Home | History | Annotate | Line # | Download | only in time
localtime.c revision 1.54.2.1
      1  1.54.2.1    bouyer /*	$NetBSD: localtime.c,v 1.54.2.1 2011/02/17 11:59:22 bouyer Exp $	*/
      2       1.7       jtc 
      3       1.7       jtc /*
      4       1.7       jtc ** This file is in the public domain, so clarified as of
      5      1.45   mlelstv ** 1996-06-05 by Arthur David Olson.
      6       1.7       jtc */
      7       1.2       jtc 
      8      1.11  christos #include <sys/cdefs.h>
      9      1.24   msaitoh #if defined(LIBC_SCCS) && !defined(lint)
     10      1.11  christos #if 0
     11      1.45   mlelstv static char	elsieid[] = "@(#)localtime.c	8.9";
     12      1.11  christos #else
     13  1.54.2.1    bouyer __RCSID("$NetBSD: localtime.c,v 1.54.2.1 2011/02/17 11:59:22 bouyer Exp $");
     14      1.11  christos #endif
     15      1.24   msaitoh #endif /* LIBC_SCCS and not lint */
     16       1.1       jtc 
     17       1.1       jtc /*
     18      1.45   mlelstv ** Leap second handling from Bradley White.
     19      1.45   mlelstv ** POSIX-style TZ environment variable handling from Guy Harris.
     20       1.1       jtc */
     21       1.1       jtc 
     22       1.1       jtc /*LINTLIBRARY*/
     23       1.1       jtc 
     24      1.12       jtc #include "namespace.h"
     25       1.1       jtc #include "private.h"
     26       1.1       jtc #include "tzfile.h"
     27       1.1       jtc #include "fcntl.h"
     28      1.19    kleink #include "reentrant.h"
     29      1.12       jtc 
     30      1.42  christos #if defined(__weak_alias)
     31      1.49  christos __weak_alias(ctime_r,_ctime_r)
     32      1.49  christos __weak_alias(ctime_rz,_ctime_rz)
     33      1.25    kleink __weak_alias(daylight,_daylight)
     34      1.49  christos __weak_alias(mktime_z,_mktime_z)
     35      1.49  christos __weak_alias(localtime_r,_localtime_r)
     36      1.49  christos __weak_alias(localtime_rz,_localtime_rz)
     37      1.49  christos __weak_alias(posix2time,_posix2time)
     38      1.49  christos __weak_alias(posix2time_z,_posix2time_z)
     39      1.23   mycroft __weak_alias(tzname,_tzname)
     40      1.12       jtc #endif
     41       1.1       jtc 
     42      1.45   mlelstv #include "float.h"	/* for FLT_MAX and DBL_MAX */
     43      1.45   mlelstv 
     44      1.45   mlelstv #ifndef TZ_ABBR_MAX_LEN
     45      1.45   mlelstv #define TZ_ABBR_MAX_LEN	16
     46      1.45   mlelstv #endif /* !defined TZ_ABBR_MAX_LEN */
     47      1.45   mlelstv 
     48      1.45   mlelstv #ifndef TZ_ABBR_CHAR_SET
     49      1.45   mlelstv #define TZ_ABBR_CHAR_SET \
     50      1.45   mlelstv 	"abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789 :+-._"
     51      1.45   mlelstv #endif /* !defined TZ_ABBR_CHAR_SET */
     52      1.45   mlelstv 
     53      1.45   mlelstv #ifndef TZ_ABBR_ERR_CHAR
     54      1.45   mlelstv #define TZ_ABBR_ERR_CHAR	'_'
     55      1.45   mlelstv #endif /* !defined TZ_ABBR_ERR_CHAR */
     56      1.45   mlelstv 
     57       1.1       jtc /*
     58       1.1       jtc ** SunOS 4.1.1 headers lack O_BINARY.
     59       1.1       jtc */
     60       1.1       jtc 
     61       1.1       jtc #ifdef O_BINARY
     62       1.1       jtc #define OPEN_MODE	(O_RDONLY | O_BINARY)
     63       1.1       jtc #endif /* defined O_BINARY */
     64       1.1       jtc #ifndef O_BINARY
     65       1.1       jtc #define OPEN_MODE	O_RDONLY
     66       1.1       jtc #endif /* !defined O_BINARY */
     67       1.1       jtc 
     68       1.1       jtc #ifndef WILDABBR
     69       1.1       jtc /*
     70       1.1       jtc ** Someone might make incorrect use of a time zone abbreviation:
     71       1.1       jtc **	1.	They might reference tzname[0] before calling tzset (explicitly
     72       1.1       jtc **		or implicitly).
     73       1.1       jtc **	2.	They might reference tzname[1] before calling tzset (explicitly
     74       1.1       jtc **		or implicitly).
     75       1.1       jtc **	3.	They might reference tzname[1] after setting to a time zone
     76       1.1       jtc **		in which Daylight Saving Time is never observed.
     77       1.1       jtc **	4.	They might reference tzname[0] after setting to a time zone
     78       1.1       jtc **		in which Standard Time is never observed.
     79       1.1       jtc **	5.	They might reference tm.TM_ZONE after calling offtime.
     80       1.1       jtc ** What's best to do in the above cases is open to debate;
     81       1.1       jtc ** for now, we just set things up so that in any of the five cases
     82      1.45   mlelstv ** WILDABBR is used. Another possibility: initialize tzname[0] to the
     83       1.1       jtc ** string "tzname[0] used before set", and similarly for the other cases.
     84      1.45   mlelstv ** And another: initialize tzname[0] to "ERA", with an explanation in the
     85       1.1       jtc ** manual page of what this "time zone abbreviation" means (doing this so
     86       1.1       jtc ** that tzname[0] has the "normal" length of three characters).
     87       1.1       jtc */
     88       1.1       jtc #define WILDABBR	"   "
     89       1.1       jtc #endif /* !defined WILDABBR */
     90       1.1       jtc 
     91      1.45   mlelstv static const char	wildabbr[] = WILDABBR;
     92       1.1       jtc 
     93      1.49  christos static char		gmt[] = "GMT";
     94       1.1       jtc 
     95      1.22    kleink /*
     96      1.22    kleink ** The DST rules to use if TZ has no rules and we can't load TZDEFRULES.
     97      1.22    kleink ** We default to US rules as of 1999-08-17.
     98      1.22    kleink ** POSIX 1003.1 section 8.1.1 says that the default DST rules are
     99      1.22    kleink ** implementation dependent; for historical reasons, US rules are a
    100      1.22    kleink ** common default.
    101      1.22    kleink */
    102      1.22    kleink #ifndef TZDEFRULESTRING
    103      1.22    kleink #define TZDEFRULESTRING ",M4.1.0,M10.5.0"
    104      1.22    kleink #endif /* !defined TZDEFDST */
    105      1.22    kleink 
    106       1.1       jtc struct ttinfo {				/* time type information */
    107      1.14       jtc 	long		tt_gmtoff;	/* UTC offset in seconds */
    108       1.1       jtc 	int		tt_isdst;	/* used to set tm_isdst */
    109       1.1       jtc 	int		tt_abbrind;	/* abbreviation list index */
    110       1.1       jtc 	int		tt_ttisstd;	/* TRUE if transition is std time */
    111      1.14       jtc 	int		tt_ttisgmt;	/* TRUE if transition is UTC */
    112       1.1       jtc };
    113       1.1       jtc 
    114       1.1       jtc struct lsinfo {				/* leap second information */
    115       1.1       jtc 	time_t		ls_trans;	/* transition time */
    116       1.1       jtc 	long		ls_corr;	/* correction to apply */
    117       1.1       jtc };
    118       1.1       jtc 
    119       1.1       jtc #define BIGGEST(a, b)	(((a) > (b)) ? (a) : (b))
    120       1.1       jtc 
    121       1.1       jtc #ifdef TZNAME_MAX
    122       1.1       jtc #define MY_TZNAME_MAX	TZNAME_MAX
    123       1.1       jtc #endif /* defined TZNAME_MAX */
    124       1.1       jtc #ifndef TZNAME_MAX
    125       1.1       jtc #define MY_TZNAME_MAX	255
    126       1.1       jtc #endif /* !defined TZNAME_MAX */
    127       1.1       jtc 
    128      1.49  christos struct __state {
    129       1.1       jtc 	int		leapcnt;
    130       1.1       jtc 	int		timecnt;
    131       1.1       jtc 	int		typecnt;
    132       1.1       jtc 	int		charcnt;
    133      1.45   mlelstv 	int		goback;
    134      1.45   mlelstv 	int		goahead;
    135      1.45   mlelstv 	time_t		ats[TZ_MAX_TIMES];
    136       1.1       jtc 	unsigned char	types[TZ_MAX_TIMES];
    137       1.1       jtc 	struct ttinfo	ttis[TZ_MAX_TYPES];
    138      1.37  christos 	char		chars[/*CONSTCOND*/BIGGEST(BIGGEST(TZ_MAX_CHARS + 1, sizeof gmt),
    139       1.1       jtc 				(2 * (MY_TZNAME_MAX + 1)))];
    140       1.1       jtc 	struct lsinfo	lsis[TZ_MAX_LEAPS];
    141       1.1       jtc };
    142       1.1       jtc 
    143       1.1       jtc struct rule {
    144       1.1       jtc 	int		r_type;		/* type of rule--see below */
    145       1.1       jtc 	int		r_day;		/* day number of rule */
    146       1.1       jtc 	int		r_week;		/* week number of rule */
    147       1.1       jtc 	int		r_mon;		/* month number of rule */
    148       1.1       jtc 	long		r_time;		/* transition time of rule */
    149       1.1       jtc };
    150       1.1       jtc 
    151       1.1       jtc #define JULIAN_DAY		0	/* Jn - Julian day */
    152       1.1       jtc #define DAY_OF_YEAR		1	/* n - day of year */
    153       1.1       jtc #define MONTH_NTH_DAY_OF_WEEK	2	/* Mm.n.d - month, week, day of week */
    154       1.1       jtc 
    155      1.49  christos typedef struct tm *(*subfun_t)(const timezone_t sp, const time_t *timep,
    156      1.49  christos 			       long offset, struct tm *tmp);
    157      1.49  christos 
    158       1.1       jtc /*
    159       1.1       jtc ** Prototypes for static functions.
    160       1.1       jtc */
    161       1.1       jtc 
    162      1.45   mlelstv static long		detzcode(const char * codep);
    163      1.45   mlelstv static time_t		detzcode64(const char * codep);
    164      1.45   mlelstv static int		differ_by_repeat(time_t t1, time_t t0);
    165      1.45   mlelstv static const char *	getzname(const char * strp);
    166      1.45   mlelstv static const char *	getqzname(const char * strp, const int delim);
    167      1.45   mlelstv static const char *	getnum(const char * strp, int * nump, int min,
    168      1.45   mlelstv 				int max);
    169      1.45   mlelstv static const char *	getsecs(const char * strp, long * secsp);
    170      1.45   mlelstv static const char *	getoffset(const char * strp, long * offsetp);
    171      1.45   mlelstv static const char *	getrule(const char * strp, struct rule * rulep);
    172      1.49  christos static void		gmtload(timezone_t sp);
    173      1.49  christos static struct tm *	gmtsub(const timezone_t sp, const time_t *timep,
    174      1.49  christos 				long offset, struct tm * tmp);
    175      1.49  christos static struct tm *	localsub(const timezone_t sp, const time_t *timep,
    176      1.49  christos 				long offset, struct tm *tmp);
    177      1.45   mlelstv static int		increment_overflow(int * number, int delta);
    178      1.45   mlelstv static int		leaps_thru_end_of(int y);
    179      1.45   mlelstv static int		long_increment_overflow(long * number, int delta);
    180      1.45   mlelstv static int		long_normalize_overflow(long * tensptr,
    181      1.45   mlelstv 				int * unitsptr, int base);
    182      1.45   mlelstv static int		normalize_overflow(int * tensptr, int * unitsptr,
    183      1.45   mlelstv 				int base);
    184      1.45   mlelstv static void		settzname(void);
    185      1.49  christos static time_t		time1(const timezone_t sp, struct tm * const tmp,
    186      1.49  christos 				subfun_t funcp, long offset);
    187      1.49  christos static time_t		time2(const timezone_t sp, struct tm * const tmp,
    188      1.49  christos 				subfun_t funcp,
    189      1.49  christos 				const long offset, int *const okayp);
    190      1.49  christos static time_t		time2sub(const timezone_t sp, struct tm * consttmp,
    191      1.49  christos 				subfun_t funcp, const long offset,
    192      1.49  christos 				int *const okayp, const int do_norm_secs);
    193      1.49  christos static struct tm *	timesub(const timezone_t sp, const time_t * timep,
    194      1.49  christos 				long offset, struct tm * tmp);
    195      1.45   mlelstv static int		tmcomp(const struct tm * atmp,
    196      1.45   mlelstv 				const struct tm * btmp);
    197      1.45   mlelstv static time_t		transtime(time_t janfirst, int year,
    198      1.45   mlelstv 				const struct rule * rulep, long offset);
    199      1.49  christos static int		typesequiv(const timezone_t sp, int a, int b);
    200      1.49  christos static int		tzload(timezone_t sp, const char * name,
    201      1.45   mlelstv 				int doextend);
    202      1.49  christos static int		tzparse(timezone_t sp, const char * name,
    203      1.45   mlelstv 				int lastditch);
    204      1.45   mlelstv static void		tzset_unlocked(void);
    205      1.45   mlelstv static void		tzsetwall_unlocked(void);
    206      1.49  christos static long		leapcorr(const timezone_t sp, time_t * timep);
    207       1.1       jtc 
    208      1.49  christos static timezone_t lclptr;
    209      1.49  christos static timezone_t gmtptr;
    210       1.1       jtc 
    211       1.1       jtc #ifndef TZ_STRLEN_MAX
    212       1.1       jtc #define TZ_STRLEN_MAX 255
    213       1.1       jtc #endif /* !defined TZ_STRLEN_MAX */
    214       1.1       jtc 
    215      1.45   mlelstv static char		lcl_TZname[TZ_STRLEN_MAX + 1];
    216      1.45   mlelstv static int		lcl_is_set;
    217      1.45   mlelstv static int		gmt_is_set;
    218      1.42  christos 
    219      1.42  christos #if !defined(__LIBC12_SOURCE__)
    220       1.1       jtc 
    221      1.16   mycroft __aconst char *		tzname[2] = {
    222      1.37  christos 	(__aconst char *)__UNCONST(wildabbr),
    223      1.37  christos 	(__aconst char *)__UNCONST(wildabbr)
    224       1.1       jtc };
    225       1.1       jtc 
    226      1.42  christos #else
    227      1.42  christos 
    228      1.42  christos extern __aconst char *	tzname[2];
    229      1.42  christos 
    230      1.42  christos #endif
    231      1.42  christos 
    232      1.33  christos #ifdef _REENTRANT
    233      1.45   mlelstv static rwlock_t lcl_lock = RWLOCK_INITIALIZER;
    234      1.19    kleink #endif
    235      1.19    kleink 
    236       1.1       jtc /*
    237       1.1       jtc ** Section 4.12.3 of X3.159-1989 requires that
    238       1.1       jtc **	Except for the strftime function, these functions [asctime,
    239       1.1       jtc **	ctime, gmtime, localtime] return values in one of two static
    240       1.1       jtc **	objects: a broken-down time structure and an array of char.
    241      1.45   mlelstv ** Thanks to Paul Eggert for noting this.
    242       1.1       jtc */
    243       1.1       jtc 
    244       1.1       jtc static struct tm	tm;
    245       1.1       jtc 
    246       1.1       jtc #ifdef USG_COMPAT
    247      1.42  christos #if !defined(__LIBC12_SOURCE__)
    248      1.42  christos long 			timezone = 0;
    249       1.1       jtc int			daylight = 0;
    250      1.42  christos #else
    251      1.42  christos extern int		daylight;
    252      1.42  christos extern long		timezone __RENAME(__timezone13);
    253      1.42  christos #endif
    254       1.1       jtc #endif /* defined USG_COMPAT */
    255       1.1       jtc 
    256       1.1       jtc #ifdef ALTZONE
    257       1.1       jtc time_t			altzone = 0;
    258       1.1       jtc #endif /* defined ALTZONE */
    259       1.1       jtc 
    260       1.1       jtc static long
    261      1.49  christos detzcode(const char *const codep)
    262       1.1       jtc {
    263      1.49  christos 	long	result;
    264      1.49  christos 	int	i;
    265      1.45   mlelstv 
    266      1.45   mlelstv 	result = (codep[0] & 0x80) ? ~0L : 0;
    267      1.45   mlelstv 	for (i = 0; i < 4; ++i)
    268      1.45   mlelstv 		result = (result << 8) | (codep[i] & 0xff);
    269      1.45   mlelstv 	return result;
    270      1.45   mlelstv }
    271      1.45   mlelstv 
    272      1.45   mlelstv static time_t
    273      1.49  christos detzcode64(const char *const codep)
    274      1.45   mlelstv {
    275      1.49  christos 	time_t	result;
    276      1.49  christos 	int	i;
    277       1.1       jtc 
    278      1.45   mlelstv 	result = (codep[0] & 0x80) ? -1 : 0;
    279      1.45   mlelstv 	for (i = 0; i < 8; ++i)
    280      1.45   mlelstv 		result = result * 256 + (codep[i] & 0xff);
    281       1.1       jtc 	return result;
    282       1.1       jtc }
    283       1.1       jtc 
    284      1.49  christos const char *
    285      1.49  christos tzgetname(const timezone_t sp, int isdst)
    286      1.49  christos {
    287      1.49  christos 	int i;
    288      1.49  christos 	for (i = 0; i < sp->timecnt; ++i) {
    289      1.49  christos 		const struct ttinfo *const ttisp = &sp->ttis[sp->types[i]];
    290      1.49  christos 
    291      1.49  christos 		if (ttisp->tt_isdst == isdst)
    292      1.49  christos 			return &sp->chars[ttisp->tt_abbrind];
    293      1.49  christos 	}
    294      1.49  christos 	return NULL;
    295      1.49  christos }
    296      1.49  christos 
    297      1.49  christos static void
    298      1.49  christos settzname_z(timezone_t sp)
    299      1.49  christos {
    300      1.49  christos 	int			i;
    301      1.49  christos 
    302      1.49  christos 	/*
    303      1.49  christos 	** Scrub the abbreviations.
    304      1.49  christos 	** First, replace bogus characters.
    305      1.49  christos 	*/
    306      1.49  christos 	for (i = 0; i < sp->charcnt; ++i)
    307      1.49  christos 		if (strchr(TZ_ABBR_CHAR_SET, sp->chars[i]) == NULL)
    308      1.49  christos 			sp->chars[i] = TZ_ABBR_ERR_CHAR;
    309      1.49  christos 	/*
    310      1.49  christos 	** Second, truncate long abbreviations.
    311      1.49  christos 	*/
    312      1.49  christos 	for (i = 0; i < sp->typecnt; ++i) {
    313      1.49  christos 		const struct ttinfo * const	ttisp = &sp->ttis[i];
    314      1.49  christos 		char *				cp = &sp->chars[ttisp->tt_abbrind];
    315      1.49  christos 
    316      1.49  christos 		if (strlen(cp) > TZ_ABBR_MAX_LEN &&
    317      1.49  christos 			strcmp(cp, GRANDPARENTED) != 0)
    318      1.49  christos 				*(cp + TZ_ABBR_MAX_LEN) = '\0';
    319      1.49  christos 	}
    320      1.49  christos }
    321      1.49  christos 
    322      1.45   mlelstv static void
    323      1.45   mlelstv settzname(void)
    324       1.1       jtc {
    325      1.49  christos 	timezone_t const	sp = lclptr;
    326      1.49  christos 	int			i;
    327       1.1       jtc 
    328      1.37  christos 	tzname[0] = (__aconst char *)__UNCONST(wildabbr);
    329      1.37  christos 	tzname[1] = (__aconst char *)__UNCONST(wildabbr);
    330       1.1       jtc #ifdef USG_COMPAT
    331       1.1       jtc 	daylight = 0;
    332       1.1       jtc 	timezone = 0;
    333       1.1       jtc #endif /* defined USG_COMPAT */
    334       1.1       jtc #ifdef ALTZONE
    335       1.1       jtc 	altzone = 0;
    336       1.1       jtc #endif /* defined ALTZONE */
    337       1.1       jtc 	if (sp == NULL) {
    338      1.37  christos 		tzname[0] = tzname[1] = (__aconst char *)__UNCONST(gmt);
    339       1.1       jtc 		return;
    340       1.1       jtc 	}
    341       1.1       jtc 	for (i = 0; i < sp->typecnt; ++i) {
    342      1.49  christos 		const struct ttinfo * const	ttisp = &sp->ttis[i];
    343       1.1       jtc 
    344       1.1       jtc 		tzname[ttisp->tt_isdst] =
    345       1.1       jtc 			&sp->chars[ttisp->tt_abbrind];
    346      1.45   mlelstv #ifdef USG_COMPAT
    347      1.45   mlelstv 		if (ttisp->tt_isdst)
    348      1.45   mlelstv 			daylight = 1;
    349      1.45   mlelstv 		if (i == 0 || !ttisp->tt_isdst)
    350      1.45   mlelstv 			timezone = -(ttisp->tt_gmtoff);
    351      1.45   mlelstv #endif /* defined USG_COMPAT */
    352      1.45   mlelstv #ifdef ALTZONE
    353      1.45   mlelstv 		if (i == 0 || ttisp->tt_isdst)
    354      1.45   mlelstv 			altzone = -(ttisp->tt_gmtoff);
    355      1.45   mlelstv #endif /* defined ALTZONE */
    356       1.1       jtc 	}
    357       1.1       jtc 	/*
    358       1.1       jtc 	** And to get the latest zone names into tzname. . .
    359       1.1       jtc 	*/
    360       1.1       jtc 	for (i = 0; i < sp->timecnt; ++i) {
    361       1.1       jtc 		register const struct ttinfo * const	ttisp =
    362       1.1       jtc 							&sp->ttis[
    363       1.1       jtc 								sp->types[i]];
    364       1.1       jtc 
    365       1.1       jtc 		tzname[ttisp->tt_isdst] =
    366       1.1       jtc 			&sp->chars[ttisp->tt_abbrind];
    367      1.45   mlelstv 	}
    368      1.49  christos 	settzname_z(sp);
    369       1.1       jtc }
    370       1.1       jtc 
    371      1.45   mlelstv static int
    372      1.49  christos differ_by_repeat(const time_t t1, const time_t t0)
    373      1.45   mlelstv {
    374      1.45   mlelstv /* CONSTCOND */
    375      1.45   mlelstv 	if (TYPE_INTEGRAL(time_t) &&
    376      1.45   mlelstv 		TYPE_BIT(time_t) - TYPE_SIGNED(time_t) < SECSPERREPEAT_BITS)
    377      1.45   mlelstv 			return 0;
    378      1.45   mlelstv 	return (int_fast64_t)t1 - (int_fast64_t)t0 == SECSPERREPEAT;
    379      1.45   mlelstv }
    380      1.45   mlelstv 
    381      1.45   mlelstv static int
    382      1.49  christos tzload(timezone_t sp, const char *name, const int doextend)
    383      1.49  christos {
    384      1.49  christos 	const char *		p;
    385      1.49  christos 	int			i;
    386      1.49  christos 	int			fid;
    387      1.49  christos 	int			stored;
    388      1.49  christos 	int			nread;
    389      1.45   mlelstv 	union {
    390      1.45   mlelstv 		struct tzhead	tzhead;
    391      1.45   mlelstv 		char		buf[2 * sizeof(struct tzhead) +
    392      1.45   mlelstv 					2 * sizeof *sp +
    393      1.45   mlelstv 					4 * TZ_MAX_TIMES];
    394      1.45   mlelstv 	} u;
    395       1.1       jtc 
    396      1.47  christos 	sp->goback = sp->goahead = FALSE;
    397       1.1       jtc 	if (name == NULL && (name = TZDEFAULT) == NULL)
    398       1.1       jtc 		return -1;
    399       1.1       jtc 	{
    400      1.49  christos 		int	doaccess;
    401       1.1       jtc 		/*
    402       1.1       jtc 		** Section 4.9.1 of the C standard says that
    403       1.1       jtc 		** "FILENAME_MAX expands to an integral constant expression
    404      1.10       jtc 		** that is the size needed for an array of char large enough
    405       1.1       jtc 		** to hold the longest file name string that the implementation
    406       1.1       jtc 		** guarantees can be opened."
    407       1.1       jtc 		*/
    408       1.1       jtc 		char		fullname[FILENAME_MAX + 1];
    409       1.1       jtc 
    410       1.1       jtc 		if (name[0] == ':')
    411       1.1       jtc 			++name;
    412       1.1       jtc 		doaccess = name[0] == '/';
    413       1.1       jtc 		if (!doaccess) {
    414       1.1       jtc 			if ((p = TZDIR) == NULL)
    415       1.1       jtc 				return -1;
    416       1.1       jtc 			if ((strlen(p) + strlen(name) + 1) >= sizeof fullname)
    417       1.1       jtc 				return -1;
    418       1.8       mrg 			(void) strcpy(fullname, p);	/* XXX strcpy is safe */
    419       1.8       mrg 			(void) strcat(fullname, "/");	/* XXX strcat is safe */
    420       1.8       mrg 			(void) strcat(fullname, name);	/* XXX strcat is safe */
    421       1.1       jtc 			/*
    422       1.1       jtc 			** Set doaccess if '.' (as in "../") shows up in name.
    423       1.1       jtc 			*/
    424       1.1       jtc 			if (strchr(name, '.') != NULL)
    425       1.1       jtc 				doaccess = TRUE;
    426       1.1       jtc 			name = fullname;
    427       1.1       jtc 		}
    428       1.1       jtc 		if (doaccess && access(name, R_OK) != 0)
    429       1.1       jtc 			return -1;
    430       1.9       mrg 		/*
    431       1.9       mrg 		 * XXX potential security problem here if user of a set-id
    432       1.9       mrg 		 * program has set TZ (which is passed in as name) here,
    433       1.9       mrg 		 * and uses a race condition trick to defeat the access(2)
    434       1.9       mrg 		 * above.
    435       1.9       mrg 		 */
    436       1.1       jtc 		if ((fid = open(name, OPEN_MODE)) == -1)
    437       1.1       jtc 			return -1;
    438       1.1       jtc 	}
    439      1.45   mlelstv 	nread = read(fid, u.buf, sizeof u.buf);
    440      1.45   mlelstv 	if (close(fid) < 0 || nread <= 0)
    441      1.45   mlelstv 		return -1;
    442      1.45   mlelstv 	for (stored = 4; stored <= 8; stored *= 2) {
    443       1.1       jtc 		int		ttisstdcnt;
    444       1.1       jtc 		int		ttisgmtcnt;
    445       1.1       jtc 
    446      1.34    kleink 		ttisstdcnt = (int) detzcode(u.tzhead.tzh_ttisstdcnt);
    447      1.34    kleink 		ttisgmtcnt = (int) detzcode(u.tzhead.tzh_ttisgmtcnt);
    448      1.14       jtc 		sp->leapcnt = (int) detzcode(u.tzhead.tzh_leapcnt);
    449      1.14       jtc 		sp->timecnt = (int) detzcode(u.tzhead.tzh_timecnt);
    450      1.14       jtc 		sp->typecnt = (int) detzcode(u.tzhead.tzh_typecnt);
    451      1.14       jtc 		sp->charcnt = (int) detzcode(u.tzhead.tzh_charcnt);
    452      1.14       jtc 		p = u.tzhead.tzh_charcnt + sizeof u.tzhead.tzh_charcnt;
    453       1.1       jtc 		if (sp->leapcnt < 0 || sp->leapcnt > TZ_MAX_LEAPS ||
    454       1.1       jtc 			sp->typecnt <= 0 || sp->typecnt > TZ_MAX_TYPES ||
    455       1.1       jtc 			sp->timecnt < 0 || sp->timecnt > TZ_MAX_TIMES ||
    456       1.1       jtc 			sp->charcnt < 0 || sp->charcnt > TZ_MAX_CHARS ||
    457       1.1       jtc 			(ttisstdcnt != sp->typecnt && ttisstdcnt != 0) ||
    458       1.1       jtc 			(ttisgmtcnt != sp->typecnt && ttisgmtcnt != 0))
    459       1.1       jtc 				return -1;
    460      1.45   mlelstv 		if (nread - (p - u.buf) <
    461      1.45   mlelstv 			sp->timecnt * stored +		/* ats */
    462       1.1       jtc 			sp->timecnt +			/* types */
    463      1.45   mlelstv 			sp->typecnt * 6 +		/* ttinfos */
    464       1.1       jtc 			sp->charcnt +			/* chars */
    465      1.45   mlelstv 			sp->leapcnt * (stored + 4) +	/* lsinfos */
    466       1.1       jtc 			ttisstdcnt +			/* ttisstds */
    467       1.1       jtc 			ttisgmtcnt)			/* ttisgmts */
    468       1.1       jtc 				return -1;
    469       1.1       jtc 		for (i = 0; i < sp->timecnt; ++i) {
    470      1.45   mlelstv 			sp->ats[i] = (stored == 4) ?
    471      1.45   mlelstv 				detzcode(p) : detzcode64(p);
    472      1.45   mlelstv 			p += stored;
    473       1.1       jtc 		}
    474       1.1       jtc 		for (i = 0; i < sp->timecnt; ++i) {
    475       1.1       jtc 			sp->types[i] = (unsigned char) *p++;
    476       1.1       jtc 			if (sp->types[i] >= sp->typecnt)
    477       1.1       jtc 				return -1;
    478       1.1       jtc 		}
    479       1.1       jtc 		for (i = 0; i < sp->typecnt; ++i) {
    480      1.49  christos 			struct ttinfo *	ttisp;
    481       1.1       jtc 
    482       1.1       jtc 			ttisp = &sp->ttis[i];
    483       1.1       jtc 			ttisp->tt_gmtoff = detzcode(p);
    484       1.1       jtc 			p += 4;
    485       1.1       jtc 			ttisp->tt_isdst = (unsigned char) *p++;
    486       1.1       jtc 			if (ttisp->tt_isdst != 0 && ttisp->tt_isdst != 1)
    487       1.1       jtc 				return -1;
    488       1.1       jtc 			ttisp->tt_abbrind = (unsigned char) *p++;
    489       1.1       jtc 			if (ttisp->tt_abbrind < 0 ||
    490       1.1       jtc 				ttisp->tt_abbrind > sp->charcnt)
    491       1.1       jtc 					return -1;
    492       1.1       jtc 		}
    493       1.1       jtc 		for (i = 0; i < sp->charcnt; ++i)
    494       1.1       jtc 			sp->chars[i] = *p++;
    495       1.1       jtc 		sp->chars[i] = '\0';	/* ensure '\0' at end */
    496       1.1       jtc 		for (i = 0; i < sp->leapcnt; ++i) {
    497      1.49  christos 			struct lsinfo *	lsisp;
    498       1.1       jtc 
    499       1.1       jtc 			lsisp = &sp->lsis[i];
    500      1.45   mlelstv 			lsisp->ls_trans = (stored == 4) ?
    501      1.45   mlelstv 				detzcode(p) : detzcode64(p);
    502      1.45   mlelstv 			p += stored;
    503       1.1       jtc 			lsisp->ls_corr = detzcode(p);
    504       1.1       jtc 			p += 4;
    505       1.1       jtc 		}
    506       1.1       jtc 		for (i = 0; i < sp->typecnt; ++i) {
    507      1.49  christos 			struct ttinfo *	ttisp;
    508       1.1       jtc 
    509       1.1       jtc 			ttisp = &sp->ttis[i];
    510       1.1       jtc 			if (ttisstdcnt == 0)
    511       1.1       jtc 				ttisp->tt_ttisstd = FALSE;
    512       1.1       jtc 			else {
    513       1.1       jtc 				ttisp->tt_ttisstd = *p++;
    514       1.1       jtc 				if (ttisp->tt_ttisstd != TRUE &&
    515       1.1       jtc 					ttisp->tt_ttisstd != FALSE)
    516       1.1       jtc 						return -1;
    517       1.1       jtc 			}
    518       1.1       jtc 		}
    519       1.1       jtc 		for (i = 0; i < sp->typecnt; ++i) {
    520      1.49  christos 			struct ttinfo *	ttisp;
    521       1.1       jtc 
    522       1.1       jtc 			ttisp = &sp->ttis[i];
    523       1.1       jtc 			if (ttisgmtcnt == 0)
    524       1.1       jtc 				ttisp->tt_ttisgmt = FALSE;
    525       1.1       jtc 			else {
    526       1.1       jtc 				ttisp->tt_ttisgmt = *p++;
    527       1.1       jtc 				if (ttisp->tt_ttisgmt != TRUE &&
    528       1.1       jtc 					ttisp->tt_ttisgmt != FALSE)
    529       1.1       jtc 						return -1;
    530       1.1       jtc 			}
    531       1.1       jtc 		}
    532      1.45   mlelstv 		/*
    533      1.45   mlelstv 		** Out-of-sort ats should mean we're running on a
    534      1.45   mlelstv 		** signed time_t system but using a data file with
    535      1.45   mlelstv 		** unsigned values (or vice versa).
    536      1.45   mlelstv 		*/
    537      1.45   mlelstv 		for (i = 0; i < sp->timecnt - 2; ++i)
    538      1.45   mlelstv 			if (sp->ats[i] > sp->ats[i + 1]) {
    539      1.45   mlelstv 				++i;
    540      1.45   mlelstv /* CONSTCOND */
    541      1.45   mlelstv 				if (TYPE_SIGNED(time_t)) {
    542      1.45   mlelstv 					/*
    543      1.45   mlelstv 					** Ignore the end (easy).
    544      1.45   mlelstv 					*/
    545      1.45   mlelstv 					sp->timecnt = i;
    546      1.45   mlelstv 				} else {
    547      1.45   mlelstv 					/*
    548      1.45   mlelstv 					** Ignore the beginning (harder).
    549      1.45   mlelstv 					*/
    550      1.49  christos 					int	j;
    551      1.45   mlelstv 
    552      1.45   mlelstv 					for (j = 0; j + i < sp->timecnt; ++j) {
    553      1.45   mlelstv 						sp->ats[j] = sp->ats[j + i];
    554      1.45   mlelstv 						sp->types[j] = sp->types[j + i];
    555      1.45   mlelstv 					}
    556      1.45   mlelstv 					sp->timecnt = j;
    557      1.45   mlelstv 				}
    558      1.45   mlelstv 				break;
    559      1.45   mlelstv 			}
    560      1.45   mlelstv 		/*
    561      1.45   mlelstv 		** If this is an old file, we're done.
    562      1.45   mlelstv 		*/
    563      1.45   mlelstv 		if (u.tzhead.tzh_version[0] == '\0')
    564      1.45   mlelstv 			break;
    565      1.45   mlelstv 		nread -= p - u.buf;
    566      1.45   mlelstv 		for (i = 0; i < nread; ++i)
    567      1.45   mlelstv 			u.buf[i] = p[i];
    568      1.45   mlelstv 		/*
    569      1.45   mlelstv 		** If this is a narrow integer time_t system, we're done.
    570      1.45   mlelstv 		*/
    571      1.45   mlelstv 		if (stored >= (int) sizeof(time_t)
    572      1.45   mlelstv /* CONSTCOND */
    573      1.45   mlelstv 				&& TYPE_INTEGRAL(time_t))
    574      1.45   mlelstv 			break;
    575      1.45   mlelstv 	}
    576      1.45   mlelstv 	if (doextend && nread > 2 &&
    577      1.45   mlelstv 		u.buf[0] == '\n' && u.buf[nread - 1] == '\n' &&
    578      1.45   mlelstv 		sp->typecnt + 2 <= TZ_MAX_TYPES) {
    579      1.49  christos 			struct __state ts;
    580      1.49  christos 			int	result;
    581      1.45   mlelstv 
    582      1.45   mlelstv 			u.buf[nread - 1] = '\0';
    583      1.49  christos 			result = tzparse(&ts, &u.buf[1], FALSE);
    584      1.45   mlelstv 			if (result == 0 && ts.typecnt == 2 &&
    585      1.45   mlelstv 				sp->charcnt + ts.charcnt <= TZ_MAX_CHARS) {
    586      1.45   mlelstv 					for (i = 0; i < 2; ++i)
    587      1.45   mlelstv 						ts.ttis[i].tt_abbrind +=
    588      1.45   mlelstv 							sp->charcnt;
    589      1.45   mlelstv 					for (i = 0; i < ts.charcnt; ++i)
    590      1.45   mlelstv 						sp->chars[sp->charcnt++] =
    591      1.45   mlelstv 							ts.chars[i];
    592      1.45   mlelstv 					i = 0;
    593      1.45   mlelstv 					while (i < ts.timecnt &&
    594      1.45   mlelstv 						ts.ats[i] <=
    595      1.45   mlelstv 						sp->ats[sp->timecnt - 1])
    596      1.45   mlelstv 							++i;
    597      1.45   mlelstv 					while (i < ts.timecnt &&
    598      1.45   mlelstv 					    sp->timecnt < TZ_MAX_TIMES) {
    599      1.45   mlelstv 						sp->ats[sp->timecnt] =
    600      1.45   mlelstv 							ts.ats[i];
    601      1.45   mlelstv 						sp->types[sp->timecnt] =
    602      1.45   mlelstv 							sp->typecnt +
    603      1.45   mlelstv 							ts.types[i];
    604      1.45   mlelstv 						++sp->timecnt;
    605      1.45   mlelstv 						++i;
    606      1.45   mlelstv 					}
    607      1.45   mlelstv 					sp->ttis[sp->typecnt++] = ts.ttis[0];
    608      1.45   mlelstv 					sp->ttis[sp->typecnt++] = ts.ttis[1];
    609      1.45   mlelstv 			}
    610      1.45   mlelstv 	}
    611      1.45   mlelstv 	if (sp->timecnt > 1) {
    612      1.45   mlelstv 		for (i = 1; i < sp->timecnt; ++i)
    613      1.45   mlelstv 			if (typesequiv(sp, sp->types[i], sp->types[0]) &&
    614      1.45   mlelstv 				differ_by_repeat(sp->ats[i], sp->ats[0])) {
    615      1.45   mlelstv 					sp->goback = TRUE;
    616      1.45   mlelstv 					break;
    617      1.45   mlelstv 				}
    618      1.45   mlelstv 		for (i = sp->timecnt - 2; i >= 0; --i)
    619      1.45   mlelstv 			if (typesequiv(sp, sp->types[sp->timecnt - 1],
    620      1.45   mlelstv 				sp->types[i]) &&
    621      1.45   mlelstv 				differ_by_repeat(sp->ats[sp->timecnt - 1],
    622      1.45   mlelstv 				sp->ats[i])) {
    623      1.45   mlelstv 					sp->goahead = TRUE;
    624      1.45   mlelstv 					break;
    625      1.45   mlelstv 		}
    626       1.1       jtc 	}
    627       1.1       jtc 	return 0;
    628       1.1       jtc }
    629       1.1       jtc 
    630      1.45   mlelstv static int
    631      1.49  christos typesequiv(const timezone_t sp, const int a, const int b)
    632      1.45   mlelstv {
    633      1.49  christos 	int	result;
    634      1.45   mlelstv 
    635      1.45   mlelstv 	if (sp == NULL ||
    636      1.45   mlelstv 		a < 0 || a >= sp->typecnt ||
    637      1.45   mlelstv 		b < 0 || b >= sp->typecnt)
    638      1.45   mlelstv 			result = FALSE;
    639      1.45   mlelstv 	else {
    640      1.49  christos 		const struct ttinfo *	ap = &sp->ttis[a];
    641      1.49  christos 		const struct ttinfo *	bp = &sp->ttis[b];
    642      1.45   mlelstv 		result = ap->tt_gmtoff == bp->tt_gmtoff &&
    643      1.45   mlelstv 			ap->tt_isdst == bp->tt_isdst &&
    644      1.45   mlelstv 			ap->tt_ttisstd == bp->tt_ttisstd &&
    645      1.45   mlelstv 			ap->tt_ttisgmt == bp->tt_ttisgmt &&
    646      1.45   mlelstv 			strcmp(&sp->chars[ap->tt_abbrind],
    647      1.45   mlelstv 			&sp->chars[bp->tt_abbrind]) == 0;
    648      1.45   mlelstv 	}
    649      1.45   mlelstv 	return result;
    650      1.45   mlelstv }
    651      1.45   mlelstv 
    652       1.1       jtc static const int	mon_lengths[2][MONSPERYEAR] = {
    653       1.1       jtc 	{ 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 },
    654       1.1       jtc 	{ 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }
    655       1.1       jtc };
    656       1.1       jtc 
    657       1.1       jtc static const int	year_lengths[2] = {
    658       1.1       jtc 	DAYSPERNYEAR, DAYSPERLYEAR
    659       1.1       jtc };
    660       1.1       jtc 
    661       1.1       jtc /*
    662       1.1       jtc ** Given a pointer into a time zone string, scan until a character that is not
    663      1.45   mlelstv ** a valid character in a zone name is found. Return a pointer to that
    664       1.1       jtc ** character.
    665       1.1       jtc */
    666       1.1       jtc 
    667       1.1       jtc static const char *
    668      1.45   mlelstv getzname(strp)
    669      1.49  christos const char *	strp;
    670       1.1       jtc {
    671      1.49  christos 	char	c;
    672       1.1       jtc 
    673       1.5       jtc 	while ((c = *strp) != '\0' && !is_digit(c) && c != ',' && c != '-' &&
    674       1.1       jtc 		c != '+')
    675       1.1       jtc 			++strp;
    676       1.1       jtc 	return strp;
    677       1.1       jtc }
    678       1.1       jtc 
    679       1.1       jtc /*
    680      1.45   mlelstv ** Given a pointer into an extended time zone string, scan until the ending
    681      1.45   mlelstv ** delimiter of the zone name is located. Return a pointer to the delimiter.
    682      1.45   mlelstv **
    683      1.45   mlelstv ** As with getzname above, the legal character set is actually quite
    684      1.45   mlelstv ** restricted, with other characters producing undefined results.
    685      1.45   mlelstv ** We don't do any checking here; checking is done later in common-case code.
    686      1.45   mlelstv */
    687      1.45   mlelstv 
    688      1.45   mlelstv static const char *
    689      1.49  christos getqzname(const char *strp, const int delim)
    690      1.45   mlelstv {
    691      1.49  christos 	int	c;
    692      1.45   mlelstv 
    693      1.45   mlelstv 	while ((c = *strp) != '\0' && c != delim)
    694      1.45   mlelstv 		++strp;
    695      1.45   mlelstv 	return strp;
    696      1.45   mlelstv }
    697      1.45   mlelstv 
    698      1.45   mlelstv /*
    699       1.1       jtc ** Given a pointer into a time zone string, extract a number from that string.
    700       1.1       jtc ** Check that the number is within a specified range; if it is not, return
    701       1.1       jtc ** NULL.
    702       1.1       jtc ** Otherwise, return a pointer to the first character not part of the number.
    703       1.1       jtc */
    704       1.1       jtc 
    705       1.1       jtc static const char *
    706       1.1       jtc getnum(strp, nump, min, max)
    707      1.49  christos const char *	strp;
    708       1.1       jtc int * const		nump;
    709       1.1       jtc const int		min;
    710       1.1       jtc const int		max;
    711       1.1       jtc {
    712      1.49  christos 	char	c;
    713      1.49  christos 	int	num;
    714       1.1       jtc 
    715      1.46  christos 	if (strp == NULL || !is_digit(c = *strp)) {
    716      1.46  christos 		errno = EINVAL;
    717       1.1       jtc 		return NULL;
    718      1.46  christos 	}
    719       1.1       jtc 	num = 0;
    720       1.5       jtc 	do {
    721       1.1       jtc 		num = num * 10 + (c - '0');
    722      1.46  christos 		if (num > max) {
    723      1.46  christos 			errno = EOVERFLOW;
    724       1.1       jtc 			return NULL;	/* illegal value */
    725      1.46  christos 		}
    726       1.5       jtc 		c = *++strp;
    727       1.5       jtc 	} while (is_digit(c));
    728      1.46  christos 	if (num < min) {
    729      1.46  christos 		errno = EINVAL;
    730       1.1       jtc 		return NULL;		/* illegal value */
    731      1.46  christos 	}
    732       1.1       jtc 	*nump = num;
    733       1.1       jtc 	return strp;
    734       1.1       jtc }
    735       1.1       jtc 
    736       1.1       jtc /*
    737       1.1       jtc ** Given a pointer into a time zone string, extract a number of seconds,
    738       1.1       jtc ** in hh[:mm[:ss]] form, from the string.
    739       1.1       jtc ** If any error occurs, return NULL.
    740       1.1       jtc ** Otherwise, return a pointer to the first character not part of the number
    741       1.1       jtc ** of seconds.
    742       1.1       jtc */
    743       1.1       jtc 
    744       1.1       jtc static const char *
    745      1.49  christos getsecs(const char *strp, long *const secsp)
    746       1.1       jtc {
    747       1.1       jtc 	int	num;
    748       1.1       jtc 
    749       1.1       jtc 	/*
    750       1.1       jtc 	** `HOURSPERDAY * DAYSPERWEEK - 1' allows quasi-Posix rules like
    751       1.1       jtc 	** "M10.4.6/26", which does not conform to Posix,
    752       1.1       jtc 	** but which specifies the equivalent of
    753       1.1       jtc 	** ``02:00 on the first Sunday on or after 23 Oct''.
    754       1.1       jtc 	*/
    755       1.1       jtc 	strp = getnum(strp, &num, 0, HOURSPERDAY * DAYSPERWEEK - 1);
    756       1.1       jtc 	if (strp == NULL)
    757       1.1       jtc 		return NULL;
    758       1.1       jtc 	*secsp = num * (long) SECSPERHOUR;
    759       1.1       jtc 	if (*strp == ':') {
    760       1.1       jtc 		++strp;
    761       1.1       jtc 		strp = getnum(strp, &num, 0, MINSPERHOUR - 1);
    762       1.1       jtc 		if (strp == NULL)
    763       1.1       jtc 			return NULL;
    764       1.1       jtc 		*secsp += num * SECSPERMIN;
    765       1.1       jtc 		if (*strp == ':') {
    766       1.1       jtc 			++strp;
    767      1.45   mlelstv 			/* `SECSPERMIN' allows for leap seconds. */
    768       1.1       jtc 			strp = getnum(strp, &num, 0, SECSPERMIN);
    769       1.1       jtc 			if (strp == NULL)
    770       1.1       jtc 				return NULL;
    771       1.1       jtc 			*secsp += num;
    772       1.1       jtc 		}
    773       1.1       jtc 	}
    774       1.1       jtc 	return strp;
    775       1.1       jtc }
    776       1.1       jtc 
    777       1.1       jtc /*
    778       1.1       jtc ** Given a pointer into a time zone string, extract an offset, in
    779       1.1       jtc ** [+-]hh[:mm[:ss]] form, from the string.
    780       1.1       jtc ** If any error occurs, return NULL.
    781       1.1       jtc ** Otherwise, return a pointer to the first character not part of the time.
    782       1.1       jtc */
    783       1.1       jtc 
    784       1.1       jtc static const char *
    785      1.49  christos getoffset(const char *strp, long *const offsetp)
    786       1.1       jtc {
    787      1.49  christos 	int	neg = 0;
    788       1.1       jtc 
    789       1.1       jtc 	if (*strp == '-') {
    790       1.1       jtc 		neg = 1;
    791       1.1       jtc 		++strp;
    792       1.5       jtc 	} else if (*strp == '+')
    793       1.5       jtc 		++strp;
    794       1.1       jtc 	strp = getsecs(strp, offsetp);
    795       1.1       jtc 	if (strp == NULL)
    796       1.1       jtc 		return NULL;		/* illegal time */
    797       1.1       jtc 	if (neg)
    798       1.1       jtc 		*offsetp = -*offsetp;
    799       1.1       jtc 	return strp;
    800       1.1       jtc }
    801       1.1       jtc 
    802       1.1       jtc /*
    803       1.1       jtc ** Given a pointer into a time zone string, extract a rule in the form
    804      1.45   mlelstv ** date[/time]. See POSIX section 8 for the format of "date" and "time".
    805       1.1       jtc ** If a valid rule is not found, return NULL.
    806       1.1       jtc ** Otherwise, return a pointer to the first character not part of the rule.
    807       1.1       jtc */
    808       1.1       jtc 
    809       1.1       jtc static const char *
    810      1.49  christos getrule(const char *strp, struct rule *const rulep)
    811       1.1       jtc {
    812       1.1       jtc 	if (*strp == 'J') {
    813       1.1       jtc 		/*
    814       1.1       jtc 		** Julian day.
    815       1.1       jtc 		*/
    816       1.1       jtc 		rulep->r_type = JULIAN_DAY;
    817       1.1       jtc 		++strp;
    818       1.1       jtc 		strp = getnum(strp, &rulep->r_day, 1, DAYSPERNYEAR);
    819       1.1       jtc 	} else if (*strp == 'M') {
    820       1.1       jtc 		/*
    821       1.1       jtc 		** Month, week, day.
    822       1.1       jtc 		*/
    823       1.1       jtc 		rulep->r_type = MONTH_NTH_DAY_OF_WEEK;
    824       1.1       jtc 		++strp;
    825       1.1       jtc 		strp = getnum(strp, &rulep->r_mon, 1, MONSPERYEAR);
    826       1.1       jtc 		if (strp == NULL)
    827       1.1       jtc 			return NULL;
    828       1.1       jtc 		if (*strp++ != '.')
    829       1.1       jtc 			return NULL;
    830       1.1       jtc 		strp = getnum(strp, &rulep->r_week, 1, 5);
    831       1.1       jtc 		if (strp == NULL)
    832       1.1       jtc 			return NULL;
    833       1.1       jtc 		if (*strp++ != '.')
    834       1.1       jtc 			return NULL;
    835       1.1       jtc 		strp = getnum(strp, &rulep->r_day, 0, DAYSPERWEEK - 1);
    836       1.5       jtc 	} else if (is_digit(*strp)) {
    837       1.1       jtc 		/*
    838       1.1       jtc 		** Day of year.
    839       1.1       jtc 		*/
    840       1.1       jtc 		rulep->r_type = DAY_OF_YEAR;
    841       1.1       jtc 		strp = getnum(strp, &rulep->r_day, 0, DAYSPERLYEAR - 1);
    842       1.1       jtc 	} else	return NULL;		/* invalid format */
    843       1.1       jtc 	if (strp == NULL)
    844       1.1       jtc 		return NULL;
    845       1.1       jtc 	if (*strp == '/') {
    846       1.1       jtc 		/*
    847       1.1       jtc 		** Time specified.
    848       1.1       jtc 		*/
    849       1.1       jtc 		++strp;
    850       1.1       jtc 		strp = getsecs(strp, &rulep->r_time);
    851       1.1       jtc 	} else	rulep->r_time = 2 * SECSPERHOUR;	/* default = 2:00:00 */
    852       1.1       jtc 	return strp;
    853       1.1       jtc }
    854       1.1       jtc 
    855       1.1       jtc /*
    856      1.14       jtc ** Given the Epoch-relative time of January 1, 00:00:00 UTC, in a year, the
    857      1.14       jtc ** year, a rule, and the offset from UTC at the time that rule takes effect,
    858       1.1       jtc ** calculate the Epoch-relative time that rule takes effect.
    859       1.1       jtc */
    860       1.1       jtc 
    861       1.1       jtc static time_t
    862      1.49  christos transtime(const time_t janfirst, const int year, const struct rule *const rulep,
    863      1.49  christos     const long offset)
    864      1.49  christos {
    865      1.49  christos 	int	leapyear;
    866      1.49  christos 	time_t	value;
    867      1.49  christos 	int	i;
    868       1.1       jtc 	int		d, m1, yy0, yy1, yy2, dow;
    869       1.1       jtc 
    870       1.1       jtc 	INITIALIZE(value);
    871       1.1       jtc 	leapyear = isleap(year);
    872       1.1       jtc 	switch (rulep->r_type) {
    873       1.1       jtc 
    874       1.1       jtc 	case JULIAN_DAY:
    875       1.1       jtc 		/*
    876       1.1       jtc 		** Jn - Julian day, 1 == January 1, 60 == March 1 even in leap
    877       1.1       jtc 		** years.
    878       1.1       jtc 		** In non-leap years, or if the day number is 59 or less, just
    879       1.1       jtc 		** add SECSPERDAY times the day number-1 to the time of
    880       1.1       jtc 		** January 1, midnight, to get the day.
    881       1.1       jtc 		*/
    882       1.1       jtc 		value = janfirst + (rulep->r_day - 1) * SECSPERDAY;
    883       1.1       jtc 		if (leapyear && rulep->r_day >= 60)
    884       1.1       jtc 			value += SECSPERDAY;
    885       1.1       jtc 		break;
    886       1.1       jtc 
    887       1.1       jtc 	case DAY_OF_YEAR:
    888       1.1       jtc 		/*
    889       1.1       jtc 		** n - day of year.
    890       1.1       jtc 		** Just add SECSPERDAY times the day number to the time of
    891       1.1       jtc 		** January 1, midnight, to get the day.
    892       1.1       jtc 		*/
    893       1.1       jtc 		value = janfirst + rulep->r_day * SECSPERDAY;
    894       1.1       jtc 		break;
    895       1.1       jtc 
    896       1.1       jtc 	case MONTH_NTH_DAY_OF_WEEK:
    897       1.1       jtc 		/*
    898       1.1       jtc 		** Mm.n.d - nth "dth day" of month m.
    899       1.1       jtc 		*/
    900       1.1       jtc 		value = janfirst;
    901       1.1       jtc 		for (i = 0; i < rulep->r_mon - 1; ++i)
    902       1.1       jtc 			value += mon_lengths[leapyear][i] * SECSPERDAY;
    903       1.1       jtc 
    904       1.1       jtc 		/*
    905       1.1       jtc 		** Use Zeller's Congruence to get day-of-week of first day of
    906       1.1       jtc 		** month.
    907       1.1       jtc 		*/
    908       1.1       jtc 		m1 = (rulep->r_mon + 9) % 12 + 1;
    909       1.1       jtc 		yy0 = (rulep->r_mon <= 2) ? (year - 1) : year;
    910       1.1       jtc 		yy1 = yy0 / 100;
    911       1.1       jtc 		yy2 = yy0 % 100;
    912       1.1       jtc 		dow = ((26 * m1 - 2) / 10 +
    913       1.1       jtc 			1 + yy2 + yy2 / 4 + yy1 / 4 - 2 * yy1) % 7;
    914       1.1       jtc 		if (dow < 0)
    915       1.1       jtc 			dow += DAYSPERWEEK;
    916       1.1       jtc 
    917       1.1       jtc 		/*
    918      1.45   mlelstv 		** "dow" is the day-of-week of the first day of the month. Get
    919       1.1       jtc 		** the day-of-month (zero-origin) of the first "dow" day of the
    920       1.1       jtc 		** month.
    921       1.1       jtc 		*/
    922       1.1       jtc 		d = rulep->r_day - dow;
    923       1.1       jtc 		if (d < 0)
    924       1.1       jtc 			d += DAYSPERWEEK;
    925       1.1       jtc 		for (i = 1; i < rulep->r_week; ++i) {
    926       1.1       jtc 			if (d + DAYSPERWEEK >=
    927       1.1       jtc 				mon_lengths[leapyear][rulep->r_mon - 1])
    928       1.1       jtc 					break;
    929       1.1       jtc 			d += DAYSPERWEEK;
    930       1.1       jtc 		}
    931       1.1       jtc 
    932       1.1       jtc 		/*
    933       1.1       jtc 		** "d" is the day-of-month (zero-origin) of the day we want.
    934       1.1       jtc 		*/
    935       1.1       jtc 		value += d * SECSPERDAY;
    936       1.1       jtc 		break;
    937       1.1       jtc 	}
    938       1.1       jtc 
    939       1.1       jtc 	/*
    940      1.14       jtc 	** "value" is the Epoch-relative time of 00:00:00 UTC on the day in
    941      1.45   mlelstv 	** question. To get the Epoch-relative time of the specified local
    942       1.1       jtc 	** time on that day, add the transition time and the current offset
    943      1.14       jtc 	** from UTC.
    944       1.1       jtc 	*/
    945       1.1       jtc 	return value + rulep->r_time + offset;
    946       1.1       jtc }
    947       1.1       jtc 
    948       1.1       jtc /*
    949       1.1       jtc ** Given a POSIX section 8-style TZ string, fill in the rule tables as
    950       1.1       jtc ** appropriate.
    951       1.1       jtc */
    952       1.1       jtc 
    953       1.1       jtc static int
    954      1.49  christos tzparse(timezone_t sp, const char *name, const int lastditch)
    955       1.1       jtc {
    956       1.1       jtc 	const char *			stdname;
    957       1.1       jtc 	const char *			dstname;
    958       1.1       jtc 	size_t				stdlen;
    959       1.1       jtc 	size_t				dstlen;
    960       1.1       jtc 	long				stdoffset;
    961       1.1       jtc 	long				dstoffset;
    962      1.49  christos 	time_t *		atp;
    963      1.49  christos 	unsigned char *	typep;
    964      1.49  christos 	char *			cp;
    965      1.49  christos 	int			load_result;
    966       1.1       jtc 
    967       1.1       jtc 	INITIALIZE(dstname);
    968       1.1       jtc 	stdname = name;
    969       1.1       jtc 	if (lastditch) {
    970       1.1       jtc 		stdlen = strlen(name);	/* length of standard zone name */
    971       1.1       jtc 		name += stdlen;
    972       1.1       jtc 		if (stdlen >= sizeof sp->chars)
    973       1.1       jtc 			stdlen = (sizeof sp->chars) - 1;
    974      1.10       jtc 		stdoffset = 0;
    975       1.1       jtc 	} else {
    976      1.45   mlelstv 		if (*name == '<') {
    977      1.45   mlelstv 			name++;
    978      1.45   mlelstv 			stdname = name;
    979      1.45   mlelstv 			name = getqzname(name, '>');
    980      1.45   mlelstv 			if (*name != '>')
    981      1.45   mlelstv 				return (-1);
    982      1.45   mlelstv 			stdlen = name - stdname;
    983      1.45   mlelstv 			name++;
    984      1.45   mlelstv 		} else {
    985      1.45   mlelstv 			name = getzname(name);
    986      1.45   mlelstv 			stdlen = name - stdname;
    987      1.45   mlelstv 		}
    988      1.10       jtc 		if (*name == '\0')
    989      1.10       jtc 			return -1;
    990      1.45   mlelstv 		name = getoffset(name, &stdoffset);
    991       1.1       jtc 		if (name == NULL)
    992       1.1       jtc 			return -1;
    993       1.1       jtc 	}
    994      1.49  christos 	load_result = tzload(sp, TZDEFRULES, FALSE);
    995       1.1       jtc 	if (load_result != 0)
    996       1.1       jtc 		sp->leapcnt = 0;		/* so, we're off a little */
    997       1.1       jtc 	if (*name != '\0') {
    998      1.45   mlelstv 		if (*name == '<') {
    999      1.45   mlelstv 			dstname = ++name;
   1000      1.45   mlelstv 			name = getqzname(name, '>');
   1001      1.45   mlelstv 			if (*name != '>')
   1002      1.45   mlelstv 				return -1;
   1003      1.45   mlelstv 			dstlen = name - dstname;
   1004      1.45   mlelstv 			name++;
   1005      1.45   mlelstv 		} else {
   1006      1.45   mlelstv 			dstname = name;
   1007      1.45   mlelstv 			name = getzname(name);
   1008      1.45   mlelstv 			dstlen = name - dstname; /* length of DST zone name */
   1009      1.45   mlelstv 		}
   1010       1.1       jtc 		if (*name != '\0' && *name != ',' && *name != ';') {
   1011      1.45   mlelstv 			name = getoffset(name, &dstoffset);
   1012       1.1       jtc 			if (name == NULL)
   1013       1.1       jtc 				return -1;
   1014       1.1       jtc 		} else	dstoffset = stdoffset - SECSPERHOUR;
   1015      1.22    kleink 		if (*name == '\0' && load_result != 0)
   1016      1.22    kleink 			name = TZDEFRULESTRING;
   1017       1.1       jtc 		if (*name == ',' || *name == ';') {
   1018       1.1       jtc 			struct rule	start;
   1019       1.1       jtc 			struct rule	end;
   1020      1.49  christos 			int	year;
   1021      1.49  christos 			time_t	janfirst;
   1022       1.1       jtc 			time_t		starttime;
   1023       1.1       jtc 			time_t		endtime;
   1024       1.1       jtc 
   1025       1.1       jtc 			++name;
   1026      1.45   mlelstv 			if ((name = getrule(name, &start)) == NULL)
   1027       1.1       jtc 				return -1;
   1028       1.1       jtc 			if (*name++ != ',')
   1029       1.1       jtc 				return -1;
   1030      1.45   mlelstv 			if ((name = getrule(name, &end)) == NULL)
   1031       1.1       jtc 				return -1;
   1032       1.1       jtc 			if (*name != '\0')
   1033       1.1       jtc 				return -1;
   1034       1.1       jtc 			sp->typecnt = 2;	/* standard time and DST */
   1035       1.1       jtc 			/*
   1036      1.45   mlelstv 			** Two transitions per year, from EPOCH_YEAR forward.
   1037       1.1       jtc 			*/
   1038       1.1       jtc 			sp->ttis[0].tt_gmtoff = -dstoffset;
   1039       1.1       jtc 			sp->ttis[0].tt_isdst = 1;
   1040       1.1       jtc 			sp->ttis[0].tt_abbrind = stdlen + 1;
   1041       1.1       jtc 			sp->ttis[1].tt_gmtoff = -stdoffset;
   1042       1.1       jtc 			sp->ttis[1].tt_isdst = 0;
   1043       1.1       jtc 			sp->ttis[1].tt_abbrind = 0;
   1044       1.1       jtc 			atp = sp->ats;
   1045       1.1       jtc 			typep = sp->types;
   1046       1.1       jtc 			janfirst = 0;
   1047      1.45   mlelstv 			sp->timecnt = 0;
   1048      1.45   mlelstv 			for (year = EPOCH_YEAR;
   1049      1.45   mlelstv 			    sp->timecnt + 2 <= TZ_MAX_TIMES;
   1050      1.45   mlelstv 			    ++year) {
   1051      1.45   mlelstv 			    	time_t	newfirst;
   1052      1.45   mlelstv 
   1053      1.45   mlelstv 				starttime = transtime(janfirst, year, &start,
   1054       1.1       jtc 					stdoffset);
   1055      1.45   mlelstv 				endtime = transtime(janfirst, year, &end,
   1056       1.1       jtc 					dstoffset);
   1057       1.1       jtc 				if (starttime > endtime) {
   1058       1.1       jtc 					*atp++ = endtime;
   1059       1.1       jtc 					*typep++ = 1;	/* DST ends */
   1060       1.1       jtc 					*atp++ = starttime;
   1061       1.1       jtc 					*typep++ = 0;	/* DST begins */
   1062       1.1       jtc 				} else {
   1063       1.1       jtc 					*atp++ = starttime;
   1064       1.1       jtc 					*typep++ = 0;	/* DST begins */
   1065       1.1       jtc 					*atp++ = endtime;
   1066       1.1       jtc 					*typep++ = 1;	/* DST ends */
   1067       1.1       jtc 				}
   1068      1.45   mlelstv 				sp->timecnt += 2;
   1069      1.45   mlelstv 				newfirst = janfirst;
   1070      1.45   mlelstv 				newfirst += year_lengths[isleap(year)] *
   1071       1.1       jtc 					SECSPERDAY;
   1072      1.45   mlelstv 				if (newfirst <= janfirst)
   1073      1.45   mlelstv 					break;
   1074      1.45   mlelstv 				janfirst = newfirst;
   1075       1.1       jtc 			}
   1076       1.1       jtc 		} else {
   1077      1.49  christos 			long	theirstdoffset;
   1078      1.49  christos 			long	theirdstoffset;
   1079      1.49  christos 			long	theiroffset;
   1080      1.49  christos 			int	isdst;
   1081      1.49  christos 			int	i;
   1082      1.49  christos 			int	j;
   1083       1.1       jtc 
   1084       1.1       jtc 			if (*name != '\0')
   1085       1.1       jtc 				return -1;
   1086       1.1       jtc 			/*
   1087      1.39  christos 			** Initial values of theirstdoffset
   1088       1.1       jtc 			*/
   1089       1.1       jtc 			theirstdoffset = 0;
   1090       1.1       jtc 			for (i = 0; i < sp->timecnt; ++i) {
   1091       1.1       jtc 				j = sp->types[i];
   1092       1.1       jtc 				if (!sp->ttis[j].tt_isdst) {
   1093       1.5       jtc 					theirstdoffset =
   1094       1.5       jtc 						-sp->ttis[j].tt_gmtoff;
   1095       1.1       jtc 					break;
   1096       1.1       jtc 				}
   1097       1.1       jtc 			}
   1098      1.45   mlelstv 			theirdstoffset = 0;
   1099      1.45   mlelstv 			for (i = 0; i < sp->timecnt; ++i) {
   1100      1.45   mlelstv 				j = sp->types[i];
   1101      1.45   mlelstv 				if (sp->ttis[j].tt_isdst) {
   1102      1.45   mlelstv 					theirdstoffset =
   1103      1.45   mlelstv 						-sp->ttis[j].tt_gmtoff;
   1104      1.45   mlelstv 					break;
   1105      1.45   mlelstv 				}
   1106      1.45   mlelstv 			}
   1107       1.1       jtc 			/*
   1108       1.1       jtc 			** Initially we're assumed to be in standard time.
   1109       1.1       jtc 			*/
   1110      1.45   mlelstv 			isdst = FALSE;
   1111       1.1       jtc 			theiroffset = theirstdoffset;
   1112       1.1       jtc 			/*
   1113       1.1       jtc 			** Now juggle transition times and types
   1114       1.1       jtc 			** tracking offsets as you do.
   1115       1.1       jtc 			*/
   1116       1.1       jtc 			for (i = 0; i < sp->timecnt; ++i) {
   1117       1.1       jtc 				j = sp->types[i];
   1118       1.1       jtc 				sp->types[i] = sp->ttis[j].tt_isdst;
   1119       1.1       jtc 				if (sp->ttis[j].tt_ttisgmt) {
   1120       1.1       jtc 					/* No adjustment to transition time */
   1121       1.1       jtc 				} else {
   1122       1.1       jtc 					/*
   1123       1.1       jtc 					** If summer time is in effect, and the
   1124       1.1       jtc 					** transition time was not specified as
   1125       1.1       jtc 					** standard time, add the summer time
   1126       1.1       jtc 					** offset to the transition time;
   1127       1.1       jtc 					** otherwise, add the standard time
   1128       1.1       jtc 					** offset to the transition time.
   1129       1.1       jtc 					*/
   1130       1.1       jtc 					/*
   1131       1.1       jtc 					** Transitions from DST to DDST
   1132       1.1       jtc 					** will effectively disappear since
   1133       1.1       jtc 					** POSIX provides for only one DST
   1134       1.1       jtc 					** offset.
   1135       1.1       jtc 					*/
   1136      1.45   mlelstv 					if (isdst && !sp->ttis[j].tt_ttisstd) {
   1137      1.45   mlelstv 						sp->ats[i] += dstoffset -
   1138      1.45   mlelstv 							theirdstoffset;
   1139      1.45   mlelstv 					} else {
   1140      1.45   mlelstv 						sp->ats[i] += stdoffset -
   1141      1.45   mlelstv 							theirstdoffset;
   1142      1.45   mlelstv 					}
   1143       1.1       jtc 				}
   1144       1.1       jtc 				theiroffset = -sp->ttis[j].tt_gmtoff;
   1145      1.39  christos 				if (!sp->ttis[j].tt_isdst)
   1146      1.39  christos 					theirstdoffset = theiroffset;
   1147      1.45   mlelstv 				else	theirdstoffset = theiroffset;
   1148       1.1       jtc 			}
   1149       1.1       jtc 			/*
   1150       1.1       jtc 			** Finally, fill in ttis.
   1151       1.1       jtc 			** ttisstd and ttisgmt need not be handled.
   1152       1.1       jtc 			*/
   1153       1.1       jtc 			sp->ttis[0].tt_gmtoff = -stdoffset;
   1154       1.1       jtc 			sp->ttis[0].tt_isdst = FALSE;
   1155       1.1       jtc 			sp->ttis[0].tt_abbrind = 0;
   1156       1.1       jtc 			sp->ttis[1].tt_gmtoff = -dstoffset;
   1157       1.1       jtc 			sp->ttis[1].tt_isdst = TRUE;
   1158       1.1       jtc 			sp->ttis[1].tt_abbrind = stdlen + 1;
   1159       1.7       jtc 			sp->typecnt = 2;
   1160       1.1       jtc 		}
   1161       1.1       jtc 	} else {
   1162       1.1       jtc 		dstlen = 0;
   1163       1.1       jtc 		sp->typecnt = 1;		/* only standard time */
   1164       1.1       jtc 		sp->timecnt = 0;
   1165       1.1       jtc 		sp->ttis[0].tt_gmtoff = -stdoffset;
   1166       1.1       jtc 		sp->ttis[0].tt_isdst = 0;
   1167       1.1       jtc 		sp->ttis[0].tt_abbrind = 0;
   1168       1.1       jtc 	}
   1169       1.1       jtc 	sp->charcnt = stdlen + 1;
   1170       1.1       jtc 	if (dstlen != 0)
   1171       1.1       jtc 		sp->charcnt += dstlen + 1;
   1172      1.10       jtc 	if ((size_t) sp->charcnt > sizeof sp->chars)
   1173       1.1       jtc 		return -1;
   1174       1.1       jtc 	cp = sp->chars;
   1175       1.1       jtc 	(void) strncpy(cp, stdname, stdlen);
   1176       1.1       jtc 	cp += stdlen;
   1177       1.1       jtc 	*cp++ = '\0';
   1178       1.1       jtc 	if (dstlen != 0) {
   1179       1.1       jtc 		(void) strncpy(cp, dstname, dstlen);
   1180       1.1       jtc 		*(cp + dstlen) = '\0';
   1181       1.1       jtc 	}
   1182       1.1       jtc 	return 0;
   1183       1.1       jtc }
   1184       1.1       jtc 
   1185       1.1       jtc static void
   1186      1.49  christos gmtload(timezone_t sp)
   1187      1.49  christos {
   1188      1.49  christos 	if (tzload(sp, gmt, TRUE) != 0)
   1189      1.49  christos 		(void) tzparse(sp, gmt, TRUE);
   1190      1.49  christos }
   1191      1.49  christos 
   1192      1.49  christos timezone_t
   1193      1.49  christos tzalloc(const char *name)
   1194      1.49  christos {
   1195      1.49  christos 	timezone_t sp = calloc(1, sizeof *sp);
   1196      1.49  christos 	if (sp == NULL)
   1197      1.49  christos 		return NULL;
   1198      1.49  christos 	if (tzload(sp, name, TRUE) != 0) {
   1199      1.49  christos 		free(sp);
   1200      1.49  christos 		return NULL;
   1201      1.49  christos 	}
   1202      1.49  christos 	settzname_z(sp);
   1203      1.49  christos 	return sp;
   1204      1.49  christos }
   1205      1.49  christos 
   1206      1.49  christos void
   1207      1.49  christos tzfree(const timezone_t sp)
   1208       1.1       jtc {
   1209      1.49  christos 	free(sp);
   1210       1.1       jtc }
   1211       1.1       jtc 
   1212      1.19    kleink static void
   1213      1.45   mlelstv tzsetwall_unlocked(void)
   1214       1.1       jtc {
   1215      1.45   mlelstv 	if (lcl_is_set < 0)
   1216       1.1       jtc 		return;
   1217      1.45   mlelstv 	lcl_is_set = -1;
   1218       1.1       jtc 
   1219       1.1       jtc 	if (lclptr == NULL) {
   1220      1.41  christos 		int saveerrno = errno;
   1221      1.47  christos 		lclptr = calloc(1, sizeof *lclptr);
   1222      1.41  christos 		errno = saveerrno;
   1223       1.1       jtc 		if (lclptr == NULL) {
   1224      1.45   mlelstv 			settzname();	/* all we can do */
   1225       1.1       jtc 			return;
   1226       1.1       jtc 		}
   1227       1.1       jtc 	}
   1228      1.49  christos 	if (tzload(lclptr, NULL, TRUE) != 0)
   1229      1.45   mlelstv 		gmtload(lclptr);
   1230      1.45   mlelstv 	settzname();
   1231       1.1       jtc }
   1232       1.1       jtc 
   1233      1.19    kleink #ifndef STD_INSPIRED
   1234      1.19    kleink /*
   1235      1.19    kleink ** A non-static declaration of tzsetwall in a system header file
   1236      1.19    kleink ** may cause a warning about this upcoming static declaration...
   1237      1.19    kleink */
   1238      1.19    kleink static
   1239      1.19    kleink #endif /* !defined STD_INSPIRED */
   1240       1.1       jtc void
   1241      1.45   mlelstv tzsetwall(void)
   1242      1.19    kleink {
   1243      1.45   mlelstv 	rwlock_wrlock(&lcl_lock);
   1244      1.45   mlelstv 	tzsetwall_unlocked();
   1245      1.45   mlelstv 	rwlock_unlock(&lcl_lock);
   1246      1.19    kleink }
   1247      1.19    kleink 
   1248      1.45   mlelstv #ifndef STD_INSPIRED
   1249      1.45   mlelstv /*
   1250      1.45   mlelstv ** A non-static declaration of tzsetwall in a system header file
   1251      1.45   mlelstv ** may cause a warning about this upcoming static declaration...
   1252      1.45   mlelstv */
   1253      1.45   mlelstv static
   1254      1.45   mlelstv #endif /* !defined STD_INSPIRED */
   1255      1.45   mlelstv void
   1256      1.45   mlelstv tzset_unlocked(void)
   1257       1.1       jtc {
   1258      1.49  christos 	const char *	name;
   1259      1.41  christos 	int saveerrno;
   1260       1.1       jtc 
   1261      1.41  christos 	saveerrno = errno;
   1262       1.1       jtc 	name = getenv("TZ");
   1263      1.41  christos 	errno = saveerrno;
   1264       1.1       jtc 	if (name == NULL) {
   1265      1.45   mlelstv 		tzsetwall_unlocked();
   1266       1.1       jtc 		return;
   1267       1.1       jtc 	}
   1268       1.1       jtc 
   1269      1.45   mlelstv 	if (lcl_is_set > 0 && strcmp(lcl_TZname, name) == 0)
   1270       1.1       jtc 		return;
   1271      1.45   mlelstv 	lcl_is_set = strlen(name) < sizeof lcl_TZname;
   1272      1.45   mlelstv 	if (lcl_is_set)
   1273      1.45   mlelstv 		(void)strlcpy(lcl_TZname, name, sizeof(lcl_TZname));
   1274       1.1       jtc 
   1275       1.1       jtc 	if (lclptr == NULL) {
   1276      1.41  christos 		saveerrno = errno;
   1277      1.47  christos 		lclptr = calloc(1, sizeof *lclptr);
   1278      1.41  christos 		errno = saveerrno;
   1279       1.1       jtc 		if (lclptr == NULL) {
   1280      1.45   mlelstv 			settzname();	/* all we can do */
   1281       1.1       jtc 			return;
   1282       1.1       jtc 		}
   1283       1.1       jtc 	}
   1284       1.1       jtc 	if (*name == '\0') {
   1285       1.1       jtc 		/*
   1286       1.1       jtc 		** User wants it fast rather than right.
   1287       1.1       jtc 		*/
   1288       1.1       jtc 		lclptr->leapcnt = 0;		/* so, we're off a little */
   1289       1.1       jtc 		lclptr->timecnt = 0;
   1290      1.27    atatat 		lclptr->typecnt = 0;
   1291      1.27    atatat 		lclptr->ttis[0].tt_isdst = 0;
   1292       1.1       jtc 		lclptr->ttis[0].tt_gmtoff = 0;
   1293       1.1       jtc 		lclptr->ttis[0].tt_abbrind = 0;
   1294      1.45   mlelstv 		(void) strlcpy(lclptr->chars, gmt, sizeof(lclptr->chars));
   1295      1.49  christos 	} else if (tzload(lclptr, name, TRUE) != 0)
   1296      1.49  christos 		if (name[0] == ':' || tzparse(lclptr, name, FALSE) != 0)
   1297      1.45   mlelstv 			(void) gmtload(lclptr);
   1298      1.45   mlelstv 	settzname();
   1299       1.1       jtc }
   1300       1.1       jtc 
   1301      1.19    kleink void
   1302      1.45   mlelstv tzset(void)
   1303      1.19    kleink {
   1304      1.45   mlelstv 	rwlock_wrlock(&lcl_lock);
   1305      1.45   mlelstv 	tzset_unlocked();
   1306      1.45   mlelstv 	rwlock_unlock(&lcl_lock);
   1307      1.19    kleink }
   1308      1.19    kleink 
   1309       1.1       jtc /*
   1310       1.1       jtc ** The easy way to behave "as if no library function calls" localtime
   1311       1.1       jtc ** is to not call it--so we drop its guts into "localsub", which can be
   1312      1.45   mlelstv ** freely called. (And no, the PANS doesn't require the above behavior--
   1313       1.1       jtc ** but it *is* desirable.)
   1314       1.1       jtc **
   1315       1.1       jtc ** The unused offset argument is for the benefit of mktime variants.
   1316       1.1       jtc */
   1317       1.1       jtc 
   1318       1.1       jtc /*ARGSUSED*/
   1319      1.45   mlelstv static struct tm *
   1320      1.49  christos localsub(const timezone_t sp, const time_t * const timep, const long offset,
   1321      1.49  christos     struct tm *const tmp)
   1322      1.49  christos {
   1323      1.49  christos 	const struct ttinfo *	ttisp;
   1324      1.49  christos 	int			i;
   1325      1.49  christos 	struct tm *		result;
   1326       1.1       jtc 	const time_t			t = *timep;
   1327       1.1       jtc 
   1328      1.45   mlelstv 	if ((sp->goback && t < sp->ats[0]) ||
   1329      1.45   mlelstv 		(sp->goahead && t > sp->ats[sp->timecnt - 1])) {
   1330      1.45   mlelstv 			time_t			newt = t;
   1331      1.49  christos 			time_t		seconds;
   1332      1.49  christos 			time_t		tcycles;
   1333      1.49  christos 			int_fast64_t	icycles;
   1334      1.45   mlelstv 
   1335      1.45   mlelstv 			if (t < sp->ats[0])
   1336      1.45   mlelstv 				seconds = sp->ats[0] - t;
   1337      1.45   mlelstv 			else	seconds = t - sp->ats[sp->timecnt - 1];
   1338      1.45   mlelstv 			--seconds;
   1339      1.45   mlelstv 			tcycles = seconds / YEARSPERREPEAT / AVGSECSPERYEAR;
   1340      1.45   mlelstv 			++tcycles;
   1341      1.45   mlelstv 			icycles = tcycles;
   1342      1.45   mlelstv 			if (tcycles - icycles >= 1 || icycles - tcycles >= 1)
   1343      1.45   mlelstv 				return NULL;
   1344      1.45   mlelstv 			seconds = (time_t) icycles;
   1345      1.45   mlelstv 			seconds *= YEARSPERREPEAT;
   1346      1.45   mlelstv 			seconds *= AVGSECSPERYEAR;
   1347      1.45   mlelstv 			if (t < sp->ats[0])
   1348      1.45   mlelstv 				newt += seconds;
   1349      1.45   mlelstv 			else	newt -= seconds;
   1350      1.45   mlelstv 			if (newt < sp->ats[0] ||
   1351      1.51  christos 				newt > sp->ats[sp->timecnt - 1])
   1352      1.45   mlelstv 					return NULL;	/* "cannot happen" */
   1353      1.49  christos 			result = localsub(sp, &newt, offset, tmp);
   1354      1.45   mlelstv 			if (result == tmp) {
   1355      1.49  christos 				time_t	newy;
   1356      1.45   mlelstv 
   1357      1.45   mlelstv 				newy = tmp->tm_year;
   1358      1.45   mlelstv 				if (t < sp->ats[0])
   1359      1.45   mlelstv 					newy -= (time_t)icycles * YEARSPERREPEAT;
   1360      1.45   mlelstv 				else	newy += (time_t)icycles * YEARSPERREPEAT;
   1361      1.45   mlelstv 				tmp->tm_year = (int)newy;
   1362      1.51  christos 				if (tmp->tm_year != newy)
   1363      1.45   mlelstv 					return NULL;
   1364      1.45   mlelstv 			}
   1365      1.45   mlelstv 			return result;
   1366       1.1       jtc 	}
   1367       1.1       jtc 	if (sp->timecnt == 0 || t < sp->ats[0]) {
   1368       1.1       jtc 		i = 0;
   1369       1.1       jtc 		while (sp->ttis[i].tt_isdst)
   1370       1.1       jtc 			if (++i >= sp->typecnt) {
   1371       1.1       jtc 				i = 0;
   1372       1.1       jtc 				break;
   1373       1.1       jtc 			}
   1374       1.1       jtc 	} else {
   1375      1.49  christos 		int	lo = 1;
   1376      1.49  christos 		int	hi = sp->timecnt;
   1377      1.45   mlelstv 
   1378      1.45   mlelstv 		while (lo < hi) {
   1379      1.49  christos 			int	mid = (lo + hi) / 2;
   1380      1.45   mlelstv 
   1381      1.45   mlelstv 			if (t < sp->ats[mid])
   1382      1.45   mlelstv 				hi = mid;
   1383      1.45   mlelstv 			else	lo = mid + 1;
   1384      1.45   mlelstv 		}
   1385      1.45   mlelstv 		i = (int) sp->types[lo - 1];
   1386       1.1       jtc 	}
   1387       1.1       jtc 	ttisp = &sp->ttis[i];
   1388       1.1       jtc 	/*
   1389       1.1       jtc 	** To get (wrong) behavior that's compatible with System V Release 2.0
   1390       1.1       jtc 	** you'd replace the statement below with
   1391       1.1       jtc 	**	t += ttisp->tt_gmtoff;
   1392       1.1       jtc 	**	timesub(&t, 0L, sp, tmp);
   1393       1.1       jtc 	*/
   1394      1.49  christos 	result = timesub(sp, &t, ttisp->tt_gmtoff, tmp);
   1395       1.1       jtc 	tmp->tm_isdst = ttisp->tt_isdst;
   1396       1.1       jtc 	tzname[tmp->tm_isdst] = &sp->chars[ttisp->tt_abbrind];
   1397       1.1       jtc #ifdef TM_ZONE
   1398       1.1       jtc 	tmp->TM_ZONE = &sp->chars[ttisp->tt_abbrind];
   1399       1.1       jtc #endif /* defined TM_ZONE */
   1400      1.45   mlelstv 	return result;
   1401       1.1       jtc }
   1402       1.1       jtc 
   1403      1.49  christos /*
   1404      1.49  christos ** Re-entrant version of localtime.
   1405      1.49  christos */
   1406      1.49  christos 
   1407       1.1       jtc struct tm *
   1408      1.49  christos localtime_r(const time_t * __restrict timep, struct tm *tmp)
   1409       1.1       jtc {
   1410      1.49  christos 	rwlock_rdlock(&lcl_lock);
   1411      1.45   mlelstv 	tzset_unlocked();
   1412      1.49  christos 	tmp = localtime_rz(lclptr, timep, tmp);
   1413      1.45   mlelstv 	rwlock_unlock(&lcl_lock);
   1414      1.49  christos 	return tmp;
   1415       1.1       jtc }
   1416       1.1       jtc 
   1417      1.49  christos struct tm *
   1418      1.49  christos localtime(const time_t *const timep)
   1419      1.49  christos {
   1420      1.49  christos 	return localtime_r(timep, &tm);
   1421      1.49  christos }
   1422      1.35    kleink 
   1423      1.18    kleink struct tm *
   1424      1.49  christos localtime_rz(const timezone_t sp, const time_t * __restrict timep, struct tm *tmp)
   1425      1.18    kleink {
   1426      1.49  christos 	if (sp == NULL)
   1427      1.51  christos 		tmp = gmtsub(NULL, timep, 0L, tmp);
   1428      1.49  christos 	else
   1429      1.51  christos 		tmp = localsub(sp, timep, 0L, tmp);
   1430      1.51  christos 	if (tmp == NULL)
   1431      1.51  christos 		errno = EOVERFLOW;
   1432      1.51  christos 	return tmp;
   1433      1.18    kleink }
   1434      1.18    kleink 
   1435      1.18    kleink /*
   1436       1.1       jtc ** gmtsub is to gmtime as localsub is to localtime.
   1437       1.1       jtc */
   1438       1.1       jtc 
   1439      1.45   mlelstv static struct tm *
   1440      1.49  christos gmtsub(const timezone_t sp, const time_t * const timep, const long offset,
   1441      1.49  christos     struct tm *const tmp)
   1442       1.1       jtc {
   1443      1.49  christos 	struct tm *	result;
   1444      1.33  christos #ifdef _REENTRANT
   1445      1.19    kleink 	static mutex_t gmt_mutex = MUTEX_INITIALIZER;
   1446      1.19    kleink #endif
   1447      1.19    kleink 
   1448      1.19    kleink 	mutex_lock(&gmt_mutex);
   1449      1.45   mlelstv 	if (!gmt_is_set) {
   1450      1.41  christos 		int saveerrno;
   1451      1.45   mlelstv 		gmt_is_set = TRUE;
   1452      1.41  christos 		saveerrno = errno;
   1453      1.47  christos 		gmtptr = calloc(1, sizeof *gmtptr);
   1454      1.41  christos 		errno = saveerrno;
   1455       1.1       jtc 		if (gmtptr != NULL)
   1456      1.45   mlelstv 			gmtload(gmtptr);
   1457       1.1       jtc 	}
   1458      1.19    kleink 	mutex_unlock(&gmt_mutex);
   1459      1.49  christos 	result = timesub(gmtptr, timep, offset, tmp);
   1460       1.1       jtc #ifdef TM_ZONE
   1461       1.1       jtc 	/*
   1462       1.1       jtc 	** Could get fancy here and deliver something such as
   1463      1.14       jtc 	** "UTC+xxxx" or "UTC-xxxx" if offset is non-zero,
   1464       1.1       jtc 	** but this is no time for a treasure hunt.
   1465       1.1       jtc 	*/
   1466       1.1       jtc 	if (offset != 0)
   1467      1.37  christos 		tmp->TM_ZONE = (__aconst char *)__UNCONST(wildabbr);
   1468       1.1       jtc 	else {
   1469       1.1       jtc 		if (gmtptr == NULL)
   1470      1.37  christos 			tmp->TM_ZONE = (__aconst char *)__UNCONST(gmt);
   1471       1.1       jtc 		else	tmp->TM_ZONE = gmtptr->chars;
   1472       1.1       jtc 	}
   1473       1.1       jtc #endif /* defined TM_ZONE */
   1474      1.45   mlelstv 	return result;
   1475       1.1       jtc }
   1476       1.1       jtc 
   1477       1.1       jtc struct tm *
   1478      1.49  christos gmtime(const time_t *const timep)
   1479       1.1       jtc {
   1480  1.54.2.1    bouyer 	struct tm *tmp = gmtsub(NULL, timep, 0L, &tm);
   1481  1.54.2.1    bouyer 
   1482  1.54.2.1    bouyer 	if (tmp == NULL)
   1483  1.54.2.1    bouyer 		errno = EOVERFLOW;
   1484  1.54.2.1    bouyer 
   1485  1.54.2.1    bouyer 	return tmp;
   1486       1.1       jtc }
   1487       1.1       jtc 
   1488      1.18    kleink /*
   1489      1.35    kleink ** Re-entrant version of gmtime.
   1490      1.35    kleink */
   1491      1.35    kleink 
   1492      1.18    kleink struct tm *
   1493      1.49  christos gmtime_r(const time_t * const timep, struct tm *tmp)
   1494      1.18    kleink {
   1495  1.54.2.1    bouyer 	tmp = gmtsub(NULL, timep, 0L, tmp);
   1496  1.54.2.1    bouyer 
   1497  1.54.2.1    bouyer 	if (tmp == NULL)
   1498  1.54.2.1    bouyer 		errno = EOVERFLOW;
   1499  1.54.2.1    bouyer 
   1500  1.54.2.1    bouyer 	return tmp;
   1501      1.18    kleink }
   1502      1.18    kleink 
   1503       1.1       jtc #ifdef STD_INSPIRED
   1504       1.1       jtc 
   1505       1.1       jtc struct tm *
   1506      1.49  christos offtime(const time_t *const timep, long offset)
   1507       1.1       jtc {
   1508  1.54.2.1    bouyer 	struct tm *tmp = gmtsub(NULL, timep, offset, &tm);
   1509  1.54.2.1    bouyer 
   1510  1.54.2.1    bouyer 	if (tmp == NULL)
   1511  1.54.2.1    bouyer 		errno = EOVERFLOW;
   1512  1.54.2.1    bouyer 
   1513  1.54.2.1    bouyer 	return tmp;
   1514      1.49  christos }
   1515      1.49  christos 
   1516      1.49  christos struct tm *
   1517      1.49  christos offtime_r(const time_t *timep, long offset, struct tm *tmp)
   1518      1.49  christos {
   1519  1.54.2.1    bouyer 	tmp = gmtsub(NULL, timep, offset, tmp);
   1520  1.54.2.1    bouyer 
   1521  1.54.2.1    bouyer 	if (tmp == NULL)
   1522  1.54.2.1    bouyer 		errno = EOVERFLOW;
   1523  1.54.2.1    bouyer 
   1524  1.54.2.1    bouyer 	return tmp;
   1525       1.1       jtc }
   1526       1.1       jtc 
   1527       1.1       jtc #endif /* defined STD_INSPIRED */
   1528       1.1       jtc 
   1529      1.45   mlelstv /*
   1530      1.45   mlelstv ** Return the number of leap years through the end of the given year
   1531      1.45   mlelstv ** where, to make the math easy, the answer for year zero is defined as zero.
   1532      1.45   mlelstv */
   1533      1.45   mlelstv 
   1534      1.45   mlelstv static int
   1535      1.49  christos leaps_thru_end_of(const int y)
   1536      1.45   mlelstv {
   1537      1.45   mlelstv 	return (y >= 0) ? (y / 4 - y / 100 + y / 400) :
   1538      1.45   mlelstv 		-(leaps_thru_end_of(-(y + 1)) + 1);
   1539      1.45   mlelstv }
   1540      1.45   mlelstv 
   1541      1.45   mlelstv static struct tm *
   1542      1.49  christos timesub(const timezone_t sp, const time_t *const timep, const long offset,
   1543      1.49  christos     struct tm *const tmp)
   1544      1.49  christos {
   1545      1.49  christos 	const struct lsinfo *	lp;
   1546      1.49  christos 	time_t			tdays;
   1547      1.49  christos 	int			idays;	/* unsigned would be so 2003 */
   1548      1.49  christos 	long			rem;
   1549      1.49  christos 	int			y;
   1550      1.49  christos 	const int *		ip;
   1551      1.49  christos 	long			corr;
   1552      1.49  christos 	int			hit;
   1553      1.49  christos 	int			i;
   1554       1.1       jtc 
   1555       1.1       jtc 	corr = 0;
   1556       1.1       jtc 	hit = 0;
   1557       1.1       jtc 	i = (sp == NULL) ? 0 : sp->leapcnt;
   1558       1.1       jtc 	while (--i >= 0) {
   1559       1.1       jtc 		lp = &sp->lsis[i];
   1560       1.1       jtc 		if (*timep >= lp->ls_trans) {
   1561       1.1       jtc 			if (*timep == lp->ls_trans) {
   1562       1.1       jtc 				hit = ((i == 0 && lp->ls_corr > 0) ||
   1563       1.1       jtc 					lp->ls_corr > sp->lsis[i - 1].ls_corr);
   1564       1.1       jtc 				if (hit)
   1565       1.1       jtc 					while (i > 0 &&
   1566       1.1       jtc 						sp->lsis[i].ls_trans ==
   1567       1.1       jtc 						sp->lsis[i - 1].ls_trans + 1 &&
   1568       1.1       jtc 						sp->lsis[i].ls_corr ==
   1569       1.1       jtc 						sp->lsis[i - 1].ls_corr + 1) {
   1570       1.1       jtc 							++hit;
   1571       1.1       jtc 							--i;
   1572       1.1       jtc 					}
   1573       1.1       jtc 			}
   1574       1.1       jtc 			corr = lp->ls_corr;
   1575       1.1       jtc 			break;
   1576       1.1       jtc 		}
   1577       1.1       jtc 	}
   1578      1.45   mlelstv 	y = EPOCH_YEAR;
   1579      1.45   mlelstv 	tdays = *timep / SECSPERDAY;
   1580      1.45   mlelstv 	rem = (long) (*timep - tdays * SECSPERDAY);
   1581      1.45   mlelstv 	while (tdays < 0 || tdays >= year_lengths[isleap(y)]) {
   1582      1.45   mlelstv 		int		newy;
   1583      1.49  christos 		time_t	tdelta;
   1584      1.49  christos 		int	idelta;
   1585      1.49  christos 		int	leapdays;
   1586      1.45   mlelstv 
   1587      1.45   mlelstv 		tdelta = tdays / DAYSPERLYEAR;
   1588      1.45   mlelstv 		idelta = (int) tdelta;
   1589      1.51  christos 		if (tdelta - idelta >= 1 || idelta - tdelta >= 1)
   1590      1.45   mlelstv 			return NULL;
   1591      1.45   mlelstv 		if (idelta == 0)
   1592      1.45   mlelstv 			idelta = (tdays < 0) ? -1 : 1;
   1593      1.45   mlelstv 		newy = y;
   1594      1.51  christos 		if (increment_overflow(&newy, idelta))
   1595      1.45   mlelstv 			return NULL;
   1596      1.45   mlelstv 		leapdays = leaps_thru_end_of(newy - 1) -
   1597      1.45   mlelstv 			leaps_thru_end_of(y - 1);
   1598      1.45   mlelstv 		tdays -= ((time_t) newy - y) * DAYSPERNYEAR;
   1599      1.45   mlelstv 		tdays -= leapdays;
   1600      1.45   mlelstv 		y = newy;
   1601      1.45   mlelstv 	}
   1602      1.45   mlelstv 	{
   1603      1.49  christos 		long	seconds;
   1604      1.45   mlelstv 
   1605      1.45   mlelstv 		seconds = tdays * SECSPERDAY + 0.5;
   1606      1.45   mlelstv 		tdays = seconds / SECSPERDAY;
   1607      1.45   mlelstv 		rem += (long) (seconds - tdays * SECSPERDAY);
   1608       1.1       jtc 	}
   1609      1.45   mlelstv 	/*
   1610      1.45   mlelstv 	** Given the range, we can now fearlessly cast...
   1611      1.45   mlelstv 	*/
   1612      1.45   mlelstv 	idays = (int) tdays;
   1613      1.45   mlelstv 	rem += offset - corr;
   1614       1.1       jtc 	while (rem < 0) {
   1615       1.1       jtc 		rem += SECSPERDAY;
   1616      1.45   mlelstv 		--idays;
   1617       1.1       jtc 	}
   1618       1.1       jtc 	while (rem >= SECSPERDAY) {
   1619       1.1       jtc 		rem -= SECSPERDAY;
   1620      1.45   mlelstv 		++idays;
   1621      1.45   mlelstv 	}
   1622      1.45   mlelstv 	while (idays < 0) {
   1623      1.51  christos 		if (increment_overflow(&y, -1))
   1624      1.45   mlelstv 			return NULL;
   1625      1.45   mlelstv 		idays += year_lengths[isleap(y)];
   1626       1.1       jtc 	}
   1627      1.45   mlelstv 	while (idays >= year_lengths[isleap(y)]) {
   1628      1.45   mlelstv 		idays -= year_lengths[isleap(y)];
   1629      1.51  christos 		if (increment_overflow(&y, 1))
   1630      1.45   mlelstv 			return NULL;
   1631      1.45   mlelstv 	}
   1632      1.45   mlelstv 	tmp->tm_year = y;
   1633      1.51  christos 	if (increment_overflow(&tmp->tm_year, -TM_YEAR_BASE))
   1634      1.45   mlelstv 		return NULL;
   1635      1.45   mlelstv 	tmp->tm_yday = idays;
   1636      1.45   mlelstv 	/*
   1637      1.45   mlelstv 	** The "extra" mods below avoid overflow problems.
   1638      1.45   mlelstv 	*/
   1639      1.45   mlelstv 	tmp->tm_wday = EPOCH_WDAY +
   1640      1.45   mlelstv 		((y - EPOCH_YEAR) % DAYSPERWEEK) *
   1641      1.45   mlelstv 		(DAYSPERNYEAR % DAYSPERWEEK) +
   1642      1.45   mlelstv 		leaps_thru_end_of(y - 1) -
   1643      1.45   mlelstv 		leaps_thru_end_of(EPOCH_YEAR - 1) +
   1644      1.45   mlelstv 		idays;
   1645      1.45   mlelstv 	tmp->tm_wday %= DAYSPERWEEK;
   1646      1.45   mlelstv 	if (tmp->tm_wday < 0)
   1647      1.45   mlelstv 		tmp->tm_wday += DAYSPERWEEK;
   1648       1.1       jtc 	tmp->tm_hour = (int) (rem / SECSPERHOUR);
   1649      1.45   mlelstv 	rem %= SECSPERHOUR;
   1650       1.1       jtc 	tmp->tm_min = (int) (rem / SECSPERMIN);
   1651       1.6       jtc 	/*
   1652       1.6       jtc 	** A positive leap second requires a special
   1653      1.45   mlelstv 	** representation. This uses "... ??:59:60" et seq.
   1654       1.6       jtc 	*/
   1655       1.6       jtc 	tmp->tm_sec = (int) (rem % SECSPERMIN) + hit;
   1656      1.45   mlelstv 	ip = mon_lengths[isleap(y)];
   1657      1.45   mlelstv 	for (tmp->tm_mon = 0; idays >= ip[tmp->tm_mon]; ++(tmp->tm_mon))
   1658      1.45   mlelstv 		idays -= ip[tmp->tm_mon];
   1659      1.45   mlelstv 	tmp->tm_mday = (int) (idays + 1);
   1660       1.1       jtc 	tmp->tm_isdst = 0;
   1661       1.1       jtc #ifdef TM_GMTOFF
   1662       1.1       jtc 	tmp->TM_GMTOFF = offset;
   1663       1.1       jtc #endif /* defined TM_GMTOFF */
   1664      1.45   mlelstv 	return tmp;
   1665       1.1       jtc }
   1666       1.1       jtc 
   1667       1.1       jtc char *
   1668      1.49  christos ctime(const time_t *const timep)
   1669       1.1       jtc {
   1670       1.1       jtc /*
   1671       1.1       jtc ** Section 4.12.3.2 of X3.159-1989 requires that
   1672      1.18    kleink **	The ctime function converts the calendar time pointed to by timer
   1673      1.45   mlelstv **	to local time in the form of a string. It is equivalent to
   1674       1.1       jtc **		asctime(localtime(timer))
   1675       1.1       jtc */
   1676      1.46  christos 	struct tm *rtm = localtime(timep);
   1677      1.46  christos 	if (rtm == NULL)
   1678      1.46  christos 		return NULL;
   1679      1.46  christos 	return asctime(rtm);
   1680      1.18    kleink }
   1681      1.18    kleink 
   1682      1.18    kleink char *
   1683      1.49  christos ctime_r(const time_t *const timep, char *buf)
   1684      1.18    kleink {
   1685      1.46  christos 	struct tm	mytm, *rtm;
   1686      1.18    kleink 
   1687      1.46  christos 	rtm = localtime_r(timep, &mytm);
   1688      1.46  christos 	if (rtm == NULL)
   1689      1.46  christos 		return NULL;
   1690      1.46  christos 	return asctime_r(rtm, buf);
   1691       1.1       jtc }
   1692       1.1       jtc 
   1693      1.49  christos char *
   1694      1.49  christos ctime_rz(const timezone_t sp, const time_t * timep, char *buf)
   1695      1.49  christos {
   1696      1.49  christos 	struct tm	mytm, *rtm;
   1697      1.49  christos 
   1698      1.49  christos 	rtm = localtime_rz(sp, timep, &mytm);
   1699      1.49  christos 	if (rtm == NULL)
   1700      1.49  christos 		return NULL;
   1701      1.49  christos 	return asctime_r(rtm, buf);
   1702      1.49  christos }
   1703      1.49  christos 
   1704       1.1       jtc /*
   1705       1.1       jtc ** Adapted from code provided by Robert Elz, who writes:
   1706       1.1       jtc **	The "best" way to do mktime I think is based on an idea of Bob
   1707       1.7       jtc **	Kridle's (so its said...) from a long time ago.
   1708      1.45   mlelstv **	It does a binary search of the time_t space. Since time_t's are
   1709       1.1       jtc **	just 32 bits, its a max of 32 iterations (even at 64 bits it
   1710       1.1       jtc **	would still be very reasonable).
   1711       1.1       jtc */
   1712       1.1       jtc 
   1713       1.1       jtc #ifndef WRONG
   1714      1.51  christos #define WRONG	((time_t)-1)
   1715       1.1       jtc #endif /* !defined WRONG */
   1716       1.1       jtc 
   1717       1.1       jtc /*
   1718      1.45   mlelstv ** Simplified normalize logic courtesy Paul Eggert.
   1719       1.1       jtc */
   1720       1.1       jtc 
   1721       1.1       jtc static int
   1722      1.49  christos increment_overflow(int *number, int delta)
   1723       1.1       jtc {
   1724       1.1       jtc 	int	number0;
   1725       1.1       jtc 
   1726       1.1       jtc 	number0 = *number;
   1727      1.54  christos 	if (delta < 0 ? number0 < INT_MIN - delta : INT_MAX - delta < number0)
   1728      1.54  christos 		  return 1;
   1729       1.1       jtc 	*number += delta;
   1730      1.54  christos 	return 0;
   1731       1.1       jtc }
   1732       1.1       jtc 
   1733       1.1       jtc static int
   1734      1.49  christos long_increment_overflow(long *number, int delta)
   1735      1.45   mlelstv {
   1736      1.45   mlelstv 	long	number0;
   1737      1.45   mlelstv 
   1738      1.45   mlelstv 	number0 = *number;
   1739      1.54  christos 	if (delta < 0 ? number0 < LONG_MIN - delta : LONG_MAX - delta < number0)
   1740      1.54  christos 		  return 1;
   1741      1.45   mlelstv 	*number += delta;
   1742      1.54  christos 	return 0;
   1743      1.45   mlelstv }
   1744      1.45   mlelstv 
   1745      1.45   mlelstv static int
   1746      1.49  christos normalize_overflow(int *const tensptr, int *const unitsptr, const int base)
   1747       1.1       jtc {
   1748      1.49  christos 	int	tensdelta;
   1749       1.1       jtc 
   1750       1.1       jtc 	tensdelta = (*unitsptr >= 0) ?
   1751       1.1       jtc 		(*unitsptr / base) :
   1752       1.1       jtc 		(-1 - (-1 - *unitsptr) / base);
   1753       1.1       jtc 	*unitsptr -= tensdelta * base;
   1754       1.1       jtc 	return increment_overflow(tensptr, tensdelta);
   1755       1.1       jtc }
   1756       1.1       jtc 
   1757       1.1       jtc static int
   1758      1.49  christos long_normalize_overflow(long *const tensptr, int *const unitsptr,
   1759      1.49  christos     const int base)
   1760      1.45   mlelstv {
   1761      1.49  christos 	int	tensdelta;
   1762      1.45   mlelstv 
   1763      1.45   mlelstv 	tensdelta = (*unitsptr >= 0) ?
   1764      1.45   mlelstv 		(*unitsptr / base) :
   1765      1.45   mlelstv 		(-1 - (-1 - *unitsptr) / base);
   1766      1.45   mlelstv 	*unitsptr -= tensdelta * base;
   1767      1.45   mlelstv 	return long_increment_overflow(tensptr, tensdelta);
   1768      1.45   mlelstv }
   1769      1.45   mlelstv 
   1770      1.45   mlelstv static int
   1771      1.49  christos tmcomp(const struct tm *const atmp, const struct tm *const btmp)
   1772       1.1       jtc {
   1773      1.49  christos 	int	result;
   1774       1.1       jtc 
   1775       1.1       jtc 	if ((result = (atmp->tm_year - btmp->tm_year)) == 0 &&
   1776       1.1       jtc 		(result = (atmp->tm_mon - btmp->tm_mon)) == 0 &&
   1777       1.1       jtc 		(result = (atmp->tm_mday - btmp->tm_mday)) == 0 &&
   1778       1.1       jtc 		(result = (atmp->tm_hour - btmp->tm_hour)) == 0 &&
   1779       1.1       jtc 		(result = (atmp->tm_min - btmp->tm_min)) == 0)
   1780       1.1       jtc 			result = atmp->tm_sec - btmp->tm_sec;
   1781       1.1       jtc 	return result;
   1782       1.1       jtc }
   1783       1.1       jtc 
   1784       1.1       jtc static time_t
   1785      1.49  christos time2sub(const timezone_t sp, struct tm *const tmp, subfun_t funcp,
   1786      1.49  christos     const long offset, int *const okayp, const int do_norm_secs)
   1787      1.49  christos {
   1788      1.49  christos 	int			dir;
   1789      1.49  christos 	int			i, j;
   1790      1.49  christos 	int			saved_seconds;
   1791      1.49  christos 	long			li;
   1792      1.49  christos 	time_t			lo;
   1793      1.49  christos 	time_t			hi;
   1794      1.45   mlelstv 	long				y;
   1795       1.1       jtc 	time_t				newt;
   1796       1.1       jtc 	time_t				t;
   1797       1.1       jtc 	struct tm			yourtm, mytm;
   1798       1.1       jtc 
   1799       1.1       jtc 	*okayp = FALSE;
   1800       1.1       jtc 	yourtm = *tmp;
   1801      1.13       jtc 	if (do_norm_secs) {
   1802      1.13       jtc 		if (normalize_overflow(&yourtm.tm_min, &yourtm.tm_sec,
   1803      1.13       jtc 			SECSPERMIN))
   1804      1.13       jtc 				return WRONG;
   1805      1.13       jtc 	}
   1806       1.1       jtc 	if (normalize_overflow(&yourtm.tm_hour, &yourtm.tm_min, MINSPERHOUR))
   1807       1.1       jtc 		return WRONG;
   1808       1.1       jtc 	if (normalize_overflow(&yourtm.tm_mday, &yourtm.tm_hour, HOURSPERDAY))
   1809       1.1       jtc 		return WRONG;
   1810      1.45   mlelstv 	y = yourtm.tm_year;
   1811      1.45   mlelstv 	if (long_normalize_overflow(&y, &yourtm.tm_mon, MONSPERYEAR))
   1812       1.1       jtc 		return WRONG;
   1813       1.1       jtc 	/*
   1814      1.45   mlelstv 	** Turn y into an actual year number for now.
   1815       1.1       jtc 	** It is converted back to an offset from TM_YEAR_BASE later.
   1816       1.1       jtc 	*/
   1817      1.45   mlelstv 	if (long_increment_overflow(&y, TM_YEAR_BASE))
   1818       1.1       jtc 		return WRONG;
   1819       1.1       jtc 	while (yourtm.tm_mday <= 0) {
   1820      1.45   mlelstv 		if (long_increment_overflow(&y, -1))
   1821       1.1       jtc 			return WRONG;
   1822      1.45   mlelstv 		li = y + (1 < yourtm.tm_mon);
   1823      1.45   mlelstv 		yourtm.tm_mday += year_lengths[isleap(li)];
   1824       1.1       jtc 	}
   1825       1.1       jtc 	while (yourtm.tm_mday > DAYSPERLYEAR) {
   1826      1.45   mlelstv 		li = y + (1 < yourtm.tm_mon);
   1827      1.45   mlelstv 		yourtm.tm_mday -= year_lengths[isleap(li)];
   1828      1.45   mlelstv 		if (long_increment_overflow(&y, 1))
   1829       1.1       jtc 			return WRONG;
   1830       1.1       jtc 	}
   1831       1.1       jtc 	for ( ; ; ) {
   1832      1.45   mlelstv 		i = mon_lengths[isleap(y)][yourtm.tm_mon];
   1833       1.1       jtc 		if (yourtm.tm_mday <= i)
   1834       1.1       jtc 			break;
   1835       1.1       jtc 		yourtm.tm_mday -= i;
   1836       1.1       jtc 		if (++yourtm.tm_mon >= MONSPERYEAR) {
   1837       1.1       jtc 			yourtm.tm_mon = 0;
   1838      1.45   mlelstv 			if (long_increment_overflow(&y, 1))
   1839       1.1       jtc 				return WRONG;
   1840       1.1       jtc 		}
   1841       1.1       jtc 	}
   1842      1.45   mlelstv 	if (long_increment_overflow(&y, -TM_YEAR_BASE))
   1843      1.45   mlelstv 		return WRONG;
   1844      1.45   mlelstv 	yourtm.tm_year = y;
   1845      1.45   mlelstv 	if (yourtm.tm_year != y)
   1846       1.1       jtc 		return WRONG;
   1847      1.29    kleink 	if (yourtm.tm_sec >= 0 && yourtm.tm_sec < SECSPERMIN)
   1848      1.29    kleink 		saved_seconds = 0;
   1849      1.45   mlelstv 	else if (y + TM_YEAR_BASE < EPOCH_YEAR) {
   1850       1.1       jtc 		/*
   1851       1.1       jtc 		** We can't set tm_sec to 0, because that might push the
   1852       1.1       jtc 		** time below the minimum representable time.
   1853       1.1       jtc 		** Set tm_sec to 59 instead.
   1854       1.1       jtc 		** This assumes that the minimum representable time is
   1855       1.1       jtc 		** not in the same minute that a leap second was deleted from,
   1856       1.1       jtc 		** which is a safer assumption than using 58 would be.
   1857       1.1       jtc 		*/
   1858       1.1       jtc 		if (increment_overflow(&yourtm.tm_sec, 1 - SECSPERMIN))
   1859       1.1       jtc 			return WRONG;
   1860       1.1       jtc 		saved_seconds = yourtm.tm_sec;
   1861       1.1       jtc 		yourtm.tm_sec = SECSPERMIN - 1;
   1862       1.1       jtc 	} else {
   1863       1.1       jtc 		saved_seconds = yourtm.tm_sec;
   1864       1.1       jtc 		yourtm.tm_sec = 0;
   1865       1.1       jtc 	}
   1866       1.1       jtc 	/*
   1867      1.45   mlelstv 	** Do a binary search (this works whatever time_t's type is).
   1868       1.1       jtc 	*/
   1869      1.45   mlelstv /* LINTED constant */
   1870      1.45   mlelstv 	if (!TYPE_SIGNED(time_t)) {
   1871      1.45   mlelstv 		lo = 0;
   1872      1.45   mlelstv 		hi = lo - 1;
   1873      1.45   mlelstv /* LINTED constant */
   1874      1.45   mlelstv 	} else if (!TYPE_INTEGRAL(time_t)) {
   1875      1.45   mlelstv /* CONSTCOND */
   1876      1.45   mlelstv 		if (sizeof(time_t) > sizeof(float))
   1877      1.45   mlelstv /* LINTED assumed double */
   1878      1.45   mlelstv 			hi = (time_t) DBL_MAX;
   1879      1.45   mlelstv /* LINTED assumed float */
   1880      1.45   mlelstv 		else	hi = (time_t) FLT_MAX;
   1881      1.45   mlelstv 		lo = -hi;
   1882      1.45   mlelstv 	} else {
   1883      1.45   mlelstv 		lo = 1;
   1884      1.45   mlelstv 		for (i = 0; i < (int) TYPE_BIT(time_t) - 1; ++i)
   1885      1.45   mlelstv 			lo *= 2;
   1886      1.45   mlelstv 		hi = -(lo + 1);
   1887      1.45   mlelstv 	}
   1888       1.1       jtc 	for ( ; ; ) {
   1889      1.45   mlelstv 		t = lo / 2 + hi / 2;
   1890      1.45   mlelstv 		if (t < lo)
   1891      1.45   mlelstv 			t = lo;
   1892      1.45   mlelstv 		else if (t > hi)
   1893      1.45   mlelstv 			t = hi;
   1894      1.49  christos 		if ((*funcp)(sp, &t, offset, &mytm) == NULL) {
   1895      1.45   mlelstv 			/*
   1896      1.45   mlelstv 			** Assume that t is too extreme to be represented in
   1897      1.45   mlelstv 			** a struct tm; arrange things so that it is less
   1898      1.45   mlelstv 			** extreme on the next pass.
   1899      1.45   mlelstv 			*/
   1900      1.45   mlelstv 			dir = (t > 0) ? 1 : -1;
   1901      1.45   mlelstv 		} else	dir = tmcomp(&mytm, &yourtm);
   1902       1.1       jtc 		if (dir != 0) {
   1903      1.45   mlelstv 			if (t == lo) {
   1904      1.45   mlelstv 				++t;
   1905      1.45   mlelstv 				if (t <= lo)
   1906      1.45   mlelstv 					return WRONG;
   1907      1.45   mlelstv 				++lo;
   1908      1.45   mlelstv 			} else if (t == hi) {
   1909      1.45   mlelstv 				--t;
   1910      1.45   mlelstv 				if (t >= hi)
   1911      1.45   mlelstv 					return WRONG;
   1912      1.45   mlelstv 				--hi;
   1913      1.45   mlelstv 			}
   1914      1.45   mlelstv 			if (lo > hi)
   1915       1.1       jtc 				return WRONG;
   1916      1.45   mlelstv 			if (dir > 0)
   1917      1.45   mlelstv 				hi = t;
   1918      1.45   mlelstv 			else	lo = t;
   1919       1.1       jtc 			continue;
   1920       1.1       jtc 		}
   1921       1.1       jtc 		if (yourtm.tm_isdst < 0 || mytm.tm_isdst == yourtm.tm_isdst)
   1922       1.1       jtc 			break;
   1923       1.1       jtc 		/*
   1924       1.1       jtc 		** Right time, wrong type.
   1925       1.1       jtc 		** Hunt for right time, right type.
   1926       1.1       jtc 		** It's okay to guess wrong since the guess
   1927       1.1       jtc 		** gets checked.
   1928       1.1       jtc 		*/
   1929       1.1       jtc 		if (sp == NULL)
   1930       1.1       jtc 			return WRONG;
   1931       1.5       jtc 		for (i = sp->typecnt - 1; i >= 0; --i) {
   1932       1.1       jtc 			if (sp->ttis[i].tt_isdst != yourtm.tm_isdst)
   1933       1.1       jtc 				continue;
   1934       1.5       jtc 			for (j = sp->typecnt - 1; j >= 0; --j) {
   1935       1.1       jtc 				if (sp->ttis[j].tt_isdst == yourtm.tm_isdst)
   1936       1.1       jtc 					continue;
   1937       1.1       jtc 				newt = t + sp->ttis[j].tt_gmtoff -
   1938       1.1       jtc 					sp->ttis[i].tt_gmtoff;
   1939      1.49  christos 				if ((*funcp)(sp, &newt, offset, &mytm) == NULL)
   1940      1.45   mlelstv 					continue;
   1941       1.1       jtc 				if (tmcomp(&mytm, &yourtm) != 0)
   1942       1.1       jtc 					continue;
   1943       1.1       jtc 				if (mytm.tm_isdst != yourtm.tm_isdst)
   1944       1.1       jtc 					continue;
   1945       1.1       jtc 				/*
   1946       1.1       jtc 				** We have a match.
   1947       1.1       jtc 				*/
   1948       1.1       jtc 				t = newt;
   1949       1.1       jtc 				goto label;
   1950       1.1       jtc 			}
   1951       1.1       jtc 		}
   1952       1.1       jtc 		return WRONG;
   1953       1.1       jtc 	}
   1954       1.1       jtc label:
   1955       1.1       jtc 	newt = t + saved_seconds;
   1956       1.1       jtc 	if ((newt < t) != (saved_seconds < 0))
   1957       1.1       jtc 		return WRONG;
   1958       1.1       jtc 	t = newt;
   1959      1.51  christos 	if ((*funcp)(sp, &t, offset, tmp)) {
   1960      1.45   mlelstv 		*okayp = TRUE;
   1961      1.51  christos 		return t;
   1962      1.51  christos 	} else
   1963      1.51  christos 		return WRONG;
   1964      1.13       jtc }
   1965      1.13       jtc 
   1966      1.13       jtc static time_t
   1967      1.49  christos time2(const timezone_t sp, struct tm *const tmp, subfun_t funcp,
   1968      1.49  christos     const long offset, int *const okayp)
   1969      1.13       jtc {
   1970      1.13       jtc 	time_t	t;
   1971      1.13       jtc 
   1972      1.13       jtc 	/*
   1973      1.13       jtc 	** First try without normalization of seconds
   1974      1.13       jtc 	** (in case tm_sec contains a value associated with a leap second).
   1975      1.13       jtc 	** If that fails, try with normalization of seconds.
   1976      1.13       jtc 	*/
   1977      1.49  christos 	t = time2sub(sp, tmp, funcp, offset, okayp, FALSE);
   1978      1.49  christos 	return *okayp ? t : time2sub(sp, tmp, funcp, offset, okayp, TRUE);
   1979       1.1       jtc }
   1980       1.1       jtc 
   1981       1.1       jtc static time_t
   1982      1.49  christos time1(const timezone_t sp, struct tm *const tmp, subfun_t funcp,
   1983      1.49  christos     long offset)
   1984      1.49  christos {
   1985      1.49  christos 	time_t			t;
   1986      1.49  christos 	int			samei, otheri;
   1987      1.49  christos 	int			sameind, otherind;
   1988      1.49  christos 	int			i;
   1989      1.49  christos 	int			nseen;
   1990      1.35    kleink 	int				seen[TZ_MAX_TYPES];
   1991      1.35    kleink 	int				types[TZ_MAX_TYPES];
   1992       1.1       jtc 	int				okay;
   1993       1.1       jtc 
   1994       1.1       jtc 	if (tmp->tm_isdst > 1)
   1995       1.1       jtc 		tmp->tm_isdst = 1;
   1996      1.49  christos 	t = time2(sp, tmp, funcp, offset, &okay);
   1997       1.1       jtc #ifdef PCTS
   1998       1.1       jtc 	/*
   1999      1.45   mlelstv 	** PCTS code courtesy Grant Sullivan.
   2000       1.1       jtc 	*/
   2001       1.1       jtc 	if (okay)
   2002       1.1       jtc 		return t;
   2003       1.1       jtc 	if (tmp->tm_isdst < 0)
   2004       1.1       jtc 		tmp->tm_isdst = 0;	/* reset to std and try again */
   2005       1.1       jtc #endif /* defined PCTS */
   2006       1.1       jtc #ifndef PCTS
   2007       1.1       jtc 	if (okay || tmp->tm_isdst < 0)
   2008       1.1       jtc 		return t;
   2009       1.1       jtc #endif /* !defined PCTS */
   2010       1.1       jtc 	/*
   2011       1.1       jtc 	** We're supposed to assume that somebody took a time of one type
   2012       1.1       jtc 	** and did some math on it that yielded a "struct tm" that's bad.
   2013       1.1       jtc 	** We try to divine the type they started from and adjust to the
   2014       1.1       jtc 	** type they need.
   2015       1.1       jtc 	*/
   2016       1.1       jtc 	if (sp == NULL)
   2017       1.1       jtc 		return WRONG;
   2018      1.35    kleink 	for (i = 0; i < sp->typecnt; ++i)
   2019      1.35    kleink 		seen[i] = FALSE;
   2020      1.35    kleink 	nseen = 0;
   2021      1.35    kleink 	for (i = sp->timecnt - 1; i >= 0; --i)
   2022      1.35    kleink 		if (!seen[sp->types[i]]) {
   2023      1.35    kleink 			seen[sp->types[i]] = TRUE;
   2024      1.35    kleink 			types[nseen++] = sp->types[i];
   2025      1.35    kleink 		}
   2026      1.35    kleink 	for (sameind = 0; sameind < nseen; ++sameind) {
   2027      1.35    kleink 		samei = types[sameind];
   2028       1.1       jtc 		if (sp->ttis[samei].tt_isdst != tmp->tm_isdst)
   2029       1.1       jtc 			continue;
   2030      1.35    kleink 		for (otherind = 0; otherind < nseen; ++otherind) {
   2031      1.35    kleink 			otheri = types[otherind];
   2032       1.1       jtc 			if (sp->ttis[otheri].tt_isdst == tmp->tm_isdst)
   2033       1.1       jtc 				continue;
   2034      1.21  christos 			tmp->tm_sec += (int)(sp->ttis[otheri].tt_gmtoff -
   2035      1.21  christos 					sp->ttis[samei].tt_gmtoff);
   2036       1.1       jtc 			tmp->tm_isdst = !tmp->tm_isdst;
   2037      1.49  christos 			t = time2(sp, tmp, funcp, offset, &okay);
   2038       1.1       jtc 			if (okay)
   2039       1.1       jtc 				return t;
   2040      1.21  christos 			tmp->tm_sec -= (int)(sp->ttis[otheri].tt_gmtoff -
   2041      1.21  christos 					sp->ttis[samei].tt_gmtoff);
   2042       1.1       jtc 			tmp->tm_isdst = !tmp->tm_isdst;
   2043       1.1       jtc 		}
   2044       1.1       jtc 	}
   2045       1.1       jtc 	return WRONG;
   2046       1.1       jtc }
   2047       1.1       jtc 
   2048       1.1       jtc time_t
   2049      1.49  christos mktime_z(const timezone_t sp, struct tm *tmp)
   2050      1.49  christos {
   2051      1.51  christos 	time_t t;
   2052      1.49  christos 	if (sp == NULL)
   2053      1.51  christos 		t = time1(NULL, tmp, gmtsub, 0L);
   2054      1.49  christos 	else
   2055      1.51  christos 		t = time1(sp, tmp, localsub, 0L);
   2056      1.51  christos 	if (t == WRONG)
   2057      1.51  christos 		errno = EOVERFLOW;
   2058      1.51  christos 	return t;
   2059      1.49  christos }
   2060      1.49  christos 
   2061      1.49  christos time_t
   2062      1.49  christos mktime(struct tm * const	tmp)
   2063       1.1       jtc {
   2064      1.19    kleink 	time_t result;
   2065      1.19    kleink 
   2066      1.45   mlelstv 	rwlock_wrlock(&lcl_lock);
   2067      1.45   mlelstv 	tzset_unlocked();
   2068      1.49  christos 	result = mktime_z(lclptr, tmp);
   2069      1.45   mlelstv 	rwlock_unlock(&lcl_lock);
   2070      1.49  christos 	return result;
   2071       1.1       jtc }
   2072       1.1       jtc 
   2073       1.1       jtc #ifdef STD_INSPIRED
   2074       1.1       jtc 
   2075       1.1       jtc time_t
   2076      1.49  christos timelocal_z(const timezone_t sp, struct tm *tmp)
   2077      1.49  christos {
   2078      1.49  christos 	if (tmp != NULL)
   2079      1.49  christos 		tmp->tm_isdst = -1;	/* in case it wasn't initialized */
   2080      1.49  christos 	return mktime_z(sp, tmp);
   2081      1.49  christos }
   2082      1.49  christos 
   2083      1.49  christos time_t
   2084      1.49  christos timelocal(struct tm *const tmp)
   2085       1.1       jtc {
   2086       1.1       jtc 	tmp->tm_isdst = -1;	/* in case it wasn't initialized */
   2087       1.1       jtc 	return mktime(tmp);
   2088       1.1       jtc }
   2089       1.1       jtc 
   2090       1.1       jtc time_t
   2091      1.49  christos timegm(struct tm *const tmp)
   2092       1.1       jtc {
   2093      1.51  christos 	time_t t;
   2094      1.51  christos 
   2095       1.1       jtc 	tmp->tm_isdst = 0;
   2096      1.51  christos 	t = time1(gmtptr, tmp, gmtsub, 0L);
   2097      1.51  christos 	if (t == WRONG)
   2098      1.51  christos 		errno = EOVERFLOW;
   2099      1.51  christos 	return t;
   2100       1.1       jtc }
   2101       1.1       jtc 
   2102       1.1       jtc time_t
   2103      1.49  christos timeoff(struct tm *const tmp, const long offset)
   2104       1.1       jtc {
   2105      1.51  christos 	time_t t;
   2106      1.51  christos 
   2107       1.1       jtc 	tmp->tm_isdst = 0;
   2108      1.51  christos 	t = time1(gmtptr, tmp, gmtsub, offset);
   2109      1.51  christos 	if (t == WRONG)
   2110      1.51  christos 		errno = EOVERFLOW;
   2111      1.51  christos 	return t;
   2112       1.1       jtc }
   2113       1.1       jtc 
   2114       1.1       jtc #endif /* defined STD_INSPIRED */
   2115       1.1       jtc 
   2116       1.1       jtc #ifdef CMUCS
   2117       1.1       jtc 
   2118       1.1       jtc /*
   2119       1.1       jtc ** The following is supplied for compatibility with
   2120       1.1       jtc ** previous versions of the CMUCS runtime library.
   2121       1.1       jtc */
   2122       1.1       jtc 
   2123       1.1       jtc long
   2124      1.49  christos gtime(struct tm *const tmp)
   2125       1.1       jtc {
   2126      1.49  christos 	const time_t t = mktime(tmp);
   2127       1.1       jtc 
   2128       1.1       jtc 	if (t == WRONG)
   2129       1.1       jtc 		return -1;
   2130       1.1       jtc 	return t;
   2131       1.1       jtc }
   2132       1.1       jtc 
   2133       1.1       jtc #endif /* defined CMUCS */
   2134       1.1       jtc 
   2135       1.1       jtc /*
   2136       1.1       jtc ** XXX--is the below the right way to conditionalize??
   2137       1.1       jtc */
   2138       1.1       jtc 
   2139       1.1       jtc #ifdef STD_INSPIRED
   2140       1.1       jtc 
   2141       1.1       jtc /*
   2142       1.1       jtc ** IEEE Std 1003.1-1988 (POSIX) legislates that 536457599
   2143      1.14       jtc ** shall correspond to "Wed Dec 31 23:59:59 UTC 1986", which
   2144       1.1       jtc ** is not the case if we are accounting for leap seconds.
   2145       1.1       jtc ** So, we provide the following conversion routines for use
   2146       1.1       jtc ** when exchanging timestamps with POSIX conforming systems.
   2147       1.1       jtc */
   2148       1.1       jtc 
   2149       1.1       jtc static long
   2150      1.49  christos leapcorr(const timezone_t sp, time_t *timep)
   2151       1.1       jtc {
   2152      1.49  christos 	struct lsinfo * lp;
   2153      1.49  christos 	int		i;
   2154       1.1       jtc 
   2155       1.1       jtc 	i = sp->leapcnt;
   2156       1.1       jtc 	while (--i >= 0) {
   2157       1.1       jtc 		lp = &sp->lsis[i];
   2158       1.1       jtc 		if (*timep >= lp->ls_trans)
   2159       1.1       jtc 			return lp->ls_corr;
   2160       1.1       jtc 	}
   2161       1.1       jtc 	return 0;
   2162       1.1       jtc }
   2163       1.1       jtc 
   2164       1.1       jtc time_t
   2165      1.49  christos time2posix_z(const timezone_t sp, time_t t)
   2166      1.49  christos {
   2167      1.49  christos 	return t - leapcorr(sp, &t);
   2168      1.49  christos }
   2169      1.49  christos 
   2170      1.49  christos time_t
   2171      1.49  christos time2posix(time_t t)
   2172       1.1       jtc {
   2173      1.19    kleink 	time_t result;
   2174      1.45   mlelstv 	rwlock_wrlock(&lcl_lock);
   2175      1.45   mlelstv 	tzset_unlocked();
   2176      1.49  christos 	result = t - leapcorr(lclptr, &t);
   2177      1.45   mlelstv 	rwlock_unlock(&lcl_lock);
   2178      1.19    kleink 	return (result);
   2179       1.1       jtc }
   2180       1.1       jtc 
   2181       1.1       jtc time_t
   2182      1.49  christos posix2time_z(const timezone_t sp, time_t t)
   2183       1.1       jtc {
   2184       1.1       jtc 	time_t	x;
   2185       1.1       jtc 	time_t	y;
   2186       1.1       jtc 
   2187       1.1       jtc 	/*
   2188       1.1       jtc 	** For a positive leap second hit, the result
   2189      1.45   mlelstv 	** is not unique. For a negative leap second
   2190       1.1       jtc 	** hit, the corresponding time doesn't exist,
   2191       1.1       jtc 	** so we return an adjacent second.
   2192       1.1       jtc 	*/
   2193      1.49  christos 	x = t + leapcorr(sp, &t);
   2194      1.49  christos 	y = x - leapcorr(sp, &x);
   2195       1.1       jtc 	if (y < t) {
   2196       1.1       jtc 		do {
   2197       1.1       jtc 			x++;
   2198      1.49  christos 			y = x - leapcorr(sp, &x);
   2199       1.1       jtc 		} while (y < t);
   2200      1.19    kleink 		if (t != y) {
   2201       1.1       jtc 			return x - 1;
   2202      1.19    kleink 		}
   2203       1.1       jtc 	} else if (y > t) {
   2204       1.1       jtc 		do {
   2205       1.1       jtc 			--x;
   2206      1.49  christos 			y = x - leapcorr(sp, &x);
   2207       1.1       jtc 		} while (y > t);
   2208      1.19    kleink 		if (t != y) {
   2209       1.1       jtc 			return x + 1;
   2210      1.19    kleink 		}
   2211       1.1       jtc 	}
   2212      1.49  christos 	return x;
   2213      1.49  christos }
   2214      1.49  christos 
   2215      1.49  christos 
   2216      1.49  christos 
   2217      1.49  christos time_t
   2218      1.49  christos posix2time(time_t t)
   2219      1.49  christos {
   2220      1.49  christos 	time_t result;
   2221      1.49  christos 
   2222      1.49  christos 	rwlock_wrlock(&lcl_lock);
   2223      1.49  christos 	tzset_unlocked();
   2224      1.49  christos 	result = posix2time_z(lclptr, t);
   2225      1.45   mlelstv 	rwlock_unlock(&lcl_lock);
   2226      1.49  christos 	return result;
   2227       1.1       jtc }
   2228       1.1       jtc 
   2229       1.1       jtc #endif /* defined STD_INSPIRED */
   2230