
    162  1.45   mlelstv static long		detzcode(const char * codep);
    163  1.45   mlelstv static time_t		detzcode64(const char * codep);
    164  1.45   mlelstv static int		differ_by_repeat(time_t t1, time_t t0);
    165  1.45   mlelstv static const char *	getzname(const char * strp);
    166  1.45   mlelstv static const char *	getqzname(const char * strp, const int delim);
    167  1.45   mlelstv static const char *	getnum(const char * strp, int * nump, int min,
    168  1.45   mlelstv 				int max);
    169  1.45   mlelstv static const char *	getsecs(const char * strp, long * secsp);
    170  1.45   mlelstv static const char *	getoffset(const char * strp, long * offsetp);
    171  1.45   mlelstv static const char *	getrule(const char * strp, struct rule * rulep);
    172  1.49  christos static void		gmtload(timezone_t sp);
    173  1.49  christos static struct tm *	gmtsub(const timezone_t sp, const time_t *timep,
    174  1.49  christos 				long offset, struct tm * tmp);
    175  1.49  christos static struct tm *	localsub(const timezone_t sp, const time_t *timep,
    176  1.49  christos 				long offset, struct tm *tmp);
    177  1.45   mlelstv static int		increment_overflow(int * number, int delta);
    178  1.45   mlelstv static int		leaps_thru_end_of(int y);
    179  1.45   mlelstv static int		long_increment_overflow(long * number, int delta);
    180  1.45   mlelstv static int		long_normalize_overflow(long * tensptr,
    181  1.45   mlelstv 				int * unitsptr, int base);
    182  1.45   mlelstv static int		normalize_overflow(int * tensptr, int * unitsptr,
    183  1.45   mlelstv 				int base);
    184  1.45   mlelstv static void		settzname(void);
    185  1.49  christos static time_t		time1(const timezone_t sp, struct tm * const tmp,
    186  1.49  christos 				subfun_t funcp, long offset);
    187  1.49  christos static time_t		time2(const timezone_t sp, struct tm * const tmp,
    188  1.49  christos 				subfun_t funcp,
    189  1.49  christos 				const long offset, int *const okayp);
    190  1.49  christos static time_t		time2sub(const timezone_t sp, struct tm * consttmp,
    191  1.49  christos 				subfun_t funcp, const long offset,
    192  1.49  christos 				int *const okayp, const int do_norm_secs);
    193  1.49  christos static struct tm *	timesub(const timezone_t sp, const time_t * timep,
    194  1.49  christos 				long offset, struct tm * tmp);
    195  1.45   mlelstv static int		tmcomp(const struct tm * atmp,
    196  1.45   mlelstv 				const struct tm * btmp);
    197  1.45   mlelstv static time_t		transtime(time_t janfirst, int year,
    198  1.45   mlelstv 				const struct rule * rulep, long offset);
    199  1.49  christos static int		typesequiv(const timezone_t sp, int a, int b);
    200  1.49  christos static int		tzload(timezone_t sp, const char * name,
    201  1.45   mlelstv 				int doextend);
    202  1.49  christos static int		tzparse(timezone_t sp, const char * name,
    203  1.45   mlelstv 				int lastditch);
    204  1.45   mlelstv static void		tzset_unlocked(void);
    205  1.45   mlelstv static void		tzsetwall_unlocked(void);
    206  1.49  christos static long		leapcorr(const timezone_t sp, time_t * timep);
    207   1.1       jtc 
    208  1.49  christos static timezone_t lclptr;
    209  1.49  christos static timezone_t gmtptr;
    210   1.1       jtc 
    211   1.1       jtc #ifndef TZ_STRLEN_MAX
    212   1.1       jtc #define TZ_STRLEN_MAX 255
    213   1.1       jtc #endif /* !defined TZ_STRLEN_MAX */
    214   1.1       jtc 
    215  1.45   mlelstv static char		lcl_TZname[TZ_STRLEN_MAX + 1];
    216  1.45   mlelstv static int		lcl_is_set;
    217  1.45   mlelstv static int		gmt_is_set;
    218  1.42  christos 
    219  1.42  christos #if !defined(__LIBC12_SOURCE__)
    220   1.1       jtc 
    221  1.16   mycroft __aconst char *		tzname[2] = {
    222  1.37  christos 	(__aconst char *)__UNCONST(wildabbr),
    223  1.37  christos 	(__aconst char *)__UNCONST(wildabbr)
    224   1.1       jtc };
    225   1.1       jtc 
    226  1.42  christos #else
    227  1.42  christos 
    228  1.42  christos extern __aconst char *	tzname[2];
    229  1.42  christos 
    230  1.42  christos #endif
    231  1.42  christos 
    232  1.33  christos #ifdef _REENTRANT
    233  1.45   mlelstv static rwlock_t lcl_lock = RWLOCK_INITIALIZER;
    234  1.19    kleink #endif
    235  1.19    kleink 
    236   1.1       jtc /*
    237   1.1       jtc ** Section 4.12.3 of X3.159-1989 requires that
    238   1.1       jtc **	Except for the strftime function, these functions [asctime,
    239   1.1       jtc **	ctime, gmtime, localtime] return values in one of two static
    240   1.1       jtc **	objects: a broken-down time structure and an array of char.
    241  1.45   mlelstv ** Thanks to Paul Eggert for noting this.
    242   1.1       jtc */
    243   1.1       jtc 
    244   1.1       jtc static struct tm	tm;
    245   1.1       jtc 
    246   1.1       jtc #ifdef USG_COMPAT
    247  1.42  christos #if !defined(__LIBC12_SOURCE__)
    248  1.42  christos long 			timezone = 0;
    249   1.1       jtc int			daylight = 0;
    250  1.42  christos #else
    251  1.42  christos extern int		daylight;
    252  1.42  christos extern long		timezone __RENAME(__timezone13);
    253  1.42  christos #endif
    254   1.1       jtc #endif /* defined USG_COMPAT */
    255   1.1       jtc 
    256   1.1       jtc #ifdef ALTZONE
    257   1.1       jtc time_t			altzone = 0;
    258   1.1       jtc #endif /* defined ALTZONE */
    259   1.1       jtc 
    260   1.1       jtc static long
    261  1.49  christos detzcode(const char *const codep)
    262   1.1       jtc {
    263  1.49  christos 	long	result;
    264  1.49  christos 	int	i;
    265  1.45   mlelstv 
    266  1.45   mlelstv 	result = (codep[0] & 0x80) ? ~0L : 0;
    267  1.45   mlelstv 	for (i = 0; i < 4; ++i)
    268  1.45   mlelstv 		result = (result << 8) | (codep[i] & 0xff);
    269  1.45   mlelstv 	return result;
    270  1.45   mlelstv }
    271  1.45   mlelstv 
    272  1.45   mlelstv static time_t
    273  1.49  christos detzcode64(const char *const codep)
    274  1.45   mlelstv {
    275  1.49  christos 	time_t	result;
    276  1.49  christos 	int	i;
    277   1.1       jtc 
    278  1.45   mlelstv 	result = (codep[0] & 0x80) ? -1 : 0;
    279  1.45   mlelstv 	for (i = 0; i < 8; ++i)
    280  1.45   mlelstv 		result = result * 256 + (codep[i] & 0xff);
    281   1.1       jtc 	return result;
    282   1.1       jtc }
    283   1.1       jtc 
    284  1.49  christos const char *
    285  1.49  christos tzgetname(const timezone_t sp, int isdst)
    286  1.49  christos {
    287  1.49  christos 	int i;
    288  1.49  christos 	for (i = 0; i < sp->timecnt; ++i) {
    289  1.49  christos 		const struct ttinfo *const ttisp = &sp->ttis[sp->types[i]];
    290  1.49  christos 
    291  1.49  christos 		if (ttisp->tt_isdst == isdst)
    292  1.49  christos 			return &sp->chars[ttisp->tt_abbrind];
    293  1.49  christos 	}
    294  1.49  christos 	return NULL;
    295  1.49  christos }
    296  1.49  christos 
    297  1.49  christos static void
    298  1.49  christos settzname_z(timezone_t sp)
    299  1.49  christos {
    300  1.49  christos 	int			i;
    301  1.49  christos 
    302  1.49  christos 	/*
    303  1.49  christos 	** Scrub the abbreviations.
    304  1.49  christos 	** First, replace bogus characters.
    305  1.49  christos 	*/
    306  1.49  christos 	for (i = 0; i < sp->charcnt; ++i)
    307  1.49  christos 		if (strchr(TZ_ABBR_CHAR_SET, sp->chars[i]) == NULL)
    308  1.49  christos 			sp->chars[i] = TZ_ABBR_ERR_CHAR;
    309  1.49  christos 	/*
    310  1.49  christos 	** Second, truncate long abbreviations.
    311  1.49  christos 	*/
    312  1.49  christos 	for (i = 0; i < sp->typecnt; ++i) {
    313  1.49  christos 		const struct ttinfo * const	ttisp = &sp->ttis[i];
    314  1.49  christos 		char *				cp = &sp->chars[ttisp->tt_abbrind];
    315  1.49  christos 
    316  1.49  christos 		if (strlen(cp) > TZ_ABBR_MAX_LEN &&
    317  1.49  christos 			strcmp(cp, GRANDPARENTED) != 0)
    318  1.49  christos 				*(cp + TZ_ABBR_MAX_LEN) = '\0';
    319  1.49  christos 	}
    320  1.49  christos }
    321  1.49  christos 
    322  1.45   mlelstv static void
    323  1.45   mlelstv settzname(void)
    324   1.1       jtc {
    325  1.49  christos 	timezone_t const	sp = lclptr;
    326  1.49  christos 	int			i;
    327   1.1       jtc 
    328  1.37  christos 	tzname[0] = (__aconst char *)__UNCONST(wildabbr);
    329  1.37  christos 	tzname[1] = (__aconst char *)__UNCONST(wildabbr);
    330   1.1       jtc #ifdef USG_COMPAT
    331   1.1       jtc 	daylight = 0;
    332   1.1       jtc 	timezone = 0;
    333   1.1       jtc #endif /* defined USG_COMPAT */
    334   1.1       jtc #ifdef ALTZONE
    335   1.1       jtc 	altzone = 0;
    336   1.1       jtc #endif /* defined ALTZONE */
    337   1.1       jtc 	if (sp == NULL) {
    338  1.37  christos 		tzname[0] = tzname[1] = (__aconst char *)__UNCONST(gmt);
    339   1.1       jtc 		return;
    340   1.1       jtc 	}
    341   1.1       jtc 	for (i = 0; i < sp->typecnt; ++i) {
    342  1.49  christos 		const struct ttinfo * const	ttisp = &sp->ttis[i];
    343   1.1       jtc 
    344   1.1       jtc 		tzname[ttisp->tt_isdst] =
    345   1.1       jtc 			&sp->chars[ttisp->tt_abbrind];
    346  1.45   mlelstv #ifdef USG_COMPAT
    347  1.45   mlelstv 		if (ttisp->tt_isdst)
    348  1.45   mlelstv 			daylight = 1;
    349  1.45   mlelstv 		if (i == 0 || !ttisp->tt_isdst)
    350  1.45   mlelstv 			timezone = -(ttisp->tt_gmtoff);
    351  1.45   mlelstv #endif /* defined USG_COMPAT */
    352  1.45   mlelstv #ifdef ALTZONE
    353  1.45   mlelstv 		if (i == 0 || ttisp->tt_isdst)
    354  1.45   mlelstv 			altzone = -(ttisp->tt_gmtoff);
    355  1.45   mlelstv #endif /* defined ALTZONE */
    356   1.1       jtc 	}
    357   1.1       jtc 	/*
    358   1.1       jtc 	** And to get the latest zone names into tzname. . .
    359   1.1       jtc 	*/
    360   1.1       jtc 	for (i = 0; i < sp->timecnt; ++i) {
    361   1.1       jtc 		register const struct ttinfo * const	ttisp =
    362   1.1       jtc 							&sp->ttis[
    363   1.1       jtc 								sp->types[i]];
    364   1.1       jtc 
    365   1.1       jtc 		tzname[ttisp->tt_isdst] =
    366   1.1       jtc 			&sp->chars[ttisp->tt_abbrind];
    367  1.45   mlelstv 	}
    368  1.49  christos 	settzname_z(sp);
    369   1.1       jtc }
    370   1.1       jtc 
    371  1.45   mlelstv static int
    372  1.49  christos differ_by_repeat(const time_t t1, const time_t t0)
    373  1.45   mlelstv {
    374  1.45   mlelstv /* CONSTCOND */
    375  1.45   mlelstv 	if (TYPE_INTEGRAL(time_t) &&
    376  1.45   mlelstv 		TYPE_BIT(time_t) - TYPE_SIGNED(time_t) < SECSPERREPEAT_BITS)
    377  1.45   mlelstv 			return 0;
    378  1.45   mlelstv 	return (int_fast64_t)t1 - (int_fast64_t)t0 == SECSPERREPEAT;
    379  1.45   mlelstv }
    380  1.45   mlelstv 
    381  1.45   mlelstv static int
    382  1.49  christos tzload(timezone_t sp, const char *name, const int doextend)
    383  1.49  christos {
    384  1.49  christos 	const char *		p;
    385  1.49  christos 	int			i;
    386  1.49  christos 	int			fid;
    387  1.49  christos 	int			stored;
    388  1.49  christos 	int			nread;
    389  1.45   mlelstv 	union {
    390  1.45   mlelstv 		struct tzhead	tzhead;
    391  1.45   mlelstv 		char		buf[2 * sizeof(struct tzhead) +
    392  1.45   mlelstv 					2 * sizeof *sp +
    393  1.45   mlelstv 					4 * TZ_MAX_TIMES];
    394  1.45   mlelstv 	} u;
    395   1.1       jtc 
    396  1.47  christos 	sp->goback = sp->goahead = FALSE;
    397   1.1       jtc 	if (name == NULL && (name = TZDEFAULT) == NULL)
    398   1.1       jtc 		return -1;
    399   1.1       jtc 	{
    400  1.49  christos 		int	doaccess;
    401   1.1       jtc 		/*
    402   1.1       jtc 		** Section 4.9.1 of the C standard says that
    403   1.1       jtc 		** "FILENAME_MAX expands to an integral constant expression
    404  1.10       jtc 		** that is the size needed for an array of char large enough
    405   1.1       jtc 		** to hold the longest file name string that the implementation
    406   1.1       jtc 		** guarantees can be opened."
    407   1.1       jtc 		*/
    408   1.1       jtc 		char		fullname[FILENAME_MAX + 1];
    409   1.1       jtc 
    410   1.1       jtc 		if (name[0] == ':')
    411   1.1       jtc 			++name;
    412   1.1       jtc 		doaccess = name[0] == '/';
    413   1.1       jtc 		if (!doaccess) {
    414   1.1       jtc 			if ((p = TZDIR) == NULL)
    415   1.1       jtc 				return -1;
    416   1.1       jtc 			if ((strlen(p) + strlen(name) + 1) >= sizeof fullname)
    417   1.1       jtc 				return -1;
    418   1.8       mrg 			(void) strcpy(fullname, p);	/* XXX strcpy is safe */
    419   1.8       mrg 			(void) strcat(fullname, "/");	/* XXX strcat is safe */
    420   1.8       mrg 			(void) strcat(fullname, name);	/* XXX strcat is safe */
    421   1.1       jtc 			/*
    422   1.1       jtc 			** Set doaccess if '.' (as in "../") shows up in name.
    423   1.1       jtc 			*/
    424   1.1       jtc 			if (strchr(name, '.') != NULL)
    425   1.1       jtc 				doaccess = TRUE;
    426   1.1       jtc 			name = fullname;
    427   1.1       jtc 		}
    428   1.1       jtc 		if (doaccess && access(name, R_OK) != 0)
    429   1.1       jtc 			return -1;
    430   1.9       mrg 		/*
    431   1.9       mrg 		 * XXX potential security problem here if user of a set-id
    432   1.9       mrg 		 * program has set TZ (which is passed in as name) here,
    433   1.9       mrg 		 * and uses a race condition trick to defeat the access(2)
    434   1.9       mrg 		 * above.
    435   1.9       mrg 		 */
    436   1.1       jtc 		if ((fid = open(name, OPEN_MODE)) == -1)
    437   1.1       jtc 			return -1;
    438   1.1       jtc 	}
    439  1.45   mlelstv 	nread = read(fid, u.buf, sizeof u.buf);
    440  1.45   mlelstv 	if (close(fid) < 0 || nread <= 0)
    441  1.45   mlelstv 		return -1;
    442  1.45   mlelstv 	for (stored = 4; stored <= 8; stored *= 2) {
    443   1.1       jtc 		int		ttisstdcnt;
    444   1.1       jtc 		int		ttisgmtcnt;
    445   1.1       jtc 
    446  1.34    kleink 		ttisstdcnt = (int) detzcode(u.tzhead.tzh_ttisstdcnt);
    447  1.34    kleink 		ttisgmtcnt = (int) detzcode(u.tzhead.tzh_ttisgmtcnt);
    448  1.14       jtc 		sp->leapcnt = (int) detzcode(u.tzhead.tzh_leapcnt);
    449  1.14       jtc 		sp->timecnt = (int) detzcode(u.tzhead.tzh_timecnt);
    450  1.14       jtc 		sp->typecnt = (int) detzcode(u.tzhead.tzh_typecnt);
    451  1.14       jtc 		sp->charcnt = (int) detzcode(u.tzhead.tzh_charcnt);
    452  1.14       jtc 		p = u.tzhead.tzh_charcnt + sizeof u.tzhead.tzh_charcnt;
    453   1.1       jtc 		if (sp->leapcnt < 0 || sp->leapcnt > TZ_MAX_LEAPS ||
    454   1.1       jtc 			sp->typecnt <= 0 || sp->typecnt > TZ_MAX_TYPES ||
    455   1.1       jtc 			sp->timecnt < 0 || sp->timecnt > TZ_MAX_TIMES ||
    456   1.1       jtc 			sp->charcnt < 0 || sp->charcnt > TZ_MAX_CHARS ||
    457   1.1       jtc 			(ttisstdcnt != sp->typecnt && ttisstdcnt != 0) ||
    458   1.1       jtc 			(ttisgmtcnt != sp->typecnt && ttisgmtcnt != 0))
    459   1.1       jtc 				return -1;
    460  1.45   mlelstv 		if (nread - (p - u.buf) <
    461  1.45   mlelstv 			sp->timecnt * stored +		/* ats */
    462   1.1       jtc 			sp->timecnt +			/* types */
    463  1.45   mlelstv 			sp->typecnt * 6 +		/* ttinfos */
    464   1.1       jtc 			sp->charcnt +			/* chars */
    465  1.45   mlelstv 			sp->leapcnt * (stored + 4) +	/* lsinfos */
    466   1.1       jtc 			ttisstdcnt +			/* ttisstds */
    467   1.1       jtc 			ttisgmtcnt)			/* ttisgmts */
    468   1.1       jtc 				return -1;
    469   1.1       jtc 		for (i = 0; i < sp->timecnt; ++i) {
    470  1.45   mlelstv 			sp->ats[i] = (stored == 4) ?
    471  1.45   mlelstv 				detzcode(p) : detzcode64(p);
    472  1.45   mlelstv 			p += stored;
    473   1.1       jtc 		}
    474   1.1       jtc 		for (i = 0; i < sp->timecnt; ++i) {
    475   1.1       jtc 			sp->types[i] = (unsigned char) *p++;
    476   1.1       jtc 			if (sp->types[i] >= sp->typecnt)
    477   1.1       jtc 				return -1;
    478   1.1       jtc 		}
    479   1.1       jtc 		for (i = 0; i < sp->typecnt; ++i) {
    480  1.49  christos 			struct ttinfo *	ttisp;
    481   1.1       jtc 
    482   1.1       jtc 			ttisp = &sp->ttis[i];
    483   1.1       jtc 			ttisp->tt_gmtoff = detzcode(p);
    484   1.1       jtc 			p += 4;
    485   1.1       jtc 			ttisp->tt_isdst = (unsigned char) *p++;
    486   1.1       jtc 			if (ttisp->tt_isdst != 0 && ttisp->tt_isdst != 1)
    487   1.1       jtc 				return -1;
    488   1.1       jtc 			ttisp->tt_abbrind = (unsigned char) *p++;
    489   1.1       jtc 			if (ttisp->tt_abbrind < 0 ||
    490   1.1       jtc 				ttisp->tt_abbrind > sp->charcnt)
    491   1.1       jtc 					return -1;
    492   1.1       jtc 		}
    493   1.1       jtc 		for (i = 0; i < sp->charcnt; ++i)
    494   1.1       jtc 			sp->chars[i] = *p++;
    495   1.1       jtc 		sp->chars[i] = '\0';	/* ensure '\0' at end */
    496   1.1       jtc 		for (i = 0; i < sp->leapcnt; ++i) {
    497  1.49  christos 			struct lsinfo *	lsisp;
    498   1.1       jtc 
    499   1.1       jtc 			lsisp = &sp->lsis[i];
    500  1.45   mlelstv 			lsisp->ls_trans = (stored == 4) ?
    501  1.45   mlelstv 				detzcode(p) : detzcode64(p);
    502  1.45   mlelstv 			p += stored;
    503   1.1       jtc 			lsisp->ls_corr = detzcode(p);
    504   1.1       jtc 			p += 4;
    505   1.1       jtc 		}
    506   1.1       jtc 		for (i = 0; i < sp->typecnt; ++i) {
    507  1.49  christos 			struct ttinfo *	ttisp;
    508   1.1       jtc 
    509   1.1       jtc 			ttisp = &sp->ttis[i];
    510   1.1       jtc 			if (ttisstdcnt == 0)
    511   1.1       jtc 				ttisp->tt_ttisstd = FALSE;
    512   1.1       jtc 			else {
    513   1.1       jtc 				ttisp->tt_ttisstd = *p++;
    514   1.1       jtc 				if (ttisp->tt_ttisstd != TRUE &&
    515   1.1       jtc 					ttisp->tt_ttisstd != FALSE)
    516   1.1       jtc 						return -1;
    517   1.1       jtc 			}
    518   1.1       jtc 		}
    519   1.1       jtc 		for (i = 0; i < sp->typecnt; ++i) {
    520  1.49  christos 			struct ttinfo *	ttisp;
    521   1.1       jtc 
    522   1.1       jtc 			ttisp = &sp->ttis[i];
    523   1.1       jtc 			if (ttisgmtcnt == 0)
    524   1.1       jtc 				ttisp->tt_ttisgmt = FALSE;
    525   1.1       jtc 			else {
    526   1.1       jtc 				ttisp->tt_ttisgmt = *p++;
    527   1.1       jtc 				if (ttisp->tt_ttisgmt != TRUE &&
    528   1.1       jtc 					ttisp->tt_ttisgmt != FALSE)
    529   1.1       jtc 						return -1;
    530   1.1       jtc 			}
    531   1.1       jtc 		}
    532  1.45   mlelstv 		/*
    533  1.45   mlelstv 		** Out-of-sort ats should mean we're running on a
    534  1.45   mlelstv 		** signed time_t system but using a data file with
    535  1.45   mlelstv 		** unsigned values (or vice versa).
    536  1.45   mlelstv 		*/
    537  1.45   mlelstv 		for (i = 0; i < sp->timecnt - 2; ++i)
    538  1.45   mlelstv 			if (sp->ats[i] > sp->ats[i + 1]) {
    539  1.45   mlelstv 				++i;
    540  1.45   mlelstv /* CONSTCOND */
    541  1.45   mlelstv 				if (TYPE_SIGNED(time_t)) {
    542  1.45   mlelstv 					/*
    543  1.45   mlelstv 					** Ignore the end (easy).
    544  1.45   mlelstv 					*/
    545  1.45   mlelstv 					sp->timecnt = i;
    546  1.45   mlelstv 				} else {
    547  1.45   mlelstv 					/*
    548  1.45   mlelstv 					** Ignore the beginning (harder).
    549  1.45   mlelstv 					*/
    550  1.49  christos 					int	j;
    551  1.45   mlelstv 
    552  1.45   mlelstv 					for (j = 0; j + i < sp->timecnt; ++j) {
    553  1.45   mlelstv 						sp->ats[j] = sp->ats[j + i];
    554  1.45   mlelstv 						sp->types[j] = sp->types[j + i];
    555  1.45   mlelstv 					}
    556  1.45   mlelstv 					sp->timecnt = j;
    557  1.45   mlelstv 				}
    558  1.45   mlelstv 				break;
    559  1.45   mlelstv 			}
    560  1.45   mlelstv 		/*
    561  1.45   mlelstv 		** If this is an old file, we're done.
    562  1.45   mlelstv 		*/
    563  1.45   mlelstv 		if (u.tzhead.tzh_version[0] == '\0')
    564  1.45   mlelstv 			break;
    565  1.45   mlelstv 		nread -= p - u.buf;
    566  1.45   mlelstv 		for (i = 0; i < nread; ++i)
    567  1.45   mlelstv 			u.buf[i] = p[i];
    568  1.45   mlelstv 		/*
    569  1.45   mlelstv 		** If this is a narrow integer time_t system, we're done.
    570  1.45   mlelstv 		*/
    571  1.45   mlelstv 		if (stored >= (int) sizeof(time_t)
    572  1.45   mlelstv /* CONSTCOND */
    573  1.45   mlelstv 				&& TYPE_INTEGRAL(time_t))
    574  1.45   mlelstv 			break;
    575  1.45   mlelstv 	}
    576  1.45   mlelstv 	if (doextend && nread > 2 &&
    577  1.45   mlelstv 		u.buf[0] == '\n' && u.buf[nread - 1] == '\n' &&
    578  1.45   mlelstv 		sp->typecnt + 2 <= TZ_MAX_TYPES) {
    579  1.49  christos 			struct __state ts;
    580  1.49  christos 			int	result;
    581  1.45   mlelstv 
    582  1.45   mlelstv 			u.buf[nread - 1] = '\0';
    583  1.49  christos 			result = tzparse(&ts, &u.buf[1], FALSE);
    584  1.45   mlelstv 			if (result == 0 && ts.typecnt == 2 &&
    585  1.45   mlelstv 				sp->charcnt + ts.charcnt <= TZ_MAX_CHARS) {
    586  1.45   mlelstv 					for (i = 0; i < 2; ++i)
    587  1.45   mlelstv 						ts.ttis[i].tt_abbrind +=
    588  1.45   mlelstv 							sp->charcnt;
    589  1.45   mlelstv 					for (i = 0; i < ts.charcnt; ++i)
    590  1.45   mlelstv 						sp->chars[sp->charcnt++] =
    591  1.45   mlelstv 							ts.chars[i];
    592  1.45   mlelstv 					i = 0;
    593  1.45   mlelstv 					while (i < ts.timecnt &&
    594  1.45   mlelstv 						ts.ats[i] <=
    595  1.45   mlelstv 						sp->ats[sp->timecnt - 1])
    596  1.45   mlelstv 							++i;
    597  1.45   mlelstv 					while (i < ts.timecnt &&
    598  1.45   mlelstv 					    sp->timecnt < TZ_MAX_TIMES) {
    599  1.45   mlelstv 						sp->ats[sp->timecnt] =
    600  1.45   mlelstv 							ts.ats[i];
    601  1.45   mlelstv 						sp->types[sp->timecnt] =
    602  1.45   mlelstv 							sp->typecnt +
    603  1.45   mlelstv 							ts.types[i];
    604  1.45   mlelstv 						++sp->timecnt;
    605  1.45   mlelstv 						++i;
    606  1.45   mlelstv 					}
    607  1.45   mlelstv 					sp->ttis[sp->typecnt++] = ts.ttis[0];
    608  1.45   mlelstv 					sp->ttis[sp->typecnt++] = ts.ttis[1];
    609  1.45   mlelstv 			}
    610  1.45   mlelstv 	}
    611  1.45   mlelstv 	if (sp->timecnt > 1) {
    612  1.45   mlelstv 		for (i = 1; i < sp->timecnt; ++i)
    613  1.45   mlelstv 			if (typesequiv(sp, sp->types[i], sp->types[0]) &&
    614  1.45   mlelstv 				differ_by_repeat(sp->ats[i], sp->ats[0])) {
    615  1.45   mlelstv 					sp->goback = TRUE;
    616  1.45   mlelstv 					break;
    617  1.45   mlelstv 				}
    618  1.45   mlelstv 		for (i = sp->timecnt - 2; i >= 0; --i)
    619  1.45   mlelstv 			if (typesequiv(sp, sp->types[sp->timecnt - 1],
    620  1.45   mlelstv 				sp->types[i]) &&
    621  1.45   mlelstv 				differ_by_repeat(sp->ats[sp->timecnt - 1],
    622  1.45   mlelstv 				sp->ats[i])) {
    623  1.45   mlelstv 					sp->goahead = TRUE;
    624  1.45   mlelstv 					break;
    625  1.45   mlelstv 		}
    626   1.1       jtc 	}
    627   1.1       jtc 	return 0;
    628   1.1       jtc }
    629   1.1       jtc 
    630  1.45   mlelstv static int
    631  1.49  christos typesequiv(const timezone_t sp, const int a, const int b)
    632  1.45   mlelstv {
    633  1.49  christos 	int	result;
    634  1.45   mlelstv 
    635  1.45   mlelstv 	if (sp == NULL ||
    636  1.45   mlelstv 		a < 0 || a >= sp->typecnt ||
    637  1.45   mlelstv 		b < 0 || b >= sp->typecnt)
    638  1.45   mlelstv 			result = FALSE;
    639  1.45   mlelstv 	else {
    640  1.49  christos 		const struct ttinfo *	ap = &sp->ttis[a];
    641  1.49  christos 		const struct ttinfo *	bp = &sp->ttis[b];
    642  1.45   mlelstv 		result = ap->tt_gmtoff == bp->tt_gmtoff &&
    643  1.45   mlelstv 			ap->tt_isdst == bp->tt_isdst &&
    644  1.45   mlelstv 			ap->tt_ttisstd == bp->tt_ttisstd &&
    645  1.45   mlelstv 			ap->tt_ttisgmt == bp->tt_ttisgmt &&
    646  1.45   mlelstv 			strcmp(&sp->chars[ap->tt_abbrind],
    647  1.45   mlelstv 			&sp->chars[bp->tt_abbrind]) == 0;
    648  1.45   mlelstv 	}
    649  1.45   mlelstv 	return result;
    650  1.45   mlelstv }
    651  1.45   mlelstv 
    652   1.1       jtc static const int	mon_lengths[2][MONSPERYEAR] = {
    653   1.1       jtc 	{ 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 },
    654   1.1       jtc 	{ 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }
    655   1.1       jtc };
    656   1.1       jtc 
    657   1.1       jtc static const int	year_lengths[2] = {
    658   1.1       jtc 	DAYSPERNYEAR, DAYSPERLYEAR
    659   1.1       jtc };
    660   1.1       jtc 
    661   1.1       jtc /*
    662   1.1       jtc ** Given a pointer into a time zone string, scan until a character that is not
    663  1.45   mlelstv ** a valid character in a zone name is found. Return a pointer to that
    664   1.1       jtc ** character.
    665   1.1       jtc */
    666   1.1       jtc 
    667   1.1       jtc static const char *
    668  1.45   mlelstv getzname(strp)
    669  1.49  christos const char *	strp;
    670   1.1       jtc {
    671  1.49  christos 	char	c;
    672   1.1       jtc 
    673   1.5       jtc 	while ((c = *strp) != '\0' && !is_digit(c) && c != ',' && c != '-' &&
    674   1.1       jtc 		c != '+')
    675   1.1       jtc 			++strp;
    676   1.1       jtc 	return strp;
    677   1.1       jtc }
    678   1.1       jtc 
    679   1.1       jtc /*
    680  1.45   mlelstv ** Given a pointer into an extended time zone string, scan until the ending
    681  1.45   mlelstv ** delimiter of the zone name is located. Return a pointer to the delimiter.
    682  1.45   mlelstv **
    683  1.45   mlelstv ** As with getzname above, the legal character set is actually quite
    684  1.45   mlelstv ** restricted, with other characters producing undefined results.
    685  1.45   mlelstv ** We don't do any checking here; checking is done later in common-case code.
    686  1.45   mlelstv */
    687  1.45   mlelstv 
    688  1.45   mlelstv static const char *
    689  1.49  christos getqzname(const char *strp, const int delim)
    690  1.45   mlelstv {
    691  1.49  christos 	int	c;
    692  1.45   mlelstv 
    693  1.45   mlelstv 	while ((c = *strp) != '\0' && c != delim)
    694  1.45   mlelstv 		++strp;
    695  1.45   mlelstv 	return strp;
    696  1.45   mlelstv }
    697  1.45   mlelstv 
    698  1.45   mlelstv /*
    699   1.1       jtc ** Given a pointer into a time zone string, extract a number from that string.
    700   1.1       jtc ** Check that the number is within a specified range; if it is not, return
    701   1.1       jtc ** NULL.
    702   1.1       jtc ** Otherwise, return a pointer to the first character not part of the number.
    703   1.1       jtc */
    704   1.1       jtc 
    705   1.1       jtc static const char *
    706   1.1       jtc getnum(strp, nump, min, max)
    707  1.49  christos const char *	strp;
    708   1.1       jtc int * const		nump;
    709   1.1       jtc const int		min;
    710   1.1       jtc const int		max;
    711   1.1       jtc {
    712  1.49  christos 	char	c;
    713  1.49  christos 	int	num;
    714   1.1       jtc 
    715  1.46  christos 	if (strp == NULL || !is_digit(c = *strp)) {
    716  1.46  christos 		errno = EINVAL;
    717   1.1       jtc 		return NULL;
    718  1.46  christos 	}
    719   1.1       jtc 	num = 0;
    720   1.5       jtc 	do {
    721   1.1       jtc 		num = num * 10 + (c - '0');
    722  1.46  christos 		if (num > max) {
    723  1.46  christos 			errno = EOVERFLOW;
    724   1.1       jtc 			return NULL;	/* illegal value */
    725  1.46  christos 		}
    726   1.5       jtc 		c = *++strp;
    727   1.5       jtc 	} while (is_digit(c));
    728  1.46  christos 	if (num < min) {
    729  1.46  christos 		errno = EINVAL;
    730   1.1       jtc 		return NULL;		/* illegal value */
    731  1.46  christos 	}
    732   1.1       jtc 	*nump = num;
    733   1.1       jtc 	return strp;
    734   1.1       jtc }
    735   1.1       jtc 
    736   1.1       jtc /*
    737   1.1       jtc ** Given a pointer into a time zone string, extract a number of seconds,
    738   1.1       jtc ** in hh[:mm[:ss]] form, from the string.
    739   1.1       jtc ** If any error occurs, return NULL.
    740   1.1       jtc ** Otherwise, return a pointer to the first character not part of the number
    741   1.1       jtc ** of seconds.
    742   1.1       jtc */
    743   1.1       jtc 
    744   1.1       jtc static const char *
    745  1.49  christos getsecs(const char *strp, long *const secsp)
    746   1.1       jtc {
    747   1.1       jtc 	int	num;
    748   1.1       jtc 
    749   1.1       jtc 	/*
    750   1.1       jtc 	** `HOURSPERDAY * DAYSPERWEEK - 1' allows quasi-Posix rules like
    751   1.1       jtc 	** "M10.4.6/26", which does not conform to Posix,
    752   1.1       jtc 	** but which specifies the equivalent of
    753   1.1       jtc 	** ``02:00 on the first Sunday on or after 23 Oct''.
    754   1.1       jtc 	*/
    755   1.1       jtc 	strp = getnum(strp, &num, 0, HOURSPERDAY * DAYSPERWEEK - 1);
    756   1.1       jtc 	if (strp == NULL)
    757   1.1       jtc 		return NULL;
    758   1.1       jtc 	*secsp = num * (long) SECSPERHOUR;
    759   1.1       jtc 	if (*strp == ':') {
    760   1.1       jtc 		++strp;
    761   1.1       jtc 		strp = getnum(strp, &num, 0, MINSPERHOUR - 1);
    762   1.1       jtc 		if (strp == NULL)
    763   1.1       jtc 			return NULL;
    764   1.1       jtc 		*secsp += num * SECSPERMIN;
    765   1.1       jtc 		if (*strp == ':') {
    766   1.1       jtc 			++strp;
    767  1.45   mlelstv 			/* `SECSPERMIN' allows for leap seconds. */
    768   1.1       jtc 			strp = getnum(strp, &num, 0, SECSPERMIN);
    769   1.1       jtc 			if (strp == NULL)
    770   1.1       jtc 				return NULL;
    771   1.1       jtc 			*secsp += num;
    772   1.1       jtc 		}
    773   1.1       jtc 	}
    774   1.1       jtc 	return strp;
    775   1.1       jtc }
    776   1.1       jtc 
    777   1.1       jtc /*
    778   1.1       jtc ** Given a pointer into a time zone string, extract an offset, in
    779   1.1       jtc ** [+-]hh[:mm[:ss]] form, from the string.
    780   1.1       jtc ** If any error occurs, return NULL.
    781   1.1       jtc ** Otherwise, return a pointer to the first character not part of the time.
    782   1.1       jtc */
    783   1.1       jtc 
    784   1.1       jtc static const char *
    785  1.49  christos getoffset(const char *strp, long *const offsetp)
    786   1.1       jtc {
    787  1.49  christos 	int	neg = 0;
    788   1.1       jtc 
    789   1.1       jtc 	if (*strp == '-') {
    790   1.1       jtc 		neg = 1;
    791   1.1       jtc 		++strp;
    792   1.5       jtc 	} else if (*strp == '+')
    793   1.5       jtc 		++strp;
    794   1.1       jtc 	strp = getsecs(strp, offsetp);
    795   1.1       jtc 	if (strp == NULL)
    796   1.1       jtc 		return NULL;		/* illegal time */
    797   1.1       jtc 	if (neg)
    798   1.1       jtc 		*offsetp = -*offsetp;
    799   1.1       jtc 	return strp;
    800   1.1       jtc }
    801   1.1       jtc 
    802   1.1       jtc /*
    803   1.1       jtc ** Given a pointer into a time zone string, extract a rule in the form
    804  1.45   mlelstv ** date[/time]. See POSIX section 8 for the format of "date" and "time".
    805   1.1       jtc ** If a valid rule is not found, return NULL.
    806   1.1       jtc ** Otherwise, return a pointer to the first character not part of the rule.
    807   1.1       jtc */
    808   1.1       jtc 
    809   1.1       jtc static const char *
    810  1.49  christos getrule(const char *strp, struct rule *const rulep)
    811   1.1       jtc {
    812   1.1       jtc 	if (*strp == 'J') {
    813   1.1       jtc 		/*
    814   1.1       jtc 		** Julian day.
    815   1.1       jtc 		*/
    816   1.1       jtc 		rulep->r_type = JULIAN_DAY;
    817   1.1       jtc 		++strp;
    818   1.1       jtc 		strp = getnum(strp, &rulep->r_day, 1, DAYSPERNYEAR);
    819   1.1       jtc 	} else if (*strp == 'M') {
    820   1.1       jtc 		/*
    821   1.1       jtc 		** Month, week, day.
    822   1.1       jtc 		*/
    823   1.1       jtc 		rulep->r_type = MONTH_NTH_DAY_OF_WEEK;
    824   1.1       jtc 		++strp;
    825   1.1       jtc 		strp = getnum(strp, &rulep->r_mon, 1, MONSPERYEAR);
    826   1.1       jtc 		if (strp == NULL)
    827   1.1       jtc 			return NULL;
    828   1.1       jtc 		if (*strp++ != '.')
    829   1.1       jtc 			return NULL;
    830   1.1       jtc 		strp = getnum(strp, &rulep->r_week, 1, 5);
    831   1.1       jtc 		if (strp == NULL)
    832   1.1       jtc 			return NULL;
    833   1.1       jtc 		if (*strp++ != '.')
    834   1.1       jtc 			return NULL;
    835   1.1       jtc 		strp = getnum(strp, &rulep->r_day, 0, DAYSPERWEEK - 1);
    836   1.5       jtc 	} else if (is_digit(*strp)) {
    837   1.1       jtc 		/*
    838   1.1       jtc 		** Day of year.
    839   1.1       jtc 		*/
    840   1.1       jtc 		rulep->r_type = DAY_OF_YEAR;
    841   1.1       jtc 		strp = getnum(strp, &rulep->r_day, 0, DAYSPERLYEAR - 1);
    842   1.1       jtc 	} else	return NULL;		/* invalid format */
    843   1.1       jtc 	if (strp == NULL)
    844   1.1       jtc 		return NULL;
    845   1.1       jtc 	if (*strp == '/') {
    846   1.1       jtc 		/*
    847   1.1       jtc 		** Time specified.
    848   1.1       jtc 		*/
    849   1.1       jtc 		++strp;
    850   1.1       jtc 		strp = getsecs(strp, &rulep->r_time);
    851   1.1       jtc 	} else	rulep->r_time = 2 * SECSPERHOUR;	/* default = 2:00:00 */
    852   1.1       jtc 	return strp;
    853   1.1       jtc }
    854   1.1       jtc 
    855   1.1       jtc /*
    856  1.14       jtc ** Given the Epoch-relative time of January 1, 00:00:00 UTC, in a year, the
    857  1.14       jtc ** year, a rule, and the offset from UTC at the time that rule takes effect,
    858   1.1       jtc ** calculate the Epoch-relative time that rule takes effect.
    859   1.1       jtc */
    860   1.1       jtc 
    861   1.1       jtc static time_t
    862  1.49  christos transtime(const time_t janfirst, const int year, const struct rule *const rulep,
    863  1.49  christos     const long offset)
    864  1.49  christos {
    865  1.49  christos 	int	leapyear;
    866  1.49  christos 	time_t	value;
    867  1.49  christos 	int	i;
    868   1.1       jtc 	int		d, m1, yy0, yy1, yy2, dow;
    869   1.1       jtc 
    870   1.1       jtc 	INITIALIZE(value);
    871   1.1       jtc 	leapyear = isleap(year);
    872   1.1       jtc 	switch (rulep->r_type) {
    873   1.1       jtc 
    874   1.1       jtc 	case JULIAN_DAY:
    875   1.1       jtc 		/*
    876   1.1       jtc 		** Jn - Julian day, 1 == January 1, 60 == March 1 even in leap
    877   1.1       jtc 		** years.
    878   1.1       jtc 		** In non-leap years, or if the day number is 59 or less, just
    879   1.1       jtc 		** add SECSPERDAY times the day number-1 to the time of
    880   1.1       jtc 		** January 1, midnight, to get the day.
    881   1.1       jtc 		*/
    882   1.1       jtc 		value = janfirst + (rulep->r_day - 1) * SECSPERDAY;
    883   1.1       jtc 		if (leapyear && rulep->r_day >= 60)
    884   1.1       jtc 			value += SECSPERDAY;
    885   1.1       jtc 		break;
    886   1.1       jtc 
    887   1.1       jtc 	case DAY_OF_YEAR:
    888   1.1       jtc 		/*
    889   1.1       jtc 		** n - day of year.
    890   1.1       jtc 		** Just add SECSPERDAY times the day number to the time of
    891   1.1       jtc 		** January 1, midnight, to get the day.
    892   1.1       jtc 		*/
    893   1.1       jtc 		value = janfirst + rulep->r_day * SECSPERDAY;
    894   1.1       jtc 		break;
    895   1.1       jtc 
    896   1.1       jtc 	case MONTH_NTH_DAY_OF_WEEK:
    897   1.1       jtc 		/*
    898   1.1       jtc 		** Mm.n.d - nth "dth day" of month m.
    899   1.1       jtc 		*/
    900   1.1       jtc 		value = janfirst;
    901   1.1       jtc 		for (i = 0; i < rulep->r_mon - 1; ++i)
    902   1.1       jtc 			value += mon_lengths[leapyear][i] * SECSPERDAY;
    903   1.1       jtc 
    904   1.1       jtc 		/*
    905   1.1       jtc 		** Use Zeller's Congruence to get day-of-week of first day of
    906   1.1       jtc 		** month.
    907   1.1       jtc 		*/
    908   1.1       jtc 		m1 = (rulep->r_mon + 9) % 12 + 1;
    909   1.1       jtc 		yy0 = (rulep->r_mon <= 2) ? (year - 1) : year;
    910   1.1       jtc 		yy1 = yy0 / 100;
    911   1.1       jtc 		yy2 = yy0 % 100;
    912   1.1       jtc 		dow = ((26 * m1 - 2) / 10 +
    913   1.1       jtc 			1 + yy2 + yy2 / 4 + yy1 / 4 - 2 * yy1) % 7;
    914   1.1       jtc 		if (dow < 0)
    915   1.1       jtc 			dow += DAYSPERWEEK;
    916   1.1       jtc 
    917   1.1       jtc 		/*
    918  1.45   mlelstv 		** "dow" is the day-of-week of the first day of the month. Get
    919   1.1       jtc 		** the day-of-month (zero-origin) of the first "dow" day of the
    920   1.1       jtc 		** month.
    921   1.1       jtc 		*/
    922   1.1       jtc 		d = rulep->r_day - dow;
    923   1.1       jtc 		if (d < 0)
    924   1.1       jtc 			d += DAYSPERWEEK;
    925   1.1       jtc 		for (i = 1; i < rulep->r_week; ++i) {
    926   1.1       jtc 			if (d + DAYSPERWEEK >=
    927   1.1       jtc 				mon_lengths[leapyear][rulep->r_mon - 1])
    928   1.1       jtc 					break;
    929   1.1       jtc 			d += DAYSPERWEEK;
    930   1.1       jtc 		}
    931   1.1       jtc 
    932   1.1       jtc 		/*
    933   1.1       jtc 		** "d" is the day-of-month (zero-origin) of the day we want.
    934   1.1       jtc 		*/
    935   1.1       jtc 		value += d * SECSPERDAY;
    936   1.1       jtc 		break;
    937   1.1       jtc 	}
    938   1.1       jtc 
    939   1.1       jtc 	/*
    940  1.14       jtc 	** "value" is the Epoch-relative time of 00:00:00 UTC on the day in
    941  1.45   mlelstv 	** question. To get the Epoch-relative time of the specified local
    942   1.1       jtc 	** time on that day, add the transition time and the current offset
    943  1.14       jtc 	** from UTC.
    944   1.1       jtc 	*/
    945   1.1       jtc 	return value + rulep->r_time + offset;
    946   1.1       jtc }
    947   1.1       jtc 
    948   1.1       jtc /*
    949   1.1       jtc ** Given a POSIX section 8-style TZ string, fill in the rule tables as
    950   1.1       jtc ** appropriate.
    951   1.1       jtc */
    952   1.1       jtc 
    953   1.1       jtc static int
    954  1.49  christos tzparse(timezone_t sp, const char *name, const int lastditch)
    955   1.1       jtc {
    956   1.1       jtc 	const char *			stdname;
    957   1.1       jtc 	const char *			dstname;
    958   1.1       jtc 	size_t				stdlen;
    959   1.1       jtc 	size_t				dstlen;
    960   1.1       jtc 	long				stdoffset;
    961   1.1       jtc 	long				dstoffset;
    962  1.49  christos 	time_t *		atp;
    963  1.49  christos 	unsigned char *	typep;
    964  1.49  christos 	char *			cp;
    965  1.49  christos 	int			load_result;
    966   1.1       jtc 
    967   1.1       jtc 	INITIALIZE(dstname);
    968   1.1       jtc 	stdname = name;
    969   1.1       jtc 	if (lastditch) {
    970   1.1       jtc 		stdlen = strlen(name);	/* length of standard zone name */
    971   1.1       jtc 		name += stdlen;
    972   1.1       jtc 		if (stdlen >= sizeof sp->chars)
    973   1.1       jtc 			stdlen = (sizeof sp->chars) - 1;
    974  1.10       jtc 		stdoffset = 0;
    975   1.1       jtc 	} else {
    976  1.45   mlelstv 		if (*name == '<') {
    977  1.45   mlelstv 			name++;
    978  1.45   mlelstv 			stdname = name;
    979  1.45   mlelstv 			name = getqzname(name, '>');
    980  1.45   mlelstv 			if (*name != '>')
    981  1.45   mlelstv 				return (-1);
    982  1.45   mlelstv 			stdlen = name - stdname;
    983  1.45   mlelstv 			name++;
    984  1.45   mlelstv 		} else {
    985  1.45   mlelstv 			name = getzname(name);
    986  1.45   mlelstv 			stdlen = name - stdname;
    987  1.45   mlelstv 		}
    988  1.10       jtc 		if (*name == '\0')
    989  1.10       jtc 			return -1;
    990  1.45   mlelstv 		name = getoffset(name, &stdoffset);
    991   1.1       jtc 		if (name == NULL)
    992   1.1       jtc 			return -1;
    993   1.1       jtc 	}
    994  1.49  christos 	load_result = tzload(sp, TZDEFRULES, FALSE);
    995   1.1       jtc 	if (load_result != 0)
    996   1.1       jtc 		sp->leapcnt = 0;		/* so, we're off a little */
    997   1.1       jtc 	if (*name != '\0') {
    998  1.45   mlelstv 		if (*name == '<') {
    999  1.45   mlelstv 			dstname = ++name;
   1000  1.45   mlelstv 			name = getqzname(name, '>');
   1001  1.45   mlelstv 			if (*name != '>')
   1002  1.45   mlelstv 				return -1;
   1003  1.45   mlelstv 			dstlen = name - dstname;
   1004  1.45   mlelstv 			name++;
   1005  1.45   mlelstv 		} else {
   1006  1.45   mlelstv 			dstname = name;
   1007  1.45   mlelstv 			name = getzname(name);
   1008  1.45   mlelstv 			dstlen = name - dstname; /* length of DST zone name */
   1009  1.45   mlelstv 		}
   1010   1.1       jtc 		if (*name != '\0' && *name != ',' && *name != ';') {
   1011  1.45   mlelstv 			name = getoffset(name, &dstoffset);
   1012   1.1       jtc 			if (name == NULL)
   1013   1.1       jtc 				return -1;
   1014   1.1       jtc 		} else	dstoffset = stdoffset - SECSPERHOUR;
   1015  1.22    kleink 		if (*name == '\0' && load_result != 0)
   1016  1.22    kleink 			name = TZDEFRULESTRING;
   1017   1.1       jtc 		if (*name == ',' || *name == ';') {
   1018   1.1       jtc 			struct rule	start;
   1019   1.1       jtc 			struct rule	end;
   1020  1.49  christos 			int	year;
   1021  1.49  christos 			time_t	janfirst;
   1022   1.1       jtc 			time_t		starttime;
   1023   1.1       jtc 			time_t		endtime;
   1024   1.1       jtc 
   1025   1.1       jtc 			++name;
   1026  1.45   mlelstv 			if ((name = getrule(name, &start)) == NULL)
   1027   1.1       jtc 				return -1;
   1028   1.1       jtc 			if (*name++ != ',')
   1029   1.1       jtc 				return -1;
   1030  1.45   mlelstv 			if ((name = getrule(name, &end)) == NULL)
   1031   1.1       jtc 				return -1;
   1032   1.1       jtc 			if (*name != '\0')
   1033   1.1       jtc 				return -1;
   1034   1.1       jtc 			sp->typecnt = 2;	/* standard time and DST */
   1035   1.1       jtc 			/*
   1036  1.45   mlelstv 			** Two transitions per year, from EPOCH_YEAR forward.
   1037   1.1       jtc 			*/
   1038   1.1       jtc 			sp->ttis[0].tt_gmtoff = -dstoffset;
   1039   1.1       jtc 			sp->ttis[0].tt_isdst = 1;
   1040   1.1       jtc 			sp->ttis[0].tt_abbrind = stdlen + 1;
   1041   1.1       jtc 			sp->ttis[1].tt_gmtoff = -stdoffset;
   1042   1.1       jtc 			sp->ttis[1].tt_isdst = 0;
   1043   1.1       jtc 			sp->ttis[1].tt_abbrind = 0;
   1044   1.1       jtc 			atp = sp->ats;
   1045   1.1       jtc 			typep = sp->types;
   1046   1.1       jtc 			janfirst = 0;
   1047  1.45   mlelstv 			sp->timecnt = 0;
   1048  1.45   mlelstv 			for (year = EPOCH_YEAR;
   1049  1.45   mlelstv 			    sp->timecnt + 2 <= TZ_MAX_TIMES;
   1050  1.45   mlelstv 			    ++year) {
   1051  1.45   mlelstv 			    	time_t	newfirst;
   1052  1.45   mlelstv 
   1053  1.45   mlelstv 				starttime = transtime(janfirst, year, &start,
   1054   1.1       jtc 					stdoffset);
   1055  1.45   mlelstv 				endtime = transtime(janfirst, year, &end,
   1056   1.1       jtc 					dstoffset);
   1057   1.1       jtc 				if (starttime > endtime) {
   1058   1.1       jtc 					*atp++ = endtime;
   1059   1.1       jtc 					*typep++ = 1;	/* DST ends */
   1060   1.1       jtc 					*atp++ = starttime;
   1061   1.1       jtc 					*typep++ = 0;	/* DST begins */
   1062   1.1       jtc 				} else {
   1063   1.1       jtc 					*atp++ = starttime;
   1064   1.1       jtc 					*typep++ = 0;	/* DST begins */
   1065   1.1       jtc 					*atp++ = endtime;
   1066   1.1       jtc 					*typep++ = 1;	/* DST ends */
   1067   1.1       jtc 				}
   1068  1.45   mlelstv 				sp->timecnt += 2;
   1069  1.45   mlelstv 				newfirst = janfirst;
   1070  1.45   mlelstv 				newfirst += year_lengths[isleap(year)] *
   1071   1.1       jtc 					SECSPERDAY;
   1072  1.45   mlelstv 				if (newfirst <= janfirst)
   1073  1.45   mlelstv 					break;
   1074  1.45   mlelstv 				janfirst = newfirst;
   1075   1.1       jtc 			}
   1076   1.1       jtc 		} else {
   1077  1.49  christos 			long	theirstdoffset;
   1078  1.49  christos 			long	theirdstoffset;
   1079  1.49  christos 			long	theiroffset;
   1080  1.49  christos 			int	isdst;
   1081  1.49  christos 			int	i;
   1082  1.49  christos 			int	j;
   1083   1.1       jtc 
   1084   1.1       jtc 			if (*name != '\0')
   1085   1.1       jtc 				return -1;
   1086   1.1       jtc 			/*
   1087  1.39  christos 			** Initial values of theirstdoffset
   1088   1.1       jtc 			*/
   1089   1.1       jtc 			theirstdoffset = 0;
   1090   1.1       jtc 			for (i = 0; i < sp->timecnt; ++i) {
   1091   1.1       jtc 				j = sp->types[i];
   1092   1.1       jtc 				if (!sp->ttis[j].tt_isdst) {
   1093   1.5       jtc 					theirstdoffset =
   1094   1.5       jtc 						-sp->ttis[j].tt_gmtoff;
   1095   1.1       jtc 					break;
   1096   1.1       jtc 				}
   1097   1.1       jtc 			}
   1098  1.45   mlelstv 			theirdstoffset = 0;
   1099  1.45   mlelstv 			for (i = 0; i < sp->timecnt; ++i) {
   1100  1.45   mlelstv 				j = sp->types[i];
   1101  1.45   mlelstv 				if (sp->ttis[j].tt_isdst) {
   1102  1.45   mlelstv 					theirdstoffset =
   1103  1.45   mlelstv 						-sp->ttis[j].tt_gmtoff;
   1104  1.45   mlelstv 					break;
   1105  1.45   mlelstv 				}
   1106  1.45   mlelstv 			}
   1107   1.1       jtc 			/*
   1108   1.1       jtc 			** Initially we're assumed to be in standard time.
   1109   1.1       jtc 			*/
   1110  1.45   mlelstv 			isdst = FALSE;
   1111   1.1       jtc 			theiroffset = theirstdoffset;
   1112   1.1       jtc 			/*
   1113   1.1       jtc 			** Now juggle transition times and types
   1114   1.1       jtc 			** tracking offsets as you do.
   1115   1.1       jtc 			*/
   1116   1.1       jtc 			for (i = 0; i < sp->timecnt; ++i) {
   1117   1.1       jtc 				j = sp->types[i];
   1118   1.1       jtc 				sp->types[i] = sp->ttis[j].tt_isdst;
   1119   1.1       jtc 				if (sp->ttis[j].tt_ttisgmt) {
   1120   1.1       jtc 					/* No adjustment to transition time */
   1121   1.1       jtc 				} else {
   1122   1.1       jtc 					/*
   1123   1.1       jtc 					** If summer time is in effect, and the
   1124   1.1       jtc 					** transition time was not specified as
   1125   1.1       jtc 					** standard time, add the summer time
   1126   1.1       jtc 					** offset to the transition time;
   1127   1.1       jtc 					** otherwise, add the standard time
   1128   1.1       jtc 					** offset to the transition time.
   1129   1.1       jtc 					*/
   1130   1.1       jtc 					/*
   1131   1.1       jtc 					** Transitions from DST to DDST
   1132   1.1       jtc 					** will effectively disappear since
   1133   1.1       jtc 					** POSIX provides for only one DST
   1134   1.1       jtc 					** offset.
   1135   1.1       jtc 					*/
   1136  1.45   mlelstv 					if (isdst && !sp->ttis[j].tt_ttisstd) {
   1137  1.45   mlelstv 						sp->ats[i] += dstoffset -
   1138  1.45   mlelstv 							theirdstoffset;
   1139  1.45   mlelstv 					} else {
   1140  1.45   mlelstv 						sp->ats[i] += stdoffset -
   1141  1.45   mlelstv 							theirstdoffset;
   1142  1.45   mlelstv 					}
   1143   1.1       jtc 				}
   1144   1.1       jtc 				theiroffset = -sp->ttis[j].tt_gmtoff;
   1145  1.39  christos 				if (!sp->ttis[j].tt_isdst)
   1146  1.39  christos 					theirstdoffset = theiroffset;
   1147  1.45   mlelstv 				else	theirdstoffset = theiroffset;
   1148   1.1       jtc 			}
   1149   1.1       jtc 			/*
   1150   1.1       jtc 			** Finally, fill in ttis.
   1151   1.1       jtc 			** ttisstd and ttisgmt need not be handled.
   1152   1.1       jtc 			*/
   1153   1.1       jtc 			sp->ttis[0].tt_gmtoff = -stdoffset;
   1154   1.1       jtc 			sp->ttis[0].tt_isdst = FALSE;
   1155   1.1       jtc 			sp->ttis[0].tt_abbrind = 0;
   1156   1.1       jtc 			sp->ttis[1].tt_gmtoff = -dstoffset;
   1157   1.1       jtc 			sp->ttis[1].tt_isdst = TRUE;
   1158   1.1       jtc 			sp->ttis[1].tt_abbrind = stdlen + 1;
   1159   1.7       jtc 			sp->typecnt = 2;
   1160   1.1       jtc 		}
   1161   1.1       jtc 	} else {
   1162   1.1       jtc 		dstlen = 0;
   1163   1.1       jtc 		sp->typecnt = 1;		/* only standard time */
   1164   1.1       jtc 		sp->timecnt = 0;
   1165   1.1       jtc 		sp->ttis[0].tt_gmtoff = -stdoffset;
   1166   1.1       jtc 		sp->ttis[0].tt_isdst = 0;
   1167   1.1       jtc 		sp->ttis[0].tt_abbrind = 0;
   1168   1.1       jtc 	}
   1169   1.1       jtc 	sp->charcnt = stdlen + 1;
   1170   1.1       jtc 	if (dstlen != 0)
   1171   1.1       jtc 		sp->charcnt += dstlen + 1;
   1172  1.10       jtc 	if ((size_t) sp->charcnt > sizeof sp->chars)
   1173   1.1       jtc 		return -1;
   1174   1.1       jtc 	cp = sp->chars;
   1175   1.1       jtc 	(void) strncpy(cp, stdname, stdlen);
   1176   1.1       jtc 	cp += stdlen;
   1177   1.1       jtc 	*cp++ = '\0';
   1178   1.1       jtc 	if (dstlen != 0) {
   1179   1.1       jtc 		(void) strncpy(cp, dstname, dstlen);
   1180   1.1       jtc 		*(cp + dstlen) = '\0';
   1181   1.1       jtc 	}
   1182   1.1       jtc 	return 0;
   1183   1.1       jtc }
   1184   1.1       jtc 
   1185   1.1       jtc static void
   1186  1.49  christos gmtload(timezone_t sp)
   1187  1.49  christos {
   1188  1.49  christos 	if (tzload(sp, gmt, TRUE) != 0)
   1189  1.49  christos 		(void) tzparse(sp, gmt, TRUE);
   1190  1.49  christos }
   1191  1.49  christos 
   1192  1.49  christos timezone_t
   1193  1.49  christos tzalloc(const char *name)
   1194  1.49  christos {
   1195  1.49  christos 	timezone_t sp = calloc(1, sizeof *sp);
   1196  1.49  christos 	if (sp == NULL)
   1197  1.49  christos 		return NULL;
   1198  1.49  christos 	if (tzload(sp, name, TRUE) != 0) {
   1199  1.49  christos 		free(sp);
   1200  1.49  christos 		return NULL;
   1201  1.49  christos 	}
   1202  1.49  christos 	settzname_z(sp);
   1203  1.49  christos 	return sp;
   1204  1.49  christos }
   1205  1.49  christos 
   1206  1.49  christos void
   1207  1.49  christos tzfree(const timezone_t sp)
   1208   1.1       jtc {
   1209  1.49  christos 	free(sp);
   1210   1.1       jtc }
   1211   1.1       jtc 
   1212  1.19    kleink static void
   1213  1.45   mlelstv tzsetwall_unlocked(void)
   1214   1.1       jtc {
   1215  1.45   mlelstv 	if (lcl_is_set < 0)
   1216   1.1       jtc 		return;
   1217  1.45   mlelstv 	lcl_is_set = -1;
   1218   1.1       jtc 
   1219   1.1       jtc 	if (lclptr == NULL) {
   1220  1.41  christos 		int saveerrno = errno;
   1221  1.47  christos 		lclptr = calloc(1, sizeof *lclptr);
   1222  1.41  christos 		errno = saveerrno;
   1223   1.1       jtc 		if (lclptr == NULL) {
   1224  1.45   mlelstv 			settzname();	/* all we can do */
   1225   1.1       jtc 			return;
   1226   1.1       jtc 		}
   1227   1.1       jtc 	}
   1228  1.49  christos 	if (tzload(lclptr, NULL, TRUE) != 0)
   1229  1.45   mlelstv 		gmtload(lclptr);
   1230  1.45   mlelstv 	settzname();
   1231   1.1       jtc }
   1232   1.1       jtc 
   1233  1.19    kleink #ifndef STD_INSPIRED
   1234  1.19    kleink /*
   1235  1.19    kleink ** A non-static declaration of tzsetwall in a system header file
   1236  1.19    kleink ** may cause a warning about this upcoming static declaration...
   1237  1.19    kleink */
   1238  1.19    kleink static
   1239  1.19    kleink #endif /* !defined STD_INSPIRED */
   1240   1.1       jtc void
   1241  1.45   mlelstv tzsetwall(void)
   1242  1.19    kleink {
   1243  1.45   mlelstv 	rwlock_wrlock(&lcl_lock);
   1244  1.45   mlelstv 	tzsetwall_unlocked();
   1245  1.45   mlelstv 	rwlock_unlock(&lcl_lock);
   1246  1.19    kleink }
   1247  1.19    kleink 
   1248  1.45   mlelstv #ifndef STD_INSPIRED
   1249  1.45   mlelstv /*
   1250  1.45   mlelstv ** A non-static declaration of tzsetwall in a system header file
   1251  1.45   mlelstv ** may cause a warning about this upcoming static declaration...
   1252  1.45   mlelstv */
   1253  1.45   mlelstv static
   1254  1.45   mlelstv #endif /* !defined STD_INSPIRED */
   1255  1.45   mlelstv void
   1256  1.45   mlelstv tzset_unlocked(void)
   1257   1.1       jtc {
   1258  1.49  christos 	const char *	name;
   1259  1.41  christos 	int saveerrno;
   1260   1.1       jtc 
   1261  1.41  christos 	saveerrno = errno;
   1262   1.1       jtc 	name = getenv("TZ");
   1263  1.41  christos 	errno = saveerrno;
   1264   1.1       jtc 	if (name == NULL) {
   1265  1.45   mlelstv 		tzsetwall_unlocked();
   1266   1.1       jtc 		return;
   1267   1.1       jtc 	}
   1268   1.1       jtc 
   1269  1.45   mlelstv 	if (lcl_is_set > 0 && strcmp(lcl_TZname, name) == 0)
   1270   1.1       jtc 		return;
   1271  1.45   mlelstv 	lcl_is_set = strlen(name) < sizeof lcl_TZname;
   1272  1.45   mlelstv 	if (lcl_is_set)
   1273  1.45   mlelstv 		(void)strlcpy(lcl_TZname, name, sizeof(lcl_TZname));
   1274   1.1       jtc 
   1275   1.1       jtc 	if (lclptr == NULL) {
   1276  1.41  christos 		saveerrno = errno;
   1277  1.47  christos 		lclptr = calloc(1, sizeof *lclptr);
   1278  1.41  christos 		errno = saveerrno;
   1279   1.1       jtc 		if (lclptr == NULL) {
   1280  1.45   mlelstv 			settzname();	/* all we can do */
   1281   1.1       jtc 			return;
   1282   1.1       jtc 		}
   1283   1.1       jtc 	}
   1284   1.1       jtc 	if (*name == '\0') {
   1285   1.1       jtc 		/*
   1286   1.1       jtc 		** User wants it fast rather than right.
   1287   1.1       jtc 		*/
   1288   1.1       jtc 		lclptr->leapcnt = 0;		/* so, we're off a little */
   1289   1.1       jtc 		lclptr->timecnt = 0;
   1290  1.27    atatat 		lclptr->typecnt = 0;
   1291  1.27    atatat 		lclptr->ttis[0].tt_isdst = 0;
   1292   1.1       jtc 		lclptr->ttis[0].tt_gmtoff = 0;
   1293   1.1       jtc 		lclptr->ttis[0].tt_abbrind = 0;
   1294  1.45   mlelstv 		(void) strlcpy(lclptr->chars, gmt, sizeof(lclptr->chars));
   1295  1.49  christos 	} else if (tzload(lclptr, name, TRUE) != 0)
   1296  1.49  christos 		if (name[0] == ':' || tzparse(lclptr, name, FALSE) != 0)
   1297  1.45   mlelstv 			(void) gmtload(lclptr);
   1298  1.45   mlelstv 	settzname();
   1299   1.1       jtc }
   1300   1.1       jtc 
   1301  1.19    kleink void
   1302  1.45   mlelstv tzset(void)
   1303  1.19    kleink {
   1304  1.45   mlelstv 	rwlock_wrlock(&lcl_lock);
   1305  1.45   mlelstv 	tzset_unlocked();
   1306  1.45   mlelstv 	rwlock_unlock(&lcl_lock);
   1307  1.19    kleink }
   1308  1.19    kleink 
   1309   1.1       jtc /*
   1310   1.1       jtc ** The easy way to behave "as if no library function calls" localtime
   1311   1.1       jtc ** is to not call it--so we drop its guts into "localsub", which can be
   1312  1.45   mlelstv ** freely called. (And no, the PANS doesn't require the above behavior--
   1313   1.1       jtc ** but it *is* desirable.)
   1314   1.1       jtc **
   1315   1.1       jtc ** The unused offset argument is for the benefit of mktime variants.
   1316   1.1       jtc */
   1317   1.1       jtc 
   1318   1.1       jtc /*ARGSUSED*/
   1319  1.45   mlelstv static struct tm *
   1320  1.49  christos localsub(const timezone_t sp, const time_t * const timep, const long offset,
   1321  1.49  christos     struct tm *const tmp)
   1322  1.49  christos {
   1323  1.49  christos 	const struct ttinfo *	ttisp;
   1324  1.49  christos 	int			i;
   1325  1.49  christos 	struct tm *		result;
   1326   1.1       jtc 	const time_t			t = *timep;
   1327   1.1       jtc 
   1328  1.45   mlelstv 	if ((sp->goback && t < sp->ats[0]) ||
   1329  1.45   mlelstv 		(sp->goahead && t > sp->ats[sp->timecnt - 1])) {
   1330  1.45   mlelstv 			time_t			newt = t;
   1331  1.49  christos 			time_t		seconds;
   1332  1.49  christos 			time_t		tcycles;
   1333  1.49  christos 			int_fast64_t	icycles;
   1334  1.45   mlelstv 
   1335  1.45   mlelstv 			if (t < sp->ats[0])
   1336  1.45   mlelstv 				seconds = sp->ats[0] - t;
   1337  1.45   mlelstv 			else	seconds = t - sp->ats[sp->timecnt - 1];
   1338  1.45   mlelstv 			--seconds;
   1339  1.45   mlelstv 			tcycles = seconds / YEARSPERREPEAT / AVGSECSPERYEAR;
   1340  1.45   mlelstv 			++tcycles;
   1341  1.45   mlelstv 			icycles = tcycles;
   1342  1.45   mlelstv 			if (tcycles - icycles >= 1 || icycles - tcycles >= 1)
   1343  1.45   mlelstv 				return NULL;
   1344  1.45   mlelstv 			seconds = (time_t) icycles;
   1345  1.45   mlelstv 			seconds *= YEARSPERREPEAT;
   1346  1.45   mlelstv 			seconds *= AVGSECSPERYEAR;
   1347  1.45   mlelstv 			if (t < sp->ats[0])
   1348  1.45   mlelstv 				newt += seconds;
   1349  1.45   mlelstv 			else	newt -= seconds;
   1350  1.45   mlelstv 			if (newt < sp->ats[0] ||
   1351  1.51  christos 				newt > sp->ats[sp->timecnt - 1])
   1352  1.45   mlelstv 					return NULL;	/* "cannot happen" */
   1353  1.49  christos 			result = localsub(sp, &newt, offset, tmp);
   1354  1.45   mlelstv 			if (result == tmp) {
   1355  1.49  christos 				time_t	newy;
   1356  1.45   mlelstv 
   1357  1.45   mlelstv 				newy = tmp->tm_year;
   1358  1.45   mlelstv 				if (t < sp->ats[0])
   1359  1.45   mlelstv 					newy -= (time_t)icycles * YEARSPERREPEAT;
   1360  1.45   mlelstv 				else	newy += (time_t)icycles * YEARSPERREPEAT;
   1361  1.45   mlelstv 				tmp->tm_year = (int)newy;
   1362  1.51  christos 				if (tmp->tm_year != newy)
   1363  1.45   mlelstv 					return NULL;
   1364  1.45   mlelstv 			}
   1365  1.45   mlelstv 			return result;
   1366   1.1       jtc 	}
   1367   1.1       jtc 	if (sp->timecnt == 0 || t < sp->ats[0]) {
   1368   1.1       jtc 		i = 0;
   1369   1.1       jtc 		while (sp->ttis[i].tt_isdst)
   1370   1.1       jtc 			if (++i >= sp->typecnt) {
   1371   1.1       jtc 				i = 0;
   1372   1.1       jtc 				break;
   1373   1.1       jtc 			}
   1374   1.1       jtc 	} else {
   1375  1.49  christos 		int	lo = 1;
   1376  1.49  christos 		int	hi = sp->timecnt;
   1377  1.45   mlelstv 
   1378  1.45   mlelstv 		while (lo < hi) {
   1379  1.49  christos 			int	mid = (lo + hi) / 2;
   1380  1.45   mlelstv 
   1381  1.45   mlelstv 			if (t < sp->ats[mid])
   1382  1.45   mlelstv 				hi = mid;
   1383  1.45   mlelstv 			else	lo = mid + 1;
   1384  1.45   mlelstv 		}
   1385  1.45   mlelstv 		i = (int) sp->types[lo - 1];
   1386   1.1       jtc 	}
   1387   1.1       jtc 	ttisp = &sp->ttis[i];
   1388   1.1       jtc 	/*
   1389   1.1       jtc 	** To get (wrong) behavior that's compatible with System V Release 2.0
   1390   1.1       jtc 	** you'd replace the statement below with
   1391   1.1       jtc 	**	t += ttisp->tt_gmtoff;
   1392   1.1       jtc 	**	timesub(&t, 0L, sp, tmp);
   1393   1.1       jtc 	*/
   1394  1.49  christos 	result = timesub(sp, &t, ttisp->tt_gmtoff, tmp);
   1395   1.1       jtc 	tmp->tm_isdst = ttisp->tt_isdst;
   1396   1.1       jtc 	tzname[tmp->tm_isdst] = &sp->chars[ttisp->tt_abbrind];
   1397   1.1       jtc #ifdef TM_ZONE
   1398   1.1       jtc 	tmp->TM_ZONE = &sp->chars[ttisp->tt_abbrind];
   1399   1.1       jtc #endif /* defined TM_ZONE */
   1400  1.45   mlelstv 	return result;
   1401   1.1       jtc }
   1402   1.1       jtc 
   1403  1.49  christos /*
   1404  1.49  christos ** Re-entrant version of localtime.
   1405  1.49  christos */
   1406  1.49  christos 
   1407   1.1       jtc struct tm *
   1408  1.49  christos localtime_r(const time_t * __restrict timep, struct tm *tmp)
   1409   1.1       jtc {
   1410  1.49  christos 	rwlock_rdlock(&lcl_lock);
   1411  1.45   mlelstv 	tzset_unlocked();
   1412  1.49  christos 	tmp = localtime_rz(lclptr, timep, tmp);
   1413  1.45   mlelstv 	rwlock_unlock(&lcl_lock);
   1414  1.49  christos 	return tmp;
   1415   1.1       jtc }
   1416   1.1       jtc 
   1417  1.49  christos struct tm *
   1418  1.49  christos localtime(const time_t *const timep)
   1419  1.49  christos {
   1420  1.49  christos 	return localtime_r(timep, &tm);
   1421  1.49  christos }
   1422  1.35    kleink 
   1423  1.18    kleink struct tm *
   1424  1.49  christos localtime_rz(const timezone_t sp, const time_t * __restrict timep, struct tm *tmp)
   1425  1.18    kleink {
   1426  1.49  christos 	if (sp == NULL)
   1427  1.51  christos 		tmp = gmtsub(NULL, timep, 0L, tmp);
   1428  1.49  christos 	else
   1429  1.51  christos 		tmp = localsub(sp, timep, 0L, tmp);
   1430  1.51  christos 	if (tmp == NULL)
   1431  1.51  christos 		errno = EOVERFLOW;
   1432  1.51  christos 	return tmp;
   1433  1.18    kleink }
   1434  1.18    kleink 
   1435  1.18    kleink /*
   1436   1.1       jtc ** gmtsub is to gmtime as localsub is to localtime.
   1437   1.1       jtc */
   1438   1.1       jtc 
   1439  1.45   mlelstv static struct tm *
   1440  1.49  christos gmtsub(const timezone_t sp, const time_t * const timep, const long offset,
   1441  1.49  christos     struct tm *const tmp)
   1442   1.1       jtc {
   1443  1.49  christos 	struct tm *	result;
   1444  1.33  christos #ifdef _REENTRANT
   1445  1.19    kleink 	static mutex_t gmt_mutex = MUTEX_INITIALIZER;
   1446  1.19    kleink #endif
   1447  1.19    kleink 
   1448  1.19    kleink 	mutex_lock(&gmt_mutex);
   1449  1.45   mlelstv 	if (!gmt_is_set) {
   1450  1.41  christos 		int saveerrno;
   1451  1.45   mlelstv 		gmt_is_set = TRUE;
   1452  1.41  christos 		saveerrno = errno;
   1453  1.47  christos 		gmtptr = calloc(1, sizeof *gmtptr);
   1454  1.41  christos 		errno = saveerrno;
   1455   1.1       jtc 		if (gmtptr != NULL)
   1456  1.45   mlelstv 			gmtload(gmtptr);
   1457   1.1       jtc 	}
   1458  1.19    kleink 	mutex_unlock(&gmt_mutex);
   1459  1.49  christos 	result = timesub(gmtptr, timep, offset, tmp);
   1460   1.1       jtc #ifdef TM_ZONE
   1461   1.1       jtc 	/*
   1462   1.1       jtc 	** Could get fancy here and deliver something such as
   1463  1.14       jtc 	** "UTC+xxxx" or "UTC-xxxx" if offset is non-zero,
   1464   1.1       jtc 	** but this is no time for a treasure hunt.
   1465   1.1       jtc 	*/
   1466   1.1       jtc 	if (offset != 0)
   1467  1.37  christos 		tmp->TM_ZONE = (__aconst char *)__UNCONST(wildabbr);
   1468   1.1       jtc 	else {
   1469   1.1       jtc 		if (gmtptr == NULL)
   1470  1.37  christos 			tmp->TM_ZONE = (__aconst char *)__UNCONST(gmt);
   1471   1.1       jtc 		else	tmp->TM_ZONE = gmtptr->chars;
   1472   1.1       jtc 	}
   1473   1.1       jtc #endif /* defined TM_ZONE */
   1474  1.45   mlelstv 	return result;
   1475   1.1       jtc }
   1476   1.1       jtc 
   1477   1.1       jtc struct tm *
   1478  1.49  christos gmtime(const time_t *const timep)
   1479   1.1       jtc {
   1480  1.49  christos 	return gmtsub(NULL, timep, 0L, &tm);
   1481   1.1       jtc }
   1482   1.1       jtc 
   1483  1.18    kleink /*
   1484  1.35    kleink ** Re-entrant version of gmtime.
   1485  1.35    kleink */
   1486  1.35    kleink 
   1487  1.18    kleink struct tm *
   1488  1.49  christos gmtime_r(const time_t * const timep, struct tm *tmp)
   1489  1.18    kleink {
   1490  1.49  christos 	return gmtsub(NULL, timep, 0L, tmp);
   1491  1.18    kleink }
   1492  1.18    kleink 
   1493   1.1       jtc #ifdef STD_INSPIRED
   1494   1.1       jtc 
   1495   1.1       jtc struct tm *
   1496  1.49  christos offtime(const time_t *const timep, long offset)
   1497   1.1       jtc {
   1498  1.49  christos 	return gmtsub(NULL, timep, offset, &tm);
   1499  1.49  christos }
   1500  1.49  christos 
   1501  1.49  christos struct tm *
   1502  1.49  christos offtime_r(const time_t *timep, long offset, struct tm *tmp)
   1503  1.49  christos {
   1504  1.49  christos 	return gmtsub(NULL, timep, offset, tmp);
   1505   1.1       jtc }
   1506   1.1       jtc 
   1507   1.1       jtc #endif /* defined STD_INSPIRED */
   1508   1.1       jtc 
   1509  1.45   mlelstv /*
   1510  1.45   mlelstv ** Return the number of leap years through the end of the given year
   1511  1.45   mlelstv ** where, to make the math easy, the answer for year zero is defined as zero.
   1512  1.45   mlelstv */
   1513  1.45   mlelstv 
   1514  1.45   mlelstv static int
   1515  1.49  christos leaps_thru_end_of(const int y)
   1516  1.45   mlelstv {
   1517  1.45   mlelstv 	return (y >= 0) ? (y / 4 - y / 100 + y / 400) :
   1518  1.45   mlelstv 		-(leaps_thru_end_of(-(y + 1)) + 1);
   1519  1.45   mlelstv }
   1520  1.45   mlelstv 
   1521  1.45   mlelstv static struct tm *
   1522  1.49  christos timesub(const timezone_t sp, const time_t *const timep, const long offset,
   1523  1.49  christos     struct tm *const tmp)
   1524  1.49  christos {
   1525  1.49  christos 	const struct lsinfo *	lp;
   1526  1.49  christos 	time_t			tdays;
   1527  1.49  christos 	int			idays;	/* unsigned would be so 2003 */
   1528  1.49  christos 	long			rem;
   1529  1.49  christos 	int			y;
   1530  1.49  christos 	const int *		ip;
   1531  1.49  christos 	long			corr;
   1532  1.49  christos 	int			hit;
   1533  1.49  christos 	int			i;
   1534   1.1       jtc 
   1535   1.1       jtc 	corr = 0;
   1536   1.1       jtc 	hit = 0;
   1537   1.1       jtc 	i = (sp == NULL) ? 0 : sp->leapcnt;
   1538   1.1       jtc 	while (--i >= 0) {
   1539   1.1       jtc 		lp = &sp->lsis[i];
   1540   1.1       jtc 		if (*timep >= lp->ls_trans) {
   1541   1.1       jtc 			if (*timep == lp->ls_trans) {
   1542   1.1       jtc 				hit = ((i == 0 && lp->ls_corr > 0) ||
   1543   1.1       jtc 					lp->ls_corr > sp->lsis[i - 1].ls_corr);
   1544   1.1       jtc 				if (hit)
   1545   1.1       jtc 					while (i > 0 &&
   1546   1.1       jtc 						sp->lsis[i].ls_trans ==
   1547   1.1       jtc 						sp->lsis[i - 1].ls_trans + 1 &&
   1548   1.1       jtc 						sp->lsis[i].ls_corr ==
   1549   1.1       jtc 						sp->lsis[i - 1].ls_corr + 1) {
   1550   1.1       jtc 							++hit;
   1551   1.1       jtc 							--i;
   1552   1.1       jtc 					}
   1553   1.1       jtc 			}
   1554   1.1       jtc 			corr = lp->ls_corr;
   1555   1.1       jtc 			break;
   1556   1.1       jtc 		}
   1557   1.1       jtc 	}
   1558  1.45   mlelstv 	y = EPOCH_YEAR;
   1559  1.45   mlelstv 	tdays = *timep / SECSPERDAY;
   1560  1.45   mlelstv 	rem = (long) (*timep - tdays * SECSPERDAY);
   1561  1.45   mlelstv 	while (tdays < 0 || tdays >= year_lengths[isleap(y)]) {
   1562  1.45   mlelstv 		int		newy;
   1563  1.49  christos 		time_t	tdelta;
   1564  1.49  christos 		int	idelta;
   1565  1.49  christos 		int	leapdays;
   1566  1.45   mlelstv 
   1567  1.45   mlelstv 		tdelta = tdays / DAYSPERLYEAR;
   1568  1.45   mlelstv 		idelta = (int) tdelta;
   1569  1.51  christos 		if (tdelta - idelta >= 1 || idelta - tdelta >= 1)
   1570  1.45   mlelstv 			return NULL;
   1571  1.45   mlelstv 		if (idelta == 0)
   1572  1.45   mlelstv 			idelta = (tdays < 0) ? -1 : 1;
   1573  1.45   mlelstv 		newy = y;
   1574  1.51  christos 		if (increment_overflow(&newy, idelta))
   1575  1.45   mlelstv 			return NULL;
   1576  1.45   mlelstv 		leapdays = leaps_thru_end_of(newy - 1) -
   1577  1.45   mlelstv 			leaps_thru_end_of(y - 1);
   1578  1.45   mlelstv 		tdays -= ((time_t) newy - y) * DAYSPERNYEAR;
   1579  1.45   mlelstv 		tdays -= leapdays;
   1580  1.45   mlelstv 		y = newy;
   1581  1.45   mlelstv 	}
   1582  1.45   mlelstv 	{
   1583  1.49  christos 		long	seconds;
   1584  1.45   mlelstv 
   1585  1.45   mlelstv 		seconds = tdays * SECSPERDAY + 0.5;
   1586  1.45   mlelstv 		tdays = seconds / SECSPERDAY;
   1587  1.45   mlelstv 		rem += (long) (seconds - tdays * SECSPERDAY);
   1588   1.1       jtc 	}
   1589  1.45   mlelstv 	/*
   1590  1.45   mlelstv 	** Given the range, we can now fearlessly cast...
   1591  1.45   mlelstv 	*/
   1592  1.45   mlelstv 	idays = (int) tdays;
   1593  1.45   mlelstv 	rem += offset - corr;
   1594   1.1       jtc 	while (rem < 0) {
   1595   1.1       jtc 		rem += SECSPERDAY;
   1596  1.45   mlelstv 		--idays;
   1597   1.1       jtc 	}
   1598   1.1       jtc 	while (rem >= SECSPERDAY) {
   1599   1.1       jtc 		rem -= SECSPERDAY;
   1600  1.45   mlelstv 		++idays;
   1601  1.45   mlelstv 	}
   1602  1.45   mlelstv 	while (idays < 0) {
   1603  1.51  christos 		if (increment_overflow(&y, -1))
   1604  1.45   mlelstv 			return NULL;
   1605  1.45   mlelstv 		idays += year_lengths[isleap(y)];
   1606   1.1       jtc 	}
   1607  1.45   mlelstv 	while (idays >= year_lengths[isleap(y)]) {
   1608  1.45   mlelstv 		idays -= year_lengths[isleap(y)];
   1609  1.51  christos 		if (increment_overflow(&y, 1))
   1610  1.45   mlelstv 			return NULL;
   1611  1.45   mlelstv 	}
   1612  1.45   mlelstv 	tmp->tm_year = y;
   1613  1.51  christos 	if (increment_overflow(&tmp->tm_year, -TM_YEAR_BASE))
   1614  1.45   mlelstv 		return NULL;
   1615  1.45   mlelstv 	tmp->tm_yday = idays;
   1616  1.45   mlelstv 	/*
   1617  1.45   mlelstv 	** The "extra" mods below avoid overflow problems.
   1618  1.45   mlelstv 	*/
   1619  1.45   mlelstv 	tmp->tm_wday = EPOCH_WDAY +
   1620  1.45   mlelstv 		((y - EPOCH_YEAR) % DAYSPERWEEK) *
   1621  1.45   mlelstv 		(DAYSPERNYEAR % DAYSPERWEEK) +
   1622  1.45   mlelstv 		leaps_thru_end_of(y - 1) -
   1623  1.45   mlelstv 		leaps_thru_end_of(EPOCH_YEAR - 1) +
   1624  1.45   mlelstv 		idays;
   1625  1.45   mlelstv 	tmp->tm_wday %= DAYSPERWEEK;
   1626  1.45   mlelstv 	if (tmp->tm_wday < 0)
   1627  1.45   mlelstv 		tmp->tm_wday += DAYSPERWEEK;
   1628   1.1       jtc 	tmp->tm_hour = (int) (rem / SECSPERHOUR);
   1629  1.45   mlelstv 	rem %= SECSPERHOUR;
   1630   1.1       jtc 	tmp->tm_min = (int) (rem / SECSPERMIN);
   1631   1.6       jtc 	/*
   1632   1.6       jtc 	** A positive leap second requires a special
   1633  1.45   mlelstv 	** representation. This uses "... ??:59:60" et seq.
   1634   1.6       jtc 	*/
   1635   1.6       jtc 	tmp->tm_sec = (int) (rem % SECSPERMIN) + hit;
   1636  1.45   mlelstv 	ip = mon_lengths[isleap(y)];
   1637  1.45   mlelstv 	for (tmp->tm_mon = 0; idays >= ip[tmp->tm_mon]; ++(tmp->tm_mon))
   1638  1.45   mlelstv 		idays -= ip[tmp->tm_mon];
   1639  1.45   mlelstv 	tmp->tm_mday = (int) (idays + 1);
   1640   1.1       jtc 	tmp->tm_isdst = 0;
   1641   1.1       jtc #ifdef TM_GMTOFF
   1642   1.1       jtc 	tmp->TM_GMTOFF = offset;
   1643   1.1       jtc #endif /* defined TM_GMTOFF */
   1644  1.45   mlelstv 	return tmp;
   1645   1.1       jtc }
   1646   1.1       jtc 
   1647   1.1       jtc char *
   1648  1.49  christos ctime(const time_t *const timep)
   1649   1.1       jtc {
   1650   1.1       jtc /*
   1651   1.1       jtc ** Section 4.12.3.2 of X3.159-1989 requires that
   1652  1.18    kleink **	The ctime function converts the calendar time pointed to by timer
   1653  1.45   mlelstv **	to local time in the form of a string. It is equivalent to
   1654   1.1       jtc **		asctime(localtime(timer))
   1655   1.1       jtc */
   1656  1.46  christos 	struct tm *rtm = localtime(timep);
   1657  1.46  christos 	if (rtm == NULL)
   1658  1.46  christos 		return NULL;
   1659  1.46  christos 	return asctime(rtm);
   1660  1.18    kleink }
   1661  1.18    kleink 
   1662  1.18    kleink char *
   1663  1.49  christos ctime_r(const time_t *const timep, char *buf)
   1664  1.18    kleink {
   1665  1.46  christos 	struct tm	mytm, *rtm;
   1666  1.18    kleink 
   1667  1.46  christos 	rtm = localtime_r(timep, &mytm);
   1668  1.46  christos 	if (rtm == NULL)
   1669  1.46  christos 		return NULL;
   1670  1.46  christos 	return asctime_r(rtm, buf);
   1671   1.1       jtc }
   1672   1.1       jtc 
   1673  1.49  christos char *
   1674  1.49  christos ctime_rz(const timezone_t sp, const time_t * timep, char *buf)
   1675  1.49  christos {
   1676  1.49  christos 	struct tm	mytm, *rtm;
   1677  1.49  christos 
   1678  1.49  christos 	rtm = localtime_rz(sp, timep, &mytm);
   1679  1.49  christos 	if (rtm == NULL)
   1680  1.49  christos 		return NULL;
   1681  1.49  christos 	return asctime_r(rtm, buf);
   1682  1.49  christos }
   1683  1.49  christos 
   1684   1.1       jtc /*
   1685   1.1       jtc ** Adapted from code provided by Robert Elz, who writes:
   1686   1.1       jtc **	The "best" way to do mktime I think is based on an idea of Bob
   1687   1.7       jtc **	Kridle's (so its said...) from a long time ago.
   1688  1.45   mlelstv **	It does a binary search of the time_t space. Since time_t's are
   1689   1.1       jtc **	just 32 bits, its a max of 32 iterations (even at 64 bits it
   1690   1.1       jtc **	would still be very reasonable).
   1691   1.1       jtc */
   1692   1.1       jtc 
   1693   1.1       jtc #ifndef WRONG
   1694  1.51  christos #define WRONG	((time_t)-1)
   1695   1.1       jtc #endif /* !defined WRONG */
   1696   1.1       jtc 
   1697   1.1       jtc /*
   1698  1.45   mlelstv ** Simplified normalize logic courtesy Paul Eggert.
   1699   1.1       jtc */
   1700   1.1       jtc 
   1701   1.1       jtc static int
   1702  1.49  christos increment_overflow(int *number, int delta)
   1703   1.1       jtc {
   1704   1.1       jtc 	int	number0;
   1705   1.1       jtc 
   1706   1.1       jtc 	number0 = *number;
   1707  1.54  christos 	if (delta < 0 ? number0 < INT_MIN - delta : INT_MAX - delta < number0)
   1708  1.54  christos 		  return 1;
   1709   1.1       jtc 	*number += delta;
   1710  1.54  christos 	return 0;
   1711   1.1       jtc }
   1712   1.1       jtc 
   1713   1.1       jtc static int
   1714  1.49  christos long_increment_overflow(long *number, int delta)
   1715  1.45   mlelstv {
   1716  1.45   mlelstv 	long	number0;
   1717  1.45   mlelstv 
   1718  1.45   mlelstv 	number0 = *number;
   1719  1.54  christos 	if (delta < 0 ? number0 < LONG_MIN - delta : LONG_MAX - delta < number0)
   1720  1.54  christos 		  return 1;
   1721  1.45   mlelstv 	*number += delta;
   1722  1.54  christos 	return 0;
   1723  1.45   mlelstv }
   1724  1.45   mlelstv 
   1725  1.45   mlelstv static int
   1726  1.49  christos normalize_overflow(int *const tensptr, int *const unitsptr, const int base)
   1727   1.1       jtc {
   1728  1.49  christos 	int	tensdelta;
   1729   1.1       jtc 
   1730   1.1       jtc 	tensdelta = (*unitsptr >= 0) ?
   1731   1.1       jtc 		(*unitsptr / base) :
   1732   1.1       jtc 		(-1 - (-1 - *unitsptr) / base);
   1733   1.1       jtc 	*unitsptr -= tensdelta * base;
   1734   1.1       jtc 	return increment_overflow(tensptr, tensdelta);
   1735   1.1       jtc }
   1736   1.1       jtc 
   1737   1.1       jtc static int
   1738  1.49  christos long_normalize_overflow(long *const tensptr, int *const unitsptr,
   1739  1.49  christos     const int base)
   1740  1.45   mlelstv {
   1741  1.49  christos 	int	tensdelta;
   1742  1.45   mlelstv 
   1743  1.45   mlelstv 	tensdelta = (*unitsptr >= 0) ?
   1744  1.45   mlelstv 		(*unitsptr / base) :
   1745  1.45   mlelstv 		(-1 - (-1 - *unitsptr) / base);
   1746  1.45   mlelstv 	*unitsptr -= tensdelta * base;
   1747  1.45   mlelstv 	return long_increment_overflow(tensptr, tensdelta);
   1748  1.45   mlelstv }
   1749  1.45   mlelstv 
   1750  1.45   mlelstv static int
   1751  1.49  christos tmcomp(const struct tm *const atmp, const struct tm *const btmp)
   1752   1.1       jtc {
   1753  1.49  christos 	int	result;
   1754   1.1       jtc 
   1755   1.1       jtc 	if ((result = (atmp->tm_year - btmp->tm_year)) == 0 &&
   1756   1.1       jtc 		(result = (atmp->tm_mon - btmp->tm_mon)) == 0 &&
   1757   1.1       jtc 		(result = (atmp->tm_mday - btmp->tm_mday)) == 0 &&
   1758   1.1       jtc 		(result = (atmp->tm_hour - btmp->tm_hour)) == 0 &&
   1759   1.1       jtc 		(result = (atmp->tm_min - btmp->tm_min)) == 0)
   1760   1.1       jtc 			result = atmp->tm_sec - btmp->tm_sec;
   1761   1.1       jtc 	return result;
   1762   1.1       jtc }
   1763   1.1       jtc 
   1764   1.1       jtc static time_t
   1765  1.49  christos time2sub(const timezone_t sp, struct tm *const tmp, subfun_t funcp,
   1766  1.49  christos     const long offset, int *const okayp, const int do_norm_secs)
   1767  1.49  christos {
   1768  1.49  christos 	int			dir;
   1769  1.49  christos 	int			i, j;
   1770  1.49  christos 	int			saved_seconds;
   1771  1.49  christos 	long			li;
   1772  1.49  christos 	time_t			lo;
   1773  1.49  christos 	time_t			hi;
   1774  1.45   mlelstv 	long				y;
   1775   1.1       jtc 	time_t				newt;
   1776   1.1       jtc 	time_t				t;
   1777   1.1       jtc 	struct tm			yourtm, mytm;
   1778   1.1       jtc 
   1779   1.1       jtc 	*okayp = FALSE;
   1780   1.1       jtc 	yourtm = *tmp;
   1781  1.13       jtc 	if (do_norm_secs) {
   1782  1.13       jtc 		if (normalize_overflow(&yourtm.tm_min, &yourtm.tm_sec,
   1783  1.13       jtc 			SECSPERMIN))
   1784  1.13       jtc 				return WRONG;
   1785  1.13       jtc 	}
   1786   1.1       jtc 	if (normalize_overflow(&yourtm.tm_hour, &yourtm.tm_min, MINSPERHOUR))
   1787   1.1       jtc 		return WRONG;
   1788   1.1       jtc 	if (normalize_overflow(&yourtm.tm_mday, &yourtm.tm_hour, HOURSPERDAY))
   1789   1.1       jtc 		return WRONG;
   1790  1.45   mlelstv 	y = yourtm.tm_year;
   1791  1.45   mlelstv 	if (long_normalize_overflow(&y, &yourtm.tm_mon, MONSPERYEAR))
   1792   1.1       jtc 		return WRONG;
   1793   1.1       jtc 	/*
   1794  1.45   mlelstv 	** Turn y into an actual year number for now.
   1795   1.1       jtc 	** It is converted back to an offset from TM_YEAR_BASE later.
   1796   1.1       jtc 	*/
   1797  1.45   mlelstv 	if (long_increment_overflow(&y, TM_YEAR_BASE))
   1798   1.1       jtc 		return WRONG;
   1799   1.1       jtc 	while (yourtm.tm_mday <= 0) {
   1800  1.45   mlelstv 		if (long_increment_overflow(&y, -1))
   1801   1.1       jtc 			return WRONG;
   1802  1.45   mlelstv 		li = y + (1 < yourtm.tm_mon);
   1803  1.45   mlelstv 		yourtm.tm_mday += year_lengths[isleap(li)];
   1804   1.1       jtc 	}
   1805   1.1       jtc 	while (yourtm.tm_mday > DAYSPERLYEAR) {
   1806  1.45   mlelstv 		li = y + (1 < yourtm.tm_mon);
   1807  1.45   mlelstv 		yourtm.tm_mday -= year_lengths[isleap(li)];
   1808  1.45   mlelstv 		if (long_increment_overflow(&y, 1))
   1809   1.1       jtc 			return WRONG;
   1810   1.1       jtc 	}
   1811   1.1       jtc 	for ( ; ; ) {
   1812  1.45   mlelstv 		i = mon_lengths[isleap(y)][yourtm.tm_mon];
   1813   1.1       jtc 		if (yourtm.tm_mday <= i)
   1814   1.1       jtc 			break;
   1815   1.1       jtc 		yourtm.tm_mday -= i;
   1816   1.1       jtc 		if (++yourtm.tm_mon >= MONSPERYEAR) {
   1817   1.1       jtc 			yourtm.tm_mon = 0;
   1818  1.45   mlelstv 			if (long_increment_overflow(&y, 1))
   1819   1.1       jtc 				return WRONG;
   1820   1.1       jtc 		}
   1821   1.1       jtc 	}
   1822  1.45   mlelstv 	if (long_increment_overflow(&y, -TM_YEAR_BASE))
   1823  1.45   mlelstv 		return WRONG;
   1824  1.45   mlelstv 	yourtm.tm_year = y;
   1825  1.45   mlelstv 	if (yourtm.tm_year != y)
   1826   1.1       jtc 		return WRONG;
   1827  1.29    kleink 	if (yourtm.tm_sec >= 0 && yourtm.tm_sec < SECSPERMIN)
   1828  1.29    kleink 		saved_seconds = 0;
   1829  1.45   mlelstv 	else if (y + TM_YEAR_BASE < EPOCH_YEAR) {
   1830   1.1       jtc 		/*
   1831   1.1       jtc 		** We can't set tm_sec to 0, because that might push the
   1832   1.1       jtc 		** time below the minimum representable time.
   1833   1.1       jtc 		** Set tm_sec to 59 instead.
   1834   1.1       jtc 		** This assumes that the minimum representable time is
   1835   1.1       jtc 		** not in the same minute that a leap second was deleted from,
   1836   1.1       jtc 		** which is a safer assumption than using 58 would be.
   1837   1.1       jtc 		*/
   1838   1.1       jtc 		if (increment_overflow(&yourtm.tm_sec, 1 - SECSPERMIN))
   1839   1.1       jtc 			return WRONG;
   1840   1.1       jtc 		saved_seconds = yourtm.tm_sec;
   1841   1.1       jtc 		yourtm.tm_sec = SECSPERMIN - 1;
   1842   1.1       jtc 	} else {
   1843   1.1       jtc 		saved_seconds = yourtm.tm_sec;
   1844   1.1       jtc 		yourtm.tm_sec = 0;
   1845   1.1       jtc 	}
   1846   1.1       jtc 	/*
   1847  1.45   mlelstv 	** Do a binary search (this works whatever time_t's type is).
   1848   1.1       jtc 	*/
   1849  1.45   mlelstv /* LINTED constant */
   1850  1.45   mlelstv 	if (!TYPE_SIGNED(time_t)) {
   1851  1.45   mlelstv 		lo = 0;
   1852  1.45   mlelstv 		hi = lo - 1;
   1853  1.45   mlelstv /* LINTED constant */
   1854  1.45   mlelstv 	} else if (!TYPE_INTEGRAL(time_t)) {
   1855  1.45   mlelstv /* CONSTCOND */
   1856  1.45   mlelstv 		if (sizeof(time_t) > sizeof(float))
   1857  1.45   mlelstv /* LINTED assumed double */
   1858  1.45   mlelstv 			hi = (time_t) DBL_MAX;
   1859  1.45   mlelstv /* LINTED assumed float */
   1860  1.45   mlelstv 		else	hi = (time_t) FLT_MAX;
   1861  1.45   mlelstv 		lo = -hi;
   1862  1.45   mlelstv 	} else {
   1863  1.45   mlelstv 		lo = 1;
   1864  1.45   mlelstv 		for (i = 0; i < (int) TYPE_BIT(time_t) - 1; ++i)
   1865  1.45   mlelstv 			lo *= 2;
   1866  1.45   mlelstv 		hi = -(lo + 1);
   1867  1.45   mlelstv 	}
   1868   1.1       jtc 	for ( ; ; ) {
   1869  1.45   mlelstv 		t = lo / 2 + hi / 2;
   1870  1.45   mlelstv 		if (t < lo)
   1871  1.45   mlelstv 			t = lo;
   1872  1.45   mlelstv 		else if (t > hi)
   1873  1.45   mlelstv 			t = hi;
   1874  1.49  christos 		if ((*funcp)(sp, &t, offset, &mytm) == NULL) {
   1875  1.45   mlelstv 			/*
   1876  1.45   mlelstv 			** Assume that t is too extreme to be represented in
   1877  1.45   mlelstv 			** a struct tm; arrange things so that it is less
   1878  1.45   mlelstv 			** extreme on the next pass.
   1879  1.45   mlelstv 			*/
   1880  1.45   mlelstv 			dir = (t > 0) ? 1 : -1;
   1881  1.45   mlelstv 		} else	dir = tmcomp(&mytm, &yourtm);
   1882   1.1       jtc 		if (dir != 0) {
   1883  1.45   mlelstv 			if (t == lo) {
   1884  1.45   mlelstv 				++t;
   1885  1.45   mlelstv 				if (t <= lo)
   1886  1.45   mlelstv 					return WRONG;
   1887  1.45   mlelstv 				++lo;
   1888  1.45   mlelstv 			} else if (t == hi) {
   1889  1.45   mlelstv 				--t;
   1890  1.45   mlelstv 				if (t >= hi)
   1891  1.45   mlelstv 					return WRONG;
   1892  1.45   mlelstv 				--hi;
   1893  1.45   mlelstv 			}
   1894  1.45   mlelstv 			if (lo > hi)
   1895   1.1       jtc 				return WRONG;
   1896  1.45   mlelstv 			if (dir > 0)
   1897  1.45   mlelstv 				hi = t;
   1898  1.45   mlelstv 			else	lo = t;
   1899   1.1       jtc 			continue;
   1900   1.1       jtc 		}
   1901   1.1       jtc 		if (yourtm.tm_isdst < 0 || mytm.tm_isdst == yourtm.tm_isdst)
   1902   1.1       jtc 			break;
   1903   1.1       jtc 		/*
   1904   1.1       jtc 		** Right time, wrong type.
   1905   1.1       jtc 		** Hunt for right time, right type.
   1906   1.1       jtc 		** It's okay to guess wrong since the guess
   1907   1.1       jtc 		** gets checked.
   1908   1.1       jtc 		*/
   1909   1.1       jtc 		if (sp == NULL)
   1910   1.1       jtc 			return WRONG;
   1911   1.5       jtc 		for (i = sp->typecnt - 1; i >= 0; --i) {
   1912   1.1       jtc 			if (sp->ttis[i].tt_isdst != yourtm.tm_isdst)
   1913   1.1       jtc 				continue;
   1914   1.5       jtc 			for (j = sp->typecnt - 1; j >= 0; --j) {
   1915   1.1       jtc 				if (sp->ttis[j].tt_isdst == yourtm.tm_isdst)
   1916   1.1       jtc 					continue;
   1917   1.1       jtc 				newt = t + sp->ttis[j].tt_gmtoff -
   1918   1.1       jtc 					sp->ttis[i].tt_gmtoff;
   1919  1.49  christos 				if ((*funcp)(sp, &newt, offset, &mytm) == NULL)
   1920  1.45   mlelstv 					continue;
   1921   1.1       jtc 				if (tmcomp(&mytm, &yourtm) != 0)
   1922   1.1       jtc 					continue;
   1923   1.1       jtc 				if (mytm.tm_isdst != yourtm.tm_isdst)
   1924   1.1       jtc 					continue;
   1925   1.1       jtc 				/*
   1926   1.1       jtc 				** We have a match.
   1927   1.1       jtc 				*/
   1928   1.1       jtc 				t = newt;
   1929   1.1       jtc 				goto label;
   1930   1.1       jtc 			}
   1931   1.1       jtc 		}
   1932   1.1       jtc 		return WRONG;
   1933   1.1       jtc 	}
   1934   1.1       jtc label:
   1935   1.1       jtc 	newt = t + saved_seconds;
   1936   1.1       jtc 	if ((newt < t) != (saved_seconds < 0))
   1937   1.1       jtc 		return WRONG;
   1938   1.1       jtc 	t = newt;
   1939  1.51  christos 	if ((*funcp)(sp, &t, offset, tmp)) {
   1940  1.45   mlelstv 		*okayp = TRUE;
   1941  1.51  christos 		return t;
   1942  1.51  christos 	} else
   1943  1.51  christos 		return WRONG;
   1944  1.13       jtc }
   1945  1.13       jtc 
   1946  1.13       jtc static time_t
   1947  1.49  christos time2(const timezone_t sp, struct tm *const tmp, subfun_t funcp,
   1948  1.49  christos     const long offset, int *const okayp)
   1949  1.13       jtc {
   1950  1.13       jtc 	time_t	t;
   1951  1.13       jtc 
   1952  1.13       jtc 	/*
   1953  1.13       jtc 	** First try without normalization of seconds
   1954  1.13       jtc 	** (in case tm_sec contains a value associated with a leap second).
   1955  1.13       jtc 	** If that fails, try with normalization of seconds.
   1956  1.13       jtc 	*/
   1957  1.49  christos 	t = time2sub(sp, tmp, funcp, offset, okayp, FALSE);
   1958  1.49  christos 	return *okayp ? t : time2sub(sp, tmp, funcp, offset, okayp, TRUE);
   1959   1.1       jtc }
   1960   1.1       jtc 
   1961   1.1       jtc static time_t
   1962  1.49  christos time1(const timezone_t sp, struct tm *const tmp, subfun_t funcp,
   1963  1.49  christos     long offset)
   1964  1.49  christos {
   1965  1.49  christos 	time_t			t;
   1966  1.49  christos 	int			samei, otheri;
   1967  1.49  christos 	int			sameind, otherind;
   1968  1.49  christos 	int			i;
   1969  1.49  christos 	int			nseen;
   1970  1.35    kleink 	int				seen[TZ_MAX_TYPES];
   1971  1.35    kleink 	int				types[TZ_MAX_TYPES];
   1972   1.1       jtc 	int				okay;
   1973   1.1       jtc 
   1974   1.1       jtc 	if (tmp->tm_isdst > 1)
   1975   1.1       jtc 		tmp->tm_isdst = 1;
   1976  1.49  christos 	t = time2(sp, tmp, funcp, offset, &okay);
   1977   1.1       jtc #ifdef PCTS
   1978   1.1       jtc 	/*
   1979  1.45   mlelstv 	** PCTS code courtesy Grant Sullivan.
   1980   1.1       jtc 	*/
   1981   1.1       jtc 	if (okay)
   1982   1.1       jtc 		return t;
   1983   1.1       jtc 	if (tmp->tm_isdst < 0)
   1984   1.1       jtc 		tmp->tm_isdst = 0;	/* reset to std and try again */
   1985   1.1       jtc #endif /* defined PCTS */
   1986   1.1       jtc #ifndef PCTS
   1987   1.1       jtc 	if (okay || tmp->tm_isdst < 0)
   1988   1.1       jtc 		return t;
   1989   1.1       jtc #endif /* !defined PCTS */
   1990   1.1       jtc 	/*
   1991   1.1       jtc 	** We're supposed to assume that somebody took a time of one type
   1992   1.1       jtc 	** and did some math on it that yielded a "struct tm" that's bad.
   1993   1.1       jtc 	** We try to divine the type they started from and adjust to the
   1994   1.1       jtc 	** type they need.
   1995   1.1       jtc 	*/
   1996   1.1       jtc 	if (sp == NULL)
   1997   1.1       jtc 		return WRONG;
   1998  1.35    kleink 	for (i = 0; i < sp->typecnt; ++i)
   1999  1.35    kleink 		seen[i] = FALSE;
   2000  1.35    kleink 	nseen = 0;
   2001  1.35    kleink 	for (i = sp->timecnt - 1; i >= 0; --i)
   2002  1.35    kleink 		if (!seen[sp->types[i]]) {
   2003  1.35    kleink 			seen[sp->types[i]] = TRUE;
   2004  1.35    kleink 			types[nseen++] = sp->types[i];
   2005  1.35    kleink 		}
   2006  1.35    kleink 	for (sameind = 0; sameind < nseen; ++sameind) {
   2007  1.35    kleink 		samei = types[sameind];
   2008   1.1       jtc 		if (sp->ttis[samei].tt_isdst != tmp->tm_isdst)
   2009   1.1       jtc 			continue;
   2010  1.35    kleink 		for (otherind = 0; otherind < nseen; ++otherind) {
   2011  1.35    kleink 			otheri = types[otherind];
   2012   1.1       jtc 			if (sp->ttis[otheri].tt_isdst == tmp->tm_isdst)
   2013   1.1       jtc 				continue;
   2014  1.21  christos 			tmp->tm_sec += (int)(sp->ttis[otheri].tt_gmtoff -
   2015  1.21  christos 					sp->ttis[samei].tt_gmtoff);
   2016   1.1       jtc 			tmp->tm_isdst = !tmp->tm_isdst;
   2017  1.49  christos 			t = time2(sp, tmp, funcp, offset, &okay);
   2018   1.1       jtc 			if (okay)
   2019   1.1       jtc 				return t;
   2020  1.21  christos 			tmp->tm_sec -= (int)(sp->ttis[otheri].tt_gmtoff -
   2021  1.21  christos 					sp->ttis[samei].tt_gmtoff);
   2022   1.1       jtc 			tmp->tm_isdst = !tmp->tm_isdst;
   2023   1.1       jtc 		}
   2024   1.1       jtc 	}
   2025   1.1       jtc 	return WRONG;
   2026   1.1       jtc }
   2027   1.1       jtc 
   2028   1.1       jtc time_t
   2029  1.49  christos mktime_z(const timezone_t sp, struct tm *tmp)
   2030  1.49  christos {
   2031  1.51  christos 	time_t t;
   2032  1.49  christos 	if (sp == NULL)
   2033  1.51  christos 		t = time1(NULL, tmp, gmtsub, 0L);
   2034  1.49  christos 	else
   2035  1.51  christos 		t = time1(sp, tmp, localsub, 0L);
   2036  1.51  christos 	if (t == WRONG)
   2037  1.51  christos 		errno = EOVERFLOW;
   2038  1.51  christos 	return t;
   2039  1.49  christos }
   2040  1.49  christos 
   2041  1.49  christos time_t
   2042  1.49  christos mktime(struct tm * const	tmp)
   2043   1.1       jtc {
   2044  1.19    kleink 	time_t result;
   2045  1.19    kleink 
   2046  1.45   mlelstv 	rwlock_wrlock(&lcl_lock);
   2047  1.45   mlelstv 	tzset_unlocked();
   2048  1.49  christos 	result = mktime_z(lclptr, tmp);
   2049  1.45   mlelstv 	rwlock_unlock(&lcl_lock);
   2050  1.49  christos 	return result;
   2051   1.1       jtc }
   2052   1.1       jtc 
   2053   1.1       jtc #ifdef STD_INSPIRED
   2054   1.1       jtc 
   2055   1.1       jtc time_t
   2056  1.49  christos timelocal_z(const timezone_t sp, struct tm *tmp)
   2057  1.49  christos {
   2058  1.49  christos 	if (tmp != NULL)
   2059  1.49  christos 		tmp->tm_isdst = -1;	/* in case it wasn't initialized */
   2060  1.49  christos 	return mktime_z(sp, tmp);
   2061  1.49  christos }
   2062  1.49  christos 
   2063  1.49  christos time_t
   2064  1.49  christos timelocal(struct tm *const tmp)
   2065   1.1       jtc {
   2066   1.1       jtc 	tmp->tm_isdst = -1;	/* in case it wasn't initialized */
   2067   1.1       jtc 	return mktime(tmp);
   2068   1.1       jtc }
   2069   1.1       jtc 
   2070   1.1       jtc time_t
   2071  1.49  christos timegm(struct tm *const tmp)
   2072   1.1       jtc {
   2073  1.51  christos 	time_t t;
   2074  1.51  christos 
   2075   1.1       jtc 	tmp->tm_isdst = 0;
   2076  1.51  christos 	t = time1(gmtptr, tmp, gmtsub, 0L);
   2077  1.51  christos 	if (t == WRONG)
   2078  1.51  christos 		errno = EOVERFLOW;
   2079  1.51  christos 	return t;
   2080   1.1       jtc }
   2081   1.1       jtc 
   2082   1.1       jtc time_t
   2083  1.49  christos timeoff(struct tm *const tmp, const long offset)
   2084   1.1       jtc {
   2085  1.51  christos 	time_t t;
   2086  1.51  christos 
   2087   1.1       jtc 	tmp->tm_isdst = 0;
   2088  1.51  christos 	t = time1(gmtptr, tmp, gmtsub, offset);
   2089  1.51  christos 	if (t == WRONG)
   2090  1.51  christos 		errno = EOVERFLOW;
   2091  1.51  christos 	return t;
   2092   1.1       jtc }
   2093   1.1       jtc 
   2094   1.1       jtc #endif /* defined STD_INSPIRED */
   2095   1.1       jtc 
   2096   1.1       jtc #ifdef CMUCS
   2097   1.1       jtc 
   2098   1.1       jtc /*
   2099   1.1       jtc ** The following is supplied for compatibility with
   2100   1.1       jtc ** previous versions of the CMUCS runtime library.
   2101   1.1       jtc */
   2102   1.1       jtc 
   2103   1.1       jtc long
   2104  1.49  christos gtime(struct tm *const tmp)
   2105   1.1       jtc {
   2106  1.49  christos 	const time_t t = mktime(tmp);
   2107   1.1       jtc 
   2108   1.1       jtc 	if (t == WRONG)
   2109   1.1       jtc 		return -1;
   2110   1.1       jtc 	return t;
   2111   1.1       jtc }
   2112   1.1       jtc 
   2113   1.1       jtc #endif /* defined CMUCS */
   2114   1.1       jtc 
   2115   1.1       jtc /*
   2116   1.1       jtc ** XXX--is the below the right way to conditionalize??
   2117   1.1       jtc */
   2118   1.1       jtc 
   2119   1.1       jtc #ifdef STD_INSPIRED
   2120   1.1       jtc 
   2121   1.1       jtc /*
   2122   1.1       jtc ** IEEE Std 1003.1-1988 (POSIX) legislates that 536457599
   2123  1.14       jtc ** shall correspond to "Wed Dec 31 23:59:59 UTC 1986", which
   2124   1.1       jtc ** is not the case if we are accounting for leap seconds.
   2125   1.1       jtc ** So, we provide the following conversion routines for use
   2126   1.1       jtc ** when exchanging timestamps with POSIX conforming systems.
   2127   1.1       jtc */
   2128   1.1       jtc 
   2129   1.1       jtc static long
   2130  1.49  christos leapcorr(const timezone_t sp, time_t *timep)
   2131   1.1       jtc {
   2132  1.49  christos 	struct lsinfo * lp;
   2133  1.49  christos 	int		i;
   2134   1.1       jtc 
   2135   1.1       jtc 	i = sp->leapcnt;
   2136   1.1       jtc 	while (--i >= 0) {
   2137   1.1       jtc 		lp = &sp->lsis[i];
   2138   1.1       jtc 		if (*timep >= lp->ls_trans)
   2139   1.1       jtc 			return lp->ls_corr;
   2140   1.1       jtc 	}
   2141   1.1       jtc 	return 0;
   2142   1.1       jtc }
   2143   1.1       jtc 
   2144   1.1       jtc time_t
   2145  1.49  christos time2posix_z(const timezone_t sp, time_t t)
   2146  1.49  christos {
   2147  1.49  christos 	return t - leapcorr(sp, &t);
   2148  1.49  christos }
   2149  1.49  christos 
   2150  1.49  christos time_t
   2151  1.49  christos time2posix(time_t t)
   2152   1.1       jtc {
   2153  1.19    kleink 	time_t result;
   2154  1.45   mlelstv 	rwlock_wrlock(&lcl_lock);
   2155  1.45   mlelstv 	tzset_unlocked();
   2156  1.49  christos 	result = t - leapcorr(lclptr, &t);
   2157  1.45   mlelstv 	rwlock_unlock(&lcl_lock);
   2158  1.19    kleink 	return (result);
   2159   1.1       jtc }
   2160   1.1       jtc 
   2161   1.1       jtc time_t
   2162  1.49  christos posix2time_z(const timezone_t sp, time_t t)
   2163   1.1       jtc {
   2164   1.1       jtc 	time_t	x;
   2165   1.1       jtc 	time_t	y;
   2166   1.1       jtc 
   2167   1.1       jtc 	/*
   2168   1.1       jtc 	** For a positive leap second hit, the result
   2169  1.45   mlelstv 	** is not unique. For a negative leap second
   2170   1.1       jtc 	** hit, the corresponding time doesn't exist,
   2171   1.1       jtc 	** so we return an adjacent second.
   2172   1.1       jtc 	*/
   2173  1.49  christos 	x = t + leapcorr(sp, &t);
   2174  1.49  christos 	y = x - leapcorr(sp, &x);
   2175   1.1       jtc 	if (y < t) {
   2176   1.1       jtc 		do {
   2177   1.1       jtc 			x++;
   2178  1.49  christos 			y = x - leapcorr(sp, &x);
   2179   1.1       jtc 		} while (y < t);
   2180  1.19    kleink 		if (t != y) {
   2181   1.1       jtc 			return x - 1;
   2182  1.19    kleink 		}
   2183   1.1       jtc 	} else if (y > t) {
   2184   1.1       jtc 		do {
   2185   1.1       jtc 			--x;
   2186  1.49  christos 			y = x - leapcorr(sp, &x);
   2187   1.1       jtc 		} while (y > t);
   2188  1.19    kleink 		if (t != y) {
   2189   1.1       jtc 			return x + 1;
   2190  1.19    kleink 		}
   2191   1.1       jtc 	}
   2192  1.49  christos 	return x;
   2193  1.49  christos }
   2194  1.49  christos 
   2195  1.49  christos 
   2196  1.49  christos 
   2197  1.49  christos time_t
   2198  1.49  christos posix2time(time_t t)
   2199  1.49  christos {
   2200  1.49  christos 	time_t result;
   2201  1.49  christos 
   2202  1.49  christos 	rwlock_wrlock(&lcl_lock);
   2203  1.49  christos 	tzset_unlocked();
   2204  1.49  christos 	result = posix2time_z(lclptr, t);
   2205  1.45   mlelstv 	rwlock_unlock(&lcl_lock);
   2206  1.49  christos 	return result;
   2207   1.1       jtc }
   2208   1.1       jtc 
   2209   1.1       jtc #endif /* defined STD_INSPIRED */
   2210